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Abstract

Upcoming Large-Scale Structure surveys will likely become the next leading sources of cosmo-

logical information, making it crucial to have a precise understanding of the influence of baryons

on cosmological observables. The Effective Field Theory of Large-Scale Structure (EFTofLSS)

provides a consistent way to predict the clustering of dark matter and baryons on large scales,

where their leading corrections in perturbation theory are given by a simple and calculable

functional form even after the onset of baryonic processes. In this paper, we extend the two-

fluid-like system up to two-loop order in perturbation theory. Along the way, we show that a

new linear counterterm proportional to the relative velocity of the fluids could generically be

present, but we show that its effects are expected to be small in our universe. Regardless, we

show how to consistently perform perturbation theory in the presence of this new term. We

find that the EFTofLSS at two-loop order can accurately account for the details of baryonic

processes on large scales. We compare our results to a hydrodynamical N -body simulation at

many redshifts and find that the counterterms associated with the leading corrections to dark

matter and baryons start to differ between redshifts z ≈ 3 and z ≈ 2, signaling the onset of

star-formation physics. We then use these fits to compute the lensing power spectrum, show

that the understanding of baryonic processes will be important for analyzing CMB-S4 data,

and show that the two-loop EFTofLSS accurately captures these effects for ` . 2000. Our

results are also potentially of interest for current and future weak lensing surveys.
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1 Introduction

Upcoming Large-Scale Structure (LSS) surveys may very well become our primary sources of cos-

mological information, as they will probe the matter distribution with unprecedented accuracy.

However, the success of lensing surveys such as CMB-S4 [1–3], and many LSS surveys in general,

crucially depends on the impact of small-scale baryonic processes on the large-scale matter distri-

bution, such as energy feedback mechanisms driven by active galactic nuclei (AGN), supernovae,

black hole accretion, and wind mass loading. Despite the continuous progress of numerical hy-

drodynamical simulations, the effect of baryonic processes on the large-scale gas distribution can

not be properly resolved by current simulations, restricting their predictability for cosmological

observables.

Given the current situation, it is of increasing importance to have an accurate theoretical un-

derstanding of how baryons affect LSS formation in the mildly non-linear regime in order to com-

plement hydrodynamical simulations in the non-linear regime. Furthermore, because the amount

of information retrievable from large-scale surveys scales as the cube of the largest wavenumber

under theoretical control, it is of the utmost importance to have an accurate understanding of the

LSS observables at the highest wavenumber possible, so that we can use them to infer cosmological

information. This very objective, restricted to the context of analytic predictions, is approached

by the research program called the Effective Field Theory of Large-Scale Structure (EFTofLSS) [4–

39]: the idea is to study LSS in the mildly non-linear regime by correctly describing the effect of

ultraviolet (UV) modes on long-wavelength observables. Thanks to the inclusion of counterterms

to account for the effect of short distances on long distances, the EFTofLSS gives accurate predic-

tions of long-wavelength observables in a perturbative expansion in powers of k/kNL, where kNL is

the wavenumber associated to the scale where perturbation theory breaks down, which is expected

to be the size of clusters in our universe. This stands in contrast to standard perturbation theory

techniques, where the long-wavelength effects of non-linearities are not considered accurately and

thus introduce errors in the perturbative expansion. On distances larger than the non-linear scale,

the EFTofLSS can make more and more accurate predictions (up to non-perturbative effects) by

taking into account higher-order terms in the perturbative expansion and fitting the arising coef-

ficients of the counterterms (i.e. the EFT parameters, or coupling constants) to observations or

simulation data.

So far, it has been shown that the EFTofLSS can accurately describe the structure formation

of cold dark matter (CDM) [25], dark energy [36, 40, 37, 41], galaxies [15, 20], and massive

neutrinos [39], in both real and redshift space [31, 35]. In the context of dark matter, the long-

wavelength regime is described as a fluid-like system with a non-trivial stress tensor. In [17], it was

shown that a system composed of two fluid-like systems, endowed with approximately the same

free-streaming scale, can accurately describe a universe filled with dark matter and baryons. This

holds true because it is a fact about our universe that baryonic effects involved in star formation

processes affect the baryons in a way such that the relative displacement between dark matter

and baryons is not larger than the non-linear scale, which is about 10 Mpc. In other words, while
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star formation physics induces very complicated dynamics on scales within a cluster, it does not

significantly displace mass beyond the scale of a cluster. This indeed implies that we can describe

the system with two fluid-like species characterized by an approximately equal mean free path. In

turn, this implies that the functional form of the one- and two-loop corrections to the baryonic and

dark matter power spectrum on large scales is known up to a number of numerical coefficients.

In particular, as first explored in [17] and as we will further explore in Sec. 2, the leading effects

of baryonic physics on the power spectrum are fixed: at one loop, they are proportional to the

linear adiabatic power spectrum (k/kNL)2PA11(k) [17], and at two loops they have a form that we

will derive later in Eq. (2.37), which is essentially the same as the two-loop dark-matter power

spectrum, but where each fluid has its own EFT coefficients. In this way, the finite number of

numerical coupling constants can be fit to data to extract both the value of these parameters

and the cosmological parameters. This is particularly compelling since the EFT has been used to

analyze BOSS data [42–44] and has placed tighter constraints on cosmological parameters than

traditional methods.

In this work, we consider an effect proportional to the long-wavelength relative velocity that

was assumed to be small in [17], but that could become relevant at the two-loop order that we

currently work (although we show that it is not). This term arises from integrating out UV

modes in the theory, in the same way that the other counterterms in the EFT arise. Assuming

that the small-scale physics obeys conservation of mass of each species separately, conservation of

total momentum, and overall diffeomorphism invariance (see Eq. (2.4)), we show in Sec. 2 that a

counterterm proportional to the relative velocity that is not derivatively suppressed is allowed in

the effective force [17] that appears in the dynamical equation that controls the relative motion of

the two effective fluids. Indeed, we show that this term is needed to cancel the cutoff-dependent

part of certain one-loop terms. As we discuss in Sec. 3.1, the situation is even more extreme than

this. For a CDM linear power spectrum, this term diverges in the UV like (log ΛUV)3, where

ΛUV is the UV cutoff. This means that the counterterm that we consider is actually necessary

to have a well-defined mathematical framework. The finite part of this linear counterterm can

change the linear equation of motion for the isocurvature mode, making it act somewhat like a

biased tracer. We discuss how this term can be accounted for in perturbation theory in detail

in Sec. 3.4 and App. B.5. By looking at estimates both in perturbation theory (Sec. 3.2) and

using a one-dimensional UV model (Sec. 3.3), however, we show that the size of the effect of this

counterterm on the power spectrum is expected to be small (see Fig. 4 for example).1

In order to investigate how well the two-loop EFT with baryons is able to describe baryonic

physics on large scales, in Sec. 4 we compare our results to non-linear data from the OWLS

1This new effect should not be confused with calculable IR effects coming from the relative velocity, which manifest

themselves most notably in the violation of the so-called consistency conditions of LSS [45–47] when there are two

fluids [48–51, 17] (see [52, 53] for example when the extra fluid is dark energy). This violation is due to the fact

that one cannot eliminate the effects of both long-wavelength velocities with a single boost if there is a large-scale

relative velocity. For the case of baryons and dark matter, the effect decays like the relative velocity, proportional

to a−1 (a is the scale factor of the metric, see Eq. (2.1)), and so is negligible at late times, but not necessarily at

early times [54].
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Figure 1: Ratio of the adiabatic and dark matter lensing potential power spectra Cψ,A` /Cψ,DM only
` using the two-

loop EFT prediction and 0.25% error on the ratio of the OWLS data. The green band is the projected error for

CMB-S4 [1], the gray band is the estimated error coming from the ‘high-k approximation’ described in Sec. 5, and

the teal band is the estimated error coming from the three-loop terms in the EFT ratio fits in Sec. 4. The dashed

blue line is the result of direct numerical integration of the outputs of the simulations, and gives an idea of the

systematic theory error in our calculation. We see that CMB-S4 will be highly sensitive to the effects of baryons

on the lensing potential, and that the two-loop EFT can reliably capture these effects up to ` . 2000, and actually

even beyond.

simulations [55, 56]. In particular, we fit the ratio of power spectra of two quantities measured in a

simulation which includes baryonic processes to a simulation which only includes dark matter. In

this way, the cosmic variance of the simulation is greatly reduced. We fit at 18 different redshifts

and find an impressive fit to the data. For example, we are able to fit the ratio until k ≈ 0.8hMpc−1

at z = 0, and k ≈ 3.6hMpc−1 at z = 4 using three time-dependent parameters per fit. We find

that the EFT parameters of the baryon and dark-matter fluids (essentially the pressures) start to

differ significantly between z = 3 and z = 2, signaling the onset of star-formation processes. We

also give a suggestion for parametrizing the time dependence of the EFT parameters. In this way,

we show that the EFT is able to accurately capture baryonic physics in just a few time-dependent

parameters, and we view this as a significant improvement in our analytic understanding of the

effects of baryons. As the functional form of the effect of baryons is known up to a small number

of numerical coefficients, this means that one can apply our formalism directly to cosmological

data, potentially using simulations to put priors on the parameters.

Finally, in Sec. 5, we apply our results to computing the effect of baryons on CMB lensing.

The CMB-S4 effort will substantially reduce the error bars on the lensing potential to the point

that percent-level baryonic effects must be understood to obtain, for example, unbiased neutrino

mass constraints [57, 58]. Even if the size of baryonic effects is comparable to or larger than the

projected CMB-S4 errors, we show that the EFT is able to reproduce the effect of baryons on the

lensing power spectrum up to ` ≈ 2000, and actually even beyond. This is shown in Fig. 1 and

described in detail in Sec. 5. Thus, the EFT approach offers a compelling recipe for analytically

parametrizing baryonic effects on the lensing power spectrum in a systematic way. Our work here

is also applicable to weak lensing of galaxies, as we discuss in Sec. 5.
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Notation In order to consolidate notation, we present some of the relevant definitions for two

fluids here. We have two species, CDM (denoted with a subscript c) and baryons (denoted with

a subscript b), but we will sometimes find it useful to work in a different basis, with an adiabatic

mode (subscript A) and an isocurvature mode (subscript I). For the mass densities ρσ (here and

in the rest of the work, σ ∈ {c, b}, and multiple appearances of σ in an equation are never summed

over), we define the overdensities δσ by

ρσ ≡ ρ̄σ(1 + δσ) , (1.1)

where an overbar denotes the background value. The adiabatic density is defined by

ρA ≡ ρc + ρb , (1.2)

so that for the background, we have ρ̄σ = wσρ̄A, where wσ are the time-independent matter

fractions, and wc +wb = 1. They are time independent because ρ̄c and ρ̄b have the same a−3 time

dependence. Then, we define the adiabatic and isocurvature density fluctuations as

δA ≡ wcδc + wbδb , and δI ≡ δc − δb , (1.3)

so that

ρA = ρ̄A(1 + δA) , and ρI =
ρc
wc
− ρb
wb

= ρ̄AδI . (1.4)

We use the same definitions for the velocity,

viA ≡ wcvic + wbv
i
b , and viI ≡ vic − vib . (1.5)

Additionally, we will sometimes use the momentum densities πiσ ≡ ρσv
i
σ and define the adiabatic

and isocurvture momentum densities as

πiA ≡ πic + πib , and πiI ≡ ρ̄A
(
πic
ρc
−
πib
ρb

)
. (1.6)

Our Fourier conventions are

f(t, ~x) =

∫
~k
f(t,~k)ei

~k·~x , with

∫
~k
≡
∫

d3k

(2π)3
. (1.7)

Furthermore, in terms of the variables in the metric Eq. (2.1), we denote ḟ ≡ ∂f/∂t, f ′ ≡ ∂f/∂a,

the Hubble parameter H is defined by H ≡ ȧ/a, and we use the notation H ≡ aH.

2 The EFTofLSS with cold dark matter and baryons

The EFTofLSS describing dark matter and baryons was developed in [17] (see also [59, 60, 50]

for work including baryons in the standard perturbation theory (SPT) context). Extending the

EFTofLSS for dark matter to incorporate baryons is based on the following idea: dark and baryonic

matter can be described by the same equations of motion from the time of recombination to the
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formation of the first stars because the dynamics do not depend on their different initial conditions.

Then, even after the onset of star formation processes, the baryons are still described by an effective

fluid-like system with mean free path of order of the non-linear scale (as for dark matter), with the

only difference being now that the numerical coefficients of the counterterms are no longer equal

to those of dark matter (although we predict them to be within the same order of magnitude).

Additionally, since now the two fluids can move differently, they can exchange momentum. This

makes the counterterms appear within an effective force, rather than just an effective stress tensor.

Crucially, incorporating baryons in the EFT allows us to describe baryons accurately at long

wavelengths, at the cost of adding free coefficients that are both necessary and sufficient for the

perturbative approach to converge to the true answer.

2.1 Gravitationally coupled systems

In this subsection, we derive the effective equations governing two non-relativistic fluid-like sys-

tems coupled through gravity. When only dark matter is involved, the standard way to obtain

the effective equations is to smooth the Boltzmann hierarchy for the non-interacting dark-matter

particles [4, 5]. However, when baryons are involved, we do not know the exact equations in the

UV and so this procedure is not as rigorous. Therefore, we choose to take the generic EFT ap-

proach of starting with the low energy degrees of freedom (i.e. the long-wavelength fields), which

are the mass density ρ and the momentum density πi (or equivalently the velocity vi), and writing

down the most general equations consistent with the symmetries of the system, in an expansion

in derivatives and powers of the perturbations (see [12] for a related discussion with one fluid).

As with all EFT constructions, this one as well relies on a separation of scales. The reason that

we can describe the system as fluid-like (i.e. using the mass density and momentum density as

our fundamental low energy degrees of freedom) is because dark matter and baryons do not move

too much in the history of the universe. This means that there is a non-linear scale kNL, which is

related to the typical distance that the particles have traveled by k−1
NL ∼ vH−1 [4], and that our

results rely on the hierarchy k/kNL . 1.2 In this section we take a more bottom-up approach,

while in App. A we take a somewhat more top-down approach. Our results agree with the results

of [4] for one fluid, and of [17] for two fluids.

The symmetries relevant for our discussion here are conservation of the total number of dark

matter and baryonic particles separately, conservation of the total momentum, and overall Galilean

invariance, which is the result of a residual large gauge symmetry (or equivalently, residual large

diffeomorphisms) [61–63, 47, 64] of the (scalar part of the) Newtonian-gauge metric3

ds2 = −(1 + 2Φ)dt2 + a(t)2(1− 2Ψ)d~x2 , (2.1)

2Of course, a small fraction of baryons at late times are expelled in explosions and travel farther than the non-

linear scale. The EFT approach does not take these effects into account, but the amount of baryons traveling outside

of the non-linear scale is expected to be tiny. This does, however, represent a tiny uncalculable systematic error in

our calculations.
3In the absence of anisotropic stress, the Einstein equations imply that Ψ = Φ, and we assume this throughout

our work unless otherwise stated. Notice that, although anisotropic stress can be generated in the EFTofLSS, for

what concerns its effect on the metric, it is a relativistic correction.
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which we use throughout this work.

As shown in App. A, the equations of motion for matter in the Newtonian limit take the form

of the divergence of a pseudo tensor

a−3∂µ(a3tµν) = 0 , (2.2)

where tµν is a symmetric stress-energy pseudo-tensor, which involves the individual stress tensors

of CDM and baryons as well as gravitational non-linearities. This form of the equations suggests

that we should be able to write a system of first order differential equations for the CDM and

baryon mass densities ρc and ρb, and the CDM and baryon momentum densities π̃ic and π̃ib (we use

the tilde here for notational convenience to simplify later expressions), all of which are components

of the CDM and baryon stress tensors (see App. A for details).

We start with the equations for ρσ. Because we assume the separate conservation of dark

matter and baryons, we start by writing separate equations for each ρσ. In ΛCDM, both ρc and ρb

have time-dependent background values ρ̄c and ρ̄b, which satisfy ˙̄ρσ = −3Hρ̄σ. This means that,

in order to ensure that we expand around the correct background, our continuity equations must

start with

Continuity: ρ̇σ + 3Hρσ , (2.3)

where, without loss of generality, we have assumed that the coefficient of ρ̇σ is unity. Next, we

impose diffeomorphism invariance. The subset of diffeomorphisms that keep us in Newtonian gauge

and that is relevant for the Newtonian limit are the so-called Galilean transformations

t→ t+ a2ni(t)xi , and xi → xi + ni(t) , (2.4)

which act on the terms in the equations of motion at leading order in a relativistic expansion, as

∂i → ∂i , ∂t → ∂t − ṅi(t)∂i , ρσ → ρσ , π̃iσ → π̃iσ + ρσ aṅ
i(t) ,

Φ→ Φ− a2(n̈i(t) + 2Hṅi(t))xi ,
(2.5)

so that, by construction, viI and πiI are Galilean scalars. The transformation of the momentum

density above follows directly from the transformation of the velocity. This means that a Galilean

invariant combination is

Continuity: ρ̇σ + 3Hρσ + a−1∂i

(
π̃iσ +

bσρσ
ρ̄A

π̃iI

)
+ a−1 b̃σρσ

ρ̄A
∂iπ̃

i
I + . . . , (2.6)

for any time-dependent functions bσ and b̃σ, where the ellipsis . . . represents higher order terms.

Finally, we impose conservation of the number of dark-matter particles and baryon particles sep-

arately

∂t

∫
d3x a3ρσ = 0 , (2.7)

which implies that ∂t(a
3ρσ) is a total spatial derivative. This means that the most general equations

for ρ̇σ that expand around the correct background, that are Galilean invariant, and that conserve

mass are

Continuity: ρ̇σ + 3Hρσ + a−1∂i
(
π̃iσ + F iσ

)
= 0 , (2.8)

8



where F iσ contains the previous term bσρσπ̃
i
I/ρ̄A, and also any other Galilean invariant terms,

including non-linear and higher derivative terms.

Next, we move to the momentum equations for π̃iσ. Before we start, there is an important

subtlety that we should briefly mention. The question is, given the form of Eq. (2.8), whether we

should write the momentum equations starting with ∂tπ̃
i
σ, or with ∂t(π̃

i
σ + F iσ). As is well known,

the stress-energy pseudo-tensor tµν in Eq. (2.2) is symmetric (which is guaranteed because the

system is coupled to gravity through the symmetric metric). As we show explicitly in App. A,

this implies that whatever appears under the ∂i in Eq. (2.8) should appear under the ∂t in the

momentum equations. This means that we should start to construct the momentum equation with

∂t(π̃
i
σ + F iσ) + . . . . To do this, we define the combination4

πiσ ≡ π̃iσ + F iσ , (2.9)

and then write everything in terms of πiσ. Thus the final form of the continuity equations are

Continuity: ρ̇σ + 3Hρσ + a−1∂iπ
i
σ = 0 . (2.10)

Next, we start constructing the momentum equations with π̇iσ, which transforms like

π̇iσ → π̇iσ + ρ̇σaṅ
i + ρσ∂t(aṅ

i)− ṅj∂jπiσ − aṅiṅj∂jρσ . (2.11)

Then, adding terms to make a Galilean invariant combination, we have

Momentum: π̇iσ −
ρ̇σ
ρσ
πiσ + a−1πjσ∂j

(
πiσ
ρσ

)
+Hπiσ + a−1ρσ∂iΦ + a−1Giσ = 0 , (2.12)

where Giσ must be Galilean invariant but otherwise can be a sum of any non-linear and higher

derivative terms, and, without loss of generality, we have assumed that the coefficient of π̇iσ is unity.

The form of these equations is unique for pressureless fluids up to the freedom just mentioned in

Giσ.5 In particular, we see that the coupling to gravity through ∂iΦ is forced because it is the only

field with a transformation that depends on n̈i, which is needed to cancel the term proportional

to n̈i in Eq. (2.11). This is at the level of equations of motion the same phenomenon that happens

4Since F iσ is a Galilean scalar, πiσ has the same transformation properties as π̃iσ under Eq. (2.4).
5One can obtain different equations if there is a background pressure, as in clustering quintessence (see for example

[65–67] and [36] within the EFTofLSS context), or if there are other fields in the low-energy spectrum, as with dark

energy (see for example [68–73, 40, 74, 52, 53]). In particular, to obtain the equations for clustering quintessence

in the limit of vanishing speed of sound (i.e. including background pressure p̄), we first realize that the background

Einstein equations imply ˙̄ρ = −3H(ρ̄+ p̄), and that the momentum density transforms as πi → πi+(ρ+ p̄)aṅi under

a Galilean transformation. This means that the continuity equation that expands around the correct background

and is Galilean invariant is

ρ̇+ 3H(ρ+ p̄) + a−1∂iπ
i = 0 . (2.13)

Then, using the same construction that lead to Eq. (2.12) (but now for a single fluid), and taking into account

the new transformation of πi, we see that the momentum equation that is Galilean invariant is simply the same as

Eq. (2.12), but with ρ replaced by ρ+ p̄. Finally, defining the velocity by πi = (ρ+ p̄)vi, one obtains the equations

for clustering quintessence (see for example [67]), which have the same Euler equation as dark matter, but a different

continuity equation that reflects the different background.
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in the Lagrangian where diffeomorphism invariance forces a minimal coupling to gravity. Notice

furthermore that since baryons and dark matter are two independent degrees of freedom (as evident

from the very early universe dynamics), we have a diffeomorphism-invariant equation of motion

for the momentum of each species.

Next, we use the continuity equations Eq. (2.10) to write Eq. (2.12) as

Momentum: π̇iσ + 4Hπiσ + a−1∂j

(
πiσπ

j
σ

ρσ

)
+ a−1ρσ∂iΦ + a−1Giσ = 0 . (2.14)

Finally, we must impose total momentum conservation in the form6

∂t

∫
d3x a4(πic + πib) = 0 , (2.15)

which means that ∂t(a
4(πic + πib)) must be a total spatial derivative. Adding together the two

equations in Eq. (2.14), we have a term of the form

(ρc + ρb)∂iΦ = ρ̄A(1 + δA)∂iΦ , (2.16)

which we would like to write as a total derivative. To do that, we use the Poisson equation

a−2∂2Φ =
3

2
Ωm(t)H(t)2δA , (2.17)

where Ωm(t) is the time-dependent total-matter fraction,7 to write

δA∂iΦ =
2a−2

3Ωm(t)H(t)2
∂j

(
∂iΦ∂jΦ−

1

2
δij(∂Φ)2

)
, (2.18)

which shows that Eq. (2.16) is a total derivative. All in all, this means that Gic + Gib must be a

total derivative, so we can have

Gic = −γi + ∂jτ
ij
c , and Gib = +γi + ∂jτ

ij
b . (2.19)

Here, γi is a Galilean scalar, and the results of App. A show that τ ijc and τ ijb are both Galilean

scalars.

All in all, this means that the most general equations for ρ̇σ and π̇iσ that expand around the

correct ΛCDM background, are Galilean invariant, satisfy conservation of the number of dark-

6The factor of a4 can be easily understood working in Fermi coordinates and then going back to FRW coordinates

as done in [4]: one should keep in mind that only the obvious factors of a need to be included in these transformations,

and that the comoving velocity is related to the proper velocity by another factor of a.
7This is defined by Ωm(t) ≡ ρ̄A(t)/(3M2

PlH(t)2), where MPl is the Planck mass, which is related to the Newton

constant GN by M2
Pl = 1/(8πGN ). In terms of the scale factor, this is given by Ωm(a) = Ωm,0(H0/H(a))2(a/a0)−3,

where the subscript “0” means the present value. In ΛCDM, we parametrize Hubble by H(a)2/H2
0 = Ωm,0 (a/a0)−3+

(1− Ωm,0) .
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matter and baryon particles separately, and satisfy total momentum conservation, are [17]

Continuity: ρ̇σ + 3Hρσ + a−1∂iπ
i
σ = 0 , (2.20)

Momentum: π̇ic + 4Hπic + a−1∂j

(
πicπ

j
c

ρc

)
+ a−1ρc∂iΦ = +a−1γi − a−1∂jτ

ij
c , (2.21)

π̇ib + 4Hπib + a−1∂j

(
πibπ

j
b

ρb

)
+ a−1ρb∂iΦ = −a−1γi − a−1∂jτ

ij
b . (2.22)

The important new possibility is a term γi, which is allowed by the symmetries, and is in fact

generically needed to cancel UV divergences in the one-loop power spectrum, as we show in Sec. 3.

As always, the velocity fields, defined by viσ ≡ πiσ/ρσ, are contact operators, and so one will

have in general that

viσ 6=

[
πiσ,s
ρσ,s

]
L

, (2.23)

where the subscript s stands for short modes, and the brackets [. . . ]L mean smoothing to form

a long-wavelength field. This means that when one computes correlation functions involving the

velocity, one needs to use the renormalized fields [9]. Now, for the case of two fluids, one must

keep in mind that the relative velocity viI is allowed in the counterterms of the two renormalized

velocities because it is a Galilean scalar and will not affect the transformation properties of the

velocity fields.

2.2 The effective force and stress tensors for two loops

In this section, we explicitly construct the effective force and stress tensors that are relevant for the

two-loop calculation. First, we write the equations of motion in terms of the velocities viσ ≡ πiσ/ρσ,

and then take the divergence of the velocity equations to obtain [17]

a−2∂2Φ =
3

2
Ωm(a)H2(wcδc + wbδb) ,

δ̇c + a−1∂i((1 + δc)v
i
c) = 0 , δ̇b + a−1∂i((1 + δb)v

i
b) = 0 ,

∂iv̇
i
c +H∂iv

i
c + a−1∂2Φ + a−1∂i(v

j
c∂jv

i
c) = −a−1∂i (∂τρ)

i
c + a−1∂i(γ)ic ,

∂iv̇
i
b +H∂iv

i
b + a−1∂2Φ + a−1∂i(v

j
b∂jv

i
b) = −a−1∂i (∂τρ)

i
b + a−1∂i(γ)ib ,

(2.24)

where

(γ)ic =
1

ρc
γi, (γ)ib = − 1

ρb
γi , and (∂τρ)

i
σ =

1

ρσ
∂jτ

ij
σ . (2.25)

Next, we expand the force and the stress tensors in powers and derivatives of the long-

wavelength fields. Since at this order we can approximate the stress tensors as being local in

time8 (see [9] for a more detailed discussion), the effective stress tensor for dark matter relevant

8Non-locality in time of the EFTofLSS tells us that the coefficients of the counterterms are integrals in time of
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for the two-loop power spectrum has the form

∂i(∂τρ)
i
c − ∂i(γ)ic = −g wb aH ∂iv

i
I + 9(2π)H2

{ c2
c,g

k2
NL

(
wc∂

2δc + wb∂
2δb
)

+
c2
c,v

k2
NL

∂2δc

+
1

k2
NL

(
ccc1c∂

2δ2
c + ccb1c∂

2 (δcδb) + cbb1c∂
2δ2
b

)
+

c2
4c,g

a2k4
NL

(
wc∂

4δc + wb∂
4δb
)

+
c2

4c,v

a2k4
NL

∂4δc

}
+ . . . ,

(2.30)

and the effective stress tensor for baryons relevant for the two-loop power spectrum has the form

∂i(∂τρ)
i
b − ∂i(γ)ib = +g wc aH ∂iv

i
I + 9(2π)H2

{ c2
b,g

k2
NL

(
wc∂

2δc + wb∂
2δb
)

+
c2
b,v + c2

?(1)

k2
NL

∂2δb

+
1

k2
NL

(
ccc1b∂

2δ2
c + ccb1b∂

2 (δcδb) + cbb1b∂
2δ2
b

)
+

c2
4b,g

a2k4
NL

(
wc∂

4δc + wb∂
4δb
)

+
c2

4b,v + c2
4?

a2k4
NL

∂4δb

}
+ . . . ,

(2.31)

where wc, wb, and kNL are constants, the fields δσ and viσ depend on (a, ~x), and the rest of the

coefficients depend on a, viI ≡ vic − vib is the relative velocity, and quadratic terms ∼ ∂2δ2 and

higher derivative terms ∼ ∂4δ have been included. The ellipsis . . . represents higher-order or

higher-derivative terms. Notice that we did not include any cubic counterterms, since they would

some kernel of an expansion in powers and derivatives of ∂i∂jΦ and ∂iv
j
σ. To lowest order we have

(∂τρ)
i
σ (a, ~x)− (γ)iσ (a, ~x) =

∫
da′
[
κ(1)
σ

(
a, a′

)
∂i∂2Φ

(
a′; ~xfl

(
~x; a, a′

))
+ κ(2)

σ

(
a, a′

) 1

H(a′)
∂i∂jv

j
σ

(
a′; ~xfl

(
~x; a, a′

))
+κ(3)

σ (a, a′)H(a′)viI
(
a′; ~xfl

(
~x; a, a′

))
+ . . .

]
. (2.26)

The linear evolution of the modes is scale independent. In this way, the complication associated to the non-local

time kernels is reduced greatly. In fact, the perturbative solutions schematically have the structure

δ(n)(a, ~x) = D(a)nδ(n)(~x) , (2.27)

where D(a) represents any of the growth factors in App. B.2. Therefore, schematically, we have

∂τρ − γ ∼
∫
da′
(
κ(a, a′)∂δ(a′, ~x) +K(a, a′)δ(a′, ~x)

)
=
∑
n

(
κ̃n(a)∂δ(n)(a, ~x) + K̃n(a)δ(n)(a, ~x)

)
, (2.28)

where

κ̃n(a) =

∫
da′κ(a, a′)

(
D(a′)

D(a)

)n
, and K̃n(a) =

∫
da′K(a, a′)

(
D(a′)

D(a)

)n
, (2.29)

(the actual expression is slightly more complicated due to the flow terms (see [9])). In other words, the non-locality

in time is reduced to having a set of local counterterms, with a different coefficient for each order in perturbation

theory. If one uses the counterterms at leading order, the non-locality in time is degenerate with a local in time

counterterm. At higher order, this is mathematically not the case anymore. In our case, we will be interested in the

two-loop power spectrum. In this scenario, there are several quadratic counterterms that are evaluated at leading

order, together with the linear counterterms evaluated at higher order. The functional form of those terms is quite

degenerate, so that, as has been shown in [25], one can just include the tree level terms, and therefore for our

computation, limit ourself to treat the counterterms as if they were local in time.

12



contribute terms proportional to k2P11(k), and so are degenerate with other terms that we have

included for the two-loop power spectrum [25]. Notice also the presence of a term ∝ g ∂iv
i
I from

expanding the effective force. In Eq. (2.30) and Eq. (2.31), we considered this counterterm to be

local-in-time, while in Sec. 3.4 and App. B.5 we consider the possibility of non-locality in time.

Recall that the effective force and stress tensors of the two fluids has the form − 1
ρσ
∂jτ

ij
σ ± 1

ρσ
γi.

Therefore by symmetry, further quadratic terms, which are not total derivatives (for example δb∂iδc

and δc∂iδb) can be added as well. However, as we will see, these terms seem not to be needed for

the fitting procedure at the level of precision at which the analysis is performed. Additionally,

we have only presented the subset of quadratic counterterms that contribute non-degenerately to

the final form of the two-loop power spectrum that we present below in Eq. (2.37). See [25] for

a study of other possible combinations in the dark-matter case, and [13] for the specific forms of

other quadratic counterterms.

The above equations for the effective stress tensors and force Eq. (2.30) and Eq. (2.31) intro-

duce, suggestively, the EFT coefficients induced by gravity {g}, {cc,g, cb,g}, {c
(cc)
1c , c

cb
1c, c

bb
1c, c

cc
1b, c

cb
1b, c

bb
1b},

{c4c,g, c4b,g} and by gradients of the velocity fields {cc,v, cb,v}, {c4c,v, c4b,v} for dark matter and

baryons. The parameters induced by star-formation physics are described by the coefficients

{c2
?(1), c

2
4?}, which are assumed to be the main difference between the two species.

In terms of the derivatives with respect to the scale factor a and the velocity divergences

Θσ ≡ −∂iviσ/H , (2.32)

the non-linear evolution equations Eq. (2.24) in Fourier space now become

aδ′c(a,
~k)−Θc(a,~k) = αcc(a,~k) ,

aΘ′c(a,
~k) +

(
1 +

aH′

H

)
Θc(a,~k)− 3Ωm(a)

2
(wcδc(a,~k) + wbδb(a,~k)) =

+ βcc(a,~k) +H−2
(
[∂i(∂τρ)

i
c(a)]~k − [∂i(γ)ic(a)]~k

)
,

(2.33)

aδ′b(a,
~k)−Θb(a,~k) = αbb(a,~k) ,

aΘ′b(a,
~k) +

(
1 +

aH′

H

)
Θb(a,~k)− 3Ωm(a)

2
(wcδc(a,~k) + wbδb(a,~k)) =

+ βbb(a,~k) +H−2
(
[∂i(∂τρ)

i
b(a)]~k − [∂i(γ)ib(a)]~k

)
,

(2.34)

where the non-linear terms are defined by

ασσ′(a,~k) ≡
∫
~q
α(~k − ~q, ~q)δσ(a,~k − ~q)Θσ′(a, ~q) ,

βσσ′(a,~k) ≡
∫
~q
β(~k − ~q, ~q)Θσ(a,~k − ~q)Θσ′(a, ~q) ,

(2.35)

with

α(~k1, ~k2) = 1 +
~k1 · ~k2

k2
2

, and β(~k1,~k2) =
|~k1 + ~k2|2~k1 · ~k2

2k2
1k

2
2

, (2.36)

and we have used the shorthand notation [· · · ]~k to mean the Fourier transform evaluated at mo-

mentum ~k.
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2.3 Two-loop solution

Using the equations of motion including counterterms Eq. (2.33) and Eq. (2.34), we can now

compute the two-loop power spectra. As we will show in Sec. 3, the size of the contribution from

the linear counterterm proportional to g viI in Eq. (2.33) and Eq. (2.34) is expected to be small.

The success of our fits in Sec. 4, which do not include this counterterm, also supports this. Thus,

we take g = 0 in this section. For completeness, we discuss how one can include this term in

perturbation theory in Sec. 3 and App. B.5.

Defining the normalized adiabatic growth factor D1(a) ≡ DA+(a)/DA+(a0), the final expres-

sions are,

P σEFT-2-loop(a, k) = P σEFT-1-loop(a, k) + [D1(a)]6PA2-loop(k)− 2(2π)c2
σ(2)(a)

k2

k2
NL

PA11(k)

+(2π)c2
σ(1)(a)[D1(a)]4P

A,(cs)
1-loop (k) + (2π)2

(
1 +

ξσ + 5
2

2(ξσ + 5
4)

)
[c2
σ(1)(a)]2[D1(a)]2

k4

k4
NL

PA11(k)

+(2π)c2
1σ(a)[D1(a)]4P

A,(quad,1)
1-loop (k) + 2(2π)2c2

4σ(a)[D1(a)]2
k4

k4
NL

PA11(k) , (2.37)

where the one-loop expressions are given by

P σEFT-1-loop(a, k) = P σ11(a, k) + [D1(a)]4PA1-loop(k)− 2(2π)c2
σ(1)(a)[D1(a)]2

k2

k2
NL

PA11(k) , (2.38)

for σ ∈ {A, c, b}, denoting the adiabatic, CDM, and baryon power spectra, respectively. The linear

power spectra P σ11(a, k) are defined by

〈δ(1)
σ (a,~k)δ(1)

σ (a,~k′)〉 = (2π)3δD(~k + ~k′)P σ11(a, k) , (2.39)

where δD is the Dirac delta function, and we have written PA11(k) ≡ PA11(a0, k) for convenience.

The time dependence of the linear adiabatic power spectrum is given by

PA11(a, k) = [D1(a)]2PA11(k) , (2.40)

whereas the time dependence of the CDM and baryon linear power spectra can be computed using

the definitions for the CDM and baryon overdensities in terms of the adiabatic and isocurvature

modes Eq. (1.3), and then using the linear solutions for the adiabatic and isocurvature modes

in Eq. (B.7). Neglecting the isocurvature mode, the time dependence of CDM and baryons is

simply [D1(a)]2, but there are subleading corrections, particularly important at early times, which

generally make the CDM and baryons evolve differently on linear scales if an isocurvature mode is

present. As always, though, one can simply obtain the linear power spectra for CDM and baryons

directly from CAMB at each redshift.

The adiabatic EFT parameters are defined in terms of the CDM and baryon parameters by

c2
A(1)(a) ≡ wcc2

c(1)(a) + wbc
2
b(1)(a) , c2

A(2)(a) ≡ wcc2
c(2)(a) + wbc

2
b(2)(a) ,

c2
1A(a) ≡ wcc2

1c(a) + wbc
2
1b(a) , and c2

4A(a) ≡ wcc2
4c(a) + wbc

2
4b(a) .

(2.41)
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Finally, we note that c2
σ(2) is not a free parameter; it is determined in terms of c2

σ(1) using the

fitting procedure in [9, 19, 25]. In this work, we use the UV-improved two-loop power spectrum,

so we set c2
σ(2) = 0 from now on [25].

Let us unpack and explain the above expressions. First, notice that, besides the linear power

spectra, all of the higher order terms are computed with the adiabatic mode, which makes these

expressions very similar to those of the pure dark-matter case [9, 19, 25];9 the main differences are in

the values of the counterterms for each fluid. This approximation is justified because the inclusion

of an isocurvature mode in the one-loop power spectra is down by a factor of approximately 5×10−3

at z = 0 from the one-loop adiabatic power spectrum, which is subleading to the two-loop adiabatic

contribution (see Fig. 4) .

Next, we quickly review where the various terms come from. In each power spectrum, there

are three different contributions going like k4PA11. The first, proportional to [c2
σ(1)]

2, comes from

contracting two of the one-loop counterterms which go like c2
σ(1)k

2δ(1) [9]. The second comes

from plugging the one-loop counterterm back into itself in the stress tensor. This term is also

proportional to [c2
σ(1)]

2 but can have a different time dependence from the previous counterterm

due to the nested Green’s functions; capturing this different time dependence is the role of the

term involving ξσ [19]. The final term, proportional to c4σ comes from explicitly adding higher

derivative terms to the stress tensors [25]. The term P
A,(cs)
1-loop comes from expanding the fluid line

element ~xfl. in the argument of the linear counterterm c2
σ(1)k

2δ(1) (and so is also proportional to

c2
σ(1) but is a two-loop term) [9],10 while the P

A,(quad,1)
1-loop term comes from explicit quadratic terms

added to the stress tensors [25].11

We have also dealt with non-locality in time in the same way as in previous dark-matter studies

[9, 19, 25]. In this work, though, there is the additional complication that CDM and baryons have

slightly different Green’s functions, so that various different combinations appear when computing

the loops. This is relevant for the P
A,(cs)
1-loop and P

A,(quad,1)
1-loop terms, for example. However, we expect

this difference to be small, since it is proportional to the isocurvature Green’s function, and we do

not find any evidence of needing to include it in this study at the two-loop order that we work.

For similar reasons, and for simplicity, we have used the same value of ξσ for all power spectra.

Specifically, we have chosen ξσ = 3 as in [19]. In App. C, we relate the coefficients in the stress

tensors Eq. (2.30) and Eq. (2.31) to the coefficients appearing in the power spectra Eq. (2.37), for

the case of EdS scaling, i.e. when D1(a) = a/a0.

In the case of two gravitationally coupled fluids, the effect of large bulk flows becomes relevant.

Advection leading to bulk motion in LSS is due to the large relative velocity
〈
v2
bc(~x)

〉
between dark

matter and baryons at recombination [54]. This has carefully been analyzed in [7] and applied to

the present two fluid-like system in [17] to correctly reproduce the baryonic acoustic oscillations

9In particular, the SPT contributions PA1-loop and PA2-loop (see for example [75]) are implemented with the IR-safe

integrand [8, 9].
10In particular, we use P

A,(cs,p)
1-loop for p → ∞, which is the local in time limit [9, 19]. Also, see [9] and references

therin for the definition of ~xfl. and how and why it enters.
11In particular, P

A,(quad,1)
1-loop is a contraction of the quadratic counterterm proportional to K1 in the appendix of

[13] with δ(2) from SPT, divided by k2
NL.
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(BAO). We use the same formalism as in [17] to perform the IR-resummation on our two-loop

prediction given by Eq. (2.37).

3 Linear relative-velocity counterterm

3.1 Generation at one loop

In this section we discuss the importance of the term proportional to g viI in Eqs. (2.30) and (2.31).

Perhaps intuitively, this term can be thought of as an effective dynamical friction between CDM

and baryons. We first show that the counterterm is necessary to cancel new UV divergences at one

loop in perturbation theory. To see this, it is easiest to work in the adiabatic-isocurvature basis,

where the equations of motion with counterterms set to zero are given by

aδ′A −ΘA = αAA + αIIwbwc , (3.1)

aδ′I −ΘI = αAI + αIA + αII(wb − wc) , (3.2)

aΘ′A +

(
1 +

aH′

H

)
ΘA −

3

2
ΩmδA = βAA + βIIwbwc , (3.3)

aΘ′I +

(
1 +

aH′

H

)
ΘI = 2βAI + βII(wb − wc) , (3.4)

where the a and ~k arguments were suppressed for clarity, and the α and β functions are defined by

Eq. (2.35) but with σ and σ′ allowed to be A and I, and ΘΥ ≡ −∂iviΥ/H where Υ ∈ {A, I}. Since

isocurvature modes are suppressed by ∼ 5 × 10−3 relative to adiabatic modes at z = 0, we can

safely neglect loops that have two isocurvature modes. We describe the full perturbative solutions

to the above equations explicitly in App. B, but most relevant for our discussion now are the linear

isocurvature solutions

δ
(1)
I (a,~k) = ε2δ

(1)
I+

(~k) + ε3
DI−(a)

DI−(a0)
δ

(1)
I−

(~k) , and Θ
(1)
I (a,~k) = ε3

aD′I−(a)

DI−(a0)
δ

(1)
I−

(~k) , (3.5)

where ε2 ≡ ain/a0 ≈ 5 × 10−3 is approximately the relative size of adiabatic and isocurvature

fluctuations at the current time, i.e. ε2 ≈ δ
(1)
I (a0)/δ

(1)
A (a0). Here and elsewhere, we use “+” to

denote the growing (in this case constant) mode and “−” to denote the decaying mode.

We also introduce the following notation for the power spectra of the adiabatic and isocurvature

modes. For the linear fields (see Eq. (B.13)), we define the power spectra of the growing and

decaying parts of the linear power spectra by

〈δ(1)
Υϑ

(~k)δ
(1)
Υ′
ϑ′

(~k′)〉 = (2π)3δD(~k + ~k′)PΥΥ′
ϑϑ′ (k) , (3.6)

where Υ and Υ′ can be either A or I, and ϑ and ϑ′ can be either + or −. For the rest of the

equal-time power spectra, we use the notation

〈δΥ(a,~k)δΥ′(a,~k
′)〉 = (2π)3δD(~k + ~k′)PΥΥ′(a, k) , (3.7)
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for the full power spectra, and

〈δ(2)
Υ (a,~k)δ

(2)
Υ′ (a,

~k′)〉 = (2π)3δD(~k + ~k′)PΥΥ′
22 (a, k) ,

〈δ(1)
Υ (a,~k)δ

(3)
Υ′ (a,

~k′)〉 = (2π)3δD(~k + ~k′)PΥΥ′
13 (a, k) ,

〈δ(3)
Υ (a,~k)δ

(1)
Υ′ (a,

~k′)〉 = (2π)3δD(~k + ~k′)PΥΥ′
31 (a, k) ,

(3.8)

for the one-loop corrections, where again, Υ and Υ′ can be either A or I.

As shown in detail in App. B.3, the adiabatic power spectrum behaves in the standard way

when the loop momentum becomes large, i.e.

PAA13 (a, k) ∼ k2PAA++ (k) , and PAA22 (a, k) ∼ k4 , (3.9)

but correlations involving the isocurvature mode δI have a different UV behavior which is less

derivatively suppressed, for example,

PAI13 (a, k) ∼ k0PAI+−(k) , and P II22 (a, k) ∼ k2 . (3.10)

Specifically, neglecting loops with two isocurvature modes, and using the EdS approximation (see

Eq. (B.37)) for simplicity, we find that there is a strong UV divergence in PAI13 , that is not sup-

pressed by derivatives, namely

PAI13 (a, k)→ ε3
DI−(a)DA+(a)3

DI−(a0)DA+(a0)3
PAI+−(k)

[
2

3

∫ Λ dq

(2π)2
q2PAA++ (q)

]
, (3.11)

for q � k, where Λ � k is a UV-cutoff. Since this term does not go like k2 as k → 0, and the

counterterms available in the single-fluid EFTofLSS go like k2 or higher powers of k as k → 0, we

need an extra counterterm which is proportional to ΘI and that does not have any derivative in

front of it, exactly like terms in Eqs. (2.30) and (2.31) that are proportional to g ∂iv
i
I .

12

From Eq. (3.11), we see that the UV divergent term is proportional to PAI+−, i.e. it involves the

decaying isocurvature mode δ
(1)
I−

, and not the constant mode δ
(1)
I+

. Thus, it is proportional to ε3

instead of ε2. This was to be expected from our discussion in Sec. 2 where we showed that the new

counterterm is proportional to gΘI , which from Eq. (3.5) we see is proportional to the decaying

isocurvature mode.

Let us comment on two additional aspects. First, this counterterm appears at linear order

and is not suppressed by derivatives, which means that it is as important as the leading terms

in the equations of motion. Importantly, we find in Sec. 3.2 and Sec. 3.3 that the finite part of

this counterterm is not expected to be much larger than the other linear terms. This still non-

trivially complicates perturbation theory for the isocurvature modes, and we discuss in Sec. 3.4 and

App. B.5 how to treat this term consistently. Second, the integral in Eq. (3.11) actually diverges

for Λ → ∞ for a realistic power spectrum PAA++ with CDM. To see this, we note that on small

12Equivalently, we could have chosen a counterterm proportional to δ′I , which is also proportional to the decaying

mode. However, they are degenerate at first order.
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scales, the linear power spectrum behaves like PAA++ (q) ∼ (log q)2/q3 [76, 77]. Plugging this into

Eq. (3.11), we find

PAI13 (k) ∼ PAI+−(k)(log Λ)3 , (3.12)

as Λ→∞. This means that for perturbation theory to be a well-defined mathematical framework

for the real universe, the counterterm proportional to ΘI is actually necessary. This is to be

contrasted with the loops in the EFTofLSS with a single fluid, where the loops are always UV

convergent (since there is an extra factor of 1/q2 inside of the loop integral for large q), and so the

counterterms are needed not to give mathematical consistency, but simply to correct the mistake

associated to the finite (but incorrect) UV dependence of the loops. In the next two subsections,

we explicitly show how the counterterm proportional to g viI cancels this contribution, and we

estimate the expected size of the finite part of the counterterm.

3.2 Estimate of the linear counterterm in perturbation theory

In this section, we will assume that the counterterm g viI can be treated perturbatively. Neglecting

EFTofLSS counterterms except for the linear one, proportional to g viI , we obtain the follow-

ing linear equations for the g-dependent contributions to the isocurvature fields (from Eqs. (3.2)

and (3.4)):

aδ′I,g −ΘI,g = 0 , and aΘ′I,g +

(
1 +

aH′

H

)
ΘI,g = gΘ

(1)
I , (3.13)

where δI,g and ΘI,g are the counterterm-dependent contributions to δI and ΘI . As is the case

with the other EFTofLSS counterterms, the counterterm g has a cutoff dependent part gUV, that

is needed to cancel the one induced by the loop in Eq. (3.11), and a finite part gf , i.e.,

g(a) ≡ gf (a) + gUV(a) . (3.14)

Similarly, we also break up the solution to Eq. (3.13) as

δI,g ≡ δfI + δUV
I , (3.15)

and analogously for ΘI,g.

We first give the UV dependent contribution and later focus on the finite part. From Eq. (3.11),

it is clear that the counterterm contribution needed to cancel the UV divergence (when contracted

with δ
(1)
A (a,~k′)) is

δUV
I (a,~k) = −ε3

DI−(a)DA+(a)2

DI−(a0)DA+(a0)2

[
2

3

∫ Λ dq

(2π)2
q2PAA++ (q)

]
δ

(1)
I−

(~k) . (3.16)

Next, we find the gUV(a) that is needed in Eq. (3.13) to produce Eq. (3.16) as a solution. Using

the EdS approximation Eq. (B.37), we obtain

gUV(a) = −12
aD′I−(a)

DI−(a)

DA+(a)2

DA+(a0)2

[
2

3

∫ Λ dq

(2π)2
q2PAA++ (q)

]
. (3.17)
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Figure 2: Evolution of gf (a) and ḡ(a) using Eq. (3.21) and Eq. (3.24), respectively, with b = {4, 6, 8} for our universe

assuming WMAP3 cosmological parameters, given at the start of Sec. 4.

Now we can estimate the finite part gf (a). To do this, we assume the same time dependence

and form as the UV-dependent contribution above, with one important difference. Since the

integral over q in Eq. (3.16) is divergent (see Eq. (3.12)), we assume that the finite piece receives

contributions only from scales near the non-linear scale. Thus, defining13

σ2
b (a) ≡ 2

3

∫ b kNL(a)

kNL(a)

dq

(2π)2
q2PAA++ (q) , (3.19)

where b is a constant greater than one, we approximate

δfI (a,~k) ≈ ±ε3
DI−(a)DA+(a)2

DI−(a0)DA+(a0)2
σ2
b (a)δ

(1)
I−

(~k) , (3.20)

and

gf (a) ≈ ±12
aD′I−(a)

DI−(a)

DA+(a)2

DA+(a0)2
σ2
b (a) , (3.21)

where we have written ± above because we cannot in general predict the sign, and we will consider

a range of values of b in this section. Finally, defining the counterterm power spectrum PAI(ct) from

〈δ(1)
A (a,~k)δfI (a,~k′)〉 = (2π)3δD(~k + ~k′)PAI(ct)(a, k) , (3.22)

we have

PAI(ct)(a, k) ≈ ε3ḡ(a)
DI−(a)DA+(a)

DI−(a0)DA+(a0)
PAI+−(k) , (3.23)

where

ḡ(a) ≡
gf (a)

12

DI−(a)

aD′I−(a)
. (3.24)

13We define kNL(a) from ∫ kNL(a)

0

dq

2π2
q2 DA+(a)2

DA+(a0)2
PAA++ (q) = 1 . (3.18)
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Figure 3: Contribution to P cc of the new counterterm Eq. (3.23) for b = {4, 6, 8} as well as PAI++, and PAI+−. We see

that all terms with a decaying mode remain subleading to the power spectrum containing the constant isocurvature

mode.

In Fig. 2, we plot the time dependence of g(a) and ḡ(a) for b = {4, 6, 8}, where we see that the

effect on the decaying isocurvature part of the power spectrum Eq. (3.23), ḡ(a), is order one around

the present time.

Next, we would like to compare the counterterm contribution Eq. (3.23) to other contributions

to the power spectrum. For example, consider the dark-matter power spectrum P cc given by

P cc = PAA + 2wbP
AI + w2

bP
II . (3.25)

Here, we see that the most relevant contribution from the isocurvature fluctuations is given by

2wbP
AI . In Fig. 3, we plot the various contributions to P cc, including from PAI(ct), P

AI
++, and PAI+−,

as a function of a. We see that PAI++ gives the dominant contribution, while PAI+− and PAI(ct) give

subdominant contributions, with the ratio 2wbP
AI
(ct)/P

AA
++ always less than 5×10−4 for the values of

b that we consider. Furthermore, we indeed see that, for a & 0.4, the effect of the counterterm is of

the same order as the contribution from the decaying isocurvature mode PAI+−, which is suppressed

with respect to the leading isocurvature mode by a factor of
√
ain/a0 ∼ 0.07.

It is important to compare the counterterm contribution to P cc with other potential contribu-

tions in order to know which are the next largest corrections after the adiabatic one-loop term.

To do that, in Fig. 4 we plot PAA2-loop used in this paper, an estimate of the three-loop contribu-

tion PAA3-loop, and an estimate of the adiabatic-isocurvature power spectrum, along with the new

counterterm contributions with b = {4, 6, 8}.14 We also plot the cosmic variance of DESI, a repre-

sentative of the leading experiments in large-scale structure. We plot at redshift z = 1 because the

14To estimate these contributions, we describe the terms at a desired loop order by parametrizing them as being

in a scaling universe, which allows us to approximate their behavior through dimensional analysis [9]. The linear

adiabatic power spectrum can thus be expressed as a piecewise power law [9, 10]

PAA++,pl(k) = (2π)3


1

k3NL

(
k
kNL

)n
, k > ktr

1

k̃3NL

(
k

k̃NL

)ñ
, k < ktr

, (3.26)
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Figure 4: DESI cosmic variance (gray dotted), two-loop contribution to the adiabatic power spectrum used in this

paper (black solid), estimate of the three-loop contribution to the adiabatic power spectrum (teal dashed), linear

contribution of the adiabatic-isocurvature power spectrum (pink), estimate of the one-loop adiabatic-isocurvature

power spectrum (fuchsia dashed), and contribution generated by the counterterm for b = 4 (green), b = 6 (orange)

and b = 8 (purple), assuming the WMAP3 cosmological parameters at z = 1. We see that the effect of the

counterterm is safely smaller than the DESI cosmic variance and also, depending on the scale, than many of the

purely adiabatic loops. Dashed curves were estimated using the power-law decomposition of the power spectrum,

see Eq. (3.26) and below.

linear counterterm contribution is larger at early times and the DESI survey will measure luminous

red galaxies up to z ∼ 1 [78].15

We see that when the adiabatic two-loop and three-loop contributions become larger than

the cosmic variance (around k ≈ 0.14hMpc−1 and k ≈ 0.3hMpc−1 respectively), these terms

dominate over the linear counterterm contribution. At low wavenumbers the linear counterterm

is larger than the loops, but cosmic variance dominates there. All in all, we find that the linear

adiabatic-isocurvature contribution 2wbP
AI
++ is the most likely one to be comparable to the three-

loop adiabatic term on the scales of interest, but this term can be easily included in the calculation

by simply using the correct linear power spectrum from CAMB (in this case P cc11). All of the

remaining terms are much smaller than the adiabatic two-loop term, which is the order to which

we work in this paper, justifying the use of the expressions given in Sec. 2.3. Furthermore, the

comparison with DESI cosmic variance strongly suggests that we can safely neglect the linear

counterterm contribution in our perturbative expansion for all practical purposes.

In the next section, we use a UV complete model to support our estimate in this section, and

where ktr denotes the transition scale between the two power laws. Here we use the parameters kNL = 5.50hMpc−1,

k̃NL = 2.68hMpc−1, ktr = 0.24hMpc−1, n = −2.1 and ñ = −1.83 derived in [17] by fitting the power laws Eq. (3.26)

to the linear power spectrum of non-linear simulation data with WMAP3 cosmological parameters. For a given loop

order L, the estimate for the corresponding adiabatic loop correction scales as PAAL-loop/P
AA
++ ∼ (2π)L(k/kNL)(3+n)L/L!

[9]. We also use PAI1-loop(a, k) ∼ ε2D1(a)−1PAA1-loop(a, k).
15We note that b = 8 gives roughly the value of g(z = 1) that we find in Sec. 3.3.
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confirm that the EFT coefficient g indeed leads to a small effect on the power spectrum.

3.3 Estimate of the linear counterterm with UV model

In this section we use a one-dimensional UV model with two species, CDM and baryons, to estimate

in a more direct way the size of the new counterterm proportional to g viI . We will do this estimate

by first solving a specific UV model, given by Eq. (2.24) in one dimension with the counterterms

set to zero (i.e. the perfect fluid model), and then smoothing the solutions. The smoothed fields,

of course, will not satisfy the same perfect fluid equations as the UV fields: this is the essence

of an EFT. Specifically, we will show that the smoothed fields, if they are smoothed on a scale

large enough to diminish the effects of higher derivative counterterms, satisfy Eq. (2.24) but with

the linear velocity counterterms (proportional to g(a) viI) in Eq. (2.30) and Eq. (2.31). This then

allows us to measure the size of g(a) in this specific UV model, and thus estimate its size in the

true universe, since we expect the two to differ by just order one.

To this end, we start with Eq. (2.24) in one dimension, neglecting the right-hand sides because

we start with a perfect fluid.16 Letting x be the one-dimensional spatial coordinate, for each species

σ = c, b we define the velocity as

vσ(a, x) ≡ vxσ(a, x) , (3.27)

which gives the equations of motion,

aH∂δσ
∂a

+
∂

∂x
((1 + δσ)vσ) = 0 ,

aH ∂

∂a

∂vσ
∂x

+H∂vσ
∂x

+
3

2
ΩmH2δA +

∂

∂x

(
vσ
∂vσ
∂x

)
= 0 ,

(3.28)

where δσ and vσ are functions of a and x.

Next, we set up an initial configuration. For the initial overdensities, for each species we choose

an antisymmetric sum of two gaussians

δc(ain, x) = (δA+,in + wbδI−,in)

[
exp

{
−
(
x

σc
+

1

4

)2
}
− exp

{
−
(
x

σc
− 1

4

)2
}]

,

δb(ain, x) = (δA+,in − wcδI−,in)

[
exp

{
−
(
x

σb
+

2

9

)2
}
− exp

{
−
(
x

σb
− 2

9

)2
}]

,

(3.29)

where σb = 9σc/10, δA+,in = 3ain, δI−,in = 2ain, δA−,in = δI+,in = 0, ain = 10−3, and we use

the subscript “in” to label the initial values of the various quantities. Setting δI+,in = 0 ensures

that we are focusing on the decaying isocurvature mode, which is relevant for the relative-velocity

counterterm. For the initial velocities, we use the linear part of the first equation in Eq. (3.28)

and integrate in x, assuming linear time evolution for δc and δb. The fact that the integral in x of

the overdensities vanishes implies that the velocity goes to zero at the boundaries. Furthermore,

we take wc = 0.824 and wb = 0.176, in accordance with the cosmology used in Sec. 4. In Fig. 5,

we plot the initial configuration.

16A very interesting study in one dimension for the adiabatic mode has been already performed in [21].
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Figure 5: Initial CDM and baryon overdensities and velocities at ain = 10−3. The parameters σc and σb are the

variances of the CDM and baryon initial gaussian distributions, respectively, in Eq. (3.29).

We then numerically solve the equations of motion Eq. (3.28) with the initial conditions

Eq. (3.29), assuming an EdS universe for simplicity. Once we have the UV solutions, we then

smooth the fields with a normalized top-hat WL defined by WL(x) = L−1 for |x| ≤ L/2 and

WL(x) = 0 for |x| > L/2. As always, we smooth the overdensities δσ and momentum densities

πσ ≡ ρσvσ directly,

δσ,L(a, x) ≡
∫
dx′WL(x− x′)δσ(a, x′) , and πσ,L(a, x) ≡

∫
dx′WL(x− x′)πσ(a, x′) , (3.30)

then define the smoothed velocity as the ratio of the smoothed momentum and smoothed density:

vσ,L(a, x) ≡
πσ,L(a, x)

ρ̄σ(a)(1 + δσ,L(a, x))
, (3.31)

and finally define δA,L, δI,L, vA,L and vI,L analogously to Eq. (1.3) and Eq. (1.5).17 We should

choose L large enough so that the smoothed fields satisfy the linear equations (see Fig. 8), and in

particular in this work we consider the two smoothing scales L = L1 ≡ 12σc and L = L2 ≡ 15σc.

In Fig. 6, we show examples of fully non-linear and smoothed adiabatic and isocurvature modes at

a = 0.5. We see that even though δA reaches ≈ 1.5, signaling that we are in the non-linear regime,

the smoothed fields remain small and perturbative.

Next, in order to estimate the size of the relative-velocity counterterm, we determine the

equations satisfied by the smoothed fields. To do that, we focus on the velocity equation for the

isocurvature mode, but include the counterterm g vI,L,

av′I,L(a, x) + vI,L(a, x) = g(a, x)vI,L(a, x) + . . . , (3.32)

17Recall that Eq. (3.31) is not the same as smoothing the UV velocities directly, see Eq. (2.23). In this sense, one

can think of vσ,L in Eq. (3.31) as an auxiliary variable which makes the equations of motion for the long-wavelength

fields simple. If one were to smooth the UV velocities directly (which in any case we never do in this section), then

that field would be related to vσ,L by a series of counterterms which renormalize the velocity.
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Figure 6: In the top two plots, profiles of the non-linear solutions to Eq. (3.28) at a = 0.5, where the system is

clearly in the non-linear regime. We can see matter moving into the overdense region, increasing the density there.

In the bottom two plots, solutions smoothed with L = 15σc.

where the ellipsis . . . represents non-linear terms and higher-derivative terms in the effective stress

tensor ∂jτ
ij
σ and in the effective force γi. Now, as long as the higher derivative and second order

terms are negligible, we can plug the smoothed quantities into Eq. (3.32) and simply solve for g. In

Fig. 7, we give our results, which show that the size of g(a) goes from zero at early times to ≈ −6

at a ' 0.55, which is the latest time where there are significant observations. In the EFTofLSS,

g is only a function of time (see Sec. 2.2), but if we solve for g with Eq. (3.32), it is generically

a function of a and x, as translation are broken in this example. However, from Fig. 7, we see

that g is independent of x within the smoothing scales around the origin, and that g only starts

getting an x-dependence when higher derivative terms become important. This is exactly what

one expects from an EFT.

Now that we have found g, in Fig. 8 we confirm that the smoothing that we have performed is

such that the non-linear terms that would appear in Eq. (3.32) are in fact negligible. In Fig. 8, we

also show that the time evolution of vA,L is within 10−4 of the linear evolution, again confirming

that our smoothing has put us in the linear regime.

As a consistency check, consider the linear equation Eq. (3.32) at x = 0. Assuming the g(a)
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Figure 7: Left: Evolution of g calculated from the smoothed quantities at the origin using Eq. (3.32). We see that

g remains ∼ O(1)−O(5) during the non-linear evolution. Right: Spatial profile of g at a = 0.4. The profile remains

constant within the smoothing scales around the origin, and starts to deviate when higher derivative terms (green

and purple dotted lines) become large, as expected from the EFTofLSS. In this plot and elsewhere, we use L1 = 12σc
and L2 = 15σc.
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Figure 8: Left: The non-linear term that would appear in Eq. (3.32) compared to some linear terms there. We see

that with the smoothing scales that we have used, and the values of g that we have found, the assumption of using

the linear equation Eq. (3.32) to determine g is justified. We also see that using a larger smoothing scale suppresses

the non-linear terms more, as expected. Right: The time evolution of vA,L, which is shown to be within 10−4 of the

linear evolution. This again confirms that we are indeed in the linear regime after smoothing.

shown in Fig. 7, we can then solve for the time dependence of vI,L directly. Defining vI,L(a, 0) =

Dg
vI (a), we have

aDg
vI
′(a) + (1− g(a))Dg

vI
(a) = 0 , (3.33)

where g(a) is given in Fig. 7. The solution to Eq. (3.33) is

Dg
vI

(a) = a−1 exp

{∫ a da′

a′
g(a′)

}
. (3.34)

In Fig. 9, we show the time dependence of the isocurvature velocity (for L = L2). The first thing
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Figure 9: Various time dependencies for the isocurvature velocity compared to the linear evolution (dashed black).

We see that the smoothed UV solution (solid black) is significantly different from the linear solution, showing that

a counterterm is necessary to reproduce the correct time dependence of the long modes. Using the g(a) that we

found from the smoothed solution, we directly reproduce the time dependence of the long-wavelength isocurvature

velocity using Eq. (3.34) (pink solid). In dashed and dotted pink, we see the effect of using a different g(a) in the

solution Eq. (3.34).

to notice is that the time dependence of vI,L found by smoothing the UV model is much different,

by about 33% at a = 0.55, than the linear solution ∝ a−1. This should to be compared to the

time dependence of vA,L shown in Fig. 8, which is equal to the linear solution to within 10−4.

This clearly shows that the linear counterterm is only needed in the isocurvature equations, and

not the adiabatic ones, as the symmetry arguments of Sec. 2.1 showed. Given that the change in

the solutions is approximately 33%, this means that the effect of counterterm in g can be taken

into account perturbatively, as explained in Sec. 3.4. Alternatively, as we show in Sec. 3.4 and

App. B.5, one can construct a formalism that does not rely on treating g perturbatively. Finally,

we see that the solution computed with Eq. (3.34) matches the smoothed velocity from our UV

model, and that changing the g(a) that appears in Eq. (3.34) has a significant impact on the

resulting solution.

Our two estimates for g are obtained in the case of two pressureless fluids, and they suggest

that, even though we detect a non-vanishing g in our numerical run, the effect of the counterterm

in g vI is a small or O(1) effect on the decaying mode. This finding can be verified by inspection of

the results obtained using numerical N -body codes that simulate two gravitationally-interacting

sets of particles with different initial conditions. Several numerical challenges had to be overcome

to achieve a satisfactory numerical convergence, see [79–83]. In these papers, the results of the

numerical runs are compared against linear theory at long distances. In this context, clearly, lin-

ear theory means our linearized equations setting g = 0. What is found in these results (see for

example Fig. 8 of [83] or Fig. 2 of [82]) is that the disagreement between linear theory and simu-

lations is much smaller than the constant isocurvature mode, indicating indeed that the decaying

isocurvature mode that results from the simulation is still decaying and much smaller than the

constant mode. This is consistent with our estimates.
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Next, we should consider the fact that baryons are not a set of gravitationally interacting

particles but, after star formation begins, they are affected by baryonic effects. Our estimates

do not cover this possibility, and to estimate the contribution to the EFT coefficient g from

baryonic effects we rely entirely on hydrodynamical simulations. Such simulations with two fluids

and accounting for the initial isocurvature mode have been performed in, for example, [81, 83].

By looking for example at Fig. 2 of [81], we see that the change in the power spectrum at low

wavenumbers by the onset of start formation physics is so small that one can bound the size

of the decaying isocurvature mode to be at least about an order of magnitude smaller than the

constant isocurvature mode. Similar considerations can be obtained by looking at Fig. 9 of [83].

We therefore conclude that our estimates of g are affected at most of by O(1) by baryonic effects.

This is as expected on theoretical grounds.

3.4 Perturbation theory with relative-velocity counterterm

To start the study of perturbation theory in the presence of the new relative-velocity counterterm

gΘI that is allowed in the equations of motion, we consider linear evolution. Contrary to what we

did in Sec. 3.2 for the purposes of estimating in the previous sections, here we take the consistent

approach of treating this term not as an interaction. Because it does not enter the adiabatic

equations, we focus on the isocurvature equations in this section. In the presence of this new term,

allowing for a generic non-local in time counterterm, the linear isocurvature equation becomes

a2δ
(1)
I
′′(a,~k) +

(
2 +

aH′(a)

H(a)

)
aδ

(1)
I
′(a,~k) =

∫ a

da1g(a, a1) a1δ
(1)
I
′(a1, ~k) . (3.35)

At this point, it is helpful to define the terms in the perturbative expansion of the isocurvature

modes proportional to ε2 and ε3 as

δ
(n)
I (a,~k) = ε2δ

(n)
I+

(a,~k) + ε3δ
(n)
I−

(a,~k) + . . . ,

Θ
(n)
I (a,~k) = ε2Θ

(n)
I+

(a,~k) + ε3Θ
(n)
I−

(a,~k) + . . . ,
(3.36)

for n ≥ 1, where the . . . represent higher orders in ε. Since earlier in this section we found that

g ∼ O(1) − O(5), we can safely take the counting in terms of powers of ε to be the same as the

case where g = 0, as in Eq. (B.37) for example.18

Now, it is clear that the constant solution for δ
(1)
I+

still solves Eq. (3.35), so we focus on the

decaying mode δ
(1)
I−

. Since the linear equation is k-independent, we can write the solution as

δ
(1)
I−

(a,~k) = Dg
I−

(a)δ
(1)
I−

(~k)/Dg
I−

(a0), so that the growth factor Dg
I−

(we have included the super-

script g to distinguish from the growth factor DI− when g = 0, in Eq. (B.11)) satisfies

a2Dg
I−
′′(a) +

(
2 +

aH′(a)

H(a)

)
aDg

I−
′(a) =

∫ a

da1g(a, a1) a1D
g
I−
′(a1) . (3.37)

18The same argument actually also works if g � 1, since the powers of ε simply keep track of the different linear

solutions’ contributions to higher perturbative orders.

27



� = ��-
�� ����

/ �-�/�

� = ��-
� (�)� ����

/ �-�/�

��� ��� ��� ��� ���

����

����

����

����

����

����

����

�

�(
�
)
/
�(
�
��
)

� = �

Figure 10: Comparison of the full solution Eq. (3.38) with the perturbative solution Eq. (3.39). We see that overall,

the decaying mode is about 30% different from the linear solution, and that the perturbative solution Eq. (3.39) is

about 1% different from the full solution Eq. (3.38).

For a general non-local in time interaction g(a, a1), the above is an infinite order differential

equation.

If instead we assume that the interaction is local in time (i.e. g(a, a1) = g(a)δD(a − a1)), we

can solve Eq. (3.37) explicitly to find the growth factor

Dg,loc.
I−

(a) =

√
a0

ain
−
H0Ω

1/2
m,0

2

∫ a

ain

da1
a0

a2
1H(a1)

exp

{∫ a1 da2

a2
g(a2)

}
. (3.38)

Because of the unknown function g(a2) involved in this solution, one cannot explicitly evaluate the

growth factor for a specific cosmology, although since g ∼ O(1)−O(5), we still expect Eq. (3.38)

to be decaying, and indeed we have checked that this is the case for the numerical solution of g(a)

given in Fig. 9. Furthermore, if g(a) < 0, as is also the case for our solution, Eq. (3.38) shows

that the decaying mode always stays decaying. The same is the case for the non-local equation

Eq. (3.37). Thus, in perturbation theory, we should treat this growth factor as another unknown,

time-dependent coefficient, similar to how we treat the other counterterms in the EFTofLSS. The

k-dependence of the linear solution δ
(1)
I−

(a,~k), importantly, is still known.

As we found in Sec. 3.3, the change in the linear decaying mode is expected to be perturbative.

This means that we can also compute the solution to Eq. (3.37) perturbatively. Again assuming

that the interaction is local in time, and assuming an EdS universe for simplicity, we can write the

solution to Eq. (3.37) to first order in g as

D
g(1),loc.
I−

(a) =

(
a

ain

)−1/2

+

∫ a

ain

da1GI−(a, a1)g(a1)

(
−1

2

(
a1

ain

)−1/2
)
, (3.39)

where GI−(a, a1) = −2a
−1/2
1

(
a−1/2 − a−1/2

1

)
is the Green’s function for the left-hand side of

Eq. (3.37) in an EdS universe. In Fig. 10, we compare the above solution to the exact solution
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Eq. (3.38) using the g(a) found in Fig. 7 for L = L2. We see that the perturbative solution is

about 1% different from the full solution.

There are at this points two ways to proceed in order to formalize a perturbation theory in

the presence of the term in g vI . The first is by assuming that the contribution of this term is

perturbative, and proceed as we did in (3.39), i.e. consider g as a coupling constant, and treat it

as we do for the non-linear term and the other counterterms in the EFTofLSS. This approach does

not present conceptual challenges, though one should check that the corrections in g are small,

because this is not guaranteed to be true based on first principles. Alternatively, and perhaps more

safely, one can set up a perturbation theory where one is not treating the effect of g as a small

effect. In fact, we can actually use δ
(1)
I−

(a,~k) = Dg
I−

(a)δ
(1)
I−

(~k)/Dg
I−

(a0) in perturbation theory, but

now with Dg
I−

(a) as a free function. Importantly, as shown in App. B.5, the solutions for δ
(n)
I+

are

not affected by the new counterterm, so they act as normal in perturbation theory (this is true

even if we treat the contribution of g perturbatively). To solve for the higher order fields δ
(n)
I−

for n ≥ 2, keeping the counterterm as part of the linear equations, we will also need the Green’s

function related to Eq. (3.35), which again, is unknown. However, similar to what was done for the

growth factor Dg
I−

(a), we can treat the Green’s function formally as an unknown k-independent

function and proceed with perturbation theory as usual, keeping in mind that all time-dependent

functions made from Dg
I−

(a) or the Green’s function must be treated as free parameters. Thus, the

solutions for δ
(n)
I−

for n ≥ 2 will be a sum of unknown time-dependent (k-independent) functions

multiplied by known k-dependent kernels. Since there will be many unknown time-dependent

functions multiplying known functions of wavenumber, the resulting perturbative expansion for

δ
(n)
I−

will be reminiscent of the one of a biased tracer. We discuss this perturbative approach where

we do not expand in g in more detail and derive the explicit contribution to δ
(2)
I in App. B.5.

4 Comparison to hydro-cosmological simulation

In this section, we compare our two-loop computation to non-linear data from the hydrodynamical

OWLS simulation described in [55, 56], which includes AGN feedback and is based on WMAP3

cosmological parameters {Ωm,Ωb,ΩΛ, σ8, ns, h} = {0.238, 0.0418, 0.762, 0.74, 0.951, 0.73} [84]. The

OWLS project is a collection of different simulations that include various different baryonic effects.

Each simulation has the same cosmological parameters and starts from the same initial conditions

at an early time during matter domination. Then, a fraction Ωb/Ωm of the particles are labeled

as baryons and given specific interactions which mimic star-formation physics, while the rest are

kept as CDM particles and interact only through gravity. Simulations which are referred to as

“dark-matter-only” do not include any baryonic interactions, and so all of the particles act like

CDM (i.e. a standard dark-matter simulation). In this work, for concreteness, we focus on one

OWLS simulation called AGN .19

19The simulations that we used are available at http://vd11.strw.leidenuniv.nl/. There is a new set of data

available at http://powerlib.strw.leidenuniv.nl/ [81]. In this work, we do not explore the range of all the models,

but we simply wish to check against a typical model. We expect, as shown in [17], that everything is very similar in
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We do our analysis in two steps. First, we find the EFT coefficients for the dark-matter-only

power spectrum with the above cosmological parameters. We do this by comparing the dark-

matter-only prediction to the non-linear data from the Coyote interpolator [85–88] for 18 different

redshifts from z = 0 to z = 4. For this analysis, we assume an error of 1% added in quadrature

with cosmic variance for a box of size L = 1 Gpc on the Coyote data. The IR-resummed two-loop

adiabatic power spectrum without baryonic effects PA,DM only
EFT-2-loop is fit to the Coyote simulation data,

which gives a set of coefficients {c2
s(1), c

2
1s, c

2
4s} for each of the 18 redshifts (see App. D for parameter

values). Since the Coyote data has more data points than the OWLS data at low k, the former is

chosen to determine the dark matter coefficients instead of using the OWLS data directly. Because

the errors are relatively large, and in order to avoid over-fitting, we do the dark-matter-only fits

up to the wavenumbers given in [25] which used much more precise data.

In the second step, we compare our adiabatic and baryonic two-loop predictions to the OWLS-

AGN simulation, which includes feedback from active galactic nuclei. In this simulation, the CDM

and baryons are given the same initial conditions, which means that there is no linear isocurvature

mode, i.e. δ
(1)
I = 0. Thus, in our computations, we take

PA11(a, k) = P c11(a, k) = P b11(a, k) = PA11,CAMB(a, k) , (4.1)

where PA11,CAMB is the linear total matter power spectrum taken directly from CAMB at each

redshift. All in all, since isocurvature modes are not generated through the standard non-linear

interactions,20 all of the difference between the CDM and baryon power spectra comes from the

different values of the counterterms, i.e. from different UV physics. Thus, an isocurvature mode

is only generated by the different UV physics of the two species in the simulation.

Additionally, we do not include the linear relative-velocity counterterm gΘI in our fits, since

it is expected to be small (see Fig. 4), and since there is no initial isocurvature mode, it would

be proportional to the other counterterms, which are suppressed by at least k2, and so would be

even smaller than estimated in Sec. 3.2 and Sec. 3.3. Indeed we find no indication that it is needed

to fit the simulations that we look at in this paper. The situation may be different, however,

for simulations that include an initial isocurvature mode. We leave exploration of this interesting

possibility for future work.21

Given the dark-matter-only coefficients {c2
s(1), c

2
1s, c

2
4s} found earlier, we then define the differ-

ences

∆c2
σ(1) ≡ c

2
σ(1) − c

2
s(1) , ∆c2

1σ ≡ c2
1σ − c2

1s , and ∆c2
4σ ≡ c2

4σ − c2
4s , (4.2)

terms of accuracy and k-reach for various models.
20Having the same initial conditions for baryons and dark matter implies that δ

(1)
I = 0 and Θ

(1)
I = 0 at linear

level. Looking at the isocurvature equation of motion Eq. (B.3), we see that any higher-order isocurvature mode is

sourced by a lower order isocurvature mode, so that if δ
(1)
I = 0 and Θ

(1)
I = 0, we have that δ

(n)
I = 0 and Θ

(n)
I = 0

for any higher order n. This of course comes from the equivalence principle, according to which gravity acts equally

on baryons and dark matter, so, once the initial conditions are the same, the evolution is the same.
21The more recent simulations in [81] include an initial isocurvature mode and it would be interesting to do a

similar analysis with that data. By focusing on simulations where baryons and CDM have identical initial conditions,

however, we are better able to isolate the distinct star-formation effects.
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Figure 11: Determination of the CDM and baryon EFT parameters {c2c(1), c
2
1c, c

2
4c} and {c2b(1), c

2
1b, c

2
4b} for z =

{0, 1, 2, 3, 4} by fitting RAEFT and RbEFT (green solid) to RAOWLS and RbOWLS (red dots) up to kfit (described in the

main text). The red region is the estimated error of 0.25% on the data. The green band is the theory error coming

from the 1σ errors on the fit parameters at kfit. All parameters presented are dimensionless, so the numerical values

given above are in the appropriate units of hMpc−1 coming from the explicit factors of kNL.

for σ ∈ {A, c, b}. The fitting procedure then consists of determining the sets of CDM and baryon
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coefficients {∆c2
c(1),∆c

2
1c,∆c

2
4c} and {∆c2

b(1),∆c
2
1b,∆c

2
4b} for each redshift by performing the fits

RANL ≡
PAOWLS

PDM only
OWLS

↔ RAEFT ≡
PAEFT-2-loop[c2

s(1) + ∆c2
A(1), c

2
1s + ∆c2

1A, c
2
4s + ∆c2

4A]

PA,DM only
EFT-2-loop[c2

s(1), c
2
1s, c

2
4s]

,

RbNL ≡
P bOWLS

PDM only
OWLS

↔ RbEFT ≡
P bEFT-2-loop[c2

s(1) + ∆c2
b(1), c

2
1s + ∆c2

1b, c
2
4s + ∆c2

4b]

PA,DM only
EFT-2-loop[c2

s(1), c
2
1s, c

2
4s]

,

(4.3)

where we Taylor expand the ratios RAEFT and RbEFT up to two-loop terms, and {∆c2
A(1),∆c

2
1A,∆c

2
4A}

are defined in terms of {∆c2
c(1),∆c

2
1c,∆c

2
4c} and {∆c2

b(1),∆c
2
1b,∆c

2
4b} using Eq. (2.41) and Eq. (4.2).

Explicitly, the Taylor expanded ratio up to two loops, RσEFT|2 at z = 0 is

RσEFT|2 = 1− 4π∆c2
σ(1)

k2

k2
NL

+
2π

PA11

(
∆c2

σ(1)

(
2
k2

k2
NL

PA1-loop + P
A,(cs)
1-loop

)
+ ∆c2

1σP
A,(quad,1)
1-loop

)
+

8π2

17

k4

k4
NL

(
14[∆c2

σ(1)]
2 − 6c2

s(1)∆c
2
σ(1) + 17∆c2

4σ

)
,

(4.4)

where we have used ξσ = 3 in Eq. (2.37), and σ ∈ {c, b, A}. We see that all terms which do not con-

tain any counterterms cancel in the ratio as expected because the numerator and denominator only

differ in the counterterms. Additionally, most parameters appear directly as the difference from

the dark-matter-only parameters, except for c2
σ(1), which is why we have chosen the parametriza-

tion Eq. (4.2). We directly fit these ratios because the cosmic variance is greatly reduced in the

non-linear data after taking the ratio. In order to avoid over-fitting, we use the safe-fitting routine

described in [25]. In each fit, we call the maximum k included in the fit kmax, then we vary kmax,

finding the best fit and errors for the parameters for each kmax. Finally, we choose kfit to be the

maximum value of kmax where the parameter best fit values are still consistent with the lower kmax

fits. In App. D, we give an example of how we perform this procedure at z = 2. In App. E, we

consider our fits using smaller values of kfit.

As mentioned, by using the ratio of power spectra, the cosmic variance of the simulation data

is greatly reduced. As an estimate of all of the residual errors, we assume an error of 0.25% on the

ratio data, and the results of our fits are given in Fig. 11. We find that at two loops, the ratios

fit the data up to k ≈ 0.8hMpc−1 at z = 0, for example, and to higher k at higher redshifts. As

discussed in [17] for one loop, since we are dealing with the ratio of EFT predictions, the reach of

REFT is increased with respect to the dark-matter-only fits. In general, this is essentially because

∆c2/c2 is small for the various quantities in Eq. (4.2), as one can see in the tables in App. D.

Sometimes, though, we see that ∆c2/c2 ∼ O(1), in which case we have to look a bit closer at the

specific terms in the expansions.

As an estimate of the increase in k-reach that we can expect, we look at the highest order

terms included in the expansions, which at two loops, for example, are proportional to k4P11. For

dark-matter-only, we have

PDM only
EFT−2−loop

P σ11

⊃ 8π2

17

k4

k4
NL

(14c4
s(1) + 17c2

4s) . (4.5)
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Using the values of the parameters obtained from our fits (see App. D, we focus on the baryon fit

because it is the larger deviation at z = 0), this term is numerically −31(k/kNL)4. On the other

hand, the k4 term in Eq. (4.4) is 0.1(k/kNL)4, so it is clear that the scales controlling the expansions

are quite different. We then rescale k in each expansion so that the coefficient of k4 is unity, and

we find that the coefficients of all of the lower powers of k are of order unity, confirming that all

the counterterms are suppressed in a similar way. Calling kRfit the reach of the ratio Eq. (4.4),

and calling kPfit the reach of the two-loop power spectrum fit, we thus expect kRfit ∼ (31/0.1)1/4kPfit.

Using kPfit ≈ 0.26hMpc−1, this gives kRfit ≈ 1.07hMpc−1, which is in qualitative agreement with

what we found (see App. D for parameter values).22 These fits are quite a remarkable improvement

over other analytic descriptions of baryons in LSS.

As an application of our above results, we see that we have an analytic way of adding baryonic

effects to a dark-matter-only simulation. If PDM only
NL (a, k) is the non-linear output of some dark-

matter-only simulation, then we can parametrize the effects of baryons by using the ratio Eq. (4.4)

to get

P σNL(a, k) = RσEFT|2(a, k)PDM only
NL (a, k) , (4.6)

which is valid up to the high scale kRfit(a) shown in Fig. 11 for two loops, for example.

We present the time-dependence of the parameters {c2
c(1), c

2
1c, c

2
4c} and {c2

b(1), c
2
1b, c

2
4b} in Fig. 12.

One can clearly see the onset of star-formation physics coming from baryonic processes in the

simulation. At early times, the coefficients c2
c(1) and c2

b(1) for dark matter and baryons are about

the same and start to differ between z ≈ 3 and z ≈ 2. We also see that the dark-matter EFT

coefficients do not change much in the presence of baryons with respect to the dark-matter-only

simulation. The baryons, on the other hand, have a sizable difference from the dark-matter-

only coefficients, as expected since they have additional star-formation interactions in the UV. In

general, for most c2 coefficients, we find that ∆c2/c2 is usually small, which implies that a large

fraction of EFT parameters are determined by gravitational effects, which are the same for dark

matter and baryons.

Next, we find an approximate parametrization for the time dependence of the coefficients c2
c(1)

and c2
b(1). The values of c2

c(1) and c2
b(1) start by being approximately zero at early times and then

increase with time. This behavior is characteristic of the EFTofLSS: at late times non-linearities

start to grow proportional to the non-linear scale k−1
NL. In the effective field theory, these effects

are under control and accounted for in the mildly non-linear regime through the counterterms. In

general, the time dependence of the counterterms is free, but has the structure

c2 (z,Λ) = c2
finite (z, kren) + c2

ct (z,Λ) , (4.7)

where Λ is the UV cutoff of the theory, and kren is the renormalization scale where the coefficient is

fit to the data. The term c2
ct(z,Λ) is needed to cancel the cutoff dependence of physical observables,

22As more extreme examples of when ∆c2/c2 ∼ O(1), we can look at the baryon parameters at z = 0.5 and z = 1

(see Tab. 1 for example). The ratio of the k4 coefficients of the baryon ratio expansion to the dark-matter only

expansion at z = 0.5 is 124.7, and at z = 1 is 21.8. This means that we expect kRfit(z = 0.5)/kPfit(z = 0.5) ∼ 3.34, and

kRfit(z = 1)/kPfit(z = 1) ∼ 2.16. Looking at Tab. 4, we have kRfit(z = 0.5)/kPfit(z = 0.5) ≈ 3.19 and kRfit(z = 1)/kPfit(z =

1) ≈ 2.4, which again, is in agreement with our estimates.
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Figure 12: The dark matter and baryonic EFT parameters ∆c2
c(1), ∆c2b(1), ∆c21c, ∆c21b and ∆c24c, ∆c24b as a function

of redshift (baryons are in pink, and CDM is in blue). The error-bars are the 1σ errors at 0.75kfit for each parameter.

We plot the differences Eq. (4.2) here because these are the parameters best measured by fitting to the ratios. We

see explicitly from the first plot that baryonic physics starts to kick in between z ≈ 3 and z ≈ 2. All parameters

presented are dimensionless, so the numerical values given above are in the appropriate units of hMpc−1 coming

from the explicit factors of kNL.

and so must have the same time dependence as the UV parts of the loop integrals. In our case,

because we use the UV-improved loop integrals, we expect this contribution to be negligible. The

time dependence of the finite part of the counterterm, c2
finite, however, is in general unconstrained

theoretically, but one expects them to behave with the same time scale as the system, which

is H. Because of this, we choose to parametrize the time dependence of the finite parts of the
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Figure 13: Fit for the time dependence of c2c(1) and c2b(1) using Eq. (4.8). Because the errors on the dark-matter-only

data are larger than the errors on the ratio data, the uncertainty in the dark-matter-only parameters {c2s(1), c
2
1s, c

2
4s}

is larger than that in the difference parameters shown in Fig. 12. Since this figure shows the total parameters, the

errors here are larger than in Fig. 12.

counterterms as the power laws [25]

c2
c(1) (z) = AcD1 (z)αc , and c2

b(1) (z) = AbD1 (z)αb . (4.8)

The fits with the corresponding coefficients are plotted in Fig. 13. See App. D for tables of all of

the parameter values. The EFTofLSS thus provides an analytic understanding of the evolution of

star-formation physics.

5 The effect of baryons on the lensing potential

The purpose of this section is twofold. First, we discuss the inclusion of baryonic physics in the

computation of the lensing potential in the EFTofLSS and describe a strategy which significantly

lowers theoretical error bars up to ` ≈ 2000. Second, we explicitly compute the effects on the lensing

potential due to baryonic physics for the WMAP3, OWLS-AGN simulation that we studied above.

Overall, our results suggest that a proper understanding of baryonic effects will be important

for interpreting data from upcoming lensing surveys, including lensing of the CMB in the CMB-

S4 effort [1–3]. An accurate understanding of baryonic effects will be crucial in, for example,

neutrino mass constraints [57, 58]. Previous studies (see for example [58] for the CMB, and [89]

for weak lensing) have reached similar conclusions by studying the impact of baryonic physics

on lensing using the outputs of hydrodynamical simulations, like the OWLS simulation that we

used in this paper. The advantage of our EFT approach, though, is that we have analytic control

over our predictions on large scales. The functional form of baryonic effects on large scales, i.e.

as a function of k (or `), is completely fixed by symmetries and is organized in a controlled

derivative expansion. In this way, one can continue to improve the computation, up to non-

perturbative effects, by including higher order terms. The details about the small-scale physics,

both baryonic and gravitational, are contained in a set of free parameters which must be fit to

data. For predictions on large scales, we view this as a significant advantage over having to
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run hydrodynamical simulations, which themselves must make motivated, but ultimately ad hoc,

assumptions about the unknown short-scale physics. On smaller scales, of course, our analytic

approach breaks down, and one is forced to use other methods such as simulations. However,

there is still plenty of information in the large-scale modes. For example, much of the constraining

power for a neutrino mass sum of less than 120 MeV comes from ` . 2100 [1].

Now we turn to our computation, and refer to [90] for a detailed discussion of weak gravitational

lensing. Using the small-angle-approximation allows us to write the lensing potential as

ψ(n̂) = −2

∫ χ∗

0
dχ

fK(χ∗ − χ)

fK(χ∗)fK(χ)
Φ(η0 − χ, χn̂) , (5.1)

where χ is the comoving distance,23 χ∗ is the distance to the emitting source, n̂ is the line-of-sight

unit vector, and η0 − χ is the conformal time at which the photon was at position χn̂.

Transforming the lensing potential to harmonic space by using ψ(n̂) =
∑

`m ψ`mY`m(n̂) gives〈
ψ(n̂)ψ(n̂′)

〉
=

∑
``′mm′

〈ψ`mψ∗`′m′〉Y`m(n̂)Y ∗`m(n̂′) . (5.3)

We then define the lensing potential power spectrum Cψ` from

〈ψ`mψ∗`′m′〉 = δ``′δmm′C
ψ
` . (5.4)

Assuming flatness of the universe (fK (χ) = χ), and using the Limber approximation one can write

the lensing potential power spectrum as

Cψ` =
8π2

`3

∫ χ∗

0
dχχPΦ

(
a (χ) , k =

`

χ

)(
χ∗ − χ
χ∗χ

)2

, (5.5)

where PΦ is the power spectrum of the gravitational potential,24 which is related to the adiabatic

power spectrum by

PΦ(a, k) =
9 Ωm(a)2H(a)4

8π2

PA(a, k)

k
. (5.7)

Notice that in the expression for Cψ` in Eq. (5.5) for a fixed `, the power spectrum must be

integrated over a range of times a(χ) and a range of wavenumbers k = `/χ. As we have discussed,

at a given time, the EFTofLSS can only be trusted up to a certain wavenumber. Thus, we would

like to examine, for a given `, how much of the integrand in Eq. (5.5) can be trusted within the

two-loop computation that we have presented above. To do that, we follow [19]. For the moment,

23This is explicitly defined by

χ(a) =

∫ 1

a

da′

(a′)2H(a′)
. (5.2)

24The power spectrum of the gravitational potential is normalized in the following way

〈Φ(a,~k)Φ(a,~k′)〉 = δD(~k + ~k′)
2π2

k3
PΦ(a, k) . (5.6)
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Figure 14: Size of the contribution to the lensing potential Eq. (5.5) for lensing of the CMB. The solid lines are

the curves in the (k, z)-plane where the integral Cψ` is evaluated for different `. In the region to the left of the gray

dashed line, the two-loop EFT prediction for PAEFT-2-loop is valid, based on a precise comparison to non-linear data

[25]. In the region to the left of the gray dotted line, the ratio PA/PA,DM only fits the non-linear data with 0.25%

error on the data (see Fig. 11). The dashed curves marked p% delineate the regions of the plane which contribute

(100− p)% (above) and p% (below) to the lensing integral Eq. (5.5) for each `.

consider a universe (or simulation) without baryons. The basic procedure is to first compute the

Cψ` with the non-linear power spectrum from Halofit [91] for our fiducial WMAP3 cosmology to

get an estimate of which region of modes and redshifts contributes 95% and 5% of the integral.

Then, knowing where the EFTofLSS fails at each redshift, we can deduce for which multipoles `

we can reliably compute Cψ` with less than a 5% error (and 2% and 1% as shown in Fig. 14 and

Fig. 15).

The situation is even better than this, however. We know that we can obtain a 5% error by

simply setting PΦ = 0 in the integral Eq. (5.5) after the EFTofLSS fails (call this scale kPfit(a) for

concreteness). However, if we instead use the Halofit model,25 which is about 10% different from

the true power spectrum that includes baryonic effects, in the integral Eq. (5.5) for the modes

after the EFTofLSS fails, then we will effectively have a 0.5% error on the computation. This

small theoretical error is much smaller than the errors on the Planck lensing data [93], and so

would not be expected to improve the Planck analysis. In fact, the errors on the Planck data

are such that using Halofit for the entire power spectrum in Eq. (5.5) is sufficient for the Planck

analysis [93]. However, the situation is different for CMB-S4, which has much smaller errors

(see [58], for example, for a comparison of the errors).

In Fig. 14 and Fig. 15, we show the regions of validity of the EFT relevant for the computation

of the lensing power spectrum for the CMB (assuming the last scattering surface at z ∼ 1100 as

25Or any other emulator, for example the recent one developed for Euclid [92].
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Figure 15: Size of the contribution to the lensing potential Eq. (5.5) for lensing of sources at z = 1 and z = 2. The

solid lines are the curves in the (k, z)-plane where the integral Cψ` is evaluated for different `. In the region to the

left of the gray dashed line, the two-loop EFT prediction for PAEFT-2-loop is valid, based on a precise comparison to

non-linear data [25]. In the region to the left of the gray dotted line, the ratio PA/PA,DM only fits the non-linear

data with 0.25% error on the data (see Fig. 11). The curves marked p% delineate the regions of the plane which

contribute (100− p)% (above) and p% (below) to the lensing integral Eq. (5.5) for each `.

a single lens source plane) and for photons originating from sources at z = 1 and z = 2. The

solid, colored curves are the paths in the (k, z) plane that must be integrated over for a given `

in Eq. (5.5). In the region to the left of the gray dashed line, the two-loop EFT prediction for

PAEFT-2-loop is valid, based on a precise comparison to non-linear data [25]. In the region to the

left of the gray dotted line, the ratio PA/PA,DM only fits the non-linear data with 0.25% error on

the data (see Fig. 11). The curves marked p% delineate the regions of the plane which contribute

(100− p)% (above) and p% (below) to the lensing integral Eq. (5.5) for each `.

Looking at Fig. 14 and Fig. 15, we see that the two-loop EFT contributes with less than 5%

error to Cψ` for ` . 600 for CMB photons, ` . 100 for z = 1 sources, and ` . 160 for z = 2

sources. The ratio fits the non-linear data much better. If the dark-matter power spectrum is

known, then one can use the ratio to compute Cψ` with less than 5% error for ` . 1600 for CMB

photons, ` . 300 for z = 1 sources, and ` . 550 for z = 2 sources for 0.25% error on the ratio of

the OWLS simulation data. As just discussed, however, these errors can be made much smaller

by using an approximation of the non-linear power spectrum (such as Halofit) for the modes after

the EFT fits fail.
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This leads us to the following prescription for computing the baryon correction to the lensing

power spectrum with a reduced theoretical error using the two-loop EFT prediction starting from

a simulation power spectrum. Since we are focused on baryonic effects in this paper, we assume

that the non-linear dark-matter power spectrum PDM only
NL (a, k) is known. This can be taken from

the EFTofLSS, from a simulation, or from an emulator under the conditions that the prediction is

accurate enough. Then using this, we fit the ratio as described near Eq. (4.3) to obtain RAEFT(a, k),

which is valid up to a high scale kRfit(a). To compute the lensing power spectrum without the effects

of baryons, Cψ,DM only
` , we take PA(a, k)→ PDM only

NL (a, k) in Eq. (5.7), and to compute the lensing

power spectrum with the effects of baryons, Cψ,A` , we take PA(a, k) → PDM only
NL (a, k)RAEFT(a, k)

in Eq. (5.7). Since this last replacement is only valid for k . kRfit(a), we use a linear extrapo-

lation of RAEFT(a, k) from kRfit(a) to 2kRfit(a), and then the constant value RAEFT(a, 2kRfit(a)) above

2kRfit(a), as an estimate of the full power spectrum at higher wave numbers. Had we not per-

formed the extrapolation, the error would have scaled as the integral in (5.5) with PA replaced

by
(
RAEFT(a, k)− 1

)
PDM only

NL (a, k), and integrated in the range of k’s above kRfit(a). We can then

bound
(
RAEFT(a, k)− 1

)
. 0.1, as can be seen from hydrodynamical simulations (see e.g. [81]).

Finally, we assume that using the extrapolation for RAEFT(a, k) rather than its maximum gives

us another factor of two smaller error bars. Thus, to find the error for each `, we look at the

contribution plots Fig. 14 and Fig. 15, find what the percentage contribution is where the solid

curve crosses the ratio-fit curve (gray dotted), and multiply by 0.1× 0.5 = 0.05. We call this error

the ‘high-k approximation’ error, since it comes from using an approximate form of the power

spectrum for wavenumbers larger than kRfit(a). This error, along with the estimated error coming

from the three-loop EFT terms in the ratio fit, are plotted as the gray and teal bands, respectively,

in Fig. 1. In App. E, we consider the effect of using smaller values of kRfit(a).

The resulting ratio of the adiabatic and the dark-matter-only lensing-potential power spectra

is shown in Fig. 1.26 Including baryonic effects in the power spectrum clearly has more than a

percent level effect on the lensing power spectrum, and for the specific simulation that we studied

in this paper, the effect of baryons is larger than the estimated CMB-S4 error bars for ` & 1000.

For reference, we have also included the direct numerical integration of the simulation data in the

plot, which gives us an indication of the systematic theoretical error in our calculation.

We would like to stress, however, that although we fit to a specific baryonic simulation in this

work, we believe that our strategy is much more flexible than using baryonic simulations to match

observed data. Regardless of the true nature of baryonic physics in our universe, we have shown

that the two-loop EFT is able to capture these effects in a set of time-dependent parameters, and

that this can be reliably used to compute observables like the lensing power spectrum. Explicitly,

if one wants to use dark-matter simulations to analyze real data, one can use Eq. (4.6) with

unspecified counterterms in the expression for RσEFT|2 to get the total power spectrum in the

presence of baryons, and from there the lensing potential. Then one can extract the counterterms

as well as the cosmological parameters directly by fitting to data (as recently done for galaxy

clustering in [42–44]).

26We thank S. Foreman for communication comparing our results with [58].
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6 Conclusion

In this work, we have discussed many important effects of baryonic physics on large-scale clustering.

First, in Sec. 2, we showed how a new counterterm, proportional to the relative velocity viI and

not derivatively suppressed, is generically allowed in the EFT of two fluid-like species, showing

up specifically in the equation of motion for the isocurvature mode. This term is consistent

with the separate conservation of mass of each species, the conservation of total momentum, and

diffeomorphism invariance. We presented our arguments in two ways, first in a more bottom-up

EFT construction based on symmetries in Sec. 2, and second in a more top-down approach based

directly on the Einstein equations and the conservation of the pseudo stress tensor in App. A. We

then explicitly constructed the effective force and effective stress tensors needed to compute the

various power spectra of this system up to two-loop order.

In Sec. 3, we examined in much more detail the effects of the new linear counterterm propor-

tional to viI . We first pointed out that the new counterterm is in fact necessary to have a well

defined mathematical framework. This is because the one-loop term shown in Eq. (3.11) is actually

UV divergent for typical small scale CDM behavior, explicitly going like (log ΛUV)3 where ΛUV

is a UV cutoff, as we discussed near Eq. (3.12), and this counterterm is needed to absorb this

divergence. Apart from being necessary to cancel this UV divergence, the new counterterm also

has a finite contribution that changes the linear equation of motion for the isocurvature mode. In

Sec. 3.2 and Sec. 3.3, we estimated the size of the finite contribution using perturbation theory

and the non-linear solution of a one-dimensional UV model, respectively, and showed that the

effect of this counterterm on the power spectrum is subdominant to other higher order effects that

we neglected in this paper, showing that it can safely be ignored at the level at which we work.

We also estimated that its effect can be probably neglected for future observations. Finally, in

Sec. 3.4 and App. B.5, we discussed how, even when present, the new counterterm can be included

consistently in perturbation theory. The end result is that the linear equation for the decaying

isocurvature mode is modified by an unknown time-dependent function, such that in the pertur-

bative expansion of this mode, all of the time-dependent coefficients are unknown (although the

k-dependent kernels are known).

In Sec. 4, we compared our two-loop EFT prediction to the OWLS-AGN simulation, specifically

to the ratio of power spectra in a simulation including baryonic effects to a simulation with only

dark matter, at 18 different redshifts between z = 0 and z = 4. We found quite a remarkable fit to

the data (see Fig. 11), and we discussed why the fit of the ratio at two-loops has a larger k-reach

than fitting the power spectrum directly (for example the ratio fits well up to k ≈ 0.8hMpc−1

at z = 0, and k ≈ 3.6hMpc−1 at z = 4). Between z ≈ 2 and z ≈ 3, we saw that the baryon

EFT parameter associated with the k2P11(k) counterterm starts to deviate significantly from the

analogous CDM parameter, signaling the onset of star-formation physics. This shows that the

EFTofLSS provides a powerful analytic description of baryonic effects in LSS.

Finally, in Sec. 5, we used our two-loop EFT prediction to compute the power spectrum of

CMB lensing for the simulation studied earlier (see Fig. 1). We did this simply by predicting the

40



correction due to baryonic physics to a dark-matter power spectrum (which could be obtained by

an N -body simulation for example). Given that baryonic effects are expected to be important

for analyzing CMB lensing with CMB-S4 data, we provided an analytic recipe for parametrizing

baryonic effects on CMB lensing. We showed that the two-loop EFT correctly predicts the lensing

power spectrum, including baryonic effects, up to ` ≈ 2000 with a theoretical error that is about

1/4 of the size of the CMB-S4 errors at ` = 2000. Since our analytic approach ultimately does not

rely on baryonic simulations, we view this as an important and actionable step forward for our

understanding of the effect of baryonic physics on the lensing observable.

Now that we have shown that the two-loop EFT correctly describes baryonic physics, both

in the matter power spectrum and in lensing, we mention a few interesting directions for future

study. There are many potential improvements to the actual computation of the lensing power

spectrum. First, as discussed near Eq. (4.4), terms which do not involve counterterms cancel in

the ratio RσEFT. This means that, using only two-loop integrals, one can compute RσEFT|3, since the

three-loop integrals will cancel in the ratio. This could provide a way to extend the EFT prediction

for the ratio to higher wavenumbers with relatively little extra computational effort than was used

in this paper. Second, one could use an updated template for the non-linear dark-matter-only

power spectrum, such as the one developed in [92] for Euclid. Third, one could study the time

dependence of the EFT parameters (as in Fig. 12) for various different baryonic simulations and

come up with a reliable prescription for the time dependence of the parameters.
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A Equations of motion from pseudo stress tensor

A.1 Einstein tensor

Here, we collect some useful expressions for the Einstein tensor Gµν ≡ Rµν − 1
2Rδ

µ
ν , where Rµν is

the Ricci tensor, and R is its trace, for the metric Eq. (2.1) at background, first, and second orders.

As we will see, this is all we will need since there are at most two derivatives in the Einstein tensor,

so terms with more than two fields are suppressed by relativistic corrections. We will typically

keep track of Φ and Ψ in the expressions for the Einstein tensor, connection, etc., but will take

Φ = Ψ in our final equations, as is justified in our setting. For the background, we have (here and
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elsewhere, an overbar denotes a background value),

Ḡij = −a2(3H2 + 2Ḣ)δij , Ḡ00 = 3H2 , Ḡµµ = −6(2H2 + Ḣ) , (A.1)

at linear order, we have

GL
0

0 = 6H(HΦ + Ψ̇)− 2a−2∂2Ψ ,

GL
0
i = −2∂i(HΦ + Ψ̇) ,

GL
i
j = 2δij

{
(3H2 + 2Ḣ)Φ +H(Φ̇ + 3Ψ̇) + Ψ̈

}
+ a−2(δij∂

2 − ∂i∂j)(Φ−Ψ) ,

(A.2)

and at second order, we have

G(2)
0

0 = −3(4H2Φ2 + 4HΨ̇(Φ−Ψ) + Ψ̇2)− 8a−2Ψ∂2Ψ− 3a−2(∂Ψ)2 ,

G(2)
0
i = 8HΦ∂iΦ + 2Ψ̇∂i(Φ− 2Ψ) + 4(Φ−Ψ)∂iΨ̇ ,

G(2)
i
j = δij

{
−4(3H2 + 2Ḣ)Φ2 − 2Φ̇Ψ̇ + Ψ̇2 − 4H(−3ΨΨ̇ + 2ΦΦ̇ + 3ΦΨ̇)− 4(Φ−Ψ)Ψ̈

}
+ a−2

{
δij(∂kΦ∂kΦ + 2Ψ∂2(Φ−Ψ))

− 2Ψ∂i∂j(Φ−Ψ) + ∂iΨ∂jΨ− ∂iΦ∂jΦ− ∂iΦ∂jΨ− ∂iΨ∂jΦ

+
(
∂i∂j − δij∂2

)
(Φ2 + Ψ2)

}
.

(A.3)

A.2 Pseudo stress tensor in FRW

Here, we show that in the non-relativistic, Newtonian limit (v/c � 1 and c ∂i/H � 1, where c is

the speed of light, which we take to be equal to unity in this work), the Einstein equations27

M2
PlG

µ
ν = Tµν , (A.4)

for the FRW metric in the Newtonian gauge Eq. (2.1) can be written as the conservation of a

pseudo stress tensor tµν in the sense that

a−3∂µ(a3tµν) ≈ 0 , (A.5)

where here and elsewhere, we use the symbol ≈ to mean equal up to relativistic corrections in the

Newtonian limit. In general, the ν = 0 equation is of order H∂2Φ, while the ν = i equation is of

order H2∂iΦ. This is similar to what is done in [94], for example, in flat space.

To proceed, we write the various terms in Eq. (A.4) in powers of perturbations like

Gµν = Ḡµν +GL
µ
ν +GNL

µ
ν ,

Tµν = T̄µν + δTµν ,
(A.6)

where GL
µ
ν is linear in perturbations, GNL

µ
ν is non-linear, and δTµν contains all the perturbations

of the stress-energy tensor. Writing the spatial part of the background stress-energy tensor as

T̄ij = δija
2p̄, the zeroth order Einstein equations give

3H2M2
Pl = T̄00 , and − 2ḢM2

Pl = T̄00 + p̄ , (A.7)

27Here, M2
Pl = 1/(8πGN ) is the Planck mass squared, and GN is the Newton constant.
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while the perturbed Einstein equations are

M2
Pl(GL

µ
ν +GNL

µ
ν) = δTµν . (A.8)

Next, since the Bianchi identity ∇µGµν = 0 is a strict identity, regardless of any equations of

motion, it is true at each order in perturbations.28 In particular, it is true at first order

∇̄µGL
µ
ν +∇L

µḠ
µ
ν = 0 , (A.9)

where we have expanded the covariant derivative ∇µ = ∇̄µ +∇L
µ + . . . (the actual derivative ∂µ

only appears in ∇̄µ). Now, we evaluate the two terms in Eq. (A.9). First, we look at

∇̄µGL
µ
ν = a−3∂µ(a3GL

µ
ν)− Γ̄ρµνGL

µ
ρ . (A.10)

For the metric Eq. (2.1), we have

Γ̄ρµiGL
µ
ρ = 0

Γ̄ρµ0GL
µ
ρ = 6H((3H2 + 2Ḣ)Φ +H(Φ̇ + 3Ψ̇) + Ψ̈) + 2Ha−2∂2(Φ−Ψ) .

(A.11)

Since the second line above will be in the equation involving ∂0GL
0

0 ∼ H∂2Ψ, only the last term

is relevant in the Newtonian limit. However, since we will eventually set Ψ = Φ, we drop that

term now to get

∇̄µGL
µ
ν ≈ a−3∂µ(a3GL

µ
ν) . (A.12)

The next term we need in Eq. (A.9) is ∇L
µḠ

µ
ν . We have

∇L
µḠ

µ
0 = −6ḢΨ̇ , and ∇L

µḠ
µ
i = −2Ḣ∂iΦ , (A.13)

which to leading order is (no sum on i),

∇L
µḠ

µ
ν ≈ −2Ḣδνi∂iΦ . (A.14)

Then, combining this with Eq. (A.12) we have

a−3∂µ(a3GL
µ
ν)− 2Ḣδνi∂iΦ ≈ 0 , (A.15)

and using the Einstein equations Eq. (A.8) to replace GL
µ
ν gives,

a−3∂µ(a3(M−2
Pl δT

µ
ν −GNL

µ
ν))− 2Ḣδνi∂iΦ ≈ 0 . (A.16)

Finally, we determine which parts of GNL
µ
ν contribute at leading order in the Newtonian limit.

First of all, Gµν only contains two derivatives, and since GNL
µ
ν starts at second order, it has at

least two powers of the gravitational potentials. Thus, since the ν = 0 equation contains terms

going like H∂2Φ, GNL
µ

0 is always a higher relativistic order term in that equation. In the ν = i

equation, however, the term that appears is ∂jGNL
j
i, and since we have G(2)

j
i ∼ ∂iΦ∂jΦ, this

28The covariant derivative is ∇µGνρ = ∂µG
ν
ρ + ΓνµλG

λ
ρ − ΓλµρG

ν
λ.
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term goes like ∂iΦ∂
2Φ, which is a leading term in the relativistic counting (∂0GNL

0
i has only one

spatial derivative, and so it is negligible in the leading non-relativistic order). All higher orders

in GNL
j
i are subleading, though. Thus, we have shown that Eq. (A.16) is exactly of the form

Eq. (A.5), with29

t00 ≈ δT 0
0 , t0i ≈ δT 0

i , ti0 ≈ δT i0 ,
tij ≈ δT ij −M2

PlG(2)
i
j − 2M2

PlḢδ
i
jΦ ,

(A.17)

and

a2G(2)
i
j ≈ δij∂kΦ∂kΦ− 2∂iΦ∂jΦ + 2

(
∂i∂j − δij∂2

)
Φ2 , (A.18)

for Φ = Ψ.

A.3 Equations of motion

Next, we use the conservation of the pseudo stress tensor derived above to derive the equations of

motion for the dark-matter and baryon fluids. We start by writing the total stress-energy tensor

as the sum of the CDM and baryon stress-energy tensors

Tµν = Tµc ν + Tµb ν . (A.19)

We first consider the ν = 0 case of Eq. (A.5). In the Newtonian limit, which is what we use for

the long-wavelength modes, one can take energy conservation and mass conservation to be the

same [4]. For the case of dark matter and baryons, there is a separate mass conservation for each

species. Taking into account this additional conservation law, we can split the ν = 0 equation of

Eq. (A.5) into two separate equations

a−3∂0(a3δT 0
c 0) + ∂iδT

i
c0 = 0 , and a−3∂0(a3δT 0

b 0) + ∂iδT
i
b 0 = 0 . (A.20)

These equations express the conservation of the total number of particles of each species separately,

and we will write them in a more familiar form below.

The ν = i equation in Eq. (A.5), on the other hand, gives

a−3∂0

(
a3
(
δT 0

c i + δT 0
b i

))
+ ∂j

(
δT jc i + δT jb i

)
+ T 00∂iΦ = 0 , (A.21)

where we have used that

− ∂j
(
M2

PlGNL
j
i + 2M2

PlḢδjiΦ
)

= T 00∂iΦ , (A.22)

which can be shown using the expression for GNL
j
i in Eq. (A.18), the background equation for a

pressureless field −2ḢM2
Pl = T̄ 00, and the (00) Einstein equation (Poisson equation), which is, as

usual, at leading relativistic order,

δT 00 = 2a−2M2
Pl∂

2Φ . (A.23)

29The indices on actual tensors, like the stress-energy tensor Tµν and the Einstein tensor Gµν , are raised and

lowered by the metric gµν , but indices on non-tensor quantities, like the Kronecker delta function δij , spatial

derivatives ∂i ≡ ∂/∂xi, the fluid velocity vi, the momentum density πi, and the pseudo-tensor tij , will not be raised

or lowered with the metric. This is why the placement of indices is not always the same on both sides of an equation.
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Next, we observe that we should have two separate equations of motion for baryons and dark

matter. While this is quite intuitive, one can formally establish this by noting that in the early

universe the two fluids are weakly coupled, and so they give rise to two degrees of freedom. Clearly,

each equation of motion should be invariant with respect to diffeomorphisms, as they come, at

least formally, from the variation of a diffeomorphism-invariant action. Therefore, we can write

the separate evolution equations for δT 0
c i and δT 0

b i in a general way that automatically satisfies

the total conservation of momentum Eq. (A.21) as

a−3∂0

(
a3δT 0

c i

)
+ ∂jδT

j
c i + λT 00∂iΦ + ϕi = 0 ,

a−3∂0

(
a3δT 0

b i

)
+ ∂jδT

j
b i + (1− λ)T 00∂iΦ− ϕi = 0 ,

(A.24)

for any time-dependent λ and functional of the fields ϕi, and then we can constrain the forms of

λ and ϕi by demanding diffeomorphism invariance for each of the two equations. Notice that at

this point, nothing specific has been assumed about each species’ equation of motion, since ϕi is

generic. Then, by demanding that each equation is separately diffeomorphism invariant, we are

assuming that the two species are independent degrees of freedom, as it is evident for dark matter

and baryons by thinking about their early universe dynamics.

The subset of diffeomorphisms that preserve the Newtonian gauge and that is relevant for the

Newtonian limit are the so-called Galilean transformations

t→ t+ a2ni(t)xi , and xi → xi + ni(t) , (A.25)

for generic time dependent ni(t), which act on the terms present in the equations of motion as30

∂i → ∂i , ∂0 → ∂0 − ṅi∂i , Φ→ Φ− a2(n̈i + 2Hṅi)xi ,

δT 00
σ → δT 00

σ , δT 0i
σ → δT 0i

σ + ṅiT 00
σ , δT ijσ → δT ijσ + ṅjδT i0σ + ṅiδT 0j

σ + ṅiṅjT 00
σ ,

(A.26)

where here and elsewhere, σ ∈ {c, b}, and where we neglected terms that contribute only at

relativistic level. It is straightforward to see that the continuity equations Eq. (A.20) are invariant,

so we move to the momentum density conservation equations Eq. (A.24). Imposing that each

equation in Eq. (A.24) is Galilean invariant and defining the transformation ϕi → ϕi + ∆ϕi, we

find the single constraint

a2(n̈i + 2Hṅi)
(
T 00
c − λT 00

)
+ ∆ϕi = 0 . (A.27)

From this, we learn that we can set ϕi ≡ ϕ∂iΦ + γi, where ϕ and γi are Galilean scalars, which

then imposes the constraint

λT 00 + ϕ = T 00
c . (A.28)

This means that the equations of motion Eq. (A.24) are

a−3∂0

(
a3δT 0

c i

)
+ ∂jδT

j
c i + T 00

c ∂iΦ + γi = 0 ,

a−3∂0

(
a3δT 0

b i

)
+ ∂jδT

j
b i + T 00

b ∂iΦ− γi = 0 .
(A.29)

30These transformations are simply inherited from the relevant diffeomorphism transformation rules.
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In order to write the equations Eq. (A.20) and Eq. (A.29) in a more familiar form, we parametrize

the stress tensors as

T 0
σ 0 = −ρσ , T 0

σ i = aπiσ , and T iσj =
πiσπ

j
σ

ρσ
+ τ ijσ , (A.30)

which finally gives the standard Eqs. (2.20) - (2.22). The form of this parametrization is of course

general, but the usefulness comes from two realizations. The first is that the effect of τ ijσ on ρσ

and πiσ is perturbative at long distances, and the second is that dark matter and baryons do not

move too much in the history of the universe. This means that τ ijσ can be written as local-in-

space powers and derivatives of ρσ and πiσ [4]. In turn, this means that the counterterms for the

EFTofLSS come in through the effective stress tensors τ ijc and τ ijb , and the effective force γi, which

are all Galilean scalars. The important new possibility is a term γi ∼ HπiI , which is allowed by

the symmetries, and is in fact generically needed to cancel UV divergences in the one-loop power

spectrum, as we explicitly show in Sec. 3.1.

Finally, we stress that we did not include counterterms in the continuity equations Eq. (2.20).

This is because our system is coupled to gravity, and the stress-energy pseudo-tensor tµν in

Eq. (A.5) is symmetric. Operationally, what this means is that whatever field appears in the

gradient ∂i in the continuity equations Eq. (2.20) should appear in the time derivative in the

momentum equations Eqs. (2.21) - (2.22), because t0i = −a2ti0. For example, if one wanted to

add counterterms of the form −a−1∂iF
i
σ to the right-hand side of Eq. (2.20), then we should have

∂0(πiσ + F iσ) appearing in the momentum equations Eqs. (2.21) - (2.22). Ultimately, this means

that the equations take the same form as those that we have presented.

B Perturbative solutions for two fluids

B.1 General equations

Here we study the structure of the perturbative solutions for two fluids. We start by neglecting the

role of the counterterms, to which we return in Sec. B.5. Therefore, neglecting counterterms, we

start with the equations of motion in the adiabatic-isocurvature basis. The continuity equations

are

aδ′A −ΘA = ∂i

(
δA
∂iΘA

∂2
+ wbwcδI

∂iΘI

∂2

)
,

aδ′I −ΘI = ∂i

(
δA
∂iΘI

∂2
+ δI

∂iΘA

∂2
+ (wb − wc)δI

∂iΘI

∂2

)
.

(B.1)

To derive the two-derivative equations in the most convenient form, it is easiest to start with

the momentum equations Eq. (2.21) and Eq. (2.22), then use the continuity equation in the form
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Eq. (2.20), from which we straightforwardly get

a2δ′′A +

(
2 +

aH′

H

)
aδ′A −

3

2
ΩmδA = ∂i∂j

{
3

2
Ωm

(
∂iδA
∂2

∂jδA
∂2
− δij

2

∂kδA
∂2

∂kδA
∂2

)
(B.2)

+ (1 + δA)
∂iΘA

∂2

∂jΘA

∂2
+ 2wbwcδI

∂iΘA

∂2

∂jΘI

∂2
+ wbwc [1 + δA + (wb − wc)δI ]

∂iΘI

∂2

∂jΘI

∂2

}
,

and

a2δ′′I +

(
2 +

aH′

H

)
aδ′I =

3

2
Ωm∂i

(
δI
∂iδA
∂2

)
+ ∂i∂j

{
(1 + δA)

(
2
∂iΘA

∂2

∂jΘI

∂2
+ (wb − wc)

∂iΘI

∂2

∂jΘI

∂2

)

+ δI

(
∂iΘA

∂2

∂jΘA

∂2
+ 2(wb − wc)

∂iΘA

∂2

∂jΘI

∂2
+ (w2

b − wbwc − w2
c )
∂iΘI

∂2

∂jΘI

∂2

)}
, (B.3)

where Ωm ≡ ρ̄A/(3M2
PlH

2) is the time-dependent matter fraction, MPl is the Planck mass, and we

have used the dimensionless velocity divergence

ΘΥ ≡ −∂iviΥ/H , (B.4)

where Υ ∈ {A, I}. We have also used

∂iΦ =
3

2
ΩmH2∂iδA

∂2
, (B.5)

and the identity

∂i

(
δA
∂iδA
∂2

)
= ∂i∂j

(
∂iδA
∂2

∂jδA
∂2
− δij

2

∂kδA
∂2

∂kδA
∂2

)
, (B.6)

to write the right-hand side of Eq. (B.2) as a double total spatial derivative. As we will see, the

derivative structure on the right-hand sides of the above equations determines the UV structure

of the solutions.

B.2 Linear solutions and EdS expansion

In ΛCDM, we expand the linear solutions as

δ
(1)
A (a,~k) =

DA+(a)

DA+(a0)
δ

(1)
A+

(~k) + ε5
DA−(a)

DA−(a0)
δ

(1)
A−

(~k) ,

δ
(1)
I (a,~k) = ε2

DI+(a)

DI+(a0)
δ

(1)
I+

(~k) + ε3
DI−(a)

DI−(a0)
δ

(1)
I−

(~k) ,

(B.7)

where ε ≡
√
ain/a0. Note that for standard adiabatic initial conditions from inflation, we have

δ
(1)
A−

(~k) = 0, but we keep that term for completeness here. We have normalized the linear solutions

so that at early times ain, where there is a sizable isocurvature mode, the various free functions

contribute at comparable levels. We typically have in mind ain ∼ 5×10−3, a bit after recombination
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when δA ≈ δI , so we can think of ε ≈ 0.07. Neglecting radiation, the growth factors satisfy the

second order equations

a2D′′A± +

(
2 +

aH′

H

)
aD′A± −

3

2
Ωm(a)DA± = 0 , (B.8)

a2D′′I± +

(
2 +

aH′

H

)
aD′I± = 0 . (B.9)

The growing and decaying solutions to Eq. (B.8) are given by [95]

DA+(a) =
5

2
Ωm,0H2

0

H(a)

a

∫ a

0

da1

H(a1)3
, and DA−(a) =

H(a)

H0Ω
1/2
m,0

, (B.10)

while the growing and decaying solutions to Eq. (B.9) are given by

DI+(a) = const. , and DI−(a) =

√
a0

ain
−
H0 Ω

1/2
m,0

2

∫ a

ain

da1
a0

a2
1H(a1)

. (B.11)

We have chosen all of the normalizations above so that the solutions approach their standard EdS

forms in the early universe (see Eq. (B.13)).

To investigate the loop structure, we work in the EdS approximation for simplicity, where

Ωm = 1 and aH′/H = −1/2. In that case, the linear equations are

a2δ
(1)
A
′′ +

3

2
aδ

(1)
A
′ − 3

2
δ

(1)
A = 0 , and a2δ

(1)
I
′′ +

3

2
aδ

(1)
I
′ = 0 . (B.12)

The general solutions to the above equations are

δ
(1)
A (a,~k) =

a

a0
δ

(1)
A+

(~k) + ε5
(
a

a0

)−3/2

δ
(1)
A−

(~k) ,

δ
(1)
I (a,~k) = ε2δ

(1)
I+

(~k) + ε3
(
a

a0

)−1/2

δ
(1)
I−

(~k) .

(B.13)

Finally, with Eq. (B.13), we can also find the solutions for the linear velocity divergences,

Θ
(1)
A (a,~k) =

a

a0
δ

(1)
A+

(~k)− 3

2
ε5
(
a

a0

)−3/2

δ
(1)
A−

(~k) ,

Θ
(1)
I (a,~k) = −1

2
ε3
(
a

a0

)−1/2

δ
(1)
I−

(~k) .

(B.14)

Notice that the constant isocurvature solution δ
(1)
I+

does not contribute to the isocurvature velocity

divergence, so the leading term for the isocurvature velocity is decaying.

Next, we would like to find the perturbative solutions in the EdS expansion to Eq. (B.2)

and Eq. (B.3). Let us start with the second order equations, and look at the right-hand-sides

of Eq. (B.2) and Eq. (B.3). At each perturbative order, each expression can be organized in an

expansion in powers of ε, and all of the terms with a fixed power of ε will have the same time
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dependence.31 This allows us to write the solutions for δ
(2)
A and δ

(2)
I as sums of terms with the

appropriate ε and a dependence. Then, the solutions at higher and higher orders will contain more

and more distinct powers of ε. For example, looking at Eq. (B.2) and Eq. (B.3), we see that

δ
(2)
A ∼ a

2 + ε5a−1/2 + ε10a−3 ,

δ
(2)
I ∼ ε

2a+ ε3a1/2 + ε6a−1 + ε7a−3/2 + ε8a−2 .
(B.15)

This leads us to make the following ansatz for the growing and first-decaying modes of the solutions

δ
(n)
A (a,~k) =

(
a

a0

)n−1
(
a

a0
δ

(n)
A+

(~k) + ε5
(
a

a0

)−3/2

δ
(n)
A−

(~k) + . . .

)
,

δ
(n)
I (a,~k) =

(
a

a0

)n−1
(
ε2δ

(n)
I+

(~k) + ε3
(
a

a0

)−1/2

δ
(n)
I−

(~k) + . . .

)
.

(B.16)

While the general expansion contains many higher powers of ε, which can easily be taken into

account in a code for example, we will focus on the terms shown above. The ansatz for the

velocity divergences, then, is

Θ
(n)
A (a,~k) =

(
a

a0

)n−1
(
a

a0
Θ

(n)
A+

(~k) + ε5
(
a

a0

)−3/2

Θ
(n)
A−

(~k) + . . .

)
,

Θ
(n)
I (a,~k) =

(
a

a0

)n−1
(
ε2Θ

(n)
I+

(~k) + ε3
(
a

a0

)−1/2

Θ
(n)
I−

(~k) + . . .

)
.

(B.17)

B.3 UV limit of one-loop terms

With the form of the equations in Sec. B.1, we can easily compute the leading UV behavior of the

one-loop power spectra. Looking at the adiabatic equation Eq. (B.2), we see that the adiabatic

power spectrum will always have the standard form. This is guaranteed because the interaction

terms on the right-hand side are all under ∂i∂j , and because of wave-vector conservation in Fourier

space, these derivatives will always turn into the total external wavenumber.

This means that the first place for us to look for the new terms in the UV is in 〈δA(~k)δI(~k
′)〉. We

first look at the (22) diagram. Using Eq. (B.2) and Eq. (B.3), we have the schematic contributions

δ
(2)
A ∼ ∂i∂j

(
∂iδ

(1)
A

∂2

∂jδ
(1)
A

∂2

)
, and δ

(2)
I ∼ ∂i

(
δ

(1)
I

∂iδ
(1)
A

∂2

)
, (B.18)

which in the UV limit k1 � k gives

PAI22 (a, k)→ −ε2
(
a

a0

)3 ∫
~k1

(
~k · ~k1

k2
1

)2(
~k′ · ~k1

k2
1

)
PAA++ (k1)PAI++(k1) , (B.19)

31One can realize this by noticing that the dependence in a is through the combination a/a0, and there is a

symmetry of rescaling a0 and ε. Therefore, for any dependence in a, there is an associated dependence in a0, and

therefore in ε.
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which is zero because it is odd in ~k1. This means that this contribution starts at k4, as anticipated.

To find a k2 contribution, we look at 〈δ(2)
I (a,~k)δ

(2)
I (a,~k′)〉. For concreteness, we compute the

ε4 contribution. Calling δ
(2)
I,st. the part of δ

(2)
I that is relevant to compute the ε4k2 stochastic

contribution, we have

a2δ
(2)
I,st.
′′ +

3

2
aδ

(2)
I,st.
′ =

3

2
∂i

(
δ

(1)
I

∂iδ
(1)
A

∂2

)
, (B.20)

and taking the ε2 part, we have32

δ
(2)
I,st.(a,

~k) = ε2
a

a0

∫ ~k

~k1,~k2

~k · ~k2

k2
2

δ
(1)
I+

(~k1)δ
(1)
A+

(~k2) , (B.22)

which gives

P II22 (a, k)→ ε4
(
a

a0

)2 ∫
~k1

(~k · ~k1)2

k4
1

(
PAI++(k1)2 − PAA++ (k1)P II++(k1)

)
, (B.23)

in the UV limit k1 � k. This goes as k2, as expected, and vanishes if there is no isocurvature

mode.

Now we turn to the (13) diagram. First of all, the term 〈δ(3)
A (a,~k)δ

(1)
I (a,~k′)〉 will go like

k2PAI++(k) because δ
(3)
A has the standard form, as discussed above. This means that we should look

at

〈δ(1)
A (a,~k)δ

(3)
I (a,~k′)〉 . (B.24)

Using some simple observations, we can compute this contribution in the UV limit without fully

solving the equations of motion. First of all, terms going like k0PAA±± (k) must absent in Eq. (B.24)

because of Galilean invariance, which our general construction in Sec. 2.1 shows (and we have

explicitly verified with the solution in Sec. B.4).33 So we look for contributions going like k0PAI++(k)

or k0PAI+−(k) (in reality, it is only the latter that is present, as we show below, and indeed is expected

on symmetry arguments, as explained in Sec. 2.1). This means that one of the factors of δ
(1)
I is

an external leg, and the terms with the most factors of ∂iδ
(1)
I /∂2 will be the ones with the k0

contribution.

We start by writing the solution for δ
(3)
I,UV, where we use the subscript UV to denote the solution

relevant for the UV limit. Notice that all of the vertices with ∂i∂j in Eq. (B.3) will contribute k2,

and so will not produce the desired effect. Thus, we immediately see that

a2δ
(3)
I,UV

′′ +
3

2
aδ

(3)
I,UV

′ =
3

2
∂i

(
δ

(2)
I

∂iδ
(1)
A

∂2

)
. (B.25)

32To save space, we introduce the notation∫ ~k

~k1,...,~kn

=

∫
~k1

· · ·
∫
~kn

(2π)3δ(~k −
n∑
i=1

~ki) . (B.21)

33This is because the relevant counterterm that enters the δ
(3)
I equation is ∂iγ

i, and γi is Galilean invariant. This

means that γi ∼ πiI , as opposed to πiA, and so the only available counterterm is ∝ ∂iπ
i
I ∼ ΘI . In practice, the

reason that the k0PAA±± (k) term does not show up in the full perturbative calculation is non-trivial and relies on the

cancellation of many terms, whose coefficients are related because of Galilean invariance.
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The term in δ
(2)
I with the most derivatives in the denominator of the isocurvature mode comes

from

a2δ
(2)
I,UV

′′ +
3

2
aδ

(2)
I,UV

′ = ∂i∂j

(
2
∂iΘ

(1)
A

∂2

∂jΘ
(1)
I

∂2
+ (wb − wc)

∂iΘ
(1)
I

∂2

∂jΘ
(1)
I

∂2

)
. (B.26)

Notice that this UV contribution is proportional to the isocurvature velocity Θ
(1)
I ∼ δ

(1)
I−

, confirming

what we found in Sec. 2.1 based on general symmetry arguments.

Plugging in the linear solutions from Eq. (B.13) and Eq. (B.14), we have terms going like ε3, ε6,

and ε8 in δ
(2)
I,UV, all of which are easy to keep track of, but we will compute only the term leading

in ε here. We have

a2δ
(2)
I,UV

′′ +
3

2
aδ

(2)
I,UV

′ = 2∂i∂j

(
∂iΘ

(1)
A

∂2

∂jΘ
(1)
I

∂2

)
, (B.27)

which has the solution

δ
(2)
I,UV(a,~k) = −2ε3

(
a

a0

)1/2 ∫ ~k

~k1,~k2

~k · ~k1
~k · ~k2

k2
1 k

2
2

δ
(1)
A+(~k1)δ

(1)
I−(~k2) . (B.28)

Then, plugging this into Eq. (B.25), we find

δ
(3)
I,UV(a,~k) = −ε3

(
a

a0

)3/2 ∫ ~k

~k1,~k2

∫ ~k1

~p1,~p2

~k · ~k2
~k1 · ~p1

~k1 · ~p2

k2
2 p

2
1 p

2
2

δ
(1)
A+(~p1)δ

(1)
I−(~p2)δ

(1)
A+(~k2) . (B.29)

Finally, this gives, for k1 � k,

PAI13 (a, k)→ ε3
(
a

a0

)5/2

PAI+−(k)

∫
d3k1

(2π)3
(k̂ · k̂1)2PAA++ (k1) , (B.30)

which we have confirmed with the full computation (i.e. using the recursion relations in Sec. B.4).

One can find similar UV divergences in, for example, 〈δI(a,~k)δI(a,~k
′)〉, all of which, at one loop,

come from the solution for δ
(3)
I,UV that we found above and so are adjusted by the same counterterm.

Notice, as mentioned in the main text, that this divergence is suppressed by a higher power of ε

than if it were proportional to δ
(1)
I+.

B.4 Recursion relations

In this subsection, we derive recursion relations for the perturbative solutions at leading orders in

ε. For the standard recursion relations for dark matter, see [77, 96]. Specifically, we will work up

to order ε3, which is necessary to find the counterterm needed to correct Eq. (B.30), for example.

From Eq. (B.16), we see that terms with two factors of δ
(1)
I starts at ε4, so we can ignore those
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terms for our purposes. Thus, the relevant equations for us are, in the EdS approximation,

aδ′A(a,~k)−ΘA(a,~k) =

∫ ~k

~k1,~k2

α(~k1, ~k2)δA(a,~k1)ΘA(a,~k2) ,

aΘ′A(a,~k) +
1

2
ΘA(a,~k)− 3

2
δA(a,~k) =

∫ ~k

~k1,~k2

β(~k1, ~k2)ΘA(a,~k1)ΘA(a,~k2) ,

aδ′I(a,
~k)−ΘI(a,~k) =

∫ ~k

~k1,~k2

α(~k1, ~k2)
(
δI(a,~k1)ΘA(a,~k2) + δA(a,~k1)ΘI(a,~k2)

)
,

aΘ′I(a,
~k) +

1

2
ΘI(a,~k) =

∫ ~k

~k1,~k2

2β(~k1, ~k2)ΘA(a,~k1)ΘI(a,~k2) .

(B.31)

Next, we write the perturbative solutions, up to order ε3, in the form

δ
(n)
A (a,~k) =

(
a

a0

)n
δ

(n)
A+

(~k) , Θ
(n)
A (a,~k) =

(
a

a0

)n
Θ

(n)
A+

(~k)

δ
(n)
I (a,~k) = ε2

(
a

a0

)n−1

δ
(n)
I+

(~k) + ε3
(
a

a0

)n−3/2

δ
(n)
I−

(~k) ,

Θ
(n)
I (a,~k) = ε3

(
a

a0

)n−3/2

Θ
(n)
I−

(~k) ,

(B.32)

and expand the momentum dependent parts as

δ
(n)
Γ (~k) =

∫ ~k

~k1,...,~kn

FΓ
n (~k1, . . . , ~kn)δ

(1)
Γ (~k1)δ

(1)
A+

(~k2) · · · δ(1)
A+

(~kn) ,

Θ
(n)
Γ (~k) =

∫ ~k

~k1,...,~kn

GΓ
n(~k1, . . . , ~kn)δ

(1)
Γ (~k1)δ

(1)
A+

(~k2) · · · δ(1)
A+

(~kn) ,

(B.33)

where Γ ∈ {A+, I+, I−}. The first-order kernels satisfy FΓ
1 = 1 for Γ ∈ {A+, I+, I−}, GA+

1 = 1,

G
I+
1 = 0, and G

I−
1 = −1/2. At the order that we work, the equations for the adiabatic mode in

Eq. (B.31) are exactly the same as the standard dark-matter case, so the kernels F
A+
n and G

A+
n

are the same as in, for example [77, 96]. Thus, we concentrate on the isocurvature solution below.

Plugging the ansatz Eq. (B.33) into the equations of motion Eq. (B.31) and matching orders

in ε, we find

GI+n (~k1, . . . , ~kn) = 0 , (B.34)

F I+n (~k1, . . . , ~kn) =
1

n− 1

n−1∑
m=1

α
(
~k1;m, ~km+1;n

)
F I+m (~k1, . . . , ~km)G

A+
n−m(~km+1, . . . , ~kn) ,
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and

GI−n (~k1, . . . , ~kn) =
2

n− 1

n−1∑
m=1

β
(
~k1;m, ~km+1;n

)
GI−m (~k1, . . . , ~km)G

A+
n−m(~km+1, . . . , ~kn) , (B.35)

F I−n (~k1, . . . , ~kn) =
1

n− 3/2

n−1∑
m=1

[
α
(
~k1;m,~km+1;n

)
F I−m (~k1, . . . , ~km)G

A+
n−m(~km+1, . . . , ~kn)

+ α
(
~km+1;n, ~k1;m

)
GI−m (~k1, . . . , ~km)F

A+
n−m(~km+1, . . . , ~kn)

]
+

1

n− 3/2
GI−n (~k1, . . . , ~kn) ,

where we have defined ~ki;j ≡ ~ki + · · · + ~kj .
34 The fact that G

I+
n = 0 was to be expected, since

from Eq. (B.31), the isocurvature velocity divergence is sourced by a term proportional to the

isocurvature velocity divergence itself, for which the δI+ contribution is initially zero. Of course,

these kernels are applicable to the case when g = 0, i.e. the linear counterterm is absent. We

discuss the case for g 6= 0 in the next subsection.

As a final comment, in a general cosmology, one normally uses the k-dependence of the EdS

solution and replaces a→ DA+(a). This is percent-level accurate [98], and relies on

a2D′A+
(a)2

Ωm(a)DA+(a)2
≈ 1 . (B.36)

The analogous procedure for implementing this for the solutions in Eq. (B.32) is

δ
(n)
A (a,~k) =

(
DA+(a)

DA+(a0)

)n
δ

(n)
A+

(~k) , Θ
(n)
A (a,~k) =

aD′A+
(a)

DA+(a0)

(
DA+(a)

DA+(a0)

)n−1

Θ
(n)
A+

(~k)

δ
(n)
I (a,~k) = ε2

(
DA+(a)

DA+(a0)

)n−1

δ
(n)
I+

(~k) + ε3
DI−(a)

DI−(a0)

(
DA+(a)

DA+(a0)

)n−1

δ
(n)
I−

(~k) ,

Θ
(n)
I (a,~k) = −2ε3

aD′I−(a)

DI−(a0)

(
DA+(a)

DA+(a0)

)n−1

Θ
(n)
I−

(~k) ,

(B.37)

which additionally relies on
D′I−(a)/DI−(a)

D′A+
(a)/DA+(a)

≈ −1

2
. (B.38)

This is approximately true for the cosmology used in this paper, where the ratio goes from −0.5

at early times, to −0.46 at the current time.

B.5 Expansion with linear counterterm

When one includes the linear relative-velocity counterterm, as in Eq. (3.35), the perturbative

expansion is somewhat different from what we have described previously in this section. This is

because there is not generally an EdS-like expansion where the time dependence of all of the terms

can be made the same (or approximately the same, as is done in the EdS approximation). As

34During the completion of this work, [97] appeared which derived the recursion relation for F
I+
n above.
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remarked in Sec. 3.4, although the growth factor Dg
I−

for the decaying isocurvature mode must be

treated as a free function, one still knows the k-dependence of the solutions. To see how this plays

out in perturbation theory, let us show an explicit example, namely the computation of δ
(2)
I (a,~k).

First, we show that even in the presence of the linear relative-velocity counterterm, the ε2

contribution to ΘI is absent at every order in perturbation theory. The equations of motion for

the isocurvature mode, including the relative-velocity counterterm, up to order ε3, are

aδ′I(a)−ΘI(a) = ∂i

(
δA(a)

∂iΘI(a)

∂2
+ δI(a)

∂iΘA(a)

∂2

)
,

aΘ′I(a) +

(
1 +

aH′

H

)
ΘI(a)−

∫ a

da1 g(a, a1)ΘI(a1) = ∂i∂j

(
∂iΘA(a)

∂2

∂jΘI(a)

∂2

)
,

(B.39)

where we have suppressed the obvious spatial coordinates for notational convenience. As discussed

in Sec. 3.4, the linear solutions are δ
(1)
I (a,~k) = ε2δ

(1)
I+(~k) + ε3Dg

I−
(a)δ

(1)
I−

(~k)/Dg
I−

(a0) which implies

that Θ
(1)
I (a,~k) = ε3aDg

I−
′(a)δ

(1)
I−

(~k)/Dg
I−

(a0). Now, looking at the second equation in Eq. (B.39), it

is clear that since the ε2 piece is absent in Θ
(1)
I , it will be absent in all higher orders in perturbation

theory, since the right-hand side is proportional to ΘI . Thus, we have Θ
(n)
I+

= 0 for n ≥ 1.

There is an ε2 contribution to δ
(n)
I , for n ≥ 2, from Eq. (B.39), though. Taking the ε2 piece of

the first equation in Eq. (B.39), and using that Θ
(n)
I+

= 0, we have

aδ
(n)
I+
′ =

n−1∑
m=1

∂i

δ(m)
I+

∂iΘ
(n−m)
A+

∂2

 , (B.40)

which can be solved using the expansion in Eq. (B.37), in the same way as if there were no

relative-velocity counterterm.

Now we focus on the decaying isocurvature mode, proportional to ε3, which is affected by the

new counterterm. At linear order, we have δ
(1)
I−

(a,~k) = Dg
I−

(a)δ
(1)
I−

(~k)/Dg
I−

(a0). The equation for

the second-order field is given by (ignoring terms with two isocurvature modes)

a2δ
(2)
I−
′′(a,~k) +

(
2 +

aH′(a)

H(a)

)
aδ

(2)
I−
′(a,~k)−

∫ a

da1g(a, a1) a1δ
(2)
I−
′(a1, ~k) = S

(2)
I−

(a,~k) , (B.41)

where the second-order source term is given by (this is easiest seen by working directly with the

momentum equations Eq. (2.21) and Eq. (2.22))

S
(2)
I−

(a,~k) =

∫ ~k

~k1,~k2

(
3

2
Ωm(a)α(~k1, ~k2)δ

(1)
I−

(a,~k1)δ
(1)
A+

(a,~k2) (B.42)

+ 2α(~k1,~k2)α(~k2, ~k1)Θ
(1)
I−

(a,~k1)Θ
(1)
A+

(a,~k2)

−
∫ a

da1g(a, a1)α(~k1, ~k2)
(
δ

(1)
A+

(a1, ~k1)Θ
(1)
I−

(a1,~k2) + δ
(1)
I−

(a1,~k1)Θ
(1)
A+

(a1,~k2)
))

,

where δ
(1)
A+

(a,~k) ≡ DA+(a)δ
(1)
A+

(~k)/DA+(a0), Θ
(1)
A+

(a,~k) ≡ aδ(1)
A+

′(a,~k), and Θ
(1)
I−

(a,~k) ≡ aδ(1)
I−
′(a,~k).
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Next, we must assume that there is a Green’s function, which we call Gg(a, a1), to the non-local

linear equations. Then, after plugging in the liner solutions, we find

δ
(2)
I−

(a,~k) = (B.43)∫ ~k

~k1,~k2

[
(T1(a) + T4(a))α(~k1,~k2) + T2(a)α(~k1, ~k2)α(~k2,~k1) + T3(a)α(~k2, ~k1)

]
δ

(1)
I−

(~k1)δ
(1)
A+

(~k2)

where

T1(a) =

∫ a

da1Gg(a, a1)
3

2
Ωm(a1)

Dg
I−

(a1)DA+(a1)

Dg
I−

(a0)DA+(a0)
,

T2(a) =

∫ a

da1Gg(a, a1)2a2
1

Dg
I−
′(a1)D′A+

(a1)

Dg
I−

(a0)DA+(a0)
,

T3(a) = −
∫ a

da1

∫ a1

da2Gg(a, a1)g(a, a2)a2

Dg
I−
′(a2)DA+(a2)

Dg
I−

(a0)DA+(a0)
,

T4(a) = −
∫ a

da1

∫ a1

da2Gg(a, a1)g(a, a2)a2

Dg
I−

(a2)D′A+
(a2)

Dg
I−

(a0)DA+(a0)
.

(B.44)

However, since both Gg(a, a1) and g(a, a1) are unknown, we can just treat T1,2,3,4(a) as free func-

tions. Although the time dependence is unknown, the structure of the equations still fixes some

of the momentum dependence. Higher orders in perturbation theory can be found in an analo-

gous manner. Realistically, though, the decaying isocurvature mode is expected to be very small

compared to other contributions in the power spectrum, so we leave exploration of this topic to

future work. We simply stress here that perturbation theory is not spoiled, at least as a matter of

principle, by the presence of the linear relative-velocity counterterm.

C Coefficient relationships

In this appendix, we relate the coefficients in the stress tensors Eq. (2.30) and Eq. (2.31) to the

coefficients appearing in the power spectra Eq. (2.37). Here, we work in an EdS universe, where

the counterterms are assumed to have the time dependences needed to cancel UV divergences.

Thus, these relationships are not strictly true in the real universe, but we include them here to

give an indication of the various contributions. First, we define

c2
cc ≡ a−2

(
wcc

2
c,g + c2

c,v

)
, c2

cb ≡ a−2wbc
2
c,g ,

c2
bc ≡ a−2wcc

2
b,g , c2

bb ≡ a−2
(
wbc

2
b,g + c2

b,v + c2
?(1)

)
,

c̄2
c ≡ c2

cc + c2
cb , and c̄2

b ≡ c2
bc + c2

bb .

(C.1)

We also define the adiabatic and isocurvature combinations

c̄2
A ≡ wcc̄2

c + wbc̄
2
b , and c̄2

I ≡ c̄2
c − c̄2

b . (C.2)
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Then we have

c2
σ(1) = c̄2

σ , (C.3)

for σ ∈ {A, c, b}, and the coefficient related to non-locality in time is given by

ξσ + 5
2

2
(
ξσ + 5

4

) =
9

13
. (C.4)

Next, we have

c2
4c =

9

26

(
1

2π

(
c2

4c,g + c2
4c,v

)
− c2

cbc̄
2
I

)
,

c2
4b =

9

26

(
1

2π

(
c2

4b,g + c2
4b,v + c2

4?

)
+ c2

bcc̄
2
I

)
,

c2
4A = wcc

2
4c + wbc

2
4b +

9

26
wbwcc̄

4
I ,

(C.5)

and finally

c2
1c =

36

33
a−2

(
ccc1c + ccb1c + cbb1c

)
, and c2

1b =
36

33
a−2

(
ccc1b + ccb1b + cbb1b

)
. (C.6)

D Fitting procedure and tables of fit values

First, we give an example of how our fitting procedure for the ratio works at z = 2 to determine

{∆c2
c(1),∆c

2
1c,∆c

2
4c} and {∆c2

b(1),∆c
2
1b,∆c

2
4b}. As mentioned in the text, kmax is the maximum k

that is included in the fit. We then choose kfit to be the maximum value of kmax where the best fit

values are consistent with the lower kmax fits. In the following plots, the connected dotted points

are the best fit values, the dashed lines are the 1σ error on the parameter, and the solid lines are

the 2σ error. We say that the fit at a given kmax is consistent with the lower kmax fits if the best fit

value at kmax lies within the 2σ error bands of all lower kmax fits. As can be seen in the following

plots, it is the baryon fit that determines kfit, because the baryon ratio varies more over the range

of k’s considered (see Fig. 11, for example). If the parameters drift outside of the 2σ regions at

different values of kmax, we use the lowest value for kfit. We see that the baryon parameters start

to drift outside of the 2σ bands of the lower kmax fits at approximately kmax ≈ 1.8hMpc−1, which

is what we use for kRfit (the kfit of the ratio, see Tab. 4). Finally, we also present the values of the

EFT parameters and errors measured in the fits in Sec. 4.
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Figure 16: Determination of ∆c2σ(1) and kRfit.
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Figure 17: Determination of ∆c21σ and kRfit.
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Figure 18: Determination of ∆c24σ and kRfit.
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z ∆c2
c(1)/k

2
NL ∆c2

b(1)/k
2
NL c2

s(1)/k
2
NL

0 −0.26± 0.32 4.3± 0.24 12± 6.6 ×10−2

0.125 0.034± 0.23 4.7± 0.17 9.7± 6.2 ×10−2

0.25 0.022± 0.23 4.8± 0.17 8.0± 5.7 ×10−2

0.375 7.6× 10−5 ± 0.24 4.6± 0.17 6.4± 5.0 ×10−2

0.5 −0.016± 0.24 4.4± 0.17 4.2± 4.1 ×10−2

0.75 −0.036± 0.24 3.9± 0.18 2.4± 3.0 ×10−2

1 −0.038± 0.24 3.2± 0.18 3.2± 1.9 ×10−2

1.25 −0.040± 0.24 2.4± 0.18 −0.027± 1.4 ×10−2

1.5 −0.032± 0.11 2.1± 0.081 1.9± 0.97 ×10−2

1.75 −0.028± 0.098 1.6± 0.073 0.13± 0.70 ×10−2

2 −0.026± 0.099 1.1± 0.075 1.2± 0.50 ×10−2

2.25 −0.21± 0.89 8.1± 0.68 3.9± 3.8 ×10−3

2.75 −0.11± 0.52 4.2± 0.40 7.0± 2.2 ×10−3

3 −0.052± 0.40 3.0± 0.30 11± 1.7 ×10−3

3.25 −0.047± 0.34 2.1± 0.27 2.8± 1.4 ×10−3

3.5 −0.011± 0.27 1.5± 0.22 1.2± 1.1 ×10−3

3.75 0.0025± 0.24 1.1± 0.19 2.8± 0.89 ×10−3

4 0.013± 0.22 0.73± 0.18 7.0± 0.72 ×10−3

Table 1: Best fit and 1σ errors for EFT parameters. Since the parameters are unitless, the columns have units given

by the explicit factors of kNL. All values of measured parameters and errors should be multiplied by the factor in

the last column.
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z ∆c2
1c/k

2
NL ∆c2

1b/k
2
NL c2

1s/k
2
NL

0 0.53± 0.68 −1.4± 0.50 −29± 77 ×10−2

0.125 −0.0049± 0.44 −1.9± 0.32 −18± 75 ×10−2

0.25 0.019± 0.49 −2.2± 0.35 −11± 73 ×10−2

0.375 0.074± 0.54 −2.2± 0.39 −0.15± 63 ×10−2

0.5 0.12± 0.60 −2.1± 0.43 19± 50 ×10−2

0.75 0.18± 0.74 −1.8± 0.54 27± 35 ×10−2

1 0.20± 0.90 −1.1± 0.67 13± 21 ×10−2

1.25 0.22± 1.1 −0.29± 0.82 27± 14 ×10−2

1.5 0.18± 0.37 −0.73± 0.26 9.7± 9.5 ×10−2

1.75 0.16± 0.36 −0.15± 0.26 16± 6.7 ×10−2

2 0.15± 0.43 0.24± 0.32 6.7± 4.5 ×10−2

2.25 1.2± 4.2 2.0± 3.2 80± 33 ×10−3

2.75 0.76± 2.4 1.8± 1.8 10± 19 ×10−3

3 0.50± 1.7 1.6± 1.3 −33± 15 ×10−3

3.25 0.45± 1.6 1.2± 1.2 4.0± 12 ×10−3

3.5 0.28± 1.2 1.1± 0.97 3.9± 9.3 ×10−3

3.75 0.21± 1.2 0.84± 0.91 −11± 7.5 ×10−3

4 0.15± 1.1 0.73± 0.88 −41± 6.0 ×10−3

Table 2: Best fit and 1σ errors for EFT parameters. Since the parameters are unitless, the columns have units given

by the explicit factors of kNL. All values of measured parameters and errors should be multiplied by the factor in

the last column.
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z ∆c2
4c/k

4
NL ∆c2

4b/k
4
NL c2

4s/k
4
NL

0 0.19± 0.23 0.17± 0.18 −40± 56 ×10−2

0.125 0.030± 0.11 0.0030± 0.089 −27± 48 ×10−2

0.25 0.033± 0.11 −0.078± 0.090 −19± 41 ×10−2

0.375 0.038± 0.12 −0.77± 0.090 −9.9± 31 ×10−2

0.5 0.040± 0.12 −0.090± 0.091 −0.62± 20 ×10−2

0.75 0.036± 0.12 −0.060± 0.092 4.0± 10 ×10−2

1 0.027± 0.12 0.019± 0.092 1.4± 4.2 ×10−2

1.25 0.020± 0.12 0.046± 0.094 2.8± 2.0 ×10−2

1.5 0.012± 0.22 0.0093± 0.017 0.95± 0.98 ×10−2

1.75 0.0075± 0.017 0.018± 0.014 1.0± 0.49 ×10−2

2 0.0045± 0.017 0.028± 0.014 0.46± 0.25 ×10−2

2.25 0.028± 0.14 0.15± 0.11 3.7± 1.3 ×10−3

2.75 0.010± 0.043 0.073± 0.035 0.71± 0.46 ×10−3

3 0.0051± 0.023 0.051± 0.018 −0.20± 0.29 ×10−3

3.25 0.0037± 0.018 0.027± 0.014 0.14± 0.16 ×10−3

3.5 0.0020± 0.011 0.017± 0.0087 0.029± 0.10 ×10−3

3.75 0.0013± 0.0083 0.011± 0.0067 −0.089± 0.069 ×10−3

4 9.1× 10−4 ± 0.0064 0.0083± 0.0052 −0.26± 0.050 ×10−3

Table 3: Best fit and 1σ errors for EFT parameters. Since the parameters are unitless, the columns have units given

by the explicit factors of kNL. All values of measured parameters and errors should be multiplied by the factor in

the last column.
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z kPfit [hMpc−1] kRfit [hMpc−1]

0 0.320 0.80

0.125 0.333 1.18

0.25 0.349 1.21

0.375 0.369 1.25

0.5 0.392 1.25

0.75 0.450 1.25

1 0.520 1.25

1.25 0.602 1.25

1.5 0.695 1.7

1.75 0.798 1.8

2 0.910 1.8

2.25 1.03 1.9

2.75 1.30 2.4

3 1.44 2.7

3.25 1.60 2.9

3.5 1.76 3.2

3.75 1.93 3.4

4 2.11 3.6

Table 4: Values of kfit used in our fits: kPfit is for the two-loop dark-matter-only power spectrum fit using Eq. (2.37),

and kRfit is for the ratio fit using Eq. (4.3).
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E Relaxing kRfit

Our procedure to determine kRfit(a), described in detail in App. D, has some ambiguity as to which

exact kRfit(a) we choose at each redshift. For example we choose the somewhat arbitrary, though

reasonable, condition that the central value drifts outside of the 2σ regions of the lower values

of kmax. For that reason, we examine our choices of kRfit(a) in this Appendix. In Figs. (19) - (22),

we plot our fits for the adiabatic and baryon ratios, RA and Rb, compared to the non-linear data.

We plot our fits using the kRfit(a) used in the rest of the paper (see Tab. 4) and the smaller, more

conservative, values 0.8 kRfit(a) and 0.6 kRfit(a).

In the baryon fits, Fig. 19 and Fig. 20, we see that the fits with kRfit(a) have a slight residual

bending with respect to the non-linear data, particularly at low redshift, which suggests a slight

over-fitting 35. However, one can see that the residual bend is absent when using 0.8 kRfit(a), which

justifies our ultimate choice, i.e. the overfit, if present, is very small. On the other hand, we see

that the adiabatic fits, Fig. 21 and Fig. 22, are very stable at low-k and do not show any residual

bending. As a check, we reproduced our lensing calculation using the fits with 0.8 kRfit(a) in Fig. 23,

where we see that the result is virtually unchanged, apart from a slight increase in the theoretical

error, and it is still significantly smaller than the expected cosmic variane of CMB-S4 data. Notice

also that, as compared to the simulation result, our estimate of the theory error appears to be

extremely conservative.
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Figure 19: Residuals of baryon fits compared to non-linear data at z = 0 and z = 1. In gray we plot the error on

the non-linear data that we used, 0.25%, which we see is justified by the scatter in the non-linear data. In particular,

we plot our results using kRfit(a) (solid curve), 0.8 kRfit(a) (dashed curve), and 0.6 kRfit(a) (dotted curve). We plot only

the error associated with kRfit(a) to avoid clutter.

35Such a behavior of the fit is expected given that our way of determining kRfit(a) is such that the values of the

counterterms we choose with kmax = kRfit(a) begin to become slightly incompatible with the values at lower kmax’s.
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Figure 20: Residuals of baryon fits compared to non-linear data at z = 2 and z = 3. In gray we plot the error on

the non-linear data that we used, 0.25%, which we see is justified by the scatter in the non-linear data. In particular,

we plot our results using kRfit(a) (solid curve), 0.8 kRfit(a) (dashed curve), and 0.6 kRfit(a) (dotted curve). We plot only

the error associated with kRfit(a) to avoid clutter.
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Figure 21: Residuals of adiabatic fits compared to non-linear data at z = 0 and z = 1. In gray we plot the error

on the non-linear data that we used, 0.25%. In particular, we plot our results using kRfit(a) (solid curve), 0.8 kRfit(a)

(dashed curve), and 0.6 kRfit(a) (dotted curve).
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Figure 22: Residuals of adiabatic fits compared to non-linear data at z = 2 and z = 3. In gray we plot the error

on the non-linear data that we used, 0.25%. In particular, we plot our results using kRfit(a) (solid curve), 0.8 kRfit(a)

(dashed curve), and 0.6 kRfit(a) (dotted curve).
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Figure 23: Lensing calculation, same as Fig. 1, using fits with 0.8 kRfit(a). The central value of our calculation

remains virtually unchanged, although the theoretical error (gray band) increases slightly.

65



References

[1] CMB-S4 collaboration, K. N. Abazajian et al., CMB-S4 Science Book, First Edition, 1610.02743.

[2] CMB-S4 collaboration, M. H. Abitbol et al., CMB-S4 Technology Book, First Edition, 1706.02464.

[3] K. Abazajian et al., CMB-S4 Science Case, Reference Design, and Project Plan, 1907.04473.

[4] D. Baumann, A. Nicolis, L. Senatore and M. Zaldarriaga, Cosmological Non-Linearities as an

Effective Fluid, JCAP 1207 (2012) 051, [1004.2488].

[5] J. J. M. Carrasco, M. P. Hertzberg and L. Senatore, The Effective Field Theory of Cosmological Large

Scale Structures, JHEP 09 (2012) 082, [1206.2926].

[6] R. A. Porto, L. Senatore and M. Zaldarriaga, The Lagrangian-space Effective Field Theory of Large

Scale Structures, JCAP 1405 (2014) 022, [1311.2168].

[7] L. Senatore and M. Zaldarriaga, The IR-resummed Effective Field Theory of Large Scale Structures,

JCAP 1502 (2015) 013, [1404.5954].

[8] J. J. M. Carrasco, S. Foreman, D. Green and L. Senatore, The 2-loop matter power spectrum and the

IR-safe integrand, JCAP 1407 (2014) 056, [1304.4946].

[9] J. J. M. Carrasco, S. Foreman, D. Green and L. Senatore, The Effective Field Theory of Large Scale

Structures at Two Loops, JCAP 1407 (2014) 057, [1310.0464].

[10] E. Pajer and M. Zaldarriaga, On the Renormalization of the Effective Field Theory of Large Scale

Structures, JCAP 1308 (2013) 037, [1301.7182].

[11] S. M. Carroll, S. Leichenauer and J. Pollack, Consistent effective theory of long-wavelength

cosmological perturbations, Phys. Rev. D90 (2014) 023518, [1310.2920].

[12] L. Mercolli and E. Pajer, On the velocity in the Effective Field Theory of Large Scale Structures,

JCAP 1403 (2014) 006, [1307.3220].

[13] R. E. Angulo, S. Foreman, M. Schmittfull and L. Senatore, The One-Loop Matter Bispectrum in the

Effective Field Theory of Large Scale Structures, JCAP 1510 (2015) 039, [1406.4143].

[14] T. Baldauf, L. Mercolli, M. Mirbabayi and E. Pajer, The Bispectrum in the Effective Field Theory of

Large Scale Structure, JCAP 1505 (2015) 007, [1406.4135].

[15] L. Senatore, Bias in the Effective Field Theory of Large Scale Structures, JCAP 1511 (2015) 007,

[1406.7843].

[16] L. Senatore and M. Zaldarriaga, Redshift Space Distortions in the Effective Field Theory of Large

Scale Structures, 1409.1225.

[17] M. Lewandowski, A. Perko and L. Senatore, Analytic Prediction of Baryonic Effects from the EFT of

Large Scale Structures, JCAP 1505 (2015) 019, [1412.5049].

[18] M. Mirbabayi, F. Schmidt and M. Zaldarriaga, Biased Tracers and Time Evolution, JCAP 1507

(2015) 030, [1412.5169].

66

http://arxiv.org/abs/1610.02743
http://arxiv.org/abs/1706.02464
http://arxiv.org/abs/1907.04473
http://dx.doi.org/10.1088/1475-7516/2012/07/051
http://arxiv.org/abs/1004.2488
http://dx.doi.org/10.1007/JHEP09(2012)082
http://arxiv.org/abs/1206.2926
http://dx.doi.org/10.1088/1475-7516/2014/05/022
http://arxiv.org/abs/1311.2168
http://dx.doi.org/10.1088/1475-7516/2015/02/013
http://arxiv.org/abs/1404.5954
http://dx.doi.org/10.1088/1475-7516/2014/07/056
http://arxiv.org/abs/1304.4946
http://dx.doi.org/10.1088/1475-7516/2014/07/057
http://arxiv.org/abs/1310.0464
http://dx.doi.org/10.1088/1475-7516/2013/08/037
http://arxiv.org/abs/1301.7182
http://dx.doi.org/10.1103/PhysRevD.90.023518
http://arxiv.org/abs/1310.2920
http://dx.doi.org/10.1088/1475-7516/2014/03/006
http://arxiv.org/abs/1307.3220
http://dx.doi.org/10.1088/1475-7516/2015/10/039
http://arxiv.org/abs/1406.4143
http://dx.doi.org/10.1088/1475-7516/2015/05/007
http://arxiv.org/abs/1406.4135
http://dx.doi.org/10.1088/1475-7516/2015/11/007
http://arxiv.org/abs/1406.7843
http://arxiv.org/abs/1409.1225
http://dx.doi.org/10.1088/1475-7516/2015/05/019
http://arxiv.org/abs/1412.5049
http://dx.doi.org/10.1088/1475-7516/2015/07/030
http://dx.doi.org/10.1088/1475-7516/2015/07/030
http://arxiv.org/abs/1412.5169


[19] S. Foreman and L. Senatore, The EFT of Large Scale Structures at All Redshifts: Analytical

Predictions for Lensing, JCAP 1604 (2016) 033, [1503.01775].

[20] R. Angulo, M. Fasiello, L. Senatore and Z. Vlah, On the Statistics of Biased Tracers in the Effective

Field Theory of Large Scale Structures, JCAP 1509 (2015) 029, [1503.08826].

[21] M. McQuinn and M. White, Cosmological perturbation theory in 1+1 dimensions, JCAP 1601 (2016)

043, [1502.07389].

[22] V. Assassi, D. Baumann, E. Pajer, Y. Welling and D. van der Woude, Effective theory of large-scale

structure with primordial non-Gaussianity, JCAP 1511 (2015) 024, [1505.06668].

[23] T. Baldauf, E. Schaan and M. Zaldarriaga, On the reach of perturbative descriptions for dark matter

displacement fields, JCAP 1603 (2016) 017, [1505.07098].
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[61] P. Creminelli, J. Norea and M. Simonović, Conformal consistency relations for single-field inflation,

JCAP 1207 (2012) 052, [1203.4595].

[62] K. Hinterbichler, L. Hui and J. Khoury, Conformal Symmetries of Adiabatic Modes in Cosmology,

JCAP 1208 (2012) 017, [1203.6351].

[63] K. Hinterbichler, L. Hui and J. Khoury, An Infinite Set of Ward Identities for Adiabatic Modes in

Cosmology, JCAP 1401 (2014) 039, [1304.5527].

[64] B. Horn, L. Hui and X. Xiao, Soft-Pion Theorems for Large Scale Structure, JCAP 1409 (2014) 044,

[1406.0842].

[65] P. Creminelli, G. D’Amico, J. Norena and F. Vernizzi, The Effective Theory of Quintessence: the

w < −1 Side Unveiled, JCAP 0902 (2009) 018, [0811.0827].

[66] P. Creminelli, G. D’Amico, J. Norena, L. Senatore and F. Vernizzi, Spherical collapse in quintessence

models with zero speed of sound, JCAP 1003 (2010) 027, [0911.2701].

[67] E. Sefusatti and F. Vernizzi, Cosmological structure formation with clustering quintessence, JCAP

1103 (2011) 047, [1101.1026].

[68] N. Bartolo, E. Bellini, D. Bertacca and S. Matarrese, Matter bispectrum in cubic galileon cosmologies,

Journal of Cosmology and Astroparticle Physics 2013 (Mar, 2013) 034–034.

[69] J. Bloomfield, A simplified approach to general scalar-tensor theories, Journal of Cosmology and

Astroparticle Physics 2013 (Dec, 2013) 044–044.

69

http://dx.doi.org/10.1088/1475-7516/2020/08/044
http://arxiv.org/abs/1912.12292
http://dx.doi.org/10.1103/PhysRevD.82.083520
http://arxiv.org/abs/1005.2416
http://dx.doi.org/10.1111/j.1365-2966.2011.18981.x
http://dx.doi.org/10.1111/j.1365-2966.2011.18981.x
http://arxiv.org/abs/1104.1174
http://dx.doi.org/10.1111/j.1365-2966.2009.16029.x
http://arxiv.org/abs/0909.5196
http://dx.doi.org/10.1103/PhysRevD.90.063516
http://dx.doi.org/10.1103/PhysRevD.90.063516
http://arxiv.org/abs/1405.6205
http://dx.doi.org/10.1103/PhysRevD.101.063534
http://arxiv.org/abs/1910.09565
http://dx.doi.org/10.1088/0004-637X/700/1/705
http://dx.doi.org/10.1088/0004-637X/700/1/705
http://arxiv.org/abs/0903.2669
http://dx.doi.org/10.1103/PhysRevD.81.023524
http://arxiv.org/abs/0910.5220
http://dx.doi.org/10.1088/1475-7516/2012/07/052
http://arxiv.org/abs/1203.4595
http://dx.doi.org/10.1088/1475-7516/2012/08/017
http://arxiv.org/abs/1203.6351
http://dx.doi.org/10.1088/1475-7516/2014/01/039
http://arxiv.org/abs/1304.5527
http://dx.doi.org/10.1088/1475-7516/2014/09/044
http://arxiv.org/abs/1406.0842
http://dx.doi.org/10.1088/1475-7516/2009/02/018
http://arxiv.org/abs/0811.0827
http://dx.doi.org/10.1088/1475-7516/2010/03/027
http://arxiv.org/abs/0911.2701
http://dx.doi.org/10.1088/1475-7516/2011/03/047
http://dx.doi.org/10.1088/1475-7516/2011/03/047
http://arxiv.org/abs/1101.1026
http://dx.doi.org/10.1088/1475-7516/2013/03/034
http://dx.doi.org/10.1088/1475-7516/2013/12/044
http://dx.doi.org/10.1088/1475-7516/2013/12/044


[70] J. Gleyzes, D. Langlois, F. Piazza and F. Vernizzi, Essential building blocks of dark energy, Journal of

Cosmology and Astroparticle Physics 2013 (Aug, 2013) 025–025.

[71] Y. Takushima, A. Terukina and K. Yamamoto, Bispectrum of cosmological density perturbations in

the most general second-order scalar-tensor theory, Physical Review D 89 (May, 2014) .

[72] E. Bellini and I. Sawicki, Maximal freedom at minimum cost: linear large-scale structure in general

modifications of gravity, JCAP 1407 (2014) 050, [1404.3713].

[73] J. Gleyzes, D. Langlois and F. Vernizzi, A unifying description of dark energy, Int. J. Mod. Phys.

D23 (2015) 1443010, [1411.3712].

[74] S. Hirano, T. Kobayashi, H. Tashiro and S. Yokoyama, Matter bispectrum beyond Horndeski theories,

Phys. Rev. D97 (2018) 103517, [1801.07885].

[75] F. Bernardeau, S. Colombi, E. Gaztanaga and R. Scoccimarro, Large scale structure of the universe

and cosmological perturbation theory, Phys. Rept. 367 (2002) 1–248, [astro-ph/0112551].

[76] J. M. Bardeen, J. Bond, N. Kaiser and A. Szalay, The Statistics of Peaks of Gaussian Random Fields,

Astrophys. J. 304 (1986) 15–61.

[77] M. H. Goroff, B. Grinstein, S. J. Rey and M. B. Wise, Coupling of Modes of Cosmological Mass

Density Fluctuations, Astrophys. J. 311 (1986) 6–14.

[78] DESI collaboration, A. Aghamousa et al., The DESI Experiment Part I: Science,Targeting, and

Survey Design, 1611.00036.

[79] R. E. Angulo, O. Hahn and T. Abel, How closely do baryons follow dark matter on large scales?,

Mon. Not. Roy. Astron. Soc. 434 (2013) 1756, [1301.7426].

[80] W. Valkenburg and F. Villaescusa-Navarro, Accurate initial conditions in mixed dark matter end

baryon simulations, Mon. Not. Roy. Astron. Soc. 467 (2017) 4401–4409, [1610.08501].

[81] M. P. van Daalen, I. G. McCarthy and J. Schaye, Exploring the effects of galaxy formation on matter

clustering through a library of simulation power spectra, Mon. Not. Roy. Astron. Soc. 491 (2020)

2424–2446, [1906.00968].

[82] S. Bird, Y. Feng, C. Pedersen and A. Font-Ribera, More accurate simulations with separate initial

conditions for baryons and dark matter, JCAP 06 (2020) 002, [2002.00015].

[83] O. Hahn, C. Rampf and C. Uhlemann, Higher-order initial conditions for mixed baryon-CDM

simulations, 2008.09124.

[84] WMAP collaboration, D. Spergel et al., Wilkinson Microwave Anisotropy Probe (WMAP) three year

results: implications for cosmology, Astrophys. J. Suppl. 170 (2007) 377, [astro-ph/0603449].

[85] K. Heitmann, M. White, C. Wagner, S. Habib and D. Higdon, The Coyote Universe I: Precision

Determination of the Nonlinear Matter Power Spectrum, Astrophys. J. 715 (2010) 104–121,

[0812.1052].

[86] K. Heitmann, D. Higdon, M. White, S. Habib, B. J. Williams and C. Wagner, The Coyote Universe

II: Cosmological Models and Precision Emulation of the Nonlinear Matter Power Spectrum,

Astrophys. J. 705 (2009) 156–174, [0902.0429].

70

http://dx.doi.org/10.1088/1475-7516/2013/08/025
http://dx.doi.org/10.1088/1475-7516/2013/08/025
http://dx.doi.org/10.1103/physrevd.89.104007
http://dx.doi.org/10.1088/1475-7516/2014/07/050
http://arxiv.org/abs/1404.3713
http://dx.doi.org/10.1142/S021827181443010X
http://dx.doi.org/10.1142/S021827181443010X
http://arxiv.org/abs/1411.3712
http://dx.doi.org/10.1103/PhysRevD.97.103517
http://arxiv.org/abs/1801.07885
http://dx.doi.org/10.1016/S0370-1573(02)00135-7
http://arxiv.org/abs/astro-ph/0112551
http://dx.doi.org/10.1086/164143
http://dx.doi.org/10.1086/164749
http://arxiv.org/abs/1611.00036
http://dx.doi.org/10.1093/mnras/stt1135
http://arxiv.org/abs/1301.7426
http://dx.doi.org/10.1093/mnras/stx376
http://arxiv.org/abs/1610.08501
http://dx.doi.org/10.1093/mnras/stz3199
http://dx.doi.org/10.1093/mnras/stz3199
http://arxiv.org/abs/1906.00968
http://dx.doi.org/10.1088/1475-7516/2020/06/002
http://arxiv.org/abs/2002.00015
http://arxiv.org/abs/2008.09124
http://dx.doi.org/10.1086/513700
http://arxiv.org/abs/astro-ph/0603449
http://dx.doi.org/10.1088/0004-637X/715/1/104
http://arxiv.org/abs/0812.1052
http://dx.doi.org/10.1088/0004-637X/705/1/156
http://arxiv.org/abs/0902.0429


[87] E. Lawrence, K. Heitmann, M. White, D. Higdon, C. Wagner, S. Habib et al., The Coyote Universe

III: Simulation Suite and Precision Emulator for the Nonlinear Matter Power Spectrum, Astrophys.

J. 713 (2010) 1322–1331, [0912.4490].

[88] K. Heitmann, E. Lawrence, J. Kwan, S. Habib and D. Higdon, The Coyote Universe Extended:

Precision Emulation of the Matter Power Spectrum, Astrophys. J. 780 (2014) 111, [1304.7849].

[89] H.-J. Huang, T. Eifler, R. Mandelbaum and S. Dodelson, Modelling baryonic physics in future weak

lensing surveys, Mon. Not. Roy. Astron. Soc. 488 (2019) 1652–1678, [1809.01146].

[90] A. Lewis and A. Challinor, Weak gravitational lensing of the CMB, Phys. Rept. 429 (2006) 1–65,

[astro-ph/0601594].

[91] R. Takahashi, M. Sato, T. Nishimichi, A. Taruya and M. Oguri, Revising the Halofit Model for the

Nonlinear Matter Power Spectrum, Astrophys. J. 761 (2012) 152, [1208.2701].

[92] Euclid collaboration, M. Knabenhans et al., Euclid preparation: II. The EuclidEmulator – A tool to

compute the cosmology dependence of the nonlinear matter power spectrum, Mon. Not. Roy. Astron.

Soc. 484 (2019) 5509–5529, [1809.04695].

[93] Planck collaboration, N. Aghanim et al., Planck 2018 results. VIII. Gravitational lensing,

1807.06210.

[94] S. Weinberg, Gravitation and Cosmology. Wiley, 1972.

[95] S. Dodelson, Modern Cosmology. Academic Press, 2003.

[96] B. Jain and E. Bertschinger, Second order power spectrum and nonlinear evolution at high redshift,

Astrophys. J. 431 (1994) 495, [astro-ph/9311070].

[97] C. Rampf, C. Uhlemann and O. Hahn, Cosmological perturbations for two cold fluids in ΛCDM,

2008.09123.

[98] R. Takahashi, Third Order Density Perturbation and One-loop Power Spectrum in a Dark Energy

Dominated Universe, Prog. Theor. Phys. 120 (2008) 549–559, [0806.1437].

71

http://dx.doi.org/10.1088/0004-637X/713/2/1322
http://dx.doi.org/10.1088/0004-637X/713/2/1322
http://arxiv.org/abs/0912.4490
http://dx.doi.org/10.1088/0004-637X/780/1/111
http://arxiv.org/abs/1304.7849
http://dx.doi.org/10.1093/mnras/stz1714
http://arxiv.org/abs/1809.01146
http://dx.doi.org/10.1016/j.physrep.2006.03.002
http://arxiv.org/abs/astro-ph/0601594
http://dx.doi.org/10.1088/0004-637X/761/2/152
http://arxiv.org/abs/1208.2701
http://dx.doi.org/10.1093/mnras/stz197
http://dx.doi.org/10.1093/mnras/stz197
http://arxiv.org/abs/1809.04695
http://arxiv.org/abs/1807.06210
http://dx.doi.org/10.1086/174502
http://arxiv.org/abs/astro-ph/9311070
http://arxiv.org/abs/2008.09123
http://dx.doi.org/10.1143/PTP.120.549
http://arxiv.org/abs/0806.1437

	1 Introduction
	2 The EFTofLSS with cold dark matter and baryons
	2.1 Gravitationally coupled systems
	2.2 The effective force and stress tensors for two loops
	2.3 Two-loop solution

	3 Linear relative-velocity counterterm
	3.1 Generation at one loop
	3.2 Estimate of the linear counterterm in perturbation theory
	3.3 Estimate of the linear counterterm with UV model
	3.4 Perturbation theory with relative-velocity counterterm

	4 Comparison to hydro-cosmological simulation
	5 The effect of baryons on the lensing potential
	6 Conclusion
	A Equations of motion from pseudo stress tensor
	A.1 Einstein tensor
	A.2 Pseudo stress tensor in FRW
	A.3 Equations of motion

	B Perturbative solutions for two fluids
	B.1 General equations
	B.2 Linear solutions and EdS expansion
	B.3 UV limit of one-loop terms
	B.4 Recursion relations
	B.5 Expansion with linear counterterm

	C Coefficient relationships
	D Fitting procedure and tables of fit values
	E Relaxing kfitR

