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Abstract

Upcoming Large-Scale Structure surveys will likely become the next leading sources of cosmo-
logical information, making it crucial to have a precise understanding of the influence of baryons
on cosmological observables. The Effective Field Theory of Large-Scale Structure (EFTofLSS)
provides a consistent way to predict the clustering of dark matter and baryons on large scales,
where their leading corrections in perturbation theory are given by a simple and calculable
functional form even after the onset of baryonic processes. In this paper, we extend the two-
fluid-like system up to two-loop order in perturbation theory. Along the way, we show that a
new linear counterterm proportional to the relative velocity of the fluids could generically be
present, but we show that its effects are expected to be small in our universe. Regardless, we
show how to consistently perform perturbation theory in the presence of this new term. We
find that the EFTofLLSS at two-loop order can accurately account for the details of baryonic
processes on large scales. We compare our results to a hydrodynamical N-body simulation at
many redshifts and find that the counterterms associated with the leading corrections to dark
matter and baryons start to differ between redshifts z ~ 3 and z ~ 2, signaling the onset of
star-formation physics. We then use these fits to compute the lensing power spectrum, show
that the understanding of baryonic processes will be important for analyzing CMB-S4 data,
and show that the two-loop EFTofL.SS accurately captures these effects for £ < 2000. Our
results are also potentially of interest for current and future weak lensing surveys.
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1 Introduction

Upcoming Large-Scale Structure (LSS) surveys may very well become our primary sources of cos-
mological information, as they will probe the matter distribution with unprecedented accuracy.
However, the success of lensing surveys such as CMB-S4 [1-3], and many LSS surveys in general,
crucially depends on the impact of small-scale baryonic processes on the large-scale matter distri-
bution, such as energy feedback mechanisms driven by active galactic nuclei (AGN), supernovae,
black hole accretion, and wind mass loading. Despite the continuous progress of numerical hy-
drodynamical simulations, the effect of baryonic processes on the large-scale gas distribution can
not be properly resolved by current simulations, restricting their predictability for cosmological
observables.

Given the current situation, it is of increasing importance to have an accurate theoretical un-
derstanding of how baryons affect LSS formation in the mildly non-linear regime in order to com-
plement hydrodynamical simulations in the non-linear regime. Furthermore, because the amount
of information retrievable from large-scale surveys scales as the cube of the largest wavenumber
under theoretical control, it is of the utmost importance to have an accurate understanding of the
LSS observables at the highest wavenumber possible, so that we can use them to infer cosmological
information. This very objective, restricted to the context of analytic predictions, is approached
by the research program called the Effective Field Theory of Large-Scale Structure (EFTofLSS) [4—
39]: the idea is to study LSS in the mildly non-linear regime by correctly describing the effect of
ultraviolet (UV) modes on long-wavelength observables. Thanks to the inclusion of counterterms
to account for the effect of short distances on long distances, the EFTofLL.SS gives accurate predic-
tions of long-wavelength observables in a perturbative expansion in powers of k/kny, where kx, is
the wavenumber associated to the scale where perturbation theory breaks down, which is expected
to be the size of clusters in our universe. This stands in contrast to standard perturbation theory
techniques, where the long-wavelength effects of non-linearities are not considered accurately and
thus introduce errors in the perturbative expansion. On distances larger than the non-linear scale,
the EFTofLLSS can make more and more accurate predictions (up to non-perturbative effects) by
taking into account higher-order terms in the perturbative expansion and fitting the arising coef-
ficients of the counterterms (i.e. the EFT parameters, or coupling constants) to observations or
simulation data.

So far, it has been shown that the EFTofLLSS can accurately describe the structure formation
of cold dark matter (CDM) [25], dark energy [36, 40, 37, 41], galaxies [15, 20|, and massive
neutrinos [39], in both real and redshift space [31, 35]. In the context of dark matter, the long-
wavelength regime is described as a fluid-like system with a non-trivial stress tensor. In [17], it was
shown that a system composed of two fluid-like systems, endowed with approximately the same
free-streaming scale, can accurately describe a universe filled with dark matter and baryons. This
holds true because it is a fact about our universe that baryonic effects involved in star formation
processes affect the baryons in a way such that the relative displacement between dark matter

and baryons is not larger than the non-linear scale, which is about 10 Mpc. In other words, while



star formation physics induces very complicated dynamics on scales within a cluster, it does not
significantly displace mass beyond the scale of a cluster. This indeed implies that we can describe
the system with two fluid-like species characterized by an approximately equal mean free path. In
turn, this implies that the functional form of the one- and two-loop corrections to the baryonic and
dark matter power spectrum on large scales is known up to a number of numerical coefficients.
In particular, as first explored in [17] and as we will further explore in Sec. 2, the leading effects
of baryonic physics on the power spectrum are fixed: at one loop, they are proportional to the
linear adiabatic power spectrum (k/kny,)?Pfi(k) [17], and at two loops they have a form that we
will derive later in Eq. (2.37), which is essentially the same as the two-loop dark-matter power
spectrum, but where each fluid has its own EFT coefficients. In this way, the finite number of
numerical coupling constants can be fit to data to extract both the value of these parameters
and the cosmological parameters. This is particularly compelling since the EFT has been used to
analyze BOSS data [42-44] and has placed tighter constraints on cosmological parameters than
traditional methods.

In this work, we consider an effect proportional to the long-wavelength relative velocity that
was assumed to be small in [17], but that could become relevant at the two-loop order that we
currently work (although we show that it is not). This term arises from integrating out UV
modes in the theory, in the same way that the other counterterms in the EFT arise. Assuming
that the small-scale physics obeys conservation of mass of each species separately, conservation of
total momentum, and overall diffeomorphism invariance (see Eq. (2.4)), we show in Sec. 2 that a
counterterm proportional to the relative velocity that is not derivatively suppressed is allowed in
the effective force [17] that appears in the dynamical equation that controls the relative motion of
the two effective fluids. Indeed, we show that this term is needed to cancel the cutoff-dependent
part of certain one-loop terms. As we discuss in Sec. 3.1, the situation is even more extreme than
this. For a CDM linear power spectrum, this term diverges in the UV like (log Ayv)?, where
Ayv is the UV cutoff. This means that the counterterm that we consider is actually necessary
to have a well-defined mathematical framework. The finite part of this linear counterterm can
change the linear equation of motion for the isocurvature mode, making it act somewhat like a
biased tracer. We discuss how this term can be accounted for in perturbation theory in detail
in Sec. 3.4 and App. B.5. By looking at estimates both in perturbation theory (Sec. 3.2) and
using a one-dimensional UV model (Sec. 3.3), however, we show that the size of the effect of this
counterterm on the power spectrum is expected to be small (see Fig. 4 for example).!

In order to investigate how well the two-loop EFT with baryons is able to describe baryonic
physics on large scales, in Sec. 4 we compare our results to non-linear data from the OWLS

1This new effect should not be confused with calculable IR effects coming from the relative velocity, which manifest
themselves most notably in the violation of the so-called consistency conditions of LSS [45-47] when there are two
fluids [48-51, 17] (see [52, 53] for example when the extra fluid is dark energy). This violation is due to the fact
that one cannot eliminate the effects of both long-wavelength velocities with a single boost if there is a large-scale
relative velocity. For the case of baryons and dark matter, the effect decays like the relative velocity, proportional
to a”! (a is the scale factor of the metric, see Eq. (2.1)), and so is negligible at late times, but not necessarily at
early times [54].
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Figure 1: Ratio of the adiabatic and dark matter lensing potential power spectra C}’ Ay oy DM oenly yiging the two-

loop EFT prediction and 0.25% error on the ratio of the OWLS data. The green band is the projected error for
CMB-54 [1], the gray band is the estimated error coming from the ‘high-k approximation’ described in Sec. 5, and
the teal band is the estimated error coming from the three-loop terms in the EFT ratio fits in Sec. 4. The dashed
blue line is the result of direct numerical integration of the outputs of the simulations, and gives an idea of the
systematic theory error in our calculation. We see that CMB-S4 will be highly sensitive to the effects of baryons
on the lensing potential, and that the two-loop EFT can reliably capture these effects up to £ < 2000, and actually
even beyond.

simulations [55, 56]. In particular, we fit the ratio of power spectra of two quantities measured in a
simulation which includes baryonic processes to a simulation which only includes dark matter. In
this way, the cosmic variance of the simulation is greatly reduced. We fit at 18 different redshifts
and find an impressive fit to the data. For example, we are able to fit the ratio until & ~ 0.8 h Mpc—!
at z =0, and k ~ 3.6 hMpc~! at z = 4 using three time-dependent parameters per fit. We find
that the EFT parameters of the baryon and dark-matter fluids (essentially the pressures) start to
differ significantly between z = 3 and z = 2, signaling the onset of star-formation processes. We
also give a suggestion for parametrizing the time dependence of the EFT parameters. In this way,
we show that the EFT is able to accurately capture baryonic physics in just a few time-dependent
parameters, and we view this as a significant improvement in our analytic understanding of the
effects of baryons. As the functional form of the effect of baryons is known up to a small number
of numerical coefficients, this means that one can apply our formalism directly to cosmological
data, potentially using simulations to put priors on the parameters.

Finally, in Sec. 5, we apply our results to computing the effect of baryons on CMB lensing.
The CMB-54 effort will substantially reduce the error bars on the lensing potential to the point
that percent-level baryonic effects must be understood to obtain, for example, unbiased neutrino
mass constraints [57, 58]. Even if the size of baryonic effects is comparable to or larger than the
projected CMB-5S4 errors, we show that the EFT is able to reproduce the effect of baryons on the
lensing power spectrum up to ¢ ~ 2000, and actually even beyond. This is shown in Fig. 1 and
described in detail in Sec. 5. Thus, the EFT approach offers a compelling recipe for analytically
parametrizing baryonic effects on the lensing power spectrum in a systematic way. Our work here

is also applicable to weak lensing of galaxies, as we discuss in Sec. 5.



Notation In order to consolidate notation, we present some of the relevant definitions for two
fluids here. We have two species, CDM (denoted with a subscript ¢) and baryons (denoted with
a subscript b), but we will sometimes find it useful to work in a different basis, with an adiabatic
mode (subscript A) and an isocurvature mode (subscript I). For the mass densities p, (here and
in the rest of the work, o € {¢, b}, and multiple appearances of ¢ in an equation are never summed

over), we define the overdensities d, by
Po = po(l+6s) , (1.1)
where an overbar denotes the background value. The adiabatic density is defined by
PA = Pet pPb (1.2)

so that for the background, we have p, = wyspa, where w, are the time-independent matter
fractions, and w, 4wy = 1. They are time independent because p. and p, have the same a=3 time
dependence. Then, we define the adiabatic and isocurvature density fluctuations as

0A = Wwebe +wpdp , and 07 = . — G (13)
so that
- o Pc /%) R
pA—pA(l-i-(SA) , and pr=-——"— =pAl; . (1.4)
We Wy

We use the same definitions for the velocity,
vy = wl +wyvh ,  and  vh =0l — ) . (1.5)

Additionally, we will sometimes use the momentum densities 72 = p,v. and define the adiabatic
and isocurvture momentum densities as

R i d =5 m _ m
A=T,+m, an T = PA . (16)
Pc Pb

Our Fourier conventions are

f(t,a?’):/]gf(t,lg)ef'f, with 45/553. (1.7)

Furthermore, in terms of the variables in the metric Eq. (2.1), we denote f= af/ot, f' = 9df/0a,
the Hubble parameter H is defined by H = a/a, and we use the notation H = aH.

2 The EFTofLSS with cold dark matter and baryons

The EFTofLSS describing dark matter and baryons was developed in [17] (see also [59, 60, 50]
for work including baryons in the standard perturbation theory (SPT) context). Extending the
EFTofLSS for dark matter to incorporate baryons is based on the following idea: dark and baryonic
matter can be described by the same equations of motion from the time of recombination to the



formation of the first stars because the dynamics do not depend on their different initial conditions.
Then, even after the onset of star formation processes, the baryons are still described by an effective
fluid-like system with mean free path of order of the non-linear scale (as for dark matter), with the
only difference being now that the numerical coefficients of the counterterms are no longer equal
to those of dark matter (although we predict them to be within the same order of magnitude).
Additionally, since now the two fluids can move differently, they can exchange momentum. This
makes the counterterms appear within an effective force, rather than just an effective stress tensor.
Crucially, incorporating baryons in the EFT allows us to describe baryons accurately at long
wavelengths, at the cost of adding free coefficients that are both necessary and sufficient for the
perturbative approach to converge to the true answer.

2.1 Gravitationally coupled systems

In this subsection, we derive the effective equations governing two non-relativistic fluid-like sys-
tems coupled through gravity. When only dark matter is involved, the standard way to obtain
the effective equations is to smooth the Boltzmann hierarchy for the non-interacting dark-matter
particles [4, 5]. However, when baryons are involved, we do not know the exact equations in the
UV and so this procedure is not as rigorous. Therefore, we choose to take the generic EFT ap-
proach of starting with the low energy degrees of freedom (i.e. the long-wavelength fields), which
are the mass density p and the momentum density 7 (or equivalently the velocity v%), and writing
down the most general equations consistent with the symmetries of the system, in an expansion
in derivatives and powers of the perturbations (see [12] for a related discussion with one fluid).
As with all EFT constructions, this one as well relies on a separation of scales. The reason that
we can describe the system as fluid-like (i.e. using the mass density and momentum density as
our fundamental low energy degrees of freedom) is because dark matter and baryons do not move
too much in the history of the universe. This means that there is a non-linear scale knr,, which is
related to the typical distance that the particles have traveled by kﬁi ~ vH ! [4], and that our
< 1.2 In this section we take a more bottom-up approach,

~

results rely on the hierarchy k/knr
while in App. A we take a somewhat more top-down approach. Our results agree with the results
of [4] for one fluid, and of [17] for two fluids.

The symmetries relevant for our discussion here are conservation of the total number of dark
matter and baryonic particles separately, conservation of the total momentum, and overall Galilean
invariance, which is the result of a residual large gauge symmetry (or equivalently, residual large
diffeomorphisms) [61-63, 47, 64] of the (scalar part of the) Newtonian-gauge metric?

ds® = —(1 + 2®)dt® + a(t)2(1 — 20)dz? (2.1)

20f course, a small fraction of baryons at late times are expelled in explosions and travel farther than the non-
linear scale. The EFT approach does not take these effects into account, but the amount of baryons traveling outside
of the non-linear scale is expected to be tiny. This does, however, represent a tiny uncalculable systematic error in
our calculations.

3In the absence of anisotropic stress, the Einstein equations imply that ¥ = ®, and we assume this throughout
our work unless otherwise stated. Notice that, although anisotropic stress can be generated in the EFTofLLSS, for
what concerns its effect on the metric, it is a relativistic correction.



which we use throughout this work.
As shown in App. A, the equations of motion for matter in the Newtonian limit take the form
of the divergence of a pseudo tensor

a 39, (a*t",) =0, (2.2)

where t#, is a symmetric stress-energy pseudo-tensor, which involves the individual stress tensors
of CDM and baryons as well as gravitational non-linearities. This form of the equations suggests
that we should be able to write a system of first order differential equations for the CDM and
baryon mass densities p. and pp, and the CDM and baryon momentum densities 72 and 7?,’; (we use
the tilde here for notational convenience to simplify later expressions), all of which are components
of the CDM and baryon stress tensors (see App. A for details).

We start with the equations for p,. Because we assume the separate conservation of dark
matter and baryons, we start by writing separate equations for each p,. In ACDM, both p. and py
have time-dependent background values p. and p, which satisfy p, = —3H p,. This means that,
in order to ensure that we expand around the correct background, our continuity equations must
start with

Continuity: p, +3Hps , (2.3)

where, without loss of generality, we have assumed that the coefficient of p, is unity. Next, we

impose diffeomorphism invariance. The subset of diffeomorphisms that keep us in Newtonian gauge
and that is relevant for the Newtonian limit are the so-called Galilean transformations

t—t+a*ni(t)z’, and 2' — 2’ +ni(t), (2.4)

which act on the terms in the equations of motion at leading order in a relativistic expansion, as

0 —0iy O — 0 —0'()0i, po— ps, 7oL+ pyani(t), 25)

d — & — a’(i'(t) + 2HR(t))2" '

so that, by construction, v} and 713 are Galilean scalars. The transformation of the momentum
density above follows directly from the transformation of the velocity. This means that a Galilean

invariant combination is

b . b .
Continuity: p, +3Hp, + a1, <7~rg 4 2obe fr}) SRRy A (2.6)
PA PA
for any time-dependent functions b, and EU, where the ellipsis ... represents higher order terms.

Finally, we impose conservation of the number of dark-matter particles and baryon particles sep-
arately

at/d?’x a®pe =0, (2.7)

which implies that 9;(a3p, ) is a total spatial derivative. This means that the most general equations
for p, that expand around the correct background, that are Galilean invariant, and that conserve
mass are

Continuity: p, +3Hp, +a 10; (7, + FL) =0, (2.8)



where I contains the previous term bapgﬁﬂ /pa, and also any other Galilean invariant terms,
including non-linear and higher derivative terms.

Next, we move to the momentum equations for 7¢. Before we start, there is an important
subtlety that we should briefly mention. The question is, given the form of Eq. (2.8), whether we
should write the momentum equations starting with 8;7%, or with 9;(7% + F). As is well known,
the stress-energy pseudo-tensor t#, in Eq. (2.2) is symmetric (which is guaranteed because the
system is coupled to gravity through the symmetric metric). As we show explicitly in App. A,
this implies that whatever appears under the 9; in Eq. (2.8) should appear under the 9, in the
momentum equations. This means that we should start to construct the momentum equation with
Oy (7L + FY) +.... To do this, we define the combination*

=7l L F (2.9)
and then write everything in terms of 7. Thus the final form of the continuity equations are
Continuity: p, +3Hpy +a 10w’ =0 . (2.10)
Next, we start constructing the momentum equations with 72, which transforms like
Tl — T+ pean’ + peOy(an') — i Ol — an'nd 9;py . (2.11)

Then, adding terms to make a Galilean invariant combination, we have
o oai P “1_ja (7o i -1, 9. —1vi _
Momentum: 7, Ty +a m0; +Hr, +a ps0i®+a G, =0, (2.12)
Po o

where G? must be Galilean invariant but otherwise can be a sum of any non-linear and higher
derivative terms, and, without loss of generality, we have assumed that the coefficient of 7% is unity.
The form of these equations is unique for pressureless fluids up to the freedom just mentioned in
G* .5 In particular, we see that the coupling to gravity through 9;® is forced because it is the only
field with a transformation that depends on #’, which is needed to cancel the term proportional

to i’ in Eq. (2.11). This is at the level of equations of motion the same phenomenon that happens

4Since F! is a Galilean scalar, 7 has the same transformation properties as 7 under Eq. (2.4).

®One can obtain different equations if there is a background pressure, as in clustering quintessence (see for example
[65-67] and [36] within the EFTofLSS context), or if there are other fields in the low-energy spectrum, as with dark
energy (see for example [68-73, 40, 74, 52, 53]). In particular, to obtain the equations for clustering quintessence
in the limit of vanishing speed of sound (i.e. including background pressure p), we first realize that the background
Einstein equations imply p = —3H (p+ p), and that the momentum density transforms as 7* — 7° 4 (p+ p)an’ under
a Galilean transformation. This means that the continuity equation that expands around the correct background
and is Galilean invariant is

p+3H(p+p)+a 'am' =0 (2.13)

Then, using the same construction that lead to Eq. (2.12) (but now for a single fluid), and taking into account
the new transformation of 7%, we see that the momentum equation that is Galilean invariant is simply the same as
Eq. (2.12), but with p replaced by p + p. Finally, defining the velocity by ©° = (p 4 §)v’, one obtains the equations
for clustering quintessence (see for example [67]), which have the same Euler equation as dark matter, but a different
continuity equation that reflects the different background.



in the Lagrangian where diffeomorphism invariance forces a minimal coupling to gravity. Notice
furthermore that since baryons and dark matter are two independent degrees of freedom (as evident
from the very early universe dynamics), we have a diffeomorphism-invariant equation of motion
for the momentum of each species.
Next, we use the continuity equations Eq. (2.10) to write Eq. (2.12) as
i

A A J ,
Momentum: 7% + 4Hn! +a~'9; (WUFU) + a0 pei® + a7 G =0 . (2.14)
P

(oa

Finally, we must impose total momentum conservation in the form®
Ot/d?’x at(ri + 7)) =0, (2.15)

which means that 0;(a*(n? + 7)) must be a total spatial derivative. Adding together the two
equations in Eq. (2.14), we have a term of the form

(P + pp)0i® = pa(l+04)0;® , (2.16)

which we would like to write as a total derivative. To do that, we use the Poisson equation

a 29*® = ng(t)H(t)zéA : (2.17)

where Qp,(t) is the time-dependent total-matter fraction,” to write

2072
30 () H (t)?

1
9, <ai<1>aj<1> - 5ij(a<1>)2> : (2.18)

040;® = 5

which shows that Eq. (2.16) is a total derivative. All in all, this means that G% + Gi must be a
total derivative, so we can have

Gl =—"+ 8]-7? , and G} =49+ 8]‘7'Zj . (2.19)

Here, +' is a Galilean scalar, and the results of App. A show that 729 and ng are both Galilean
scalars.

All in all, this means that the most general equations for p, and 7 that expand around the
correct ACDM background, are Galilean invariant, satisfy conservation of the number of dark-

5The factor of a* can be easily understood working in Fermi coordinates and then going back to FRW coordinates
as done in [4]: one should keep in mind that only the obvious factors of a need to be included in these transformations,
and that the comoving velocity is related to the proper velocity by another factor of a.

"This is defined by Qum(t) = pa(t)/(3MEH(t)?), where Mp) is the Planck mass, which is related to the Newton
constant Gn by M3, = 1/(87Gy). In terms of the scale factor, this is given by Qm(a) = Qm,o(Ho/H (a))*(a/ao) >,
where the subscript “0” means the present value. In ACDM, we parametrize Hubble by H(a)?/H3 = Qm 0 (a/ao)73—|—
(1 —=Qm,o) -

10



matter and baryon particles separately, and satisfy total momentum conservation, are [17]

Continuity: ps + 3Hps + a_lﬁmé =0, (2.20)
@]

WCWC) +a ' pdi® = +a” 'y —a”lOTY (2:21)

C

Momentum: 7’ + 4Hn" 4+ a~10; (
-1 7Ti77j -1
iy + AHmh 4+ a0, +a 'pp0i® = —a 1y —a 8Tb . (2.22)
Pb

The important new possibility is a term %, which is allowed by the symmetries, and is in fact
generically needed to cancel UV divergences in the one-loop power spectrum, as we show in Sec. 3.

As always, the velocity fields, defined by v¢ = 7’ /p,, are contact operators, and so one will
have in general that

i | s
oA Tl (2.23)
Po,s
where the subscript s stands for short modes, and the brackets [...];, mean smoothing to form

a long-wavelength field. This means that when one computes correlation functions involving the
velocity, one needs to use the renormalized fields [9]. Now, for the case of two fluids, one must
keep in mind that the relative velocity v} is allowed in the counterterms of the two renormalized
velocities because it is a Galilean scalar and will not affect the transformation properties of the
velocity fields.

2.2 The effective force and stress tensors for two loops

In this section, we explicitly construct the effective force and stress tensors that are relevant for the
two-loop calculation. First, we write the equations of motion in terms of the velocities vi = 7 /p,,
and then take the divergence of the velocity equations to obtain [17]

a"29%® = %Qm(a)Hz(wcéc + wpdy)

o +a 10 (1+0)v)) =0, Oy +a '0i((1+8)v) =0, (2.24)
00t + HOw! + a19%® + a7 10,(v200}) = —a 1(9 (07p). + a1 0i(Y)L
Oy0h + Howi + a~10%® + a~10;(v]9;0}) ; (07,)) + a1 9;(7)}

where 1 1 1
V==~ (9)i=——~", and (97, = —8;79. 2.25
M= W= (0m)y = 07, (2.25)
Next, we expand the force and the stress tensors in powers and derivatives of the long-
wavelength fields. Since at this order we can approximate the stress tensors as being local in

time® (see [9] for a more detailed discussion), the effective stress tensor for dark matter relevant

8Non-locality in time of the EFTofLSS tells us that the coefficients of the counterterms are integrals in time of

11



for the two-loop power spectrum has the form

2

) . . C.
0(01))L — 95(7)% = —g wy aH 90 + 9(27r)H2{kZ—’g (we0%0. + wpd® o) + 3
NL NL

2
Cew

%5,

1
o (000?04 k02 (0.0y) + 0%} (2.30)
kNL
2

2
Cdc,g 4 4 Cdcp 4
I (wed*dc + wpd*dp) + 2kl d 50} +...,

and the effective stress tensor for baryons relevant for the two-loop power spectrum has the form

, , , c? @, +c
0,07, — Bi(7)h = +gwe aH O + 9(2W)H2{% (w25, + wpd26,) + —2—— D 525,
kNL kNL
o (cgga%g + 92 (6.05) + cf;l,;a%g) (2.31)
NL

Cib g 4 4 Cib v + 0421* 4

ol (w005 + w') + A
a“kyy, akyy,

where w,, wy, and knr, are constants, the fields §, and v! depend on (a, ), and the rest of the

coefficients depend on a, U} =l — vg is the relative velocity, and quadratic terms ~ 9262 and

higher derivative terms ~ 9*¢ have been included. The ellipsis ... represents higher-order or

higher-derivative terms. Notice that we did not include any cubic counterterms, since they would

some kernel of an expansion in powers and derivatives of 9;0;® and 0;v.. To lowest order we have

(07 (0.) = (0} @) = [ do' [ 0.0) 9% (a0 (T50,0)) + 0 (0.0) 0 Oy0d (70 ()
+x5 (a,a’ ) H (a0 (as 7a (T50,d)) + .. ] : (2.26)

The linear evolution of the modes is scale independent. In this way, the complication associated to the non-local
time kernels is reduced greatly. In fact, the perturbative solutions schematically have the structure

6 (a, ) = D(a)"6"(Z), (2.27)

where D(a) represents any of the growth factors in App. B.2. Therefore, schematically, we have

Oy — 7y ~ / da’ (x(a,a)98(a’, &) + K (a,a")5(a’, 7)) = 3 (F@n(a)aé(”)(a,i") ¥ Kn(a)6™(a, f)) , (2.28)

n

where

7n(a) :/da/n(a,a/) (z;((i)))" . and f(n(a):/da'K(a,a') (’f)((‘i)))n , (2.29)

(the actual expression is slightly more complicated due to the flow terms (see [9])). In other words, the non-locality
in time is reduced to having a set of local counterterms, with a different coefficient for each order in perturbation
theory. If one uses the counterterms at leading order, the non-locality in time is degenerate with a local in time
counterterm. At higher order, this is mathematically not the case anymore. In our case, we will be interested in the
two-loop power spectrum. In this scenario, there are several quadratic counterterms that are evaluated at leading
order, together with the linear counterterms evaluated at higher order. The functional form of those terms is quite
degenerate, so that, as has been shown in [25], one can just include the tree level terms, and therefore for our
computation, limit ourself to treat the counterterms as if they were local in time.
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contribute terms proportional to k2Py1(k), and so are degenerate with other terms that we have
included for the two-loop power spectrum [25]. Notice also the presence of a term oc g(?ﬂ)} from
expanding the effective force. In Eq. (2.30) and Eq. (2.31), we considered this counterterm to be
local-in-time, while in Sec. 3.4 and App. B.5 we consider the possibility of non-locality in time.

Recall that the effective force and stress tensors of the two fluids has the form —p%@ﬂéj + p%’yi.
Therefore by symmetry, further quadratic terms, which are not total derivatives (for example §,0;0.
and 0.0;0p) can be added as well. However, as we will see, these terms seem not to be needed for
the fitting procedure at the level of precision at which the analysis is performed. Additionally,
we have only presented the subset of quadratic counterterms that contribute non-degenerately to
the final form of the two-loop power spectrum that we present below in Eq. (2.37). See [25] for
a study of other possible combinations in the dark-matter case, and [13] for the specific forms of
other quadratic counterterms.

The above equations for the effective stress tensors and force Eq. (2.30) and Eq. (2.31) intro-
duce, suggestively, the EFT coefficients induced by gravity {g}, {cc,g, ¢4}, {cgic), 5, b i, c‘fll’,, cl{g ,
{Cac,g,Capg} and by gradients of the velocity fields {ccv,Cpw}, {CacvsCapo} for dark matter and
baryons. The parameters induced by star-formation physics are described by the coefficients
{cf(l), c3,}, which are assumed to be the main difference between the two species.

In terms of the derivatives with respect to the scale factor a and the velocity divergences
0, = -0 /M , (2.32)
the non-linear evolution equations Eq. (2.24) in Fourier space now become
ad’(a, k) — Oc(a, k) = ace(a k),

a?—[/> oula, E) B 3Qm(a)

2
+ Becla, k) + H72 ([0:(07p) ()] = [Bi(n)ela)l)

(webe(a, k) + wydp(a, k)) = (2.33)

O (a, k) + ( 1
e+ (1+ %)

-,

ad)(a, k) — Op(a, k) = ap(a, k)

/
a;:[[ > Gb(av k) -

3Qm(a)
2
+ Bu(a, k) + H 2 ([0:(07,)5(a)]; — [0:(Mh(@)]z)

where the non-linear terms are defined by
or(@B) = [ alF = @050, F - DO (0.

) 1 ) . (2.35)
Byor(a, B) = / B — 4000 (a, F — Oy (a. ) .
q

(webe(a, k) + wydp(a, k)) = (2.34)

a®j(a, k) + (1 +

with . oL
- o ki -k - - ki + ko|?k1 - k
alfr Ry =14 F2 g (e Ry = TRl R R (2.36)
k3 2kiks
and we have used the shorthand notation [ - -]z to mean the Fourier transform evaluated at mo-
mentum k.
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2.3 Two-loop solution

Using the equations of motion including counterterms Eq. (2.33) and Eq. (2.34), we can now
compute the two-loop power spectra. As we will show in Sec. 3, the size of the contribution from
the linear counterterm proportional to gv} in Eq. (2.33) and Eq. (2.34) is expected to be small.
The success of our fits in Sec. 4, which do not include this counterterm, also supports this. Thus,
we take g = 0 in this section. For completeness, we discuss how one can include this term in
perturbation theory in Sec. 3 and App. B.5.

Defining the normalized adiabatic growth factor Di(a) = D, (a)/Da, (ao), the final expres-

sions are,
L2
PERT-2100p (@5 k) = PERT_1.100p (a5 k) + [Dl(a)]6pfloop(k) - 2(27T)03(2)(a)kTPﬁ(kf)
NL
2 4 pA,(cs) 2 50+% 2 2 2 Kt A
+(2m)cg gy (a)[Di(a)]" P (k) 4 (2m) (1 + M) [¢51y (@)]"[D1(a)] %Pn(k)
+2m)ck, (@)1 (@] P () + 2(2m) 2 (@)1 (@) P (237)
NL
where the one-loop expressions are given by
12
PZpr1100p(@s k) = PPy (a, k) + [D1(@)]* Piiog, (k) — 2(2m)c2 ) (a)[Di(a)? 5= Pfi(k) . (2.38)

for 0 € {A, ¢, b}, denoting the adiabatic, CDM, and baryon power spectra, respectively. The linear
power spectra Py (a, k) are defined by

(68 (a, )08V (a, k') = (27)36p (K + K'Y PF (a, k) (2.39)

where dp is the Dirac delta function, and we have written P{1(k) = P{}(ao, k) for convenience.
The time dependence of the linear adiabatic power spectrum is given by

Pfi(a, k) = [Di(a)* P (k) , (2.40)

whereas the time dependence of the CDM and baryon linear power spectra can be computed using
the definitions for the CDM and baryon overdensities in terms of the adiabatic and isocurvature
modes Eq. (1.3), and then using the linear solutions for the adiabatic and isocurvature modes
in Eq. (B.7). Neglecting the isocurvature mode, the time dependence of CDM and baryons is
simply [D1(a)]?, but there are subleading corrections, particularly important at early times, which
generally make the CDM and baryons evolve differently on linear scales if an isocurvature mode is
present. As always, though, one can simply obtain the linear power spectra for CDM and baryons
directly from CAMB at each redshift.
The adiabatic EFT parameters are defined in terms of the CDM and baryon parameters by

ci(l)(a) = wccz(l)(a) + wbcg(l)(a) , 6124(2)(0,) = wccz(Z)(a) + wbcg(m (a),

(2.41)
C%A(a) = wccfc(a) + wbc%b(a) , and CZA(a) = wccic(a) + wbcib(a) .
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Finally, we note that 03(2) is not a free parameter; it is determined in terms of 0(27(1) using the
fitting procedure in [9, 19, 25]. In this work, we use the UV-improved two-loop power spectrum,
so we set 03(2) = 0 from now on [25].

Let us unpack and explain the above expressions. First, notice that, besides the linear power
spectra, all of the higher order terms are computed with the adiabatic mode, which makes these
expressions very similar to those of the pure dark-matter case [9, 19, 25]; the main differences are in
the values of the counterterms for each fluid. This approximation is justified because the inclusion
of an isocurvature mode in the one-loop power spectra is down by a factor of approximately 5 x 103
at z = 0 from the one-loop adiabatic power spectrum, which is subleading to the two-loop adiabatic
contribution (see Fig. 4) .

Next, we quickly review where the various terms come from. In each power spectrum, there
are three different contributions going like k4Pﬁ. The first, proportional to [0(2,—(1)]27 comes from
contracting two of the one-loop counterterms which go like ci(l)k%(l) [9]. The second comes
from plugging the one-loop counterterm back into itself in the stress tensor. This term is also
proportional to [03(1)]2 but can have a different time dependence from the previous counterterm
due to the nested Green’s functions; capturing this different time dependence is the role of the
term involving &, [19]. The final term, proportional to ¢4, comes from explicitly adding higher
derivative terms to the stress tensors [25]. The term Pf 1’(()2‘;)
element Zg in the argument of the linear counterterm ci(l)kQ(S(l) (and so is also proportional to

A,(quad,1)
Pl—loop

comes from expanding the fluid line

63(1) but is a two-loop term) [9],!° while the term comes from explicit quadratic terms
added to the stress tensors [25].1!

We have also dealt with non-locality in time in the same way as in previous dark-matter studies
[9, 19, 25]. In this work, though, there is the additional complication that CDM and baryons have
slightly different Green’s functions, so that various different combinations appear when computing
the loops. This is relevant for the Pf_‘ l’éf);) and Pf_‘ f(()glu)ad’l) terms, for example. However, we expect
this difference to be small, since it is proportional to the isocurvature Green’s function, and we do
not find any evidence of needing to include it in this study at the two-loop order that we work.
For similar reasons, and for simplicity, we have used the same value of £, for all power spectra.
Specifically, we have chosen &, = 3 as in [19]. In App. C, we relate the coefficients in the stress
tensors Eq. (2.30) and Eq. (2.31) to the coefficients appearing in the power spectra Eq. (2.37), for
the case of EdS scaling, i.e. when Dj(a) = a/ay.

In the case of two gravitationally coupled fluids, the effect of large bulk flows becomes relevant.
Advection leading to bulk motion in LSS is due to the large relative velocity <v§c(f)> between dark
matter and baryons at recombination [54]. This has carefully been analyzed in [7] and applied to

the present two fluid-like system in [17] to correctly reproduce the baryonic acoustic oscillations

In particular, the SPT contributions Pf}loop and P{}loop (see for example [75]) are implemented with the IR-safe
integrand [8, 9].

. en
19T particular, we use PP

1-loop
therin for the definition of ¥a. and how and why it enters.

11 particular, Pfl’(gggm’l) is a contraction of the quadratic counterterm proportional to K; in the appendix of

[13] with 6® from SPT, divided by k&,

for p — oo, which is the local in time limit [9, 19]. Also, see [9] and references
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(BAO). We use the same formalism as in [17] to perform the IR-resummation on our two-loop

prediction given by Eq. (2.37).

3 Linear relative-velocity counterterm

3.1 Generation at one loop

In this section we discuss the importance of the term proportional to g v’ in Egs. (2.30) and (2.31).
Perhaps intuitively, this term can be thought of as an effective dynamical friction between CDM
and baryons. We first show that the counterterm is necessary to cancel new UV divergences at one
loop in perturbation theory. To see this, it is easiest to work in the adiabatic-isocurvature basis,

where the equations of motion with counterterms set to zero are given by

ad'y — O = aaa + ajjwpwe, (3.1)
ady — Or = aar +ara + arr(wy — we), (3.2)
, aH’ 3
a®’y + {1+ T Oy — §Qm5A = Baa + Brrwpwe, (3.3)
o 1 aH’ _
a®7 + + oy Or = 20ar + Brr(wy — we) , (3.4)

where the a and k arguments were suppressed for clarity, and the « and g functions are defined by
Eq. (2.35) but with ¢ and ¢’ allowed to be A and I, and Oy = —d;v%/H where T € {A,I}. Since
isocurvature modes are suppressed by ~ 5 x 1072 relative to adiabatic modes at z = 0, we can
safely neglect loops that have two isocurvature modes. We describe the full perturbative solutions
to the above equations explicitly in App. B, but most relevant for our discussion now are the linear

isocurvature solutions

;2D ()

Dy (ag) k- (k) , (3.5)

n, 7 1,7 Dy (a) (1,7 n, 7
0\ (a, k) = 267 () + e3m5§_>(k) , and OW(a, k) =

2 = ajn/ag =~ 5 x 1073 is approximately the relative size of adiabatic and isocurvature

where €
fluctuations at the current time, i.e. € ~ 5?)(@0)/55;)(&0). Here and elsewhere, we use “+” to
denote the growing (in this case constant) mode and “—” to denote the decaying mode.

We also introduce the following notation for the power spectra of the adiabatic and isocurvature
modes. For the linear fields (see Eq. (B.13)), we define the power spectra of the growing and
decaying parts of the linear power spectra by

(85 (KoL)

!
19/

(K)) = 2m)36p(k + K PLr (k) , (3.6)

where T and Y’ can be either A or I, and ¥ and ¥ can be either + or —. For the rest of the
equal-time power spectra, we use the notation

(Ov(a, K)oy (a, kK)) = 2m)36p(k + K YP™ (a, k) , (3.7)
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for the full power spectra, and

(65 (a, K)Y) (0, K1) = (2m)dp (K + F)PET (a, ) |
(04 (0. )3 (0, ) = (2m) o (F + K)PE (a. ) (38)
(0% (a. F)OY) (. ) = (2m)0p (K + K) P (0. K)

for the one-loop corrections, where again, T and Y’ can be either A or I.
As shown in detail in App. B.3, the adiabatic power spectrum behaves in the standard way

when the loop momentum becomes large, i.e.
P (a, k) ~ K*PMY(K) . and  Psy(a, k) ~ k', (3.9)

but correlations involving the isocurvature mode d; have a different UV behavior which is less
derivatively suppressed, for example,

P (a, k) ~ KOPLL (k) , and  Pij(a,k) ~ k2. (3.10)

Specifically, neglecting loops with two isocurvature modes, and using the EdS approximation (see
Eq. (B.37)) for simplicity, we find that there is a strong UV divergence in Pl‘%[ , that is not sup-
pressed by derivatives, namely

a CL3 A
P (o) & P paty |2 [0 A )] (3.11)

for ¢ > k, where A > k is a UV-cutoff. Since this term does not go like k% as k — 0, and the
counterterms available in the single-fluid EFTofLSS go like k2 or higher powers of k as k — 0, we
need an extra counterterm which is proportional to ©; and that does not have any derivative in
front of it, exactly like terms in Egs. (2.30) and (2.31) that are proportional to g d;v%.12

From Eq. (3.11), we see that the UV divergent term is proportional to Pf£ , i.e. it involves the
decaying isocurvature mode (5?_), and not the constant mode 5&)

instead of €2. This was to be expected from our discussion in Sec. 2 where we showed that the new

. Thus, it is proportional to €

counterterm is proportional to g ©, which from Eq. (3.5) we see is proportional to the decaying
isocurvature mode.

Let us comment on two additional aspects. First, this counterterm appears at linear order
and is not suppressed by derivatives, which means that it is as important as the leading terms
in the equations of motion. Importantly, we find in Sec. 3.2 and Sec. 3.3 that the finite part of
this counterterm is not expected to be much larger than the other linear terms. This still non-
trivially complicates perturbation theory for the isocurvature modes, and we discuss in Sec. 3.4 and
App. B.5 how to treat this term consistently. Second, the integral in Eq. (3.11) actually diverges
for A — oo for a realistic power spectrum Pff with CDM. To see this, we note that on small

12Equivalently, we could have chosen a counterterm proportional to &7, which is also proportional to the decaying
mode. However, they are degenerate at first order.
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scales, the linear power spectrum behaves like P_ff(q) ~ (logq)?/q¢> [76, 77]. Plugging this into
Eq. (3.11), we find
P3 (k) ~ PPL(K)(log A)? (3.12)

as A — oco. This means that for perturbation theory to be a well-defined mathematical framework
for the real universe, the counterterm proportional to ©; is actually necessary. This is to be
contrasted with the loops in the EFTofLLSS with a single fluid, where the loops are always UV
convergent (since there is an extra factor of 1/¢? inside of the loop integral for large ¢), and so the
counterterms are needed not to give mathematical consistency, but simply to correct the mistake
associated to the finite (but incorrect) UV dependence of the loops. In the next two subsections,
we explicitly show how the counterterm proportional to gv} cancels this contribution, and we
estimate the expected size of the finite part of the counterterm.

3.2 Estimate of the linear counterterm in perturbation theory

In this section, we will assume that the counterterm g v} can be treated perturbatively. Neglecting
EFTofLSS counterterms except for the linear one, proportional to gv}, we obtain the follow-
ing linear equations for the g-dependent contributions to the isocurvature fields (from Egs. (3.2)

and (3.4)):

aH’

H

ad;,—Ory =0, and a®f,+ <1 + ) 014 =g0W (3.13)

where d7 4 and ©7 4 are the counterterm-dependent contributions to §; and ©;. As is the case
with the other EFTofLLSS counterterms, the counterterm ¢ has a cutoff dependent part guyy, that
is needed to cancel the one induced by the loop in Eq. (3.11), and a finite part gy, i.e.,

g9(a) = gg(a) + guv(a) - (3.14)
Similarly, we also break up the solution to Eq. (3.13) as
brg=060+6VV, (3.15)

and analogously for ©y 4.

We first give the UV dependent contribution and later focus on the finite part. From Eq. (3.11),
it is clear that the counterterm contribution needed to cancel the UV divergence (when contracted
with 64 (a, ) is

- D; (a)Da, (a)? A -
V(@) == T 2 | i@ a® . o

Next, we find the gyy(a) that is needed in Eq. (3.13) to produce Eq. (3.16) as a solution. Using
the EdS approximation Eq. (B.37), we obtain

aD,_(a)D+a2 2 M 4
DII_(G) D,::((ao))2 [/ (2:)2‘12 ff(q)] : (3.17)

guv(a) = —12 5
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Figure 2: Evolution of gf(a) and g(a) using Eq. (3.21) and Eq. (3.24), respectively, with b = {4, 6, 8} for our universe
assuming WMAP3 cosmological parameters, given at the start of Sec. 4.

Now we can estimate the finite part gf(a). To do this, we assume the same time dependence
and form as the UV-dependent contribution above, with one important difference. Since the
integral over ¢ in Eq. (3.16) is divergent (see Eq. (3.12)), we assume that the finite piece receives
contributions only from scales near the non-linear scale. Thus, defining!?

2 [Phwila) g
2 — 2 pAA
=_ P 3.19
oy (a) 3 /kNL(a) (27r)2q ++ (q) ( )

where b is a constant greater than one, we approximate

Dr(a)Da, (@) ) SO (R) | (3.20)

5t ,E ~ +e3
7 (a, k) € Dr_(a0) D, (@

and ,
aD7 (a) Dy, (a)®

Dy (a) Da, (ag)2”"

where we have written + above because we cannot in general predict the sign, and we will consider

gf(a) = +12 (a), (3.21)

a range of values of b in this section. Finally, defining the counterterm power spectrum P(‘;‘{) from

(0% (a, K)3 (a, &) = (2m)*0p (F + K') P (a, k) | (3.22)
we have Dy (@)D (@)
A 35 _\a)ata AT
P(Ct) (a7 k) ~ € g(a) DI_ (GO)DA (aO) P+7(k) ) (323)
where

(3.24)

13We define knt,(a) from

54 7)2P++ (9 =1. (3.18)
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Figure 3: Contribution to P of the new counterterm Eq. (3.23) for b = {4, 6,8} as well as P{:{, and P{!. We see
that all terms with a decaying mode remain subleading to the power spectrum containing the constant isocurvature
mode.

In Fig. 2, we plot the time dependence of g(a) and g(a) for b = {4,6, 8}, where we see that the
effect on the decaying isocurvature part of the power spectrum Eq. (3.23), g(a), is order one around
the present time.

Next, we would like to compare the counterterm contribution Eq. (3.23) to other contributions
to the power spectrum. For example, consider the dark-matter power spectrum P given by

P = PAY L o, PAT 2 P (3.25)

Here, we see that the most relevant contribution from the isocurvature fluctuations is given by
2wy PAL. In Fig. 3, we plot the various contributions to P, including from P(’gtl), Pffr, and Pff ,
as a function of a. We see that Pffr gives the dominant contribution, while Pff and P(‘;I) give
subdominant contributions, with the ratio 2wbP(f:‘tI) / Pff always less than 5 x 10~% for the values of
b that we consider. Furthermore, we indeed see that, for a = 0.4, the effect of the counterterm is of
the same order as the contribution from the decaying isocurvature mode Pff , which is suppressed
with respect to the leading isocurvature mode by a factor of \/(m ~ 0.07.

It is important to compare the counterterm contribution to P with other potential contribu-
tions in order to know which are the next largest corrections after the adiabatic one-loop term.
To do that, in Fig. 4 we plot P{_‘l’gop used in this paper, an estimate of the three-loop contribu-
tion P;_‘A

Joop’ and an estimate of the adiabatic-isocurvature power spectrum, along with the new

counterterm contributions with b = {4, 6,8}.14 We also plot the cosmic variance of DESI, a repre-
sentative of the leading experiments in large-scale structure. We plot at redshift z = 1 because the

1476 estimate these contributions, we describe the terms at a desired loop order by parametrizing them as being
in a scaling universe, which allows us to approximate their behavior through dimensional analysis [9]. The linear
adiabatic power spectrum can thus be expressed as a piecewise power law [9, 10]

k>ktr

1 (k"
Pff,pl(k)I(QW)s{ (ms) (3.26)

7
o (m) o k<ke
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Figure 4: DESI cosmic variance (gray dotted), two-loop contribution to the adiabatic power spectrum used in this
paper (black solid), estimate of the three-loop contribution to the adiabatic power spectrum (teal dashed), linear
contribution of the adiabatic-isocurvature power spectrum (pink), estimate of the one-loop adiabatic-isocurvature
power spectrum (fuchsia dashed), and contribution generated by the counterterm for b = 4 (green), b = 6 (orange)
and b = 8 (purple), assuming the WMAP3 cosmological parameters at z = 1. We see that the effect of the
counterterm is safely smaller than the DESI cosmic variance and also, depending on the scale, than many of the
purely adiabatic loops. Dashed curves were estimated using the power-law decomposition of the power spectrum,
see Eq. (3.26) and below.

linear counterterm contribution is larger at early times and the DESI survey will measure luminous
red galaxies up to z ~ 1 [78].1

We see that when the adiabatic two-loop and three-loop contributions become larger than
the cosmic variance (around k ~ 0.14 hMpc~! and k ~ 0.3hMpc~! respectively), these terms
dominate over the linear counterterm contribution. At low wavenumbers the linear counterterm
is larger than the loops, but cosmic variance dominates there. All in all, we find that the linear
adiabatic-isocurvature contribution 2wbei is the most likely one to be comparable to the three-
loop adiabatic term on the scales of interest, but this term can be easily included in the calculation
by simply using the correct linear power spectrum from CAMB (in this case Pff). All of the
remaining terms are much smaller than the adiabatic two-loop term, which is the order to which
we work in this paper, justifying the use of the expressions given in Sec. 2.3. Furthermore, the
comparison with DESI cosmic variance strongly suggests that we can safely neglect the linear
counterterm contribution in our perturbative expansion for all practical purposes.

In the next section, we use a UV complete model to support our estimate in this section, and

where ki denotes the transition scale between the two power laws. Here we use the parameters knt, = 5.50h Mp(fl,
Ext, = 2.68h Mpc™?, ki = 0.24h Mpc™t, n = —2.1 and 72 = —1.83 derived in [17] by fitting the power laws Eq. (3.26)
to the linear power spectrum of non-linear simulation data with WMAP3 cosmological parameters. For a given loop
order L, the estimate for the corresponding adiabatic loop correction scales as Pitih,, /P ~ (2m)" (k/kxp) 3T /L)
[9]. We also use PiL,,(a,k) ~ €2 D1(a) ' P, (a, k).

'5We note that b = 8 gives roughly the value of g(z = 1) that we find in Sec. 3.3.
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confirm that the EFT coefficient g indeed leads to a small effect on the power spectrum.

3.3 Estimate of the linear counterterm with UV model

In this section we use a one-dimensional UV model with two species, CDM and baryons, to estimate
in a more direct way the size of the new counterterm proportional to g v}. We will do this estimate
by first solving a specific UV model, given by Eq. (2.24) in one dimension with the counterterms
set to zero (i.e. the perfect fluid model), and then smoothing the solutions. The smoothed fields,
of course, will not satisfy the same perfect fluid equations as the UV fields: this is the essence
of an EFT. Specifically, we will show that the smoothed fields, if they are smoothed on a scale
large enough to diminish the effects of higher derivative counterterms, satisfy Eq. (2.24) but with
the linear velocity counterterms (proportional to g(a)v?) in Eq. (2.30) and Eq. (2.31). This then
allows us to measure the size of g(a) in this specific UV model, and thus estimate its size in the
true universe, since we expect the two to differ by just order one.

To this end, we start with Eq. (2.24) in one dimension, neglecting the right-hand sides because
we start with a perfect fluid.'® Letting = be the one-dimensional spatial coordinate, for each species
o = ¢, b we define the velocity as

ve(a, ) = vi(a,x) , (3.27)
which gives the equations of motion,
06y 0
aH—+ — ((1+05)vs) =0,
da  Ox (3.28)
0 0v, ov, 3 9 0 vy )
GH%% + H% + igmH (SA + % <’Uga$> =0 s

where 0, and v, are functions of ¢ and x.
Next, we set up an initial configuration. For the initial overdensities, for each species we choose

an antisymmetric sum of two gaussians

0c(@in, ) = (04, in + WpOT_ in) [eXP {— (:C + 1)2} — exp {— (:C - 1)2}] 7
0p(@in, ) = (04, in — WedI_ jn) [eXP {— (:b + ;)2} — exp {— (:b - ;)2}] ,

where oy, = 90./10, 64, in = 3Gin, 07_jin = 2@in, 04_jin = 07, in = 0, Ain = 1073, and we use
the subscript “in” to label the initial values of the various quantities. Setting 67, ;n = 0 ensures
that we are focusing on the decaying isocurvature mode, which is relevant for the relative-velocity
counterterm. For the initial velocities, we use the linear part of the first equation in Eq. (3.28)
and integrate in x, assuming linear time evolution for d. and J,. The fact that the integral in x of
the overdensities vanishes implies that the velocity goes to zero at the boundaries. Furthermore,
we take w. = 0.824 and wy, = 0.176, in accordance with the cosmology used in Sec. 4. In Fig. 5,
we plot the initial configuration.

16 A very interesting study in one dimension for the adiabatic mode has been already performed in [21].
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Figure 5: Initial CDM and baryon overdensities and velocities at ai, = 1073, The parameters o. and o} are the
variances of the CDM and baryon initial gaussian distributions, respectively, in Eq. (3.29).

We then numerically solve the equations of motion Eq. (3.28) with the initial conditions
Eq. (3.29), assuming an EdS universe for simplicity. Once we have the UV solutions, we then
smooth the fields with a normalized top-hat W defined by Wi (x) = L~! for |z| < L/2 and
Wr(x) = 0 for |x| > L/2. As always, we smooth the overdensities , and momentum densities
Ty = pPos directly,

do,r.(a, ) = /dx’WL(a: —12")0,(a,2") , and 7, p(a,x) = /d:v'WL(:U — )y (a,2") ,  (3.30)

then define the smoothed velocity as the ratio of the smoothed momentum and smoothed density:

To1(a, T)
po(a)(1 +05(a,2))

Vor(a, ) = (3.31)
and finally define 64 1, 7.1, va,r and vy analogously to Eq. (1.3) and Eq. (1.5).17 We should
choose L large enough so that the smoothed fields satisfy the linear equations (see Fig. 8), and in
particular in this work we consider the two smoothing scales L = Ly = 120, and L = Lo = 150,.
In Fig. 6, we show examples of fully non-linear and smoothed adiabatic and isocurvature modes at
a = 0.5. We see that even though 0 4 reaches = 1.5, signaling that we are in the non-linear regime,
the smoothed fields remain small and perturbative.

Next, in order to estimate the size of the relative-velocity counterterm, we determine the
equations satisfied by the smoothed fields. To do that, we focus on the velocity equation for the
isocurvature mode, but include the counterterm g vy r,,

(w'LL(a,fL‘) +vrr(a,z) = gla,z)vrp(a,z) + ..., (3.32)

1"Recall that Eq. (3.31) is not the same as smoothing the UV velocities directly, see Eq. (2.23). In this sense, one
can think of v,z in Eq. (3.31) as an auxiliary variable which makes the equations of motion for the long-wavelength
fields simple. If one were to smooth the UV velocities directly (which in any case we never do in this section), then
that field would be related to v,z by a series of counterterms which renormalize the velocity.

23



0.0003F
0.0002} o
Vi
Hao,
0.0001 -
0.0000+F
-0.0001+¢
-0.0002+ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 1
-4 -3 -2 -1 0 1 2 3 4
X/ 0g
0.05+ 6A,L 1 4.x10—6,
_____ Var
o 2.x107}
0.00 \ P
\ / Or
\ )
-0.05+ \ 1
\‘ ,', —2.X10_6’ 6“‘
‘\ / VL
————————————————— ! (}—{gc
~0.10}t J -4.x1078}
0 -5 0 5 10 10 -5 0 5 10
X/ O; X/ 0g

Figure 6: In the top two plots, profiles of the non-linear solutions to Eq. (3.28) at a = 0.5, where the system is

clearly in the non-linear regime. We can see matter moving into the overdense region, increasing the density there.
In the bottom two plots, solutions smoothed with L = 150..

where the ellipsis ... represents non-linear terms and higher-derivative terms in the effective stress
tensor Gjng and in the effective force 4*. Now, as long as the higher derivative and second order
terms are negligible, we can plug the smoothed quantities into Eq. (3.32) and simply solve for g. In
Fig. 7, we give our results, which show that the size of g(a) goes from zero at early times to ~ —6
at a ~ 0.55, which is the latest time where there are significant observations. In the EFTofLSS,
g is only a function of time (see Sec. 2.2), but if we solve for g with Eq. (3.32), it is generically
a function of a and x, as translation are broken in this example. However, from Fig. 7, we see
that ¢ is independent of x within the smoothing scales around the origin, and that g only starts
getting an x-dependence when higher derivative terms become important. This is exactly what
one expects from an EFT.

Now that we have found g, in Fig. 8 we confirm that the smoothing that we have performed is
such that the non-linear terms that would appear in Eq. (3.32) are in fact negligible. In Fig. 8, we
also show that the time evolution of vy, is within 10~ of the linear evolution, again confirming
that our smoothing has put us in the linear regime.

As a consistency check, consider the linear equation Eq. (3.32) at = 0. Assuming the g(a)
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Figure 7: Left: Evolution of g calculated from the smoothed quantities at the origin using Eq. (3.32). We see that
g remains ~ O(1) — O(5) during the non-linear evolution. Right: Spatial profile of g at a = 0.4. The profile remains
constant within the smoothing scales around the origin, and starts to deviate when higher derivative terms (green
and purple dotted lines) become large, as expected from the EFTofLSS. In this plot and elsewhere, we use L1 = 120,

and Lo = 150¢.
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Figure 8: Left: The non-linear term that would appear in Eq. (3.32) compared to some linear terms there. We see
that with the smoothing scales that we have used, and the values of g that we have found, the assumption of using
the linear equation Eq. (3.32) to determine g is justified. We also see that using a larger smoothing scale suppresses
the non-linear terms more, as expected. Right: The time evolution of v, 1, which is shown to be within 10™* of the
linear evolution. This again confirms that we are indeed in the linear regime after smoothing.

shown in Fig. 7, we can then solve for the time dependence of vy, directly. Defining vy 1,(a,0) =

D7, (a), we have
an)I’(a) + (1 —g(a))D7,(a) =0, (3.33)

where g(a) is given in Fig. 7. The solution to Eq. (3.33) is
B a da/
Dj (a) =a Lexp {/ 79(&')} . (3.34)
In Fig. 9, we show the time dependence of the isocurvature velocity (for L = Lg). The first thing
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Figure 9: Various time dependencies for the isocurvature velocity compared to the linear evolution (dashed black).
We see that the smoothed UV solution (solid black) is significantly different from the linear solution, showing that
a counterterm is necessary to reproduce the correct time dependence of the long modes. Using the g(a) that we
found from the smoothed solution, we directly reproduce the time dependence of the long-wavelength isocurvature
velocity using Eq. (3.34) (pink solid). In dashed and dotted pink, we see the effect of using a different g(a) in the
solution Eq. (3.34).

to notice is that the time dependence of vy 1, found by smoothing the UV model is much different,
by about 33% at a = 0.55, than the linear solution oc a~!. This should to be compared to the
time dependence of v, shown in Fig. 8, which is equal to the linear solution to within 104
This clearly shows that the linear counterterm is only needed in the isocurvature equations, and
not the adiabatic ones, as the symmetry arguments of Sec. 2.1 showed. Given that the change in
the solutions is approximately 33%, this means that the effect of counterterm in g can be taken
into account perturbatively, as explained in Sec. 3.4. Alternatively, as we show in Sec. 3.4 and
App. B.5, one can construct a formalism that does not rely on treating g perturbatively. Finally,
we see that the solution computed with Eq. (3.34) matches the smoothed velocity from our UV
model, and that changing the g(a) that appears in Eq. (3.34) has a significant impact on the
resulting solution.

Our two estimates for g are obtained in the case of two pressureless fluids, and they suggest
that, even though we detect a non-vanishing ¢ in our numerical run, the effect of the counterterm
in gy is a small or O(1) effect on the decaying mode. This finding can be verified by inspection of
the results obtained using numerical N-body codes that simulate two gravitationally-interacting
sets of particles with different initial conditions. Several numerical challenges had to be overcome
to achieve a satisfactory numerical convergence, see [79-83]. In these papers, the results of the
numerical runs are compared against linear theory at long distances. In this context, clearly, lin-
ear theory means our linearized equations setting ¢ = 0. What is found in these results (see for
example Fig. 8 of [83] or Fig. 2 of [82]) is that the disagreement between linear theory and simu-
lations is much smaller than the constant isocurvature mode, indicating indeed that the decaying
isocurvature mode that results from the simulation is still decaying and much smaller than the
constant mode. This is consistent with our estimates.
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Next, we should consider the fact that baryons are not a set of gravitationally interacting
particles but, after star formation begins, they are affected by baryonic effects. Our estimates
do not cover this possibility, and to estimate the contribution to the EFT coefficient ¢ from
baryonic effects we rely entirely on hydrodynamical simulations. Such simulations with two fluids
and accounting for the initial isocurvature mode have been performed in, for example, [81, 83].
By looking for example at Fig. 2 of [81], we see that the change in the power spectrum at low
wavenumbers by the onset of start formation physics is so small that one can bound the size
of the decaying isocurvature mode to be at least about an order of magnitude smaller than the
constant isocurvature mode. Similar considerations can be obtained by looking at Fig. 9 of [83].
We therefore conclude that our estimates of g are affected at most of by O(1) by baryonic effects.
This is as expected on theoretical grounds.

3.4 Perturbation theory with relative-velocity counterterm

To start the study of perturbation theory in the presence of the new relative-velocity counterterm
g ©7 that is allowed in the equations of motion, we consider linear evolution. Contrary to what we
did in Sec. 3.2 for the purposes of estimating in the previous sections, here we take the consistent
approach of treating this term not as an interaction. Because it does not enter the adiabatic
equations, we focus on the isocurvature equations in this section. In the presence of this new term,

allowing for a generic non-local in time counterterm, the linear isocurvature equation becomes

aH'(a)
H(a)

a25§1)"(a,lg) + <2 + ) aéf-l)/(a, E) :/ dayrg(a,ay) alégl)/(al,lz) . (3.35)

At this point, it is helpful to define the terms in the perturbative expansion of the isocurvature

modes proportional to €2 and € as

50 (a, F) = €280 (a, B) + €80 (a, B) + ... -
O (a,F) = 200 (a,F) + €*0 (a, ) + ..., '
for n > 1, where the ... represent higher orders in €. Since earlier in this section we found that

g~ O(1) — O(5), we can safely take the counting in terms of powers of € to be the same as the

case where g = 0, as in Eq. (B.37) for example.!8
(1)

Iy
decaying mode 5(?. Since the linear equation is k-independent, we can write the solution as

(59 (a,k) = DY (a)dﬁ)(lg) /DY (ap), so that the growth factor DY (we have included the super-
script ¢ to distinguish from the growth factor Dy when g = 0, in Eq. (B.11)) satisfies

Now, it is clear that the constant solution for 6;’ still solves Eq. (3.35), so we focus on the

aH'(a)
H(a)

aQDi”(a) + (2 + > aDf '(a) = /a dairg(a,ar) a1 DY '(a1) . (3.37)

18The same argument actually also works if g > 1, since the powers of e simply keep track of the different linear
solutions’ contributions to higher perturbative orders.

27



x=0

1.35} |
1.30F  f=pglc g Py
’§ 1.25¢ f= Dg_(1), loc. / a71/2 //’/
= 1.20f
T 1.15}
1.10F
1.05¢
0.1 0.2 0.3 0.4 0.5
a

Figure 10: Comparison of the full solution Eq. (3.38) with the perturbative solution Eq. (3.39). We see that overall,
the decaying mode is about 30% different from the linear solution, and that the perturbative solution Eq. (3.39) is
about 1% different from the full solution Eq. (3.38).

For a general non-local in time interaction g(a,a;), the above is an infinite order differential
equation.

If instead we assume that the interaction is local in time (i.e. g(a,a1) = g(a)dp(a — ay)), we
can solve Eq. (3.37) explicitly to find the growth factor

HOQUQ a a % da,
Dyl (a) = |20 T mO / day - — / 2 . -
7% (a) -~ 5 . a1 a%?—t(al) exp o g(az2) (3.38)

Because of the unknown function g(as) involved in this solution, one cannot explicitly evaluate the
growth factor for a specific cosmology, although since g ~ O(1) — O(5), we still expect Eq. (3.38)
to be decaying, and indeed we have checked that this is the case for the numerical solution of g(a)
given in Fig. 9. Furthermore, if g(a) < 0, as is also the case for our solution, Eq. (3.38) shows
that the decaying mode always stays decaying. The same is the case for the non-local equation
Eq. (3.37). Thus, in perturbation theory, we should treat this growth factor as another unknown,
time-dependent coefficient, similar to how we treat the other counterterms in the EFTofLLSS. The
k-dependence of the linear solution 6ﬁ)(a, E), importantly, is still known.

As we found in Sec. 3.3, the change in the linear decaying mode is expected to be perturbative.
This means that we can also compute the solution to Eq. (3.37) perturbatively. Again assuming
that the interaction is local in time, and assuming an EdS universe for simplicity, we can write the

solution to Eq. (3.37) to first order in g as

g(1),loc. a \ " Y? a 1/a -1/2
Dy 7 (a) = P + [ da1Gi_(a,a1)g(a1) 5\ , (3.39)

in

~-1/2

=1/2 ( —1/2
1 a /_al

where G;_(a,a1) = —2a is the Green’s function for the left-hand side of

Eq. (3.37) in an EdS universe. In Fig. 10, we compare the above solution to the exact solution
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Eq. (3.38) using the g(a) found in Fig. 7 for L = Ly. We see that the perturbative solution is
about 1% different from the full solution.

There are at this points two ways to proceed in order to formalize a perturbation theory in
the presence of the term in gwv;. The first is by assuming that the contribution of this term is
perturbative, and proceed as we did in (3.39), i.e. consider g as a coupling constant, and treat it
as we do for the non-linear term and the other counterterms in the EFTofLLSS. This approach does
not present conceptual challenges, though one should check that the corrections in g are small,
because this is not guaranteed to be true based on first principles. Alternatively, and perhaps more
safely, one can set up a perturbation theory where one is not treating the effect of g as a small
effect. In fact, we can actually use 58)(&, k) = DY (a)éﬁ)(l;) /DY (ap) in perturbation theory, but
now with D?_ (a) as a free function. Importantly, as shown in App. B.5, the solutions for (5}2) are
not affected by the new counterterm, so they act as normal in perturbation theory (this is true
even if we treat the contribution of g perturbatively). To solve for the higher order fields 55?)
for n > 2, keeping the counterterm as part of the linear equations, we will also need the Green’s
function related to Eq. (3.35), which again, is unknown. However, similar to what was done for the
growth factor DY (a), we can treat the Green’s function formally as an unknown k-independent
function and proceed with perturbation theory as usual, keeping in mind that all time-dependent
functions made from DY (a) or the Green’s function must be treated as free parameters. Thus, the

)

solutions for 5% for n > 2 will be a sum of unknown time-dependent (k-independent) functions
multiplied by known k-dependent kernels. Since there will be many unknown time-dependent
functions multiplying known functions of wavenumber, the resulting perturbative expansion for
5&?) will be reminiscent of the one of a biased tracer. We discuss this perturbative approach where

we do not expand in g in more detail and derive the explicit contribution to 5?) in App. B.5.

4 Comparison to hydro-cosmological simulation

In this section, we compare our two-loop computation to non-linear data from the hydrodynamical
OWLS simulation described in [55, 56], which includes AGN feedback and is based on WMAP3
cosmological parameters {2, Qp, O, 08,15, h} = {0.238,0.0418,0.762,0.74,0.951,0.73} [84]. The
OWLS project is a collection of different simulations that include various different baryonic effects.
Each simulation has the same cosmological parameters and starts from the same initial conditions
at an early time during matter domination. Then, a fraction €2/, of the particles are labeled
as baryons and given specific interactions which mimic star-formation physics, while the rest are
kept as CDM particles and interact only through gravity. Simulations which are referred to as
“dark-matter-only” do not include any baryonic interactions, and so all of the particles act like
CDM (i.e. a standard dark-matter simulation). In this work, for concreteness, we focus on one
OWLS simulation called AGN."

9The simulations that we used are available at http://vdll.strw.leidenuniv.nl/. There is a new set of data

available at http://powerlib.strw.leidenuniv.nl/ [81]. In this work, we do not explore the range of all the models,
but we simply wish to check against a typical model. We expect, as shown in [17], that everything is very similar in
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We do our analysis in two steps. First, we find the EFT coefficients for the dark-matter-only
power spectrum with the above cosmological parameters. We do this by comparing the dark-
matter-only prediction to the non-linear data from the Coyote interpolator [85-88] for 18 different
redshifts from z = 0 to z = 4. For this analysis, we assume an error of 1% added in quadrature
with cosmic variance for a box of size L = 1 Gpc on the Coyote data. The IR-resummed two-loop
adiabatic power spectrum without baryonic effects Péﬁ]?rl_\g_f;gg is fit to the Coyote simulation data,
which gives a set of coefficients {63(1)’ C%S, 04215} for each of the 18 redshifts (see App. D for parameter
values). Since the Coyote data has more data points than the OWLS data at low k, the former is
chosen to determine the dark matter coefficients instead of using the OWLS data directly. Because
the errors are relatively large, and in order to avoid over-fitting, we do the dark-matter-only fits
up to the wavenumbers given in [25] which used much more precise data.

In the second step, we compare our adiabatic and baryonic two-loop predictions to the OWLS-
AG N simulation, which includes feedback from active galactic nuclei. In this simulation, the CDM
and baryons are given the same initial conditions, which means that there is no linear isocurvature

mode, i.e. (5§1) = 0. Thus, in our computations, we take

P{i(a,k) = Pfy(a, k) = Ply(a, k) = Pfi cans(a, k) (4.1)

where Pﬁ,c AMp 1S the linear total matter power spectrum taken directly from CAMB at each
redshift. All in all, since isocurvature modes are not generated through the standard non-linear
interactions,?” all of the difference between the CDM and baryon power spectra comes from the
different values of the counterterms, i.e. from different UV physics. Thus, an isocurvature mode
is only generated by the different UV physics of the two species in the simulation.

Additionally, we do not include the linear relative-velocity counterterm ¢ ©; in our fits, since
it is expected to be small (see Fig. 4), and since there is no initial isocurvature mode, it would
be proportional to the other counterterms, which are suppressed by at least k2, and so would be
even smaller than estimated in Sec. 3.2 and Sec. 3.3. Indeed we find no indication that it is needed
to fit the simulations that we look at in this paper. The situation may be different, however,
for simulations that include an initial isocurvature mode. We leave exploration of this interesting
possibility for future work.?!

Given the dark-matter-only coefficients {cg(l), c3,,c2.} found earlier, we then define the differ-

ences
2 — 2 2 2 _ 2 2 2 _ 2 2
A‘30(1) =Co(1) — Cs(1) Aci, =i, — iy, and  Acy, =cj, — ¢y (4.2)
terms of accuracy and k-reach for various models.
29Having the same initial conditions for baryons and dark matter implies that 6}” = 0 and @gl) = 0 at linear

level. Looking at the isocurvature equation of motion Eq. (B.3), we see that any higher-order isocurvature mode is
sourced by a lower order isocurvature mode, so that if 5§1) =0 and @§1) = 0, we have that 5571) =0 and 9571) =0
for any higher order n. This of course comes from the equivalence principle, according to which gravity acts equally
on baryons and dark matter, so, once the initial conditions are the same, the evolution is the same.

2!The more recent simulations in [81] include an initial isocurvature mode and it would be interesting to do a
similar analysis with that data. By focusing on simulations where baryons and CDM have identical initial conditions,
however, we are better able to isolate the distinct star-formation effects.
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Figure 11: Determination of the CDM and baryon EFT parameters {ci(l),ci,cfw} and {cg(l),cfb,cib} for z =
{0,1,2,3,4} by fitting Rpr and Ripr (green solid) to REwrs and ROwrs (red dots) up to kas (described in the
main text). The red region is the estimated error of 0.25% on the data. The green band is the theory error coming
from the 1o errors on the fit parameters at kg¢. All parameters presented are dimensionless, so the numerical values

given above are in the appropriate units of h Mpc™! coming from the explicit factors of knr.

for o € {A,c,b}. The fitting procedure then consists of determining the sets of CDM and baryon

31



coefficients {Ac Aclc, Ac?.} and {Acb(l), Ac?,, Ac%} for each redshift by performing the fits

A 2 2 2 2
RA = P64WLS RA PEFTzloop[ s(1 )+ACA( 1) 015+A01A,C48—|—AC4A]
NL = DM only < EFT = pADM only ENENN )
OWLS EFT-2-loop 3(1) 1s2 “4s (4 3)
b .
Rb — PgVVLS Rb _ PEFT 2- loop[ s(1) + Acb(l)a Cls + Acllﬂ C4s + AC4b]
NL = m AR EFT = pADM orly 5 7

EFT-2- loop[ s(1)? Cls 645]

where we Taylor expand the ratios RSFT and R%FT up to two-loop terms, and {Aci(l), Ac% A Ac?l N
are defined in terms of {Acz(l), Ac?., Ac3.} and {Acg(l), Ac?,, Ac?} using Eq. (2.41) and Eq. (4.2).
Explicitly, the Taylor expanded ratio up to two loops, Rfppl2 at 2 =0 is

k2 2 k2 pA(quad,1
Rippls = 1 — 4wAc] e + A (A 2( 1) ( ]‘712\1LP1 loop + P I(Eop)> +Add, lltg(cl)p :
82 k*
17 kb

(4.4)
+— (14[ACU(1)] - 6c§(1)Ac§(1) + 17Ac?10_) ,

where we have used &, = 3 in Eq. (2.37), and o € {c,b, A}. We see that all terms which do not con-
tain any counterterms cancel in the ratio as expected because the numerator and denominator only
differ in the counterterms. Additionally, most parameters appear directly as the difference from
the dark-matter-only parameters, except for 03(1)7 which is why we have chosen the parametriza-
tion Eq. (4.2). We directly fit these ratios because the cosmic variance is greatly reduced in the
non-linear data after taking the ratio. In order to avoid over-fitting, we use the safe-fitting routine
described in [25]. In each fit, we call the maximum k included in the fit kpax, then we vary kpax,
finding the best fit and errors for the parameters for each k.x. Finally, we choose kg to be the
maximum value of kyax where the parameter best fit values are still consistent with the lower kpax
fits. In App. D, we give an example of how we perform this procedure at z = 2. In App. E, we
consider our fits using smaller values of kgy.

As mentioned, by using the ratio of power spectra, the cosmic variance of the simulation data
is greatly reduced. As an estimate of all of the residual errors, we assume an error of 0.25% on the
ratio data, and the results of our fits are given in Fig. 11. We find that at two loops, the ratios
fit the data up to k ~ 0.8 hMpc~! at z = 0, for example, and to higher k& at higher redshifts. As
discussed in [17] for one loop, since we are dealing with the ratio of EFT predictions, the reach of
Rppr is increased with respect to the dark-matter-only fits. In general, this is essentially because
Ac?/c? is small for the various quantities in Eq. (4.2), as one can see in the tables in App. D.
Sometimes, though, we see that Ac?/c? ~ O(1), in which case we have to look a bit closer at the
specific terms in the expansions.

As an estimate of the increase in k-reach that we can expect, we look at the highest order
terms included in the expansions, which at two loops, for example, are proportional to k*P;;. For
dark-matter-only, we have

PDM only 8 k4
EFT—2—loop w2 4 2
_— 14c 17 . 4.5
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Using the values of the parameters obtained from our fits (see App. D, we focus on the baryon fit
because it is the larger deviation at z = 0), this term is numerically —31(k/kxr)*. On the other
hand, the k* term in Eq. (4.4) is 0.1(k/kn1)?, so it is clear that the scales controlling the expansions
are quite different. We then rescale k in each expansion so that the coefficient of k% is unity, and
we find that the coefficients of all of the lower powers of k are of order unity, confirming that all
the counterterms are suppressed in a similar way. Calling kfﬁ the reach of the ratio Eq. (4.4),
and calling kéjt the reach of the two-loop power spectrum fit, we thus expect k‘ﬁ ~ (31/0.1)1/4kf1i3t.
Using kg’t ~ 0.26 h Mpc~!, this gives kfft ~ 1.07 hMpc~!, which is in qualitative agreement with
what we found (see App. D for parameter values).?? These fits are quite a remarkable improvement
over other analytic descriptions of baryons in LSS.

As an application of our above results, we see that we have an analytic way of adding baryonic
effects to a dark-matter-only simulation. If PQr ®Y (a, k) is the non-linear output of some dark-
matter-only simulation, then we can parametrize the effects of baryons by using the ratio Eq. (4.4)
to get

PRy (a, k) = REprla(a, k) P ™™ (a, k) | (4.6)

which is valid up to the high scale k (a) shown in Fig. 11 for two loops, for example.

We present the time-dependence of the parameters {62(1)7 3., c3.} and {05(1)7 3y, 3y} in Fig. 12.
One can clearly see the onset of star-formation physics coming from baryonic processes in the
simulation. At early times, the coefficients 62(1) and 05(1) for dark matter and baryons are about
the same and start to differ between z ~ 3 and z =~ 2. We also see that the dark-matter EFT
coefficients do not change much in the presence of baryons with respect to the dark-matter-only
simulation. The baryons, on the other hand, have a sizable difference from the dark-matter-
only coefficients, as expected since they have additional star-formation interactions in the UV. In
general, for most ¢? coefficients, we find that Ac?/c? is usually small, which implies that a large
fraction of EFT parameters are determined by gravitational effects, which are the same for dark
matter and baryons.

Next, we find an approximate parametrization for the time dependence of the coeflicients 0(2:(1)
and 02(1)' The values of 62(1) and 62(1) start by being approximately zero at early times and then
increase with time. This behavior is characteristic of the EFTofLLSS: at late times non-linearities
start to grow proportional to the non-linear scale kﬁ]{ In the effective field theory, these effects
are under control and accounted for in the mildly non-linear regime through the counterterms. In
general, the time dependence of the counterterms is free, but has the structure

62 (Z, A) = C?inite (27 kren) + Czt (Za A) ’ (47)

where A is the UV cutoff of the theory, and kye, is the renormalization scale where the coefficient is
fit to the data. The term c (2, A) is needed to cancel the cutoff dependence of physical observables,

22 As more extreme examples of when Ac?/c* ~ O(1), we can look at the baryon parameters at z = 0.5 and z = 1
(see Tab. 1 for example). The ratio of the k* coefficients of the baryon ratio expansion to the dark-matter only
expansion at z = 0.5 is 124.7, and at z = 1 is 21.8. This means that we expect ki (z = 0.5)/kf.(z = 0.5) ~ 3.34, and
k& (2 =1)/kf(z = 1) ~ 2.16. Looking at Tab. 4, we have kf (z = 0.5)/kf (2 = 0.5) ~ 3.19 and k& (z = 1) /kE (2 =
1) ~ 2.4, which again, is in agreement with our estimates.
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Figure 12: The dark matter and baryonic EF'T parameters Aci(l), Acg(l), Acl,, Acd, and Acl., Ac2, as a function
of redshift (baryons are in pink, and CDM is in blue). The error-bars are the 1o errors at 0.75ks¢ for each parameter.
We plot the differences Eq. (4.2) here because these are the parameters best measured by fitting to the ratios. We
see explicitly from the first plot that baryonic physics starts to kick in between z ~ 3 and z = 2. All parameters

presented are dimensionless, so the numerical values given above are in the appropriate units of A Mpc™! coming

from the explicit factors of knr..

and so must have the same time dependence as the UV parts of the loop integrals. In our case,
because we use the UV-improved loop integrals, we expect this contribution to be negligible. The
time dependence of the finite part of the counterterm, cﬁnite, however, is in general unconstrained
theoretically, but one expects them to behave with the same time scale as the system, which
is H. Because of this, we choose to parametrize the time dependence of the finite parts of the
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Figure 13: Fit for the time dependence of 03(1) and cgu) using Eq. (4.8). Because the errors on the dark-matter-only
data are larger than the errors on the ratio data, the uncertainty in the dark-matter-only parameters {cgm, ., cﬁs}
is larger than that in the difference parameters shown in Fig. 12. Since this figure shows the total parameters, the
errors here are larger than in Fig. 12.

counterterms as the power laws [25]
63(1) (2) = AcDy (2)% ,  and 05(1) (2) = ApDy (2)* . (4.8)

The fits with the corresponding coefficients are plotted in Fig. 13. See App. D for tables of all of
the parameter values. The EFTofLSS thus provides an analytic understanding of the evolution of
star-formation physics.

5 The effect of baryons on the lensing potential

The purpose of this section is twofold. First, we discuss the inclusion of baryonic physics in the
computation of the lensing potential in the EFTofLSS and describe a strategy which significantly
lowers theoretical error bars up to £ ~ 2000. Second, we explicitly compute the effects on the lensing
potential due to baryonic physics for the WMAP3, OWLS-AGN simulation that we studied above.

Overall, our results suggest that a proper understanding of baryonic effects will be important
for interpreting data from upcoming lensing surveys, including lensing of the CMB in the CMB-
S4 effort [1-3]. An accurate understanding of baryonic effects will be crucial in, for example,
neutrino mass constraints [57, 58]. Previous studies (see for example [58] for the CMB, and [89]
for weak lensing) have reached similar conclusions by studying the impact of baryonic physics
on lensing using the outputs of hydrodynamical simulations, like the OWLS simulation that we
used in this paper. The advantage of our EFT approach, though, is that we have analytic control
over our predictions on large scales. The functional form of baryonic effects on large scales, i.e.
as a function of k (or /), is completely fixed by symmetries and is organized in a controlled
derivative expansion. In this way, one can continue to improve the computation, up to non-
perturbative effects, by including higher order terms. The details about the small-scale physics,
both baryonic and gravitational, are contained in a set of free parameters which must be fit to
data. For predictions on large scales, we view this as a significant advantage over having to
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run hydrodynamical simulations, which themselves must make motivated, but ultimately ad hoc,
assumptions about the unknown short-scale physics. On smaller scales, of course, our analytic
approach breaks down, and one is forced to use other methods such as simulations. However,
there is still plenty of information in the large-scale modes. For example, much of the constraining
power for a neutrino mass sum of less than 120 MeV comes from ¢ < 2100 [1].

Now we turn to our computation, and refer to [90] for a detailed discussion of weak gravitational

lensing. Using the small-angle-approximation allows us to write the lensing potential as

N X+ (X« —X) . A
(i) = -2 / Xl — . xA) (5.1)

where y is the comoving distance,? y, is the distance to the emitting source, 7 is the line-of-sight
unit vector, and 7y — x is the conformal time at which the photon was at position xn.
Transforming the lensing potential to harmonic space by using (1) = >, Yem Yem () gives

()O(R)) = Y (Do) Yom (2) Vi (7)) - (5.3)

' mm/

We then define the lensing potential power spectrum Cf from

<Q;Z)€m1/]z/m’> = 5€E’5mm’02l] . (54)

Assuming flatness of the universe (fx (x) = x), and using the Limber approximation one can write
the lensing potential power spectrum as

82 [X+ l Xx — X 2
oY =" d P<a k:>< ) , 5.5
C= ) dxle (x) N R (5.5)

where Pp is the power spectrum of the gravitational potential,?* which is related to the adiabatic

power spectrum by
9Om(a)?*H(a)* PA(a, k)
82 k

Py(a, k) = : (5.7)

Notice that in the expression for Cg’ in Eq. (5.5) for a fixed ¢, the power spectrum must be
integrated over a range of times a(x) and a range of wavenumbers k = ¢/y. As we have discussed,
at a given time, the EFTofLSS can only be trusted up to a certain wavenumber. Thus, we would
like to examine, for a given ¢, how much of the integrand in Eq. (5.5) can be trusted within the
two-loop computation that we have presented above. To do that, we follow [19]. For the moment,

23This is explicitly defined by

1 da’
= —_— . 5.2
x(a) /a (a/)2H (a') (5:2)
24The power spectrum of the gravitational potential is normalized in the following way
. 1 e 1 2772
(®(a,k)®(a, k")) =dp(k+k )qu)(a’ k) . (5.6)
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Figure 14: Size of the contribution to the lensing potential Eq. (5.5) for lensing of the CMB. The solid lines are
the curves in the (k, z)-plane where the integral C}b is evaluated for different ¢. In the region to the left of the gray
dashed line, the two-loop EFT prediction for Pé‘FT_Q_IOOP is valid, based on a precise comparison to non-linear data
[25]. In the region to the left of the gray dotted line, the ratio P“/P4PM onlY fits the non-linear data with 0.25%
error on the data (see Fig. 11). The dashed curves marked p% delineate the regions of the plane which contribute

(100 — p)% (above) and p% (below) to the lensing integral Eq. (5.5) for each .

consider a universe (or simulation) without baryons. The basic procedure is to first compute the
C’;ﬁ with the non-linear power spectrum from Halofit [91] for our fiducial WMAP3 cosmology to
get an estimate of which region of modes and redshifts contributes 95% and 5% of the integral.
Then, knowing where the EFTofLSS fails at each redshift, we can deduce for which multipoles £
we can reliably compute C;/’ with less than a 5% error (and 2% and 1% as shown in Fig. 14 and
Fig. 15).

The situation is even better than this, however. We know that we can obtain a 5% error by
simply setting Pp = 0 in the integral Eq. (5.5) after the EFTofLSS fails (call this scale kf; (a) for
concreteness). However, if we instead use the Halofit model,?® which is about 10% different from
the true power spectrum that includes baryonic effects, in the integral Eq. (5.5) for the modes
after the EFTofLSS fails, then we will effectively have a 0.5% error on the computation. This
small theoretical error is much smaller than the errors on the Planck lensing data [93], and so
would not be expected to improve the Planck analysis. In fact, the errors on the Planck data
are such that using Halofit for the entire power spectrum in Eq. (5.5) is sufficient for the Planck
analysis [93]. However, the situation is different for CMB-S4, which has much smaller errors
(see [58], for example, for a comparison of the errors).

In Fig. 14 and Fig. 15, we show the regions of validity of the EFT relevant for the computation
of the lensing power spectrum for the CMB (assuming the last scattering surface at z ~ 1100 as

250r any other emulator, for example the recent one developed for Euclid [92].
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Figure 15: Size of the contribution to the lensing potential Eq. (5.5) for lensing of sources at z = 1 and z = 2. The
solid lines are the curves in the (k, z)-plane where the integral Cf is evaluated for different ¢. In the region to the
left of the gray dashed line, the two-loop EFT prediction for P]:f‘FT_Q_lOOp is valid, based on a precise comparison to
non-linear data [25]. In the region to the left of the gray dotted line, the ratio PA/PA’DM °nly fits the non-linear
data with 0.25% error on the data (see Fig. 11). The curves marked p% delineate the regions of the plane which
contribute (100 — p)% (above) and p% (below) to the lensing integral Eq. (5.5) for each Z.

a single lens source plane) and for photons originating from sources at z = 1 and z = 2. The
solid, colored curves are the paths in the (k, z) plane that must be integrated over for a given ¢
in Eq. (5.5). In the region to the left of the gray dashed line, the two-loop EFT prediction for
P]j]“FT_2_IOOp is valid, based on a precise comparison to non-linear data [25]. In the region to the
left of the gray dotted line, the ratio P4 /PAPMonly fits the non-linear data with 0.25% error on
the data (see Fig. 11). The curves marked p% delineate the regions of the plane which contribute
(100 — p)% (above) and p% (below) to the lensing integral Eq. (5.5) for each /.

Looking at Fig. 14 and Fig. 15, we see that the two-loop EFT contributes with less than 5%
error to Cf for ¢ < 600 for CMB photons, ¢ < 100 for z = 1 sources, and ¢ < 160 for z = 2
sources. The ratio fits the non-linear data much better. If the dark-matter power spectrum is
known, then one can use the ratio to compute CZ’ with less than 5% error for ¢ < 1600 for CMB
photons, ¢ < 300 for z = 1 sources, and £ < 550 for z = 2 sources for 0.25% error on the ratio of
the OWLS simulation data. As just discussed, however, these errors can be made much smaller
by using an approximation of the non-linear power spectrum (such as Halofit) for the modes after
the EFT fits fail.
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This leads us to the following prescription for computing the baryon correction to the lensing
power spectrum with a reduced theoretical error using the two-loop EFT prediction starting from
a simulation power spectrum. Since we are focused on baryonic effects in this paper, we assume
that the non-linear dark-matter power spectrum PI\I?E/I Only(a, k) is known. This can be taken from
the EFTofLLSS, from a simulation, or from an emulator under the conditions that the prediction is
accurate enough. Then using this, we fit the ratio as described near Eq. (4.3) to obtain Riipr(a, k),
which is valid up to a high scale k:fﬁ(a). To compute the lensing power spectrum without the effects
of baryons, C’f’DM oy we take PA(a, k) — Pl\]?ﬁ\/[ 2 (4, k) in Eq. (5.7), and to compute the lensing
power spectrum with the effects of baryons, C’Ep’A, we take PA(a, k) — Por O (a, k) Riar(a, k)
in Eq. (5.7). Since this last replacement is only valid for k& < k£ (a), we use a linear extrapo-
lation of Ripr(a, k) from k£ (a) to 2kf (a), and then the constant value Ripy(a,2kE (a)) above
Qkf?t(a), as an estimate of the full power spectrum at higher wave numbers. Had we not per-
formed the extrapolation, the error would have scaled as the integral in (5.5) with P4 replaced
by (Rigpr(a,k) —1) Pl\]?ﬁv[ 1l (4, k), and integrated in the range of k’s above kf (a). We can then
bound (Rgpr(a,k) —1) < 0.1, as can be seen from hydrodynamical simulations (see e.g. [81]).
Finally, we assume that using the extrapolation for RSFT(CL, k) rather than its maximum gives
us another factor of two smaller error bars. Thus, to find the error for each ¢, we look at the
contribution plots Fig. 14 and Fig. 15, find what the percentage contribution is where the solid
curve crosses the ratio-fit curve (gray dotted), and multiply by 0.1 x 0.5 = 0.05. We call this error
the ‘high-k approximation’ error, since it comes from using an approximate form of the power
spectrum for wavenumbers larger than k:fli’zt (a). This error, along with the estimated error coming
from the three-loop EFT terms in the ratio fit, are plotted as the gray and teal bands, respectively,
in Fig. 1. In App. E, we consider the effect of using smaller values of kft(a).

The resulting ratio of the adiabatic and the dark-matter-only lensing-potential power spectra
is shown in Fig. 1.26 Including baryonic effects in the power spectrum clearly has more than a
percent level effect on the lensing power spectrum, and for the specific simulation that we studied
in this paper, the effect of baryons is larger than the estimated CMB-S4 error bars for ¢ 2 1000.
For reference, we have also included the direct numerical integration of the simulation data in the
plot, which gives us an indication of the systematic theoretical error in our calculation.

We would like to stress, however, that although we fit to a specific baryonic simulation in this
work, we believe that our strategy is much more flexible than using baryonic simulations to match
observed data. Regardless of the true nature of baryonic physics in our universe, we have shown
that the two-loop EFT is able to capture these effects in a set of time-dependent parameters, and
that this can be reliably used to compute observables like the lensing power spectrum. Explicitly,
if one wants to use dark-matter simulations to analyze real data, one can use Eq. (4.6) with
unspecified counterterms in the expression for Rfpr|2 to get the total power spectrum in the
presence of baryons, and from there the lensing potential. Then one can extract the counterterms
as well as the cosmological parameters directly by fitting to data (as recently done for galaxy
clustering in [42-44]).

26We thank S. Foreman for communication comparing our results with [58].

39



6 Conclusion

In this work, we have discussed many important effects of baryonic physics on large-scale clustering.
First, in Sec. 2, we showed how a new counterterm, proportional to the relative velocity v} and
not derivatively suppressed, is generically allowed in the EFT of two fluid-like species, showing
up specifically in the equation of motion for the isocurvature mode. This term is consistent
with the separate conservation of mass of each species, the conservation of total momentum, and
diffeomorphism invariance. We presented our arguments in two ways, first in a more bottom-up
EFT construction based on symmetries in Sec. 2, and second in a more top-down approach based
directly on the Einstein equations and the conservation of the pseudo stress tensor in App. A. We
then explicitly constructed the effective force and effective stress tensors needed to compute the
various power spectra of this system up to two-loop order.

In Sec. 3, we examined in much more detail the effects of the new linear counterterm propor-
tional to v}. We first pointed out that the new counterterm is in fact necessary to have a well
defined mathematical framework. This is because the one-loop term shown in Eq. (3.11) is actually
UV divergent for typical small scale CDM behavior, explicitly going like (log Ayv)® where Ayy
is a UV cutoff, as we discussed near Eq. (3.12), and this counterterm is needed to absorb this
divergence. Apart from being necessary to cancel this UV divergence, the new counterterm also
has a finite contribution that changes the linear equation of motion for the isocurvature mode. In
Sec. 3.2 and Sec. 3.3, we estimated the size of the finite contribution using perturbation theory
and the non-linear solution of a one-dimensional UV model, respectively, and showed that the
effect of this counterterm on the power spectrum is subdominant to other higher order effects that
we neglected in this paper, showing that it can safely be ignored at the level at which we work.
We also estimated that its effect can be probably neglected for future observations. Finally, in
Sec. 3.4 and App. B.5, we discussed how, even when present, the new counterterm can be included
consistently in perturbation theory. The end result is that the linear equation for the decaying
isocurvature mode is modified by an unknown time-dependent function, such that in the pertur-
bative expansion of this mode, all of the time-dependent coefficients are unknown (although the
k-dependent kernels are known).

In Sec. 4, we compared our two-loop EFT prediction to the OWLS-AGN simulation, specifically
to the ratio of power spectra in a simulation including baryonic effects to a simulation with only
dark matter, at 18 different redshifts between z = 0 and z = 4. We found quite a remarkable fit to
the data (see Fig. 11), and we discussed why the fit of the ratio at two-loops has a larger k-reach
than fitting the power spectrum directly (for example the ratio fits well up to k ~ 0.8 hMpc~!
at z = 0, and k ~ 3.6hMpc~! at z = 4). Between z ~ 2 and z ~ 3, we saw that the baryon
EFT parameter associated with the k?Py1(k) counterterm starts to deviate significantly from the
analogous CDM parameter, signaling the onset of star-formation physics. This shows that the
EFTofLSS provides a powerful analytic description of baryonic effects in LSS.

Finally, in Sec. 5, we used our two-loop EFT prediction to compute the power spectrum of
CMB lensing for the simulation studied earlier (see Fig. 1). We did this simply by predicting the
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correction due to baryonic physics to a dark-matter power spectrum (which could be obtained by
an N-body simulation for example). Given that baryonic effects are expected to be important
for analyzing CMB lensing with CMB-S4 data, we provided an analytic recipe for parametrizing
baryonic effects on CMB lensing. We showed that the two-loop EFT correctly predicts the lensing
power spectrum, including baryonic effects, up to £ =~ 2000 with a theoretical error that is about
1/4 of the size of the CMB-54 errors at £ = 2000. Since our analytic approach ultimately does not
rely on baryonic simulations, we view this as an important and actionable step forward for our
understanding of the effect of baryonic physics on the lensing observable.

Now that we have shown that the two-loop EFT correctly describes baryonic physics, both
in the matter power spectrum and in lensing, we mention a few interesting directions for future
study. There are many potential improvements to the actual computation of the lensing power
spectrum. First, as discussed near Eq. (4.4), terms which do not involve counterterms cancel in
the ratio Rgpp. This means that, using only two-loop integrals, one can compute Rfpr|3, since the
three-loop integrals will cancel in the ratio. This could provide a way to extend the EFT prediction
for the ratio to higher wavenumbers with relatively little extra computational effort than was used
in this paper. Second, one could use an updated template for the non-linear dark-matter-only
power spectrum, such as the one developed in [92] for Euclid. Third, one could study the time
dependence of the EFT parameters (as in Fig. 12) for various different baryonic simulations and
come up with a reliable prescription for the time dependence of the parameters.
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A Equations of motion from pseudo stress tensor

A.1 Einstein tensor

Here, we collect some useful expressions for the Einstein tensor G*, = R*, — %R(S“l,, where R, is
the Ricci tensor, and R is its trace, for the metric Eq. (2.1) at background, first, and second orders.
As we will see, this is all we will need since there are at most two derivatives in the Einstein tensor,
so terms with more than two fields are suppressed by relativistic corrections. We will typically
keep track of ® and ¥ in the expressions for the Einstein tensor, connection, etc., but will take
® = ¥ in our final equations, as is justified in our setting. For the background, we have (here and
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elsewhere, an overbar denotes a background value),
Gij = —a*(3H? + 2H)d;; , Goo=3H*, GV',=-6(2H*>+H), (A1)
at linear order, we have
GL0 = 6H(H® 4+ W) — 24 29%T |
GL'i = —20,(H® + V) , (A.2)
GL'j = 26; {(3H2 +2H)® + H(® + 3¥) + \p} +a"2(6;0% — 0;0;)(® — V)
and at second order, we have
G2 0 = —3(4H?®% + 4HV(® — ) + ¥?) — 84 2WH*W — 30 2(90)?
G)"i = 8BHPO;® + 200;(® — 2T) + 4(® — 1)9, ¥
Go)' = dij {—4(3H2 +2H)®? — 200 4 U? — 4H(—30 T + 20P + 30F) — 4(® — xp)(I'f}
+ a*Q{a,-j(akcba@ 4200 (® — ) (4.3)
—2¥0;0;(® — V) + 0;¥0;V — 0;90;® — 0;90; ¥V — 0;¥0; P
+ (0,0; — 6,0%) (92 + 92} .

A.2 Pseudo stress tensor in FRW

Here, we show that in the non-relativistic, Newtonian limit (v/c < 1 and ¢9;/H > 1, where c is

the speed of light, which we take to be equal to unity in this work), the Einstein equations?’

M3GF, =T", , (A.4)

for the FRW metric in the Newtonian gauge Eq. (2.1) can be written as the conservation of a

pseudO stress tensor t v in the sense that
M v) =~ s .

where here and elsewhere, we use the symbol ~ to mean equal up to relativistic corrections in the
Newtonian limit. In general, the ¥ = 0 equation is of order H9?®, while the v = i equation is of
order H20;®. This is similar to what is done in [94], for example, in flat space.

To proceed, we write the various terms in Eq. (A.4) in powers of perturbations like
G“V = G#V + GL'LLV + GNLMV )

_ (A.6)

TMV = Tul/ + 6TMV ;

where G1,*, is linear in perturbations, Gnr,*, is non-linear, and d7T*, contains all the perturbations
of the stress-energy tensor. Writing the spatial part of the background stress-energy tensor as
Z/_’ij = 5ija2}5, the zeroth order Einstein equations give

3H2M}%1 = TOO , and — 2HM1%1 = TOO +p, (A?)

2"Here, M3, = 1/(87G ) is the Planck mass squared, and G is the Newton constant.
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while the perturbed Einstein equations are
Ml—%l(GL“V + GNL'uu) =0T", . (A,g)

Next, since the Bianchi identity V,G*, = 0 is a strict identity, regardless of any equations of
motion, it is true at each order in perturbations.?® In particular, it is true at first order

VuGL" + VEG', =0, (A.9)

where we have expanded the covariant derivative V,, = V,, + V/I; + ... (the actual derivative 0,
only appears in V). Now, we evaluate the two terms in Eq. (A.9). First, we look at

VuGL" = a?0u(a®GL",) — T, GL", . (A.10)

For the metric Eq. (2.1), we have
.Gy, =0

_ be , L. o (A.11)
[0\Gly = 6H((3H? + 2H)® + H(® + 3%) + ¥) + 2Ha 20%(@ — V) .

Since the second line above will be in the equation involving 9yG1.% ~ HO*V, only the last term
is relevant in the Newtonian limit. However, since we will eventually set ¥ = &, we drop that
term now to get

?MGL“,, ~ a_?’au(a?’GL“,,) . (A.12)

The next term we need in Eq. (A.9) is V,I;G“,,. We have
VLGly=—6H¥ , and V.G =—-2H0;® , (A.13)
which to leading order is (no sum on i),
VLGH, ~ —2H5,0,® . (A.14)
Then, combining this with Eq. (A.12) we have
a=30,(a*GL",) — 2H6,,0® ~ 0, (A.15)
and using the Einstein equations Eq. (A.8) to replace Gr*, gives,
a3, (a3 (Mp26T", — Gaity)) — 2HE,:0;® ~ 0 . (A.16)

Finally, we determine which parts of Gn1,*, contribute at leading order in the Newtonian limit.
First of all, G*,, only contains two derivatives, and since Gnp*, starts at second order, it has at
least two powers of the gravitational potentials. Thus, since the v = 0 equation contains terms
going like HO?®, Gnp Mo is always a higher relativistic order term in that equation. In the v =i
equation, however, the term that appears is GjGNLji, and since we have G(Q)j i ~ 0;®0;®, this

28The covariant derivative is V,.G”, = 3,G", + F;AGA,, —TI,G" .

43



term goes like 9;®0%®, which is a leading term in the relativistic counting (9oGn1"; has only one
spatial derivative, and so it is negligible in the leading non-relativistic order). All higher orders
in GNL/; are subleading, though. Thus, we have shown that Eq. (A.16) is exactly of the form
Eq. (A.5), with??

% ~ 6T% , % ~0T%, to=~dT', (A17)
t' ~ 0T — MEG 'y — 2MBEHS' ;1 '

and
CLQG(Q)ij ~ 52]6k<1>8k61> — 2BZ<I>8]<I> + 2 (8’Laj — 5ij82) H2 , (A18)

for & = .

A.3 Equations of motion

Next, we use the conservation of the pseudo stress tensor derived above to derive the equations of
motion for the dark-matter and baryon fluids. We start by writing the total stress-energy tensor
as the sum of the CDM and baryon stress-energy tensors

T, =T!, + T}, . (A.19)

We first consider the v = 0 case of Eq. (A.5). In the Newtonian limit, which is what we use for
the long-wavelength modes, one can take energy conservation and mass conservation to be the
same [4]. For the case of dark matter and baryons, there is a separate mass conservation for each
species. Taking into account this additional conservation law, we can split the v = 0 equation of
Eq. (A.5) into two separate equations

a"200(a®0T20) + 0;6T!g =0, and a 39(a®6TY o) + 0;0T}o =0 . (A.20)

These equations express the conservation of the total number of particles of each species separately,
and we will write them in a more familiar form below.

The v = i equation in Eq. (A.5), on the other hand, gives
a0y (a® (OTLi + 9T3%)) + 05 (8T + 0T] ) + T™0,0 = 0, (A.21)
where we have used that
~ 9, (MI%IGNLji + 2M§1H5jic1>) — 7999, (A.22)

which can be shown using the expression for Gy17; in Eq. (A.18), the background equation for a
pressureless field —2H M3, = T%, and the (00) Einstein equation (Poisson equation), which is, as
usual, at leading relativistic order,

6T = 2072 ME,0°® . (A.23)

29The indices on actual tensors, like the stress-energy tensor 7}, and the Einstein tensor G, are raised and
lowered by the metric gu., but indices on non-tensor quantities, like the Kronecker delta function §;;, spatial
derivatives 9; = 8/92", the fluid velocity v’, the momentum density 7*, and the pseudo-tensor t*;, will not be raised
or lowered with the metric. This is why the placement of indices is not always the same on both sides of an equation.
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Next, we observe that we should have two separate equations of motion for baryons and dark
matter. While this is quite intuitive, one can formally establish this by noting that in the early
universe the two fluids are weakly coupled, and so they give rise to two degrees of freedom. Clearly,
each equation of motion should be invariant with respect to diffeomorphisms, as they come, at
least formally, from the variation of a diffeomorphism-invariant action. Therefore, we can write
the separate evolution equations for 67°; and 5T19i in a general way that automatically satisfies

the total conservation of momentum Eq. (A.21) as

a0 (a®6T2;) + 0;0TI; + A\T0;® + ¢; = 0,

A A.24
a_380 (a3(5T£i) + 8]'(5Tgi + (1 — /\)Tooaicb —p; =0, ( )

for any time-dependent A and functional of the fields y;, and then we can constrain the forms of
A and ¢; by demanding diffeomorphism invariance for each of the two equations. Notice that at
this point, nothing specific has been assumed about each species’ equation of motion, since ; is
generic. Then, by demanding that each equation is separately diffeomorphism invariant, we are
assuming that the two species are independent degrees of freedom, as it is evident for dark matter
and baryons by thinking about their early universe dynamics.

The subset of diffeomorphisms that preserve the Newtonian gauge and that is relevant for the
Newtonian limit are the so-called Galilean transformations

t—t+a*n'(t)x’, and 2" — 2’ +nl(t), (A.25)

for generic time dependent n’(t), which act on the terms present in the equations of motion as3
9, = 8;, 0y— dy—n'0;, ®—®—diH+2Hn)",

7 7 0 0 (1 ( ) (A.26)

6T — 6720 | 6TY — 6T 4 A'TY | 6TY — 6T + 7 ST 4+ 7' 6T 4 ' T

where here and elsewhere, 0 € {c,b}, and where we neglected terms that contribute only at
relativistic level. It is straightforward to see that the continuity equations Eq. (A.20) are invariant,
so we move to the momentum density conservation equations Eq. (A.24). Imposing that each
equation in Eq. (A.24) is Galilean invariant and defining the transformation ¢; — @; + Ag;, we
find the single constraint

a?(it + 2Hn') (T — AXT™) + Ap; =0 . (A.27)

From this, we learn that we can set ¢; = p0;® + +, where ¢ and 7' are Galilean scalars, which

then imposes the constraint
AT 4 =T (A.28)

This means that the equations of motion Eq. (A.24) are
a=30y (a®6T75) + 0;0T);i + T°0:® +~' =0,

. , A.29
a=%00 (a®0Ty)) + 9;0T) i + T)°0;® — 4" =0 . (4.29)

30These transformations are simply inherited from the relevant diffeomorphism transformation rules.
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In order to write the equations Eq. (A.20) and Eq. (A.29) in a more familiar form, we parametrize

the stress tensors as

TC?O =—po , TC?Z- =am, , and T,;=-7% ~+7Y (A.30)
Po

which finally gives the standard Egs. (2.20) - (2.22). The form of this parametrization is of course
general, but the usefulness comes from two realizations. The first is that the effect of 7 on Do
and 7’ is perturbative at long distances, and the second is that dark matter and baryons do not
move too much in the history of the universe. This means that 7 can be written as local-in-
space powers and derivatives of p, and 7! [4]. In turn, this means that the counterterms for the
EFTofLLSS come in through the effective stress tensors 72 and TZj , and the effective force 7*, which
are all Galilean scalars. The important new possibility is a term 7% ~ H Tr}, which is allowed by
the symmetries, and is in fact generically needed to cancel UV divergences in the one-loop power
spectrum, as we explicitly show in Sec. 3.1.

Finally, we stress that we did not include counterterms in the continuity equations Eq. (2.20).
This is because our system is coupled to gravity, and the stress-energy pseudo-tensor t*, in
Eq. (A.5) is symmetric. Operationally, what this means is that whatever field appears in the
gradient 0; in the continuity equations Eq. (2.20) should appear in the time derivative in the
momentum equations Egs. (2.21) - (2.22), because t°; = —a?t’y. For example, if one wanted to
add counterterms of the form —a~19;F. to the right-hand side of Eq. (2.20), then we should have
Oo(ml + Fi) appearing in the momentum equations Eqgs. (2.21) - (2.22). Ultimately, this means
that the equations take the same form as those that we have presented.

B Perturbative solutions for two fluids

B.1 General equations

Here we study the structure of the perturbative solutions for two fluids. We start by neglecting the
role of the counterterms, to which we return in Sec. B.5. Therefore, neglecting counterterms, we

start with the equations of motion in the adiabatic-isocurvature basis. The continuity equations

are
0,0 0;0©
a5f4 — 04 =0 (6148214 + wbwc5182[> )
(B.1)
0,0 0,0 0,0
ady —O1 =0, <5A 821 + 01 82A + (wp — wc)5182[>

To derive the two-derivative equations in the most convenient form, it is easiest to start with
the momentum equations Eq. (2.21) and Eq. (2.22), then use the continuity equation in the form
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Eq. (2.20), from which we straightforwardly get

/ . . ..
a?8’s + <2 4 oA ) adly — ngéA = aiaj{gam (alaA 9j0a _ 9ij Or0a MA) (B.2)

H 92 02 2 92 92
0,04 0;0 0;©4 0;0 0,01 0;0
+(1+46a) aQA ]82A + 2wpwedy 82A 321 + wpwe [1 + 94 + (wp — we)o7] 821 ]821} ,
and
aM'’ 3 0i0 4 0;04 0,01 0,07 0,01
a?dy + <2+ % )WS,I = 50 (51 5 ) +8iaj{(1 +64) (2 52 Jé?? + (wp — we) 621 J82
004 0,04 0,04 0,01 0,07 0,01
+ 61( 5 ]82 +2(wp — we) =53 ]82 + (w§ — wywe — w?) 821 382 ) } . (B.3)

where Qy, = pa/ (3M1%1H 2) is the time-dependent matter fraction, Mp; is the Planck mass, and we
have used the dimensionless velocity divergence

®Y = —&v%/?{ y (B.4)
where T € {4, I}. We have also used
0;® = §Qm7-[ 52 (B.5)
and the identity
0i6a 0i64 0j04  0ij 0kda Okda
o (00 ) =00 (55 - R ) (B5)

to write the right-hand side of Eq. (B.2) as a double total spatial derivative. As we will see, the
derivative structure on the right-hand sides of the above equations determines the UV structure
of the solutions.

B.2 Linear solutions and EdS expansion

In ACDM, we expand the linear solutions as

W - Pa(@) <qy o 5 Da (@) o)z
8y (a,k) = Dy (a0)5A+(l<:)+e D, (ao)éA,(k),
s i (B.7)
(1) > oIy W,z 3 M- Wz
5; (a, k) =€ Dy, (o)l (k) + e 5 (00 (k) ,

where € = \/ain/ag. Note that for standard adiabatic initial conditions from inflation, we have
(51(413 (/3) = 0, but we keep that term for completeness here. We have normalized the linear solutions
so that at early times aj,, where there is a sizable isocurvature mode, the various free functions

contribute at comparable levels. We typically have in mind a;, ~ 5x 1073, a bit after recombination
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when §4 ~ d7, so we can think of € =~ 0.07. Neglecting radiation, the growth factors satisfy the

QQDZHE + (

a’Df, ( H (B.9)

second order equations

H > aD'y, — SQu(a)Da, =0, (B.8)

The growing and decaying solutions to Eq. (B.8) are given by [95]

5 H(a) [* day H(a)
D = " OmoH? , d D , B.10
A+ (a) 2 0 a 0 ,H(al)g an A_ (a’) HOQl/Q ( )
while the growing and decaying solutions to Eq. (B.9) are given by
1/2
a() HO Q a ao
D[+(CL) = const. 5 and D]; (CL) = . 2 /ain dalm . (Bll)

We have chosen all of the normalizations above so that the solutions approach their standard EdS
forms in the early universe (see Eq. (B.13)).

To investigate the loop structure, we work in the EdS approximation for simplicity, where
Oy =1 and aH'/H = —1/2. In that case, the linear equations are

a25,(41),/ + %G(SS)/ - %51(41) =0, and a25§1)” + §a5§1), =0. (B.12)

The general solutions to the above equations are

Y (B.13)
0 =2+ (L) a0
Finally, with Eq. (B.13), we can also find the solutions for the linear velocity divergences
1) a w35 (a\ 0z
k)= — k)— = 0y (k
o h) = L - 5o (L) W@,
. 12 (B.14)
1 a 1,7
o @ h) =3¢ () a0
0

(1)

Notice that the constant isocurvature solution § I, does not contribute to the isocurvature velocity
divergence, so the leading term for the isocurvature velocity is decaying.

Next, we would like to find the perturbative solutions in the EdS expansion to Eq. (B.2)
and Eq. (B.3). Let us start with the second order equations, and look at the right-hand-sides
of Eq. (B.2) and Eq. (B.3). At each perturbative order, each expression can be organized in an

expansion in powers of €, and all of the terms with a fixed power of ¢ will have the same time

48



dependence.?! This allows us to write the solutions for 5f) and 5?) as sums of terms with the

appropriate € and a dependence. Then, the solutions at higher and higher orders will contain more
and more distinct powers of €. For example, looking at Eq. (B.2) and Eq. (B.3), we see that

51(42) ~ a2 4 P l/2 4 (10,3 :
@ (B.15)
077 ~ a+eda? +Sa M+ a4 Ba 2.

This leads us to make the following ansatz for the growing and first-decaying modes of the solutions
e oy (SN T sy s (2 s

n—1 —1/2
n 7 a n), a n),
8 (a, k) = (Cm) <e25§+)(k¢)+e3 ((10) 5}_)(/<:)+...) .

While the general expansion contains many higher powers of €, which can easily be taken into

(B.16)

account in a code for example, we will focus on the terms shown above. The ansatz for the
velocity divergences, then, is

n—1 -3/2
n - a a n), = a n) ,
0" (a, F) = () <@gg<k> L () ol (&) +> |

aop
. a n—1 . a —1/2 .
@ﬁ”)(a,kb(a) 20 (k) + ¢ () oME) +... | .
0 ap

B.3 UV limit of one-loop terms

(B.17)

With the form of the equations in Sec. B.1, we can easily compute the leading UV behavior of the
one-loop power spectra. Looking at the adiabatic equation Eq. (B.2), we see that the adiabatic
power spectrum will always have the standard form. This is guaranteed because the interaction
terms on the right-hand side are all under 0;0;, and because of wave-vector conservation in Fourier
space, these derivatives will always turn into the total external wavenumber.

This means that the first place for us to look for the new terms in the UV is in (84 (k)d; (k). We
first look at the (22) diagram. Using Eq. (B.2) and Eq. (B.3), we have the schematic contributions

8,60 9.6V B,60V
5f)~aiaj< S | and 0P~ a6V (B.18)

which in the UV limit k1 > k gives

o\ [ (ERN (FR
Pil(a, k) — —€ <> / <k2> < o >pff(k1)Pﬁ(k1), (B.19)
k 1 1

ao

310ne can realize this by noticing that the dependence in a is through the combination a/ao, and there is a
symmetry of rescaling ap and e. Therefore, for any dependence in a, there is an associated dependence in ag, and
therefore in e.
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which is zero because it is odd in k7. This means that this contribution starts at k*, as anticipated.

To find a k? contribution, we look at <5§2)(a, E)(S?) (a,K')). For concreteness, we compute the
¢* contribution. Calling 5}21 the part of 5§2) that is relevant to compute the e*k? stochastic
contribution, we have

3 3 9,6
s Jol = o (2550 (320

and taking the €2 part, we have?

];: — —
- kkj2 1) — (1) —
82 (a, k) =L s (k)6 (K B.22
st (a: k) =€ a Ji i, k2 1+( 1) A+( 2) ( )

which gives

9 -
Pen ¢ (L) [ e - piteptie) . @29
1
in the UV limit k1 > k. This goes as k2, as expected, and vanishes if there is no isocurvature
mode.

Now we turn to the (13) diagram. First of all, the term (6f)(a, E)égl)(a,l_{’» will go like
k‘QPffr(k) because 61(43) has the standard form, as discussed above. This means that we should look
at

60 (a, £)6) (0, ¥')) . (B.24)

Using some simple observations, we can compute this contribution in the UV limit without fully
solving the equations of motion. First of all, terms going like k% P{4 (k) must absent in Eq. (B.24)
because of Galilean invariance, which our general construction in Sec. 2.1 shows (and we have
explicitly verified with the solution in Sec. B.4).3* So we look for contributions going like k° P (k)
or kOPff (k) (in reality, it is only the latter that is present, as we show below, and indeed is expected
on symmetry arguments, as explained in Sec. 2.1). This means that one of the factors of 551) is
an external leg, and the terms with the most factors of 81'59) /9% will be the ones with the k°
contribution.

We start by writing the solution for 5§?[)JV, where we use the subscript UV to denote the solution
relevant for the UV limit. Notice that all of the vertices with 9;0; in Eq. (B.3) will contribute k?,

and so will not produce the desired effect. Thus, we immediately see that

3 3 3 3. ( (206
a*oy" + Sadity’ = S0 (59 5| - (B.25)

32To save space, we introduce the notation

/ .= / / n(%f&@—éﬁ-) . (B.21)

,,,,,

33This is because the relevant counterterm that enters the 5;3) equation is 9;7%, and 4 is Galilean invariant. This
means that 4* ~ 7%, as opposed to 7%, and so the only available counterterm is o« 0;wt ~ ©;. In practice, the
reason that the k:opff(k) term does not show up in the full perturbative calculation is non-trivial and relies on the
cancellation of many terms, whose coefficients are related because of Galilean invariance.
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The term in 652) with the most derivatives in the denominator of the isocurvature mode comes

from
(1) (1) (1) (1)
(2) @ 7 _ 99, 0,0 9,0}’ 9,0
a0 (' 1y 3 51,le = 0,0, (2 82A j821 + (wp — we) 82I ]621 (B.26)
Notice that this UV contribution is proportional to the isocurvature velocity ol s (1), confirming
I I_

what we found in Sec. 2.1 based on general symmetry arguments.
Plugging in the linear solutions from Eq. (B.13) and Eq. (B.14), we have terms going like €3, ¢
and €% in (5}2%\,, all of which are easy to keep track of, but we will compute only the term leading

in € here. We have

) &.@(U 3'@(1)
a20%" +5 5§3W': 20,0, ( a2A | (B.27)
which has the solution
1/2 » op o P
2 i a k-kik -k cqy 2\ c) 7
07 (a,F) = —2¢° <> / 20 (B (k) (B.28)
ao k1, ko ki k3
Then, plugging this into Eq. (B.25), we find
3/2 k
3 - a k- ko k- plk‘l P2 1), o o(1) 7
i = (2) [ / S )00 (R . (B.29)
ao E1,k2 J P15 2p1 2
Finally, this gives, for k1 > k,
5/2 3
AT 3[4 AT dkl”'“QAA
(0 k) — € <a0> PA (k) / el k2P ) (B.30)

which we have confirmed with the full computation (i.e. using the recursion relations in Sec. B.4).
One can find similar UV divergences in, for example, (87(a, k)d;(a, k'), all of which, at one loop,
come from the solution for 5§ I)JV that we found above and so are adjusted by the same counterterm.
Notice, as mentioned in the main text, that this divergence is suppressed by a higher power of €

(1)

than if it were proportional to 6;

B.4 Recursion relations

In this subsection, we derive recursion relations for the perturbative solutions at leading orders in
e. For the standard recursion relations for dark matter, see [77, 96]. Specifically, we will work up
to order €3, which is necessary to find the counterterm needed to correct Eq. (B.30), for example.

(1)

From Eq. (B.16), we see that terms with two factors of §;’ starts at €, so we can ignore those
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terms for our purposes. Thus, the relevant equations for us are, in the EdS approximation,

k

aag(a,ﬁ)@A(a,E):[ alky, k2)da(a, k1)Oa(a, k)
k1,k2
, -1 - 3 - k B - -
a’@A(a7 k) + 7@A(a7 k) - 7514(0’7 k) . B(klka)@A(a7 kl)@A(a7 k?) )
2 ? ke (B.31)
; .
asy(a. )~ 1@ F) = [ alfF) (5i(aF)Oala,F) + Sala. F)OI(a.Fa))
k1,k2
| . k Lo . .
a®h(a.F) + 5010 B) = [ 23 R0l F)Os(0, o).
k1,k2
Next, we write the perturbative solutions, up to order €3, in the form
e, oy (2 507 m, - (2 o i
Wik = (L) 80® . ofwh = (L) el
. a n—1 R a n—3/2 .
8 (a, k) = € <> 5y () + € <> s (E) (B.32)
ag ago
. a n—3/2 .,
o ah=c (L) e,
ag -
and expand the momentum dependent parts as
(n) ¢ i moysW s )z
SO = [ FEE . E)o F)s) (R o) F)
’“;2'“”“" (B.33)
OB = [ Gh(R. R (ol ()60 ()
1y.esRm

where T' € {Ay,I,,I_}. The first-order kernels satisfy F =1 for ' € {Ay, I, 1 }, G'{” =
G{* =0, and G{’ = —1/2. At the order that we work, the equations for the adiabatic mode in
Eq. (B.31) are exactly the same as the standard dark-matter case, so the kernels Fi and Ght
are the same as in, for example [77, 96]. Thus, we concentrate on the isocurvature solution below.
Plugging the ansatz Eq. (B.33) into the equations of motion Eq. (B.31) and matching orders

in €, we find

Glr(ky,..  ky) =0, (B.34)
1 n—1

n—1
m=1

Fl (R, .. k) = o (zé’l;m, Em+1m) FIr (By, o k)G (Bt - s o)
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-1

3

Gl (Fry o F) = = 2 38 (R Fiin) Gl (o Fn) Gt (R, Fa) . (B.39)
m=1
;o . 1 n—1 . . e . A . .
Fi o) = =55 mZ:l a (kl;m,kmﬂm) Fl=(By, o k)G (Bt -+ o)
0 (Fnron, Fim ) Gl o R F (g, B [ - _13 50 (R

where we have defined Ei;j = l;z 4+ -+ /%.34 The fact that G,I{’ = 0 was to be expected, since
from Eq. (B.31), the isocurvature velocity divergence is sourced by a term proportional to the
isocurvature velocity divergence itself, for which the d7, contribution is initially zero. Of course,
these kernels are applicable to the case when g = 0, i.e. the linear counterterm is absent. We
discuss the case for g # 0 in the next subsection.

As a final comment, in a general cosmology, one normally uses the k-dependence of the EdS
solution and replaces a — D4 (a). This is percent-level accurate [98], and relies on

T@Da @ 1. (B.36)

The analogous procedure for implementing this for the solutions in Eq. (B.32) is

507 (a,F) = (D“‘”) SO . (e, By = Pasl? (o ) o ()

D, (ao) ~ Da, (ag) \ Da, (ao) *
n—1 n—1
ek =& (M) RO +€3119)II__<(0LD)> (5/?:(20))) E) (B:37)
(M) (0. B = — 30D1_(a) ( Da,(a) \" 7 [y
O, (a, k) = —2¢ Dy (ao) (DA+(CLO)> o, (k) ,

which additionally relies on
D) (a)/Di (a) 1
Df4+(a)/DA+(a) 2

This is approximately true for the cosmology used in this paper, where the ratio goes from —0.5

(B.38)

at early times, to —0.46 at the current time.

B.5 Expansion with linear counterterm

When one includes the linear relative-velocity counterterm, as in Eq. (3.35), the perturbative
expansion is somewhat different from what we have described previously in this section. This is
because there is not generally an EdS-like expansion where the time dependence of all of the terms

can be made the same (or approximately the same, as is done in the EdS approximation). As

34During the completion of this work, [97] appeared which derived the recursion relation for Fi* above.
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remarked in Sec. 3.4, although the growth factor D for the decaying isocurvature mode must be
treated as a free function, one still knows the k-dependence of the solutions. To see how this plays
out in perturbation theory, let us show an explicit example, namely the computation of (5§2) (a, E)

First, we show that even in the presence of the linear relative-velocity counterterm, the €
contribution to Oy is absent at every order in perturbation theory. The equations of motion for
the isocurvature mode, including the relative-velocity counterterm, up to order €3, are

adi(a) - O1(a) = 0, <5A(a) L 51(@‘9@‘%;(@)) |

@+ (1457 ) euta) ~ [ durgla.aneran) o0y (2D 2T

(B.39)

where we have suppressed the obvious spatial coordinates for notational convenience. As discussed
in Sec. 3.4, the linear solutions are 6§1)(a, k) = 62(552(];) + 3D (a)éﬁ)(l;:‘)/D% (ap) which implies

that @gl)(a, k) = 63GD?7,(G)5§1)(E)/D§7 (ap). Now, looking at the second equation in Eq. (B.39), it
)

theory, since the right-hand side is proportional to ©;. Thus, we have @3? =0 forn > 1.

is clear that since the € piece is absent in ol , it will be absent in all higher orders in perturbation

There is an €2 contribution to 5§n), for n > 2, from Eq. (B.39), though. Taking the €? piece of
the first equation in Eq. (B.39), and using that 6(1? =0, we have

M oy 0O
b =" 0 | 6] — | (B.40)
m=1

which can be solved using the expansion in Eq. (B.37), in the same way as if there were no
relative-velocity counterterm.

Now we focus on the decaying isocurvature mode, proportional to €3, which is affected by the
new counterterm. At linear order, we have 55-3)(a, k)= DI (a)éﬁ)(E) /DY (ap). The equation for
the second-order field is given by (ignoring terms with two isocurvature modes)

at'(a)
H(a)

a25§2_)”(a, E) + <2 + ) adg)'(a, E) — / daig(a,ay) aldg)’(al, E) = Sg) (a, E) ,  (B.41)

where the second-order source term is given by (this is easiest seen by working directly with the
momentum equations Eq. (2.21) and Eq. (2.22))

-

i
S (a, k) = /k <3Qm(a)a(k1,k2)5§”(a,k1)5gj(a,k2) (B.42)

1,k2

+2a(k1, F2)a(kz, 1)01 (a, 1)0') (a, k2)

where 51(411(a, k) = D,4+(a,)61(41}r (E)/DA+(ag), @qui(a, k) = aéfﬂ’(a, k), and @([1_) (a, k) = ad}i)’(a, k).
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Next, we must assume that there is a Green’s function, which we call Gg4(a, a1), to the non-local

linear equations. Then, after plugging in the liner solutions, we find

e = (B.43)
/:,752 [(Tl(a) + Tu(a)) a(ky, k2) + Ta(a)a(kr, ka)a(ka, Fr) + Ta(a)a(ky, k)| 87 (1)6'y) (F2)
where
10 - [ o ot S0

002 , D7 "(a1) D)y (a1)
1D9 _(a0)Da, (a) ~
Dg ,(GZ)DA+(Q/2

/ dal/ dazGg(a, a1)g(a, az)@ DY (ao)Da, (ao
a ai (a’2)D (GQ)
_/ dal/ dazGy(a, ar)g(a, az)az g S S

ao ao

Tr(a) = /a da1Ggy(a,ar)
(B.44)

~—

)

~—

However, since both Gy(a,a1) and g(a,a;) are unknown, we can just treat 7723 4(a) as free func-
tions. Although the time dependence is unknown, the structure of the equations still fixes some
of the momentum dependence. Higher orders in perturbation theory can be found in an analo-
gous manner. Realistically, though, the decaying isocurvature mode is expected to be very small
compared to other contributions in the power spectrum, so we leave exploration of this topic to
future work. We simply stress here that perturbation theory is not spoiled, at least as a matter of
principle, by the presence of the linear relative-velocity counterterm.

C Coefficient relationships

In this appendix, we relate the coefficients in the stress tensors Eq. (2.30) and Eq. (2.31) to the
coefficients appearing in the power spectra Eq. (2.37). Here, we work in an EdS universe, where
the counterterms are assumed to have the time dependences needed to cancel UV divergences.
Thus, these relationships are not strictly true in the real universe, but we include them here to
give an indication of the various contributions. First, we define

2 _ -2 2 2 2 -2
Coe = Q (wccc’g + cc’v) , Cop=a wbccg )

2 _ -2 2 2 _ -2
Che = “Welhy, Cpp=a (wbcby + cb’v + @(1)) , (C.1)
9 9 _ 2 2
Z=ck.+ck, and G =cltci.
We also define the adiabatic and isocurvature combinations
A =wet+wyés, and H=c —c . (C.2)
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Then we have

oy = s (C.3)

for o € {A, ¢, b}, and the coefficient related to non-locality in time is given by

5
5"7_'_25 _ 9 ) (C.4)
2(6+3) 13
Next, we have
9 /1 _
Clzlc = % (27T (Cic,g + 64210,11) - czbc%> )
R Y AR AN (C.5)
26 \ 27 9 v * ¢
9
cﬁA = wccﬁc + wchb + %wbch‘} ,
and finally
36 36
o= pa? (et dl) . and oy = (et olh) (C.6)

D Fitting procedure and tables of fit values

First, we give an example of how our fitting procedure for the ratio works at z = 2 to determine
{Acz(l), Ac?., Ac3.} and {Acz(l), Ac%b, Acib}. As mentioned in the text, kmax is the maximum k
that is included in the fit. We then choose kg; to be the maximum value of k.« where the best fit
values are consistent with the lower kpnax fits. In the following plots, the connected dotted points
are the best fit values, the dashed lines are the 1o error on the parameter, and the solid lines are
the 20 error. We say that the fit at a given k. is consistent with the lower k.« fits if the best fit
value at kpax lies within the 20 error bands of all lower k. fits. As can be seen in the following
plots, it is the baryon fit that determines kg, because the baryon ratio varies more over the range
of k’s considered (see Fig. 11, for example). If the parameters drift outside of the 20 regions at
different values of knyax, we use the lowest value for kg;. We see that the baryon parameters start
to drift outside of the 20 bands of the lower kpyay fits at approximately kmax ~ 1.8 h Mpc™!, which
is what we use for k,‘fﬁ (the kgt of the ratio, see Tab. 4). Finally, we also present the values of the
EFT parameters and errors measured in the fits in Sec. 4.
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Figure 17: Determination of Ac?, and kft.
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Figure 18: Determination of Ac3, and k.
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< Acgu)/kl?\m Acg(l)/]ﬁ?\m c§(1)/k1%1L
0 —0.26 4+ 0.32 4.3+0.24 12+ 6.6 x1072
0.125 0.034 4+ 0.23 474017 9.7+6.2 x1072
0.25 0.022 + 0.23 48+0.17 8.0+5.7 x1072
0.375 | 7.6 x 107°+0.24 | 4.6+0.17 6.4+ 5.0 x1072
0.5 —0.016 4 0.24 444017 42441 x1072
0.75 —0.036 4 0.24 3.94+0.18 24430 x1072
1 —0.038 +0.24 3.2+0.18 32+1.9 x1072
1.25 —0.040 £+ 0.24 2440.18 | —0.027+1.4 | x1072
1.5 —0.032+0.11 | 2140081 | 1.9+097 | x1072
1.75 | —0.0284+0.098 | 1.6+0.073 | 0.134+0.70 | x1072
2 —0.026 +£0.099 | 1.14+0.075 | 124050 | x1072
2.25 —0.21 £ 0.89 8.1+ 0.68 3.9+ 3.8 %1073
2.75 —0.11 £ 0.52 4.2 +0.40 7.0+2.2 x1073
3 —0.052 4 0.40 3.04+0.30 11+1.7 %1073
3.25 —0.047 +0.34 2.1+0.27 28+1.4 x1073
3.5 —0.011 + 0.27 1.5+ 0.22 1.2+ 1.1 x1073
3.75 0.0025 + 0.24 1.14+0.19 | 2.840.89 | x1073
4 0.013 4 0.22 0.734+0.18 | 7.0£0.72 | x1073

Table 1: Best fit and 1o errors for EFT parameters. Since the parameters are unitless, the columns have units given
by the explicit factors of knr,. All values of measured parameters and errors should be multiplied by the factor in

the last column.
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z Act. /KXy Ach /KRy, cls/ kL
0 0.53 4+ 0.68 —1.44050 | —29+77 | x1072
0.125 | —0.0049 £0.44 | —1.940.32 | —18+75 | x1072
0.25 | 0.019 +0.49 —224035 | —11+£73 | x1072
0.375 | 0.07440.54 —22+0.39 | —0.154+63 | x1072
0.5 0.12 £+ 0.60 —2.1+0.43 19+50 | x1072
0.75 0.18+0.74 —1.84+0.54 27+ 35 x1072
1 0.20 £ 0.90 —1.14+0.67 13+21 | x1072
1.25 0.22+1.1 —029+082| 27+14 | x1072
1.5 0.184+0.37 | —0.73+£0.26 | 9.7+9.5 | x1072
1.75 0.16 +0.36 —0.15+026 | 16+6.7 | x1072
2 0.15+0.43 0244032 | 6.7+45 | x1072
2.25 1.24+4.2 2.0+3.2 80+33 | x1073
2.75 0.76 £ 2.4 1.84+1.8 10+19 | x1073
3 0.50 £ 1.7 1.6+1.3 —33+15 | x1073
3.25 045+ 1.6 1.24+1.2 40+12 | x1073
3.5 0.28 +1.2 1.14+0.97 3.94+93 | x1073
3.75 0.21+1.2 0.84+0.91 | —11+75 | x1073
4 0.15+1.1 0.734+0.88 | —41+6.0 | x1073

Table 2: Best fit and 1o errors for EFT parameters. Since the parameters are unitless, the columns have units given
by the explicit factors of knr. All values of measured parameters and errors should be multiplied by the factor in

the last column.
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< Aci./kyy, Acy/kyy, Chs/FL
0 0.19+0.23 0.174+0.18 —40 + 56 x1072
0.125 0.030 +0.11 0.0030 £ 0.089 —27+48 x1072
0.25 0.033 +0.11 —0.078 4 0.090 —19+41 x1072
0.375 0.038 +0.12 —0.77 4+ 0.090 -9.94+31 x1072
0.5 0.040 + 0.12 —0.090 + 0.091 —0.62 + 20 x102
0.75 0.036 4+ 0.12 —0.060 £ 0.092 4.0+ 10 %1072
1 0.027 £0.12 0.019 + 0.092 1.4+4.2 x1072
1.25 0.020 £0.12 0.046 + 0.094 2.8+2.0 x1072
1.5 0.012 + 0.22 0.0093 £ 0.017 0.95+ 0.98 x1072
1.75 0.0075 £+ 0.017 0.018 +0.014 1.0 +0.49 x1072
2 0.0045 £ 0.017 0.028 + 0.014 0.46 £ 0.25 x1072
2.25 0.028 +0.14 0.15+0.11 3.7+1.3 x1073
2.75 0.010 £ 0.043 0.073 £ 0.035 0.71 4+ 0.46 %1073
3 0.0051 + 0.023 0.051 £+ 0.018 —0.20+£0.29 | x1073
3.25 0.0037 £+ 0.018 0.027 +0.014 0.14+0.16 x1073
3.5 0.0020 £ 0.011 0.017 +0.0087 | 0.029+0.10 | x1073
3.75 0.0013 =+ 0.0083 0.011 4+ 0.0067 | —0.089 £ 0.069 | x10~3
4 9.1 x 1074 £+ 0.0064 | 0.0083 £ 0.0052 | —0.26 +0.050 | x1073

Table 3: Best fit and 1o errors for EFT parameters. Since the parameters are unitless, the columns have units given
by the explicit factors of knr. All values of measured parameters and errors should be multiplied by the factor in

the last column.
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z kE [hMpe™t] | k& [hMpc™!]

0 0.320 0.80
0.125 0.333 1.18
0.25 0.349 1.21
0.375 0.369 1.25
0.5 0.392 1.25
0.75 0.450 1.25
1 0.520 1.25
1.25 0.602 1.25
1.5 0.695 1.7
1.75 0.798 1.8
2 0.910 1.8
2.25 1.03 1.9
2.75 1.30 24
3 1.44 2.7
3.25 1.60 2.9
3.5 1.76 3.2
3.75 1.93 3.4
4 2.11 3.6

Table 4: Values of kg, used in our fits: kg, is for the two-loop dark-matter-only power spectrum fit using Eq. (2.37),
and k& is for the ratio fit using Eq. (4.3).
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E Relaxing kfﬁ

Our procedure to determine kfﬁ(a), described in detail in App. D, has some ambiguity as to which
exact kL (a) we choose at each redshift. For example we choose the somewhat arbitrary, though
reasonable, condition that the central value drifts outside of the 20 regions of the lower values
of kmax. For that reason, we examine our choices of kf (a) in this Appendix. In Figs. (19) - (22),
we plot our fits for the adiabatic and baryon ratios, R4 and R?, compared to the non-linear data.
We plot our fits using the k£ (a) used in the rest of the paper (see Tab. 4) and the smaller, more
conservative, values 0.8 kf (a) and 0.6 k£ (a).

In the baryon fits, Fig. 19 and Fig. 20, we see that the fits with k% (a) have a slight residual
bending with respect to the non-linear data, particularly at low redshift, which suggests a slight
over-fitting 3°. However, one can see that the residual bend is absent when using 0.8 kf]-ft (a), which
justifies our ultimate choice, i.e. the overfit, if present, is very small. On the other hand, we see
that the adiabatic fits, Fig. 21 and Fig. 22, are very stable at low-k and do not show any residual
bending. As a check, we reproduced our lensing calculation using the fits with 0.8 k:fﬁ(a) in Fig. 23,
where we see that the result is virtually unchanged, apart from a slight increase in the theoretical
error, and it is still significantly smaller than the expected cosmic variane of CMB-S4 data. Notice
also that, as compared to the simulation result, our estimate of the theory error appears to be

extremely conservative.

z=0; kf’; =0.8 hMpc™ z=1, kfﬁ =1.25 hMpc™
1.010 , , , , 1.010;
kit
0.8 kfi [
1.005} 06 Kf 1'005f
o N
T & [
&' 1.000 &' 1.000
oF oF [
& S
0.995} 1 0.995}
. ‘ ‘ ‘ ‘ ‘ 0.99qL ‘
0-9985 0.2 0.4 0.6 0.8 1.0 85 0.5 1.0 15
k [h Mpc™'] k [h Mpc™]

Figure 19: Residuals of baryon fits compared to non-linear data at z = 0 and z = 1. In gray we plot the error on
the non-linear data that we used, 0.25%, which we see is justified by the scatter in the non-linear data. In particular,
we plot our results using k& (a) (solid curve), 0.8 k&% (a) (dashed curve), and 0.6 k&% (a) (dotted curve). We plot only
the error associated with k&% (a) to avoid clutter.

35Such a behavior of the fit is expected given that our way of determining k& (a) is such that the values of the
counterterms we choose with kmax = kg(a) begin to become slightly incompatible with the values at lower kmax’s.
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Figure 20: Residuals of baryon fits compared to non-linear data at z = 2 and z = 3. In gray we plot the error on
the non-linear data that we used, 0.25%, which we see is justified by the scatter in the non-linear data. In particular,

we plot our results using k£ (a) (solid curve), 0.8 k& (a) (dashed curve), and 0.6 k& (a) (dotted curve). We plot only
the error associated with kf(a) to avoid clutter.
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Figure 21: Residuals of adiabatic fits compared to non-linear data at z = 0 and z = 1. In gray we plot the error

on the non-linear data that we used, 0.25%. In particular, we plot our results using ki%(a) (solid curve), 0.8 k£ (a)
(dashed curve), and 0.6 k£ (a) (dotted curve).
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Figure 22: Residuals of adiabatic fits compared to non-linear data at z = 2 and z = 3. In gray we plot the error
on the non-linear data that we used, 0.25%. In particular, we plot our results using k%, (a) (solid curve), 0.8 kf (a)
(dashed curve), and 0.6 k£ (a) (dotted curve).
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Figure 23: Lensing calculation, same as Fig. 1, using fits with 0.8 k% (a). The central value of our calculation
remains virtually unchanged, although the theoretical error (gray band) increases slightly.
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