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Abstract We apply the Effective Field Theory of Large-Scale Structure (EFTofLSS) to analyze cos-
mological models with clustering quintessence, which allows us to consistently describe the parameter
region in which the quintessence equation of state w < −1. First, we extend the description of bi-
ased tracers in redshift space to the presence of clustering quintessence, and compute the one-loop
power spectrum. We solve the EFTofLSS equations using the exact time dependence, which is rel-
evant to obtain unbiased constraints. Then, fitting the full shape of BOSS pre-reconstructed power
spectrum measurements, the BOSS post-reconstruction BAO measurements, BAO measurements from
6DF/MGS and eBOSS, the Supernovae from Pantheon, and a prior from BBN, we bound the cluster-
ing quintessence equation of state parameter w = −1.011+0.053

−0.048 at 68% C.L.. Further combining with
Planck, we obtain w = −1.028+0.037

−0.030 at 68% C.L.. We also obtain constraints on smooth quintessence,
in the physical regime w ≥ −1: combining all datasets, we get −1 ≤ w < −0.979 at 68% C.L.. These
results strongly support a cosmological constant.
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1 Introduction and Summary
Introduction The analysis of the Full Shape (FS) of the BOSS galaxy power spectrum with the
Effective Field Theory of Large-scale Structure (EFTofLSS) at one loop has provided us with a mea-
surement of all parameters in ΛCDM with just a Big Bang Nucleosynthesis (BBN) prior [1, 2, 3]
(see also [4] for other prior choices and [1] for a joint analysis with the BOSS bispectrum using the
tree-level prediction). The combination with BOSS reconstructed measurements and baryon acoustic
oscillations (BAO) from eBOSS, as well as with supernovae redshift-distance or cosmic microwave back-
ground (CMB) measurements, has further allowed us to bound the total neutrino mass, and put limits
on the effective number of relativistic species, on smooth dark energy, or on curvature [1, 3, 5, 6, 7, 8].
In particular, the FS analysis can help constrain models invented to address the Hubble tension as it
provides measurements independent on the CMB or local distance ladders [9, 10, 11, 12].

All these results were made possible thanks to the development of the EFTofLSS, which is a powerful
tool to extract cosmological information from Large-Scale Structure surveys. A long line of study was
necessary to bring the framework to the level where it can be applied to the data. We therefore find fair
to add the following footnote where we acknowledge a fraction of its important developments, though
not all intermediate results are used in the present analysis 1.

1The initial formulation of the EFTofLSS was performed in Eulerian space in [13, 14], and subsequently
extended to Lagrangian space in [15]. The dark matter power spectrum has been computed at one-, two-
and three-loop orders in [14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. These calculations were accompanied by
some theoretical developments of the EFTofLSS, such as a careful understanding of renormalization [14, 26,
27] (including rather-subtle aspects such as lattice-running [14] and a better understanding of the velocity
field [16, 28]), of several ways for extracting the value of the counterterms from simulations [14, 29], and of
the non-locality in time of the EFTofLSS [16, 18, 30]. These theoretical explorations also include enlightening
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In this paper, we analyze the BOSS FS power spectrum using the EFTofLSS at one loop in the
context of clustering quintessence [64, 65, 66] and smooth quintessence. In clustering quintessence, dark
energy is made of a scalar field (the quintessence field) whose fluctuations have effectively zero speed
of sound, cs, and therefore ‘cluster’, as they can fall into gravitational potentials. It is a particularly
appealing model since the dark energy equation of state parameter w can cross the so-called phantom
divide, w = −1 and consistently describe the regime w < −1. This is allowed thanks to the presence
of higher-derivative operators in the Lagrangian that stabilize gradient instabilities, but this can only
happen if c2

s → 0 such that they remain not parametrically suppressed. Clustering quintessence has
been considered within the context of structure formation in [67, 68] and in the EFTofLSS in [53]
(see also [24, 54, 55] for embeddings of other dark energy theories in the EFTofLSS). In this work,
we extend the description to biased tracers in redshift space with exact-time dependence in order to
apply it to data from galaxy surveys. We remark that we find it quantitatively important to solve
the EFTofLSS equations with the exact time dependence, rather than with the approximate, so-called
‘EdS’, approximation. As for smooth quintessence, which has already been analyzed in light of the
BOSS FS and LSS data in [7], we will perform here the analysis by imposing a physical flat prior
−1 ≤ w on the smooth quintessence equation of state parameter. By wCDM, we refer to a Universe
that includes a smooth dark energy component, i.e. a scalar quintessence field with c2

s → 1, whose
perturbations can be neglected since the sound horizon is of the size of the cosmological horizon. In
this picture, w < −1 is an unphysical region where the vacuum is unstable, therefore we should analyze
wCDM excluding this region (see discussions in e.g. [69, 64]).

This paper is organized as follows. We compute the power spectrum at one loop in redshift space for
biased tracers with exact time dependence for the clustering quintessence model in Section 2. Further
details concerning this derivation are given in the appendices. In Section 3, we apply our framework
to LSS data.

Data sets We analyze the FS of BOSS DR12 pre-reconstructed power spectrum measurements [70],
baryon acoustic oscillations (BAO) of BOSS DR12 post-reconstructed power spectrummeasurements [71],
6DF [72] and SDSS DR7 MGS [73], as well as high redshift Lyman-α forest auto-correlation and
cross-correlation with quasars from eBOSS DR14 measurements [74, 75]. We also consider combi-
nations with Supernovae (SN) measurements from the Pantheon sample [76] and with Planck2018
TT,TE,EE+lowE+lensing [77].

studies in 1+1 dimensions [29, 31]. An IR-resummation of the long displacement fields had to be performed
in order to reproduce the Baryon Acoustic Oscillation (BAO) peak, giving rise to the so-called IR-Resummed
EFTofLSS [32, 33, 34, 35, 36]. An account of baryonic effects was presented in [37, 38]. The dark-matter
bispectrum has been computed at one-loop in [39, 40], the one-loop trispectrum in [41], and the displacement
field in [42]. The lensing power spectrum has been computed at two loops in [43]. Biased tracers, such as halos
and galaxies, have been studied in the context of the EFTofLSS in [30, 44, 45, 46, 47, 48] (see also [49]), the halo
and matter power spectra and bispectra (including all cross correlations) in [30, 45]. Redshift space distortions
have been developed in [32, 50, 47]. Neutrinos have been included in the EFTofLSS in [51, 52], clustering
dark energy in [53, 24, 54, 55], and primordial non-Gaussianities in [45, 56, 57, 58, 50, 59]. The exact-time
dependence in the loop has been clarified in [60, 61]. Faster evaluation schemes for the calculation of some of
the loop integrals have been developed in [62]. Comparison with high-fidelity N -body simulations to show that
the EFTofLSS can accurately recover the cosmological parameters have been performed in [1, 3, 63].
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Figure 1: 1D and 2D posteriors of w, H0 and Ωm in clustering quintessence from various analyses
performed in this work. When not analyzed in combination with Planck, we use a BBN prior.

Methodology We analyze the BOSS FS using the galaxy power spectrum in redshift space at
one loop in the EFTofLSS [47] following the methodology described in [1, 3]. The description of the
likelihood, including the covariances and priors used, can be found in [1]. The theory of biased tracers
in redshift space with exact time dependence in clustering quintessence cosmology at one loop is derived
in Section 2 (see also [61] which has already derived the same expressions, but just in real space, with
a different approach), and the scale cut up to which the FS is analyzed is discussed in Sec. 3.1. The
power spectrum is IR-resummed [32, 34, 35, 7], and includes corrections to observational systematics:
the Alcock-Paczynski effect [78], window functions [79], and fiber collisions [80].

We sample over the following cosmological parameters: the abundance of baryons ωb, the abun-
dance of cold dark matter ωcdm, the Hubble constant H0, the amplitude of the primordial fluctuations
ln(1010As), the tilt of the primordial power spectrum ns, and the quintessence equation of state pa-
rameter w. We impose no prior on the cosmological parameters but a BBN prior on ωb: a Gaussian
prior centered on 0.02235 with σBBN = 0.0005, obtained by adding up the theory and statistical errors
of [81]. We use the Planck prescription of one single massive neutrino with mass 0.06 eV as done in [77].
Allowing the EFT parameters to vary only within physical ranges, we impose priors on them as in [7].

The BAO measurements from the post-reconstructed BOSS power spectrum are correlated with
BOSS pre-reconstructed (FS) measurements. The joint analysis is described in [7] (see also [6]). When
adding BAO from 6DF/MGS or eBOSS, SN from Pantheon, or Planck data, we simply add the log-
likelihoods as these measurements are uncorrelated among each other. We neglect the small cross-
correlation between LSS data with Planck weak lensing and the integrated Sachs-Wolfe (ISW) effect.
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Main Results Our main results are best represented by Fig. 1. Fitting BOSS FS + BOSS recon-
structed BAO with a BBN prior on clustering quintessence, we are able to measure all cosmological
parameters. In particular, we determine the quintessence equation of state parameter w, the present
matter fraction Ωm, and the Hubble constant H0, to 18%, 8.2%, and 4.6% precision, respectively,
at 68% confidence level (C.L.), finding w = −0.867+0.17

−0.15, Ωm = 0.3456+0.03
−0.027, and H0 = 67.58+2.7

−3.5.
We also determine ln(1010As) = 2.64+0.16

−0.17 and ns = 0.8884+0.072
−0.059 at 68% C.L.. Upon addition of

the BAO measurements from 6DF/MGS and eBOSS, and SN measurements from Pantheon, we get
w = −1.011+0.053

−0.048, Ωm = 0.3099+0.012
−0.011, and H0 = 68.72+1.4

−1.6, which amounts to error bar reductions of
68%, 60%, and 52%, respectively. We also find ln(1010As) = 2.806+0.15

−0.16 and ns = 0.9335+0.054
−0.05 at 68%

C.L.. Adding Planck data, we finally constrain w, Ωm, and H0 to 3.3%, 2.4%, and 1.2% precision,
respectively, obtaining w = −1.028+0.037

−0.030, Ωm = 0.3055+0.0074
−0.0073, and H0 = 68.38+0.78

−0.84 , and also obtain
ln(1010As) = 3.046+0.014

−0.014 and ns = 0.9665+0.0042
−0.0036 at 68% C.L..

All analyses performed here show that our Universe is consistent with ΛCDM. First, clustering
quintessence in the limit w = −1 reduces to ΛCDM, and we find that w is consistent with −1 at . 68%

C.L. Second, the values obtained for the other cosmological parameters in clustering quintessence are
consistent within 68% C.L. with the ΛCDM ones obtained by fitting BOSS FS with the EFTofLSS [1,
2, 3], in combination with other probes [5, 6, 7], or fitting Planck alone [77] 2.

A similar observation applies when fitting wCDM with a flat prior on the dark energy equation of
state parameter of w ≥ −1. Fitting BOSS data with a BBN prior, we find in this case Ωm = 0.337+0.017

−0.022

and H0 = 68.6 ± 1.8, and we bound −1 ≤ w < −0.91 at 68% C.L. (−1 ≤ w < −0.81 at 95% C.L.).
We also get ln(1010As) = 2.77± 0.19 and ns = 0.885+0.069

−0.058 at 68% C.L.. Adding BAO measurements,
Pantheon SN and Planck data we obtain the very stringent constraint −1 ≤ w < −0.979 at 68% C.L.
(−1 ≤ w < −0.956 at 95% C.L.). Thus, allowing wCDM only within the physical region gives tight
posteriors that are also consistent with the ones obtained on ΛCDM fitting BOSS or Planck. This is
illustrated in Fig. 2.

We end this summary of the main results with a note of warning. It should be emphasized that in
performing this analysis, as well as the preceding ones using the EFTofLSS by our group [1, 3, 7, 9], we
have assumed that the observational data are not affected by any unknown systematic error, such as,
for example, line of sight selection effects or undetected foregrounds. In other words, we have simply
analyzed the publicly available data for what they were declared to be: the power spectrum of the
galaxy density in redshift space. Given the additional cosmological information that the theoretical
modeling of the EFTofLSS allows us to exploit in BOSS data, it might be worthwhile to investigate
if potential undetected systematic errors might affect our results. We leave an investigation of these
issues to future work.

Public Code The redshift-space one-loop galaxy power spectra in the EFTofLSS are evaluated
using PyBird: Python code for Biased tracers in ReDshift space [7] 3. The exact time dependence and
the clustering quintessence modifications are publicly available in PyBird. The linear power spectra are
evaluated with the CLASS Boltzmann code [82] 4. The posteriors are sampled using the MontePython
cosmological parameter inference code [83, 84] 5. The triangle plots are obtained using the GetDist

2With an exception on ln(1010As) which is consistent at ∼ 2σ with Planck.
3https://github.com/pierrexyz/pybird
4http://class-code.net
5https://github.com/brinckmann/montepython_public
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Figure 2: 1D and 2D posteriors of w, H0 and Ωm obtained by fitting clustering quintessence, wCDM
or ΛCDM to BOSS with a BBN prior. For wCDM, i.e. smooth quintessence, we restrict to the physical
region w ≥ −1. For comparison, we show the contours of Planck obtained in ΛCDM in the presence of
massive neutrinos. The neutrinos introduce additional degeneracies in the Ωm−H0 plane in the CMB
analysis. On the contrary, fixing the neutrinos when analyzing BOSS does not significantly change
the constraints on the shown cosmological parameters, see e.g. Table 2 in [3]. This plot illustrates
the consistency of the datasets as well as the consistency of the present analyses with a cosmological
constant.

package [85].

2 Biased tracers with exact time dependence in clustering
quintessence

In this section, we extend the study of biased tracers in redshift space with exact time dependence,
first studied in [60, 61], to clustering quintessence.

2.1 Review of the EFTofLSS with clustering quintessence
We start by reviewing the underlying equations of motion for dark matter and the dark energy compo-
nent. For a more detailed discussion, we refer the reader to [53]. In the EFT of dark energy, previously
studied in [64, 86, 65, 87], the dark energy degree of freedom is assumed to be the Goldstone boson
arising from the spontaneous breaking of time diffeomorphisms. To write the most general theory, we
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work in unitary gauge where the scalar degree of freedom appears in the metric. The gravitational
action will contain operators that break time diffeomorphisms, while remaining invariant under time-
dependent spatial diffeomorphisms. Up to second order in perturbations, and at leading order in the
derivatives, the action reads

SG =

∫
d4x
√
−g
[
M2

Pl

2
R−Λ(t)−c(t)g00

u +
M4

2 (t)

2
(δg00

u )2−m̄
3
1

2
δg00

u δKu−
m̂2

1

2
δK2

u−
m̂2

2

2
δKu,ijδK

ij
u

]
, (1)

where we use the ’u’ subscript, to emphasize that the metric in the action above is in unitary gauge.
Here δKij is the perturbation of the extrinsic curvature tensor, and δK is its trace. For simplicity,
in the following we work with m̄1 = 0, but it can be checked [64, 65] that this operator describes a
clustering quintessence at cosmological scales. The operators proportional to m̂i are negligible on large
scales as they scale as ∼ k4, but are necessary to guarantee the stability of perturbations, as discussed
below. To SG, we add the action for matter SM , which we take to be fully diffeomorphism invariant.
This guarantees that, once we explicitly reintroduce the Goldstone mode π, there will be no direct
couplings of π to matter.

The background equations we obtain from SG + SM are the familiar Friedmann equations:

3H2M2
Pl = ρm + ρD , (2)

−2ḢM2
Pl = ρm + ρD + pD , (3)

where we set the cold dark matter pressure pm = 0, and define the background dark energy density
and pressure by

c(t) = 1
2 (ρD + pD) , (4)

Λ(t) = 1
2 (ρD − pD) . (5)

From the Friedmann equations we obtain the background solutions for the dark matter and dark energy
densities:

ρm = ρm,0a
−3, ρD = ρD,0a

−3(1+w) , (6)

where the sub index 0 stands for the present day value, and we use the equation of state parameter
for dark energy w = pD/ρD. In the following, we will often use the present day fractional densities
Ωx,0 =

ρx,0
ρD,0+ρm,0

, with x ∈ {m,D}.
Starting from the action in unitary gauge, it is useful to explicitly reintroduce the Goldstone mode

doing the Stueckelberg trick. We perform the time diffeomorphism x0 → x0 + ξ0(~x, t) and xi → xi,
and then substitute ξ0(x)→ −π(x). The replacement rules for the coefficients and the metric are (for
details see for example [53])

c(t)→ c(t+ π) = c(t) + ċ(t)π + 1
2 c̈(t)π

2 + . . . , (7)

g00
u → g00 + 2g0µ∂µπ + gµν∂µπ∂νπ . (8)

Gravitational perturbations will be described by the spatially flat perturbed FLRWmetric in Newtonian
gauge:

ds2 = −(1 + 2Φ)dt2 + a(t)2(1− 2Ψ)δijdx
idxj , (9)
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where Φ and Ψ are the gravitational potentials, and we ignore tensor fluctuations. We then obtain the
action for the Goldstone boson π up to second order:∫

d4x
√
−g
[
pD + ṗDπ + 1

2 p̈Dπ
2 − 1

2(ρD + pD)
(
2Φ− 2π̇ + 4Φπ̇ − π̇2 + a−2(∂π)2

)
(10)

−(ρ̇D + ṗD)(Φ− π̇)π + 2M4
2 (t)(Φ− π̇)2

]
.

At short distances, one can focus on the action of the Goldstone boson. We can see that the kinetic
part is given by

Skin. =

∫
d4x
√
−g
[

1
2

(
ρD + pD + 4M4

2 (t)
)
π̇2 − 1

2 (ρD + pD) a−2∂2π
]
, (11)

and thus the speed of sound is
c2
s =

ρD + pD
ρD + pD + 4M4

2 (t)
. (12)

The theory must be free of ghosts, which implies that the denominator has to be positive. Therefore
the speed of sound needs to have the same sign as 1 + w. In particular, w < −1 implies c2

s < 0,
which would produce gradient instabilities. One can circumvent this instability by including the higher
derivative terms proportional to m̂1,2, which scale as k4 and give a stable dispersion relation at small
scales [64, 65]. In order for the higher derivative terms not to be highly suppressed (which would make
them irrelevant on cosmological scales), we need the speed of sound to be bound by |c2

s| < 10−30,
which means it is practically zero. These considerations hold also when a careful analysis including
the mixing with gravity is performed. Similar considerations are obtained by including the higher
derivative operator proportional to m̄1 [64, 65]. In conclusion, it is possible to have viable theories
with w < −1, but they need to have c2

s → 0, which are called clustering dark energy or clustering
quintessence. We notice furthermore that in order to have a stable theory, we need to have w & −2 if
we use the operators in m̂1,2, or ≥ −1.17 if we use the operator in m̄1 [64, 65] 6.

The name stems from the fact that the dark energy can cluster with the dark matter, and they
jointly contribute to the gravitational potential. Hence the adiabatic mode (i.e. the perturbations of
the total energy density, which source the gravitational potential) depends on both the dark matter and
dark energy perturbations. As a result, dark energy perturbations leave an imprint on biased tracers
such as galaxies, which are the main interest in this work. Therefore, next we wish to give a quick
overview of how we derive the equations of motion for the adiabatic mode in the presence of clustering
quintessence.

Before analyzing the equations for π, it is useful to write down the EFT equations for dark matter,
which couples to dark energy through gravity [53]:

δ̇m +
1

a
∂i((1 + δm)vim) = 0 , (13)

∂iv̇
i
m +H∂iv

i
m +

1

a
∂i(v

j
m∂jv

i
m) +

1

a
∂2Φ = −1

a
∂i

(
1

ρm
∂jτ

ij

)
, (14)

where δm and vm are the dark matter overdensity and velocity, ˙ = d/dt and τ ij is the effective stress
tensor.

6These lower limits will play essentially no role in our analysis, as the data constrain w to be far from this
boundary.
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Let us start analyzing the linear equations, and we will study the non-linear equations subsequently.
The linear equation for π [53, 65, 66], which we get from (10), reads:

1

a3

1

M4
2

d

dt

[
a3M4

2 (π̇ − Φ)
]

=
c2
s

1− c2
s

∂2π

a2
. (15)

This shows that, in the limit cs → 0, the RHS can be neglected. We can, therefore, write π̇ − Φ ∝
(a3M4

2 )−1, which is a decaying mode, assuming the speed of sound to be approximately constant.
In particular, we have ∂iπ̇ − ∂iΦ = 0, and, using the linear-level Euler equation (14), we get that
d
dt

[
avim + ∂iπ

]
= 0. This means that on the growing adiabatic mode we have

∂iπ = −avim , (16)

which implies that the two species are comoving. This will eventually allow us to write a closed set of
differential equations for the adiabatic mode, defined by δA = 2M2

pla
−2∂2Ψ/ρm. The Poisson equation

is [65, 66, 87]

a−2∂2Ψ =
ρm

2M2
pl

(
δm +

4M4
2

ρm
(π̇ − Φ)

)
. (17)

Using the definition of the adiabatic mode, we find

δA = δm +
4a3M4

2

ρm,0
(π̇ − Φ) = δm +

(1 + w)

c2
s

ρD,0
ρm,0

a−3w(π̇ − Φ) . (18)

We can now take the derivative of the above equation and plug in the equation of motion for π, Eq. (15),
the solution for ρD, Eq. (6), and substitute the dark matter velocity for the spatial derivatives of π,
Eq. (16). We then get

δ̇A = δ̇m −
1

a
(1 + w)

ρD,0
ρm,0

a−3wθm . (19)

= −1

a
C(a)θm,

where we have introduced the dark matter velocity divergence θm = ∂iv
i
m and we have defined

C(a) = 1 + (1 + w)
ΩD,0

Ωm,0
a−3w . (20)

We now move on to the full non-linear equations of motion for the adiabatic mode, which is
somewhat more technical. We will just mention the main results and refer to [53] (see also [88])
for more details. First, we can easily see that the two species remain comoving at non-linear level.
Using the equations of motion, one can show that δg00

u ∝ c2
s also at non-linear level. Taking a spatial

derivative, ∂iδg00
u = 0 in the limit c2

s → 0, yields

0 = ∂i
(
π̇ − Φ− 1

2a
−2(∂π)2

)
(21)

=
d

dt

(
avim + ∂iπ

)
+ vjm∂jv

i
m − a−2∂jπ∂j∂iπ . (22)
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This is satisfied by simply using Eq. (16), thus the two species are comoving also at non-linear level.
The full non-relativistic equation of motion for the dark energy field π is given by

− 2

a3
∂t
(
a3M4

2 δg
00
u

)
= M4

2

c2
s

1− c2
s

∂2π

a2
− 2a−2∂2πM4

2 δg
00
u , (23)

where we used that ∂iδg00
u = 0. The full Poisson equation introduces non-linearities in the definition

of the adiabatic mode, which reads

δA = δm −
(1 + w)

2c2
s

ρD,0
ρm,0

a−3wδg00
u . (24)

Now we can take a time derivative and obtain a non-linear continuity equation for the adiabatic
mode. The only difference is that we have to include the non-linear terms for δ̇m and we have an
additional term in the equations of motion for π on the right-hand side of Eq. (23). We then get

δ̇A = −1

a
C(a)θm −

1

a
∂i(δmv

i
m)− ∂2π

2aM4
2

ρm,0
δg00
u (25)

= −1

a
C(a)θm −

1

a
∂i(δmv

i
m) +

1

a
θm(δm − δA)

= −1

a
C(a)θm −

1

a
∂i(δAv

i
m),

where in the second line we use Eq. (24), and in the last line we use ∂iδm = ∂iδA.
Since the two species are comoving, θA = θm and the Euler equation for the adiabatic mode is

simply obtained by using the definition of the adiabatic mode in terms of the gravitational potential in
Eq. (14). We finally get the governing equations for the clustering quintessence - dark matter system
(without counterterms):

δ̇A +
1

a
C(a)θm = −1

a
∂i
(
δAv

i
m

)
(26)

θ̇m +Hθm +
3

2

Ωm,0H
2
0

a2
δA = −1

a
∂i
(
vjm∂jv

i
m

)
, (27)

where ρm/(2M2
Pl) = 3Ωm,0H2

0a0/(2a
3). As explained in [53], since clustering quintessence is comoving

with dark matter, there is no isocurvature mode, and the counterterms are the same as for standard
dark matter. To solve the equations above perturbatively we transform into Fourier space, where they
read (still neglecting the counterterms):

aδ′~k − f+θ~k =
(2π)3f+

C(a)

∫∫
d3q1

(2π)3

d3q2

(2π)3
δD(~k − ~q1 − ~q2)α(~q1, ~q2)θ~q1δ~q2 , (28)

aθ′~k − f+θ~k −
f−
f+

(θ~k − δ~k) =
(2π)3f+

C(a)

∫∫
d3q1

(2π)3

d3q2

(2π)3
δD(~k − ~q1 − ~q2)β(~q1, ~q2)θ~q1θ~q2 , (29)

and we drop the indices m and A from now on since we will only talk about the adiabatic mode.
We define δ = δA and θ = − C

f+aH
∂iv

i for the rescaled velocity divergence such that δ(1) = θ(1).
Furthermore, we use the scale factor as time variable such that ′ = d/da and defined the growth
rates f± = d lnD±

d ln a in terms of the growth factors, further discussed in Appendix A. We will not
use the commonly applied Einstein-de Sitter (EdS) approximation, where one approximates the time
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dependence of a perturbation by powers of the growth factor, for instance δ(n)
~k

(a)
EdS∝ Dn(a)δ

(n)
~k

(ai),
for some intital time ai. Instead, we will use the exact time dependence solution discussed below.
As we will see later, the EdS approximation significantly biases the determination of the cosmological
parameters in the presence of clustering quintessence.

Eqs. (28)-(29) are slightly different from the dark matter equations in the presence of smooth dark
energy with c2

s = 1, i.e. wCDM. In fact, in the limit (1 + w) → 0, with ΩD,0 =const, we recover, at
large distances where we can neglect the higher derivative terms, the equations of motion for the matter
overdensity in ΛCDM. This difference in the equations of motion between the two models results in a
modified definition of the time functions that appear in the exact time solutions for δ and θ. Exact
solutions for the adiabatic mode δ in the presence of clustering quintessence have been previously
studied in [53, 67, 88]. The time-dependent integral kernel solutions in Fourier space are given by [53]

K
(1)
λ (~q1, a) = 1 , (30)

K
(2)
λ (~q1, ~q2, a) = αs(~q1, ~q2)Gλ1 (a) + β(~q1, ~q2)Gλ2 (a) , (31)

K
(3)
λ (~q1, ~q2, ~q3, a) = ασ(~q1, ~q2, ~q3)Uλσ (a) + βσ(~q1, ~q2, ~q3)Vλσ2(a) + γσ(~q1, ~q2, ~q3)Vλσ1(a) , (32)

where repeated σ ∈ {1, 2} are summed over and λ ∈ {δ, θ}. The explicit time functions are defined in
Appendix A, and the momentum functions in Appendix B. The kernels in Eqs. (30)-(32), and in the
following sections are defined by

X(n)(~k, a) =

∫
d3q1

(2π)3
...
d3qn
(2π)3

(2π)3δD(~k − ~q1 − ...− ~qn) K
(n)
X (~q1, ..., ~qn, a) δ

(1)
~q1

(a)...δ
(1)
~qn

(a) , (33)

where X may for instance stand for δ or θ. In the next section, we will see how the solution with exact
time dependence for clustering quintessence leaves an imprint in the bias expansion of biased tracers
such as galaxies.

2.2 Perturbative expansions of δh and θh

To find the bias expansion for the galaxy overdensity δh following the exact time dependence solution
of the adiabatic mode, we can follow a procedure similar to [60]. Ref. [61] has also recently derived
the same results, using a different approach. Here equations will change with respect to [60], as a
consequence of the modified equations of motion for δA, relative to the equations for the dark matter
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solutions in wCDM. As has been previously studied in [30], the bias expansion for δh is given by

δh(~x, a) '
∫ a da′

a′
[
cδ(a, a

′) : δ(~xfl, a
′) : (34)

+cδ2(a, a′) : δ(~xfl, a
′)2 : +cs2(a, a′) : s2(~xfl, a

′) :

+cδ3(a, a′) : δ(~xfl, a
′)3 : +cδs2(a, a′) : δ(~xfl, a

′)s2(~xfl, a
′) : +cψ(a, a′) : ψ(~xfl, a

′) :

+cst(a, a
′) : st(~xfl, a

′) : +cs3(a, a′) : s3(~xfl, a
′) :

+cε(a, a
′) ε(~xfl, a

′)

+cεδ(a, a
′) : ε(~xfl, a

′)δ(~xfl, a
′) : +cεs(a, a

′) : εs(~xfl, a
′) : +cεt(a, a

′) : εt(~xfl, a
′) :

+cε2δ(a, a
′) : ε(~xfl, a

′)2δ(~xfl, a
′) : +cεδ2(a, a′) : ε(~xfl, a

′)δ(~xfl, a
′)2 : +cεs2(a, a′) : ε(~xfl, a

′)s2(~xfl, a
′) :

+cεsδ(a, a
′) : εs(~xfl, a

′)δ(~xfl, a
′) : +cεtδ(a, a

′) : εt(~xfl, a
′)δ(~xfl, a

′) :

+c∂2δ(a, a
′)

∂2
xfl

kM
2 δ(~xfl, a

′) + . . .

]
,

where we include all possible operators allowed by the equivalence principle, including stochastic con-
tributions and higher derivative terms. Their definitions are found in Appendix B. As for the dark
matter equations, since clustering quintessence is comoving with dark matter, there is no isocurvature
mode, and the bias expansion depends on the same fields as for the dark-matter-only universe [53].
The time-kernels, such as cδ(a, a′), that account for the time non-locality, can be formally integrated
over a′ after the perturbative solutions are substituted in. All operators (which are explicitly given in
Appendix B) are evaluated along the fluid line-element:

~xfl(~x, a, a′) = ~x−
∫ a

a′

da′′

a′′2H(a′′)
~v(a′′, ~xfl(~x, a, a′′)). (35)

This results in Taylor expansions in the fields around ~x given by

δ(~xfl(a, a′), a′) = δ(~x, a′)− ∂iδ(x, a′)
∫ a

a′

da′′

a′′2H(a′′)
vi(~x, a′′) (36)

+
1

2
∂i∂jδ(x, a

′)

∫ a

a′

da′′

a′′2H(a′′)
vi(~x, a′′)

∫ a

a′

da′′′

a′′′2H(a′′′)
vj(~x, a′′′)

+∂iδ(x, a
′)

∫ a

a′

da′′

a′′2H(a′′)
∂jv

i(~x, a′′)

∫ a

a′′

da′′′

a′′′2H(a′′′)
vj(~x, a′′′) + . . . .

It turns out that even in the presence of clustering quintessence, once we perturbatively expand the
overdensity and velocity, the time integrals in Eq. (36) can be done analytically and the solutions are
given in terms of the time functions and kernels that appear in Eqs. (30)-(32). This is explicitly derived
in Appendix C. Then, as mentioned before, after perturbatively expanding the fields, the time integrals
in Eq. (34) are formally done, and result in the definition of coefficients such as

cδ,1(a) =

∫ a da′

a′
cδ(a, a

′)
D+(a′)

D+(a)
, cδ2,1(a) =

∫ a da′

a′
cδ2(a, a′)

D+(a′)2

D+(a)2
, . . . . (37)

For a complete list see Appendix B. After this procedure, the resulting halo overdensity can then
be written as a sum of functions of time multiplied by functions of momentum. As was shown
in [60], some of the momentum functions are degenerate and can all be expressed in terms of the
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basis {I, α, β, α1, α2, β1, β2, γ1, γ2}, which are the kernels that appear in Eqs. (30)-(32). This is true in
wCDM as well as the clustering quintessence case, because the momentum functions are the same in
both cases, and only the time functions change. We can therefore write

K
(1)
δh

(~q1, a) = cδ,1(a) , (38)

K
(2)
δh

(~q1, ~q2, a) = cI,(2)(a) + cα,(2)(a)α(~q1, ~q2) + cβ,(2)(a)β(~q1, ~q2) ,

K
(3)
δh

(~q1, ~q2, ~q3, a) = cασ ,(3)(a)ασ(~q1, ~q2, ~q3) + cβσ ,(3)(a)βσ(~q1, ~q2, ~q3) + cγσ ,(3)(a)γσ(~q1, ~q2, ~q3)

+cα,(3)(a)α(~q1, ~q2) + cβ,(3)(a)β(~q1, ~q2) + cI,(3)(a) ,

where in the last expression a sum is implied over σ ∈ {1, 2}. The main reason that the time coefficients
ci change, relative to wCDM, is because the integrals from the flow terms that stem from the Taylor
expansion of Eq. (36) now have an additional dependence on C(a) (for a comparison see Appendix C).
The coefficients in Eq. (38) are explicitly defined in Appendix B. For more details on the derivation of
the halo overdensity kernels, see [60].

From here we can proceed in a very similar fashion to [60]. We reduce the number of coefficients by
looking for degeneracies in the time coefficients. Luckily all the identities from [60] still hold in a slightly
more general form. The main difference here is that we define the calculable function G = Gδ1 + Gδ2 ,
with Gδi defined in App. A, which for wCDM is G wCDM

= 1. The identities then read

cα,(2) + cβ,(2) = G cδ,1 , (39)

cα,(3) + cβ,(3) = 2G cI,(2) ,

cβ2,(3) + G cα,(2) − cα1,(3) =
G2

2
cδ,1 ,

cα1,(3) + cα2,(3) = cγ1,(3) + cγ2,(3) ,

cβ1,(3) + cβ2,(3) + cγ1,(3) + cγ2,(3) =
G2

2
cδ,1 ,

cγ1,(3) + cβ1,(3) =

(
3

14
+ Y (a)

)
cδ,1 ,

where in the limit G wCDM
= 1 we recover the identities from [60]. Y (a) is defined by

Y (a) = − 3

14
+ Vδ11(a) + Vδ12(a). (40)

However, it is useful to define

Ỹ (a) = − 3

14
G(a)2 + Vδ11(a) + Vδ12(a), (41)

so that, taking limits, we have Ỹ (a)
wCDM

= Y (a)
EdS
= 0. We can then write the final halo overdensity

(see also [61]):

δh(~k, a) = cδ,1(a)
(
C(1)
δ (~k, a) + G(a)C(2)

δ (~k, a) + G(a)2C(3)
δ (~k, a) + Ỹ (a)C(3)

Y (~k, a)
)

(42)

+ cα,(2)(a)
(
C(2)
α (~k, a) + G(a)C(3)

α1
(~k, a)

)
+ cI,(2)(a)

(
C(2)
I (~k, a) + 2G(a)C(3)

β (~k, a)
)

+ cβ1,(3)(a) C(3)
β1

(~k, a) + cγ2,(3)(a) C(3)
γ2

(~k, a)

+ cα,(3)(a) C(3)
α (~k, a) + cI,(3)(a)C(3)

I (~k, a) ,
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where we can see that no new Ci operators have to be included compared to the exact wCDM case
or EdS approximated case. The Ci are defined in the same way as in [60] and are explicitly given in
Appendix B. Similarly to what happens when we use the exact time dependence for smooth dark energy
and ΛCDM, we see that there are additional calculable time dependencies in the final bias expansion
for the galaxy overdensity. However, there are no new bias coefficients. We can take two interesting
limits to see how the above expansion generalizes previous models. In the G → 1 limit, we obtain the
galaxy overdensity in wCDM with exact time dependence. Furthermore, in the limit where we use the
EdS approximation, the time functions in Eqs. (30)-(32) become independent of a and with a value so
that G → 1 and Ỹ → 0. Eq. (42) can then simply be linearly transformed into the BoD basis from
[45], therefore the space spanned by the kernels in Eq. (42) is the same as the one spanned by the BoD
basis from [45] (for a transformation see [60]). For illustration, we plot in Fig. 3 the values of Ỹ and G
as functions of the redshift z = 1/(1 + a) and w.
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Figure 3: Ỹ and G as a function of redshift z and quintessence equation of state parameter w. We
show ΛCDM and wCDM cases for comparison. Notice that, as we argued earlier, for w < −1 we need
c2
s → 0 and thus for c2

s = 1, i.e. wCDM, w < −1 is not allowed in the EFT of dark energy. We,
nevertheless, plot it here for illustration.

In a last step, we write the expansion for θh, which appears in the redshift space expansion. For the
velocity divergence, there is no bias [47], up to higher derivative terms. We can thus model the velocity
divergence as a species of biased tracer. Specifically, we obtain the velocity divergence by plugging in

14



the following choice of functions into Eq. (42):

cθδ,1(a) = 1 (43)

cθI,(2)(a) = cθI,(3)(a) = cθα,(3)(a) = 0

cθα,(2)(a) = Gθ1(a)

cθβ1,(3)(a) = Vθ12(a)

cθγ2,(3)(a) = Vθ21(a).

The counterterms will take the exact same form as for wCDM [53, 60]. We will now transform into
redshift space and compute the power spectrum.

2.3 Galaxy Power spectrum in redshift space
As the next step, we wish to compute the full galaxy power spectrum in redshift space, which we will
later use to fit the data. As shown in [60], the EdS approximation has no influence on the transformation
into redshift space7. This means we can proceed in the same way as described in [47]. The galaxy
overdensity kernels in redshift space in terms of the real space quantities δh and θh are given by (without
counterterms)

K
(1)
δh,r

(~q1, a) = K
(1)
δh

(~q1, a) + f+ µ
2
1K

(1)
θh

(~q1, a) = b1 + f+ µ
2
1, (44)

K
(2)
δh,r

(~q1, ~q2, µ, a) = K
(2)
δh

(~q1, ~q2, a) + f+ µ
2
12K

(2)
θh

(~q1, ~q2, a)

+
1

2
f+ µ q

[
µ2

q2
K

(1)
θh

(~q2, a)K
(1)
δh,r

(~q1, a) + perm.
]
,

K
(3)
δh,r

(~q1, ~q2, ~q3, µ, a) = K
(3)
δh

(~q1, ~q2, ~q3, a) + f+ µ
2
123K

(3)
θh

(~q1, ~q2, ~q3, a)

+
1

3
f+ µ q

[
µ3

q3
K

(1)
θh

(~q3, a)K
(2)
δh,r

(~q1, ~q2, µ123, a)

+
µ23

q23
K

(2)
θh

(~q2, ~q3, a)K
(1)
δh,r

(~q1, a) + cyc.
]
,

where δh,r is the halo overdensity in redshift space. Using ẑ as the line of sight unit vector, we have
defined µ = ~q · ẑ/q, with ~q = ~q1 + · · ·+~qn, and µi1...in = ~qi1...in · ẑ/qi1...in , ~qi1...im = ~qi1 + · · ·+~qim . As we
mentioned previously, the counterterms and stochastic terms that come from real and redshift space
(see [47, 60] for a discussion) do not change in the presence of clustering quintessence. Therefore, the

7Of course since the halo overdensity in redshift space depends on δh and θh, the exact time dependence has
an impact, just not on the transformation itself.
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final expression for the galaxy power spectrum in redshift space, including the counterterms, reads

Pg(k, µ, a) = K
(1)
δh,r

(µ, a)2P11(k, a)

+ 2

∫
d3q

(2π)3
K

(2)
δh,r

(~q,k− ~q, µ, a)2P11(|k− ~q|, a)P11(q, a) (45)

+ 6K
(1)
δh,r

(µ, a)P11(k, a)

∫
d3q

(2π)3
K

(3)
δh,r

(~q,−~q,k, µ, a)P11(q, a)

+ 2K
(1)
δh,r

(µ, a)P11(k, a)

(
cct

k2

k2
m

+ cr,1µ
2 k

2

k2
m

+ cr,2µ
4 k

2

k2
m

)
+

1

ng

(
cε,0 + cε,2

k2

k2
m

+ cε,3f+µ
2 k

2

k2
m

)
,

where P11(k, a) is the time-dependent linear power spectrum for the adiabatic mode, km . kNL is the
comoving wavenumber which controls the bias derivative expansion, and ng is the background galaxy
number density. In the first line, we have the linear power spectrum in redshift space. In the second
and third line, we have the P13 and P22 contributions of the loop and in the fourth and fifth line we
have the counterterms and stochastic terms, respectively.

Finally, the power spectrum is IR-resummed following [32, 34, 35, 7]: as quintessence is comoving
with dark matter, the same equations hold. We then apply corrections to take into account the Alcock-
Pacszynski effect [78], window functions [79], and fiber collisions [80].
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Figure 4: One-loop galaxy power spectrum multipole ratio of wCDM or clustering quintessence, with
w = −0.95 and w = −1.05, to ΛCDM, at z = 0.57. We show for clustering quintessence the evaluation
with and without the EdS approximation. The evaluation in ΛCDM and wCDM are with exact time
dependence. The EFT parameters are the same for all evaluations, with values as the best fit of BOSS
on ΛCDM. The BOSS CMASS error bars are depicted for comparison. Notice that, as we argued
earlier, for w < −1 we need c2

s → 0 and thus for c2
s = 1, i.e. wCDM, w < −1 is not allowed in the EFT

of dark energy. We, nevertheless, plot it here for illustration.

In Fig. 4, we show the difference between the one-loop galaxy power spectrum multipoles ` =

0, 2 evaluated in different cosmologies: ΛCDM, wCDM and clustering quintessence, for w = −0.95

and w = −1.05. We also show the difference between the evaluation with and without the EdS
approximation for clustering quintessence. It is apparent that the difference between wCDM and
clustering quintessence is important with respect to the BOSS error bars. The difference between the
evaluation with and without the EdS approximation for clustering quintessence is clearly important,
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especially in the monopole. Given how large the differences in the power spectrum are, we expect to
see differences at the level of the posteriors of the cosmological and EFT parameters.

3 LSS data analysis
In this section, after calibrating the scale cut of the theory against simulations, we present the results
from fitting clustering and smooth quintessence to the BOSS FS, and its combinations with BAO, SN
and CMB measurements.

3.1 Tests against simulations
To assess the theory-systematic error of the FS analysis, we fit the power spectrum multipoles measured
from large-volume N-body simulations on clustering quintessence with a BBN prior. We consider two
independent realizations of the BOSS ‘lettered’ challenge simulations, which are boxes of side length
2.5 Gpc/h, described in e.g. [1]. The first realization is made of four boxes, labelled A, B, F, and
G, populated by four different Halo Occupation Distribution (HOD) models. The second realization,
labelled D, is populated by another HOD model. Using one box, we can measure for each cosmological
parameter the theory-systematic error as the distance in the 1D posterior of the 1σ region to the truth
of the simulation. Therefore, the theory-systematic error is zero if the truth lies within the 1σ region.
For A, B, F, and G, which are correlated, we average the posteriors for the cosmological parameters,
that we label ABFG. Moreover, we can combine ABFG with D, as they are independent realizations,
allowing us to measure the theory error using a volume about 14 times the one of BOSS data. To do so,
we combine for each cosmological parameter the 1D posterior of the shift of the mean with respect to
the truth, as the product of two Gaussian distributions. The distance of the 1σ region to zero in each
resulting 1D posterior gives a measure of the theory-systematic error for the combination ABFG+D.
For each cosmological parameter, the error bar obtained on ABFG+D represents the smallest theory-
systematic error which we can measure, which is between 0.3 · σdata and 0.5 · σdata, where σdata is the
error bar obtained by fitting BOSS data.

ωcdm h ln(1010As) ns w Ωm

σstat|σsys σstat|σsys σstat|σsys σstat|σsys σstat|σsys σstat|σsys
ABFG 0.007|0.000 0.027|0.000 0.11|0.04 0.044|0.000 0.139|0.000 0.021|0.000

D 0.006|0.000 0.018|0.000 0.11|0.04 0.039|0.000 0.093|0.000 0.014|0.000

ABFG+D 0.005|0.000 0.015|0.000 0.08|0.07 0.029|0.000 0.077|0.000 0.012|0.000

Table 1: 68%-confidence intervals σstat and theory-systematic errors σsys obtained fitting clustering
quintessence to the lettered challenge simulations with a BBN prior.

In Fig. 5 and Tab. 1, we show the results obtained by fitting the lettered challenge simulations at
scale cut kmax = 0.23hMpc−1. We find for all cosmological parameters zero theory-systematic error,
with the exception of ln(1010As), where we find a marginal theory-systematic error of 0.07, which is
∼ 0.4 · σdata

8. These results show that we can confidently fit the data up to kmax = 0.23hMpc−1 on

8Given the number of cosmological parameters, we find the likelihood of such a large value of one cosmological
parameter to be sufficiently high, so that we do not include this in the systematic error budget.
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Figure 5: Triangle plots obtained by fitting clustering quintessence to the lettered challenge simulations
with a BBN prior. The dashed lines represent the truth of the simulations.

our high redshift (zeff = 0.57) sample CMASS. For LOWZ sample at zeff = 0.32, we rescale the scale
cut as in [1] and fit up to kmax = 0.2hMpc−1.

3.2 LSS constraints
In Fig. 6 and Tab. 2, we show the results obtained by fitting BOSS FS+BAO, and in combination with
BAO measurements from 6DF/MGS and eBOSS, and with Pantheon SN, on clustering quintessence
with a BBN prior. We see that all cosmological parameters can be measured. For all analyses performed,
w is consistent with −1 at . 1σ.

BOSS BOSS+6DF/MGS+eBOSS BOSS+6DF/MGS+eBOSS+SN
best-fit mean±σ best-fit mean±σ best-fit mean±σ

ωcdm 0.1271 0.1346+0.011
−0.016 0.1188 0.122+0.0083

−0.0099 0.1196 0.1234+0.008
−0.01

H0 66.75 67.58+2.7
−3.5 66.99 67.35+2

−2.3 67.97 68.72+1.4
−1.6

ln(1010As) 2.733 2.64+0.16
−0.17 2.837 2.79+0.14

−0.16 2.848 2.806+0.15
−0.16

ns 0.9103 0.8884+0.072
−0.059 0.9406 0.9416+0.053

−0.051 0.972 0.9335+0.054
−0.05

w −0.878 −0.8666+0.17
−0.15 −0.9212 −0.9358+0.11

−0.092 −0.9928 −1.011+0.053
−0.048

Ωm 0.337 0.3456+0.03
−0.027 0.3166 0.3197+0.017

−0.015 0.3083 0.3099+0.012
−0.011

σ8 0.684 0.6675+0.061
−0.067 0.7043 0.7034+0.047

−0.057 0.7371 0.7285+0.043
−0.049

Table 2: Results obtained by fitting clustering quintessence to BOSS in combination with other
late-time probes with a BBN prior.
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Figure 6: Triangle plots obtained by fitting clustering quintessence to BOSS in combination with other
late-time probes with a BBN prior.

Physical considerations We now discuss why all cosmological parameters can be measured by
analyzing the FS using the EFTofLSS, and how the addition of the SN measurements helps to obtain
better constraints. Let us start with the contribution from the BAO information. The two angles
corresponding to the BAO components perpendicular and parallel to the line of sight are given by:

θLSS,⊥ '
rd(zCMB)

DA(zLSS)
θLSS,‖ '

rd(zCMB)

czLSS/H(zLSS)
. (46)

Here rd(zCMB) is the sound horizon at the end of the baryon-drag epoch zCMB, and DA(zLSS) and
H(zLSS) are the angular diameter distance and the Hubble parameter at the effective redshift of the
survey zLSS. As discussed in e.g. [1, 7], these angles carry information about h,Ωm and w. The
dependence on parameters is the same as in wCDM, as the angles only depend on the background
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geometry [7]:

θLSS, ‖(zLyα) ∼ Ω0.17
m h0.42|w|−0.11, θLSS,⊥(zLyα) ∼ Ω0.01

m h0.48|w|−0.19 ,

θLSS, ‖(zCMASS) ∼ Ω−0.02
m h0.49|w|−0.25, θLSS,⊥(zCMASS) ∼ Ω−0.12

m h0.53|w|−0.17 ,

θLSS, ‖(zLOWZ) ∼ Ω−0.10
m h0.52|w|−0.21, θLSS,⊥(zLOWZ) ∼ Ω−0.16

m h0.54|w|−0.12 ,

θLSS,V(z6dF) ∼ Ω−0.19
m h0.55|w|−0.07, θLSS,V(zMGS) ∼ Ω−0.18

m h0.55|w|−0.09 . (47)

where zLyα = 2.35, zCMASS = 0.57, zLOWZ = 0.32 and z6dF/MGS = 0.106. θLSS,V is a combination of
θLSS,⊥ and θLSS, ‖ (see e.g. [7]). The dependences on the cosmological parameters above and in the
rest of this section are obtained expanding around a fiducial cosmology (Ωm = 0.3, h = 0.7, w = −1).
Furthermore, the relative amplitude of the BAO wiggles with respect to the smooth part instead gives
a measurement of ∼ Ωmh

2 (though the amplitude is not part of the standard BAO analysis). Clearly,
at least in principle, this information allows for a determination of w,Ωm and h. Notice however that
the measurements for w and Ωm are strongly degenerate when using solely the BAO information from
CMASS and LOWZ, and the breaking of the degeneracy by measuring both θLSS,⊥ and θLSS,‖ is mild,
insufficient to get strong constraints [7]. Of course, the situation is greatly ameliorated by the addition
of the information from 6dF/MGS and eBOSS, but it is also ameliorated by the inclusion of the FS
analysis.

In fact, the FS contains information not only through the BAO signal, but also by its shape and
amplitude [1]. The shape depends on the equality scale, and therefore on Ωmh

2. The amplitude and
the anisotropy of the FS can be roughly summarized by the fact that the monopole and quadrupole
mainly depend on the combinations b1(z)2D+(z)2A

(kmax)
s and b1(z)f+(z)D+(z)2A

(kmax)
s . Here A(kmax)

s

is the amplitude of the linearly evolved power spectrum at the maximum wavenumber of our analysis,
A

(kmax)
s ∼ (k/k0)ns−1 (keq/kmax)2As, with keq being the wavenumber that re-enters the horizon at

equality and k0 the pivot scale. D+ and f+ are respectively the growth factor and growth rate of
the growing adiabatic mode. kmax is the maximum wavenumber of our analysis, which is where the
signal to noise is dominated. Given that there are two redshifts in BOSS, this clearly offers a way
to measure both As and ns, together with b1(zCMASS) and b1(zLOWZ). In this way, all cosmological
parameters are, at least in principle, measured. However, we should keep in mind that the FS offers an
independent measurement for each wavenumber, therefore, by combining the information from several
k’s, further information on w and Ωm is obtained. In fact, just by looking at the dependence at linear
level of the monopole and quadrupole at zCMASS and zLOWZ, one can see that on top of b1 and As,
one can measure the combination f(zCMASS)D(zCMASS)

f(zLOWZ)D(zLOWZ)

∣∣∣
clust.

, which, around the fiducial cosmology, goes

as ∼ Ω−0.12
m |w|0.44. This can be seen by using the fitting functions for D+ and f+ as a function of Ωm

and w given in [67], which read:

D+(a)

a
=

5

2
Ωm(a)

[
Ωm(a)4/7 +

3

2
Ωm(a) +

(
1

70
− 1 + w

4

)
ΩD(a)

(
1 +

Ωm(a)

2

)]−1

, (48)

f+(a) = C(a)

[
Ωm(a)4/7 +

(
1

70
− 1 + w

4

)
ΩD(a)

(
1 +

Ωm(a)

2

)]
,

where C(a) = 1 + (1 +w)ΩD(a)/Ωm(a). This is to be contrasted with the same ratio for the case of a
smooth dark energy component, namely wCDM, around the same cosmology: f(zCMASS)D(zCMASS)

f(zLOWZ)D(zLOWZ)

∣∣∣
wCDM

∼
Ω−0.12
m |w|0.006. We can see that the change in the dependence on w going from LOWZ to CMASS is
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stronger in the case of clustering quintessence compared to wCDM, physically originating from the
fact that clustering quintessence contributes to the clustering. The mild degeneracy present for wCDM
between Ωm and w is thus less pronounced in clustering quintessence when jointly fitting LOWZ and
CMASS. Furthermore, these measurements give different correlations between Ωm and w with respect
to the ones in θLSS, thus further breaking the degeneracies. This can be seen in Fig. 7, where we
compare the posteriors obtained fitting BOSS FS+BAO on clustering quintessence and wCDM. To
summarize, Ωm, h, w, As, ns and b1 can be measured from the BAO angles in combination with the
broadband signal.

By looking at the same Fig. 7, one can also see that in wCDM there is a large degeneracy in
lowering w and lowering As. This can be explained by the fact that, in wCDM with w < −1 (which,
we remind, is physically inconsistent at the quantum level but can still be analyzed as a model),
matter domination lasts longer, so that structures grow more and therefore the power spectrum is left
unchanged by lowering As. In clustering quintessence, this degeneracy is broken by the fact that the
adiabatic mode receives a contribution from clustering quintessence proportional to 1 + w. This can
be see from solving the linear equations, which, at early times, give (see e.g. [53], eq. (4.15)):

δA(aearly) =

(
1 +

(1 + w)

1− 3w

ΩD,0

Ωm,0

(
aearly

a0

)−3w
)
δm(aearly) , (49)

with a0 the present epoch and aearly a time early on during matter domination. This effect acts in
a direction contrary to the extra growth that one gets from the extension of the epoch of matter
domination for 1 + w < 0, in practice bounding the degeneracy between w and As.

Note that this discussion gives only rough estimates of the parameter dependence of the FS. In
practice, there is no separation between the broadband and the other sources of information within
the FS analysis as all the signal is analyzed up to the chosen scale cut. In particular, the loop provides
additional information. For example, the growth function enters as D4

+ in the loop, providing yet
another parametric dependence on w. In Fig. 7, we also show the posteriors obtained on clustering
quintessence with the EdS approximation. The difference with the posteriors obtained with exact time
dependence is clearly visible: most notably, about 0.2σ for H0 and Ωm, and 0.3σ for w. At the level
of the power spectrum in Fig. 4, the difference is somewhat larger in terms of error bars, but we should
remember that in that figure the EFT parameters are fixed. In particular, the large deviation that can
be seen in the monopole of Fig. 4 can be partially absorbed below the error bars with a small offset in
the shot noise cε,0/ng of ∼ 0.1. The difference we see between the EdS evaluation and the exact-time
one can be traced to the time functions, as for example G2, in some loop terms when evaluated with
exact time dependence: G(zLOWZ)2 ∼ |w|0.42 and G(zCMASS)2 ∼ |w|0.27. Because of this, the EdS
approximation leads to significant shifts in the posteriors for clustering quintessence.

Finally, the distance-redshift relation of SN data from Pantheon brings evidently more con-
straints. Approximately, the line degeneracy of the luminosity distance DL = (1 + z)2DA is
DL(z = 0.25) = Ω−0.05

m |w|0.1, which further helps break the degeneracy between Ωm and w when
fitting jointly with the FS and BAO.
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Figure 7: Triangle plots obtained by fitting clustering quintessence to BOSS with a BBN prior, with
or without the EdS approximation. For comparison, we show wCDM fit to BOSS with a BBN prior,
with and without physical prior w ≥ 1.

3.3 CMB+LSS constraints

In Fig. 8 and Tab. 3, we show the results obtained fitting clustering quintessence with Planck
data in combination with BOSS FS+BAO, BAO measurements from 6DF/MGS and eBOSS
and with Pantheon SN.

As expected and apparent from the posteriors, we can see that Planck gives precise mea-
surements on ωb, ωcdm, ln(1010As) and ns, while constraints on H0 or Ωm are obtained by the
combination with late-time probes, that break the degeneracy in the H0 −Ωm plane present in
the CMB. As discussed in the previous subsection, w is mainly measured thanks to low-redshift
measurements. However, the constraints on w are better when adding Planck since the pre-
cise measurements of the other cosmological parameters by Planck helps to further break the
degeneracies.
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Planck + BOSS BOSS+6DF/MGS+eBOSS BOSS+6DF/MGS+eBOSS+SN
best-fit mean±σ best-fit mean±σ best-fit mean±σ

100 ωb 2.238 2.239+0.014
−0.014 2.241 2.24+0.014

−0.014 2.239 2.24+0.015
−0.012

ωcdm 0.12 0.1197+0.0011
−0.0011 0.1196 0.1196+0.0011

−0.0011 0.1197 0.1197+0.00099
−0.0012

H0 68.17 68.74+1.6
−1.7 68.15 68.22+1.2

−1.4 68.54 68.38+0.78
−0.84

ln(1010As) 3.041 3.045+0.014
−0.015 3.047 3.046+0.014

−0.014 3.049 3.046+0.014
−0.014

ns 0.9648 0.9663+0.0042
−0.0039 0.9681 0.9666+0.0041

−0.0039 0.9647 0.9665+0.0042
−0.0036

τreio 0.05156 0.05487+0.007
−0.0078 0.05677 0.05534+0.007

−0.0075 0.05732 0.05507+0.0072
−0.0071

w −1.027 −1.041+0.064
−0.058 −1.019 −1.022+0.056

−0.047 −1.034 −1.028+0.037
−0.030

Ωm 0.3079 0.3027+0.014
−0.014 0.3073 0.307+0.012

−0.012 0.304 0.3055+0.0074
−0.0073

σ8 0.8162 0.8213+0.017
−0.018 0.8164 0.8162+0.015

−0.017 0.8204 0.8179+0.0097
−0.012

100 θs 1.042 1.042+0.0003
−0.0003 1.042 1.042+0.0003

−0.00028 1.042 1.042+0.00026
−0.00033

Table 3: Results obtained by fitting clustering quintessence to Planck and BOSS in combination
with other late-time probes.
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Figure 8: Triangle plots obtained by fitting clustering quintessence to Planck and BOSS in combination
with other late-time probes.
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3.4 wCDM with w ≥ −1

From an effective field theory point of view, there is no known theory, at least to us, that can
realize w < −1 with c2

s → 1. As discussed in previous sections, such theory has a negative
kinetic term. For a theory with no Lorentz-violating UV cutoff, the scalar perturbations are
unstable, and the vacuum decays into gravitons at an infinite rate [69]. Therefore, w < −1

would either need some other, physical, motivation or one can posit that w is not allowed to
be smaller than −1 in wCDM. By doing so, we get the results depicted in Fig. 7 obtained by
fitting BOSS data on wCDM with a BBN prior and a flat prior w ≥ −1. We see that the results
differ substantially from the ones obtained without a prior on w. In particular, the degeneracy
line w−H0, open when allowing w to vary below −1, can not be exploited to lift H0 to higher
values than the one found in ΛCDM analyzing CMB or LSS data.

In Fig. 9 and Table 4, we show the results obtained fitting BOSS, and in combination with
BAO measurements from 6DF/MGS and eBOSS, with Pantheon SN, and with Planck data,
on wCDM with a BBN prior and a prior w ≥ −1. BOSS data alone gives a mild constraint
−1 ≤ w < −0.91 at 68% C.L. (−1 ≤ w < −0.81 at 95% C.L.). Adding BAO information
and Pantheon SN, the constraints on H0 and especially Ωm improve, giving the much stronger
constraint −1 ≤ w < −0.96 at 68% C.L. (−1 ≤ w < −0.93 at 95% C.L.). Finally, Planck
improves this to −1 ≤ w < −0.979 at 68% C.L. (−1 ≤ w < −0.956 at 95% C.L.), which means
our Universe is consistent with a cosmological constant at 4% precision.

BOSS BOSS+6DF/MGS+eBOSS+SN Planck+BOSS+6DF/MGS+eBOSS+SN

best-fit mean±σ best-fit mean±σ best-fit mean±σ
100 ωb 2.247 2.236± 0.050 2.172 2.233± 0.050 2.243 2.246± 0.013

ωcdm 0.141 0.135+0.010
−0.015 0.106 0.1198+0.0071

−0.0080 0.18965 0.11896± 0.00094

H0 70.25 68.6± 1.8 65.0 68.0± 1.2 67.32 67.37+0.57
−0.45

ln(1010As) 2.703 2.77± 0.19 3.15 2.88± 0.16 3.044 3.050+0.013
−0.015

ns 0.8754 0.885+0.069
−0.058 1.026 0.953± 0.047 0.9728 0.9681± 0.0037

τreio − − − − 0.0529 0.0576+0.0067
−0.0079

w -0.9955 < −0.808(2σ) −0.936 < −0.927(2σ) −0.976 < −0.956(2σ)

Ωm 0.3325 0.337+0.017
−0.022 0.304 0.309± 0.011 0.3123 0.3131+0.0056

−0.0066

σ8 0.7345 0.728± 0.047 0.799 0.740+0.044
−0.050 0.8004 0.8054± 0.0072

Table 4: Results obtained by fitting smooth quintessence to BOSS in combination with other
late-time probes, and to Planck, with a prior w ≥ −1. When not fitting with Planck, we use a
BBN prior. For w, we quote the 95% confidence bound instead of the 68% confidence interval.
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Figure 9: Triangle plots obtained by fitting smooth quintessence to BOSS in combination with other
late-time probes, and to Planck, with a prior w ≥ −1. When not fitting with Planck, we use a BBN
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A Green’s functions

At linear order, the time dependence is completely captured by the growth factor, defined as
the solution of [37, 60]:

d2

d ln a2

(
D

H

)
+

(
2 + 3

d lnH

d ln a
− d lnC

d ln a

)
d

d ln a

(
D

H

)
= 0 , (50)

The equation has two solutions, a growing mode

D+(a) =
5

2

∫ a

0

C(ã)Ωm(ã)
H(a)

H(ã)
dã, (51)

and a decaying mode

D−(a) =
H(a)

H0Ω
1/2
m,0

. (52)

From these, we get the linear growth rates f± ≡ d lnD±
d ln a

, given as

f+(a) =

(
5

2

a

D+(a)
− 3

2

)
Ωm(a)C(a) , (53)

and
f−(a) = −3

2
Ωm(a)C(a) , (54)

where
Ωm(a) ≡ Ωm,0

H2
0

H(a)2
a−3 , ΩD(a) ≡ ΩD,0

H2
0

H(a)2
a−3(1+w) (55)

are the fractional matter and dark energy densities in terms of their present-day values Ωm,0

and Ωd,0. To construct higher order solutions, it is useful to define Green’s functions, coming
from equations (28) and (29):

a
dGδ

σ(a, ã)

da
− f+(a)Gθ

σ(a, ã) = λσδ(a− ã), (56)

a
dGθ

σ(a, ã)

da
− f+(a)Gθ

σ(a, ã)− f−(a)

f+(a)

(
Gθ
σ(a, ã)−Gδ

σ(a, ã)

)
= (1− λσ)δ(a− ã), (57)

where σ ∈ {1, 2}, λ1 = 1 and λ2 = 0. Explicitly they are given by

Gδ
1(a, ã) =

1

ãW (ã)

(
dD−(ã)

dã
D+(a)− dD+(ã)

dã
D−(a)

)
Θ(a− ã) , (58)

Gδ
2(a, ã) =

f+(ã)/ã2

W (ã)

(
D+(ã)D−(a)−D−(ã)D+(a)

)
Θ(a− ã) , (59)

Gθ
1(a, ã) =

a/ã

f+(a)W (ã)

(
dD−(ã)

dã

dD+(a)

da
− dD+(ã)

dã

dD−(a)

da

)
Θ(a− ã) , (60)

Gθ
2(a, ã) =

f+(ã)a/ã2

f+(a)W (ã)

(
D+(ã)

dD−(a)

da
−D−(ã)

dD+(a)

da

)
Θ(a− ã) , (61)
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where Θ(a− ã) is the Heaviside step function, W (ã) is the Wronskian of D+ and D−:

W (ã) =
dD−(ã)

dã
D+(ã)− dD+(ã)

dã
D−(ã) , (62)

and we impose the boundary conditions

Gδ
σ(a, ã) = 0 and Gθ

σ(a, ã) = 0 for ã > a , (63)

Gδ
σ(ã, ã) =

λσ
ã

and Gθ
σ(ã, ã) =

(1− λσ)

ã
. (64)

At second order, the resulting time-dependent functions are given by

Gδσ(a) =

∫ 1

0

Gδ
σ(a, ã)

f+(ã)D2
+(ã)

C(ã)D2
+(a)

dã , (65)

Gθσ(a) =

∫ 1

0

Gθ
σ(a, ã)

f+(ã)D2
+(ã)

C(ã)D2
+(a)

dã, (66)

for σ = 1, 2. At third order we have

U δσ(a) =

∫ 1

0

Gδ
1(a, ã)

f+(ã)D3
+(ã)

C(ã)D3
+(a)

Gδσ(ã)dã, (67)

U θσ(a) =

∫ 1

0

Gθ
1(a, ã)

f+(ã)D3
+(ã)

C(ã)D3
+(a)

Gδσ(ã)dã, (68)

Vδσσ̃(a) =

∫ 1

0

Gδ
σ̃(a, ã)

f+(ã)D3
+(ã)

C(ã)D3
+(a)

Gθσ(ã)dã, (69)

Vθσσ̃(a) =

∫ 1

0

Gθ
σ̃(a, ã)

f+(ã)D3
+(ã)

C(ã)D3
+(a)

Gθσ(ã)dã. (70)

The degeneracies pointed out in (39) result from the following identities:

Gδ1 + Gδ2 = Gθ1 + Gθ2 = G (71)

Vδ11 + Vδ21 = U δ1 + U δ2
Vθ11 + Vθ21 = U θ1 + U θ2
Vδσ1 + Vδσ2 = Vθσ1 + Vθσ2

Vδ11 + Vδ21 + Vδ12 + Vδ22 =
G2

2

Vθ11 + Vθ21 + Vθ12 + Vθ22 =
G2

2

U δ1 − Vδ22 =
G
2

(
Gδ1 − Gδ2

)
U θ1 − Vθ22 =

G
2

(
Gθ1 − Gθ2

)
where again σ ∈ {1, 2}. One can derive these relations using (65)-(70) and the fact that

Gδ
1(a, ã) +Gδ

2(a, ã) = Gθ
1(a, ã) +Gθ

2(a, ã) =
D+(a)

ãD+(ã)
Θ(a− ã) (72)

Gδ
1(a, ã)−Gθ

1(a, ã) =
W (a)

ãW (ã)

D′+(ã)

D′+(a)
Θ(a− ã). (73)

27



Furthermore, for the derivation of some of the flow terms in Appendix C it is important to use
the following relations:

Vδσ1(a) + Vδσ2(a) =

∫ a

0

D′+(ã)D+(ã)

C(ã)D2
+(a)

Gθσ(ã)dã , (74)

G =

∫ a

0

D′+(ã)

C(ã)D+(a)
dã , (75)∫ a

0

G(ã)
D′+(ã)D+(ã)

C(ã)D+(a)2
dã =

G2

2
. (76)

B Bias operators, Halo kernels and degeneracy of halo bias
parameters

In this section we quickly wish to outline how we get from equation (34) to (42). First, we define
the operators that appear in (34). In the exact same way as in [60], we follow the approach
used by [49], generalized to exact time dependence. Using

η(~x, t) = θ(~x, t)− δ(~x, t) , (77)

we define
sij(~x, a) = Dijδ(~x, a) and tij(~x, a) = Dijη(~x, a), (78)

where Dij =
∂i∂j
∂2 − 1

3
δij. Then we get the contractions

s2(~xfl, a) = sij(~xfl, a)sij(~xfl, a) , s3(~xfl, a) = sij(~xfl, a)sil(~xfl, a)sl
j(~xfl, a) , (79)

εs(~xfl, a) = εij(~xfl, a)sij(~xfl, a), εt(~xfl, a) = εij(~xfl, a)tij(~xfl, a) ,

st(~xfl, a) = sij(~xfl, a)tij(~xfl, a) .

Furthermore, ψ is given by

ψ(~x, a) = θ(~x, a)− δ(~x, a)−
(
Gδ1(a)− Gθ1(a)

)(
s2(~x, a)− 2

3
δ2(~x, a)

)
, (80)

so that it only starts at third order.
One can show that all operators in (34), including the flow terms, up to cubic order in the

fluctuations, can be expressed as linear combinations of the following nine momentum kernels
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(see [60], we can call the ‘exact-time’ basis or the ‘Greek’ basis):

I = 1 (81)

α(~q1, ~q2) = 1 +
~q1 · ~q2

q2
1

(82)

β(~q1, ~q2) =
(~q1 + ~q2)2~q1 · ~q2

2q2
1q

2
2

(83)

α1(~q1, ~q2, ~q3) = α(~q3, ~q1 + ~q2)αs(~q1, ~q2), (84)

α2(~q1, ~q2, ~q3) = α(~q3, ~q1 + ~q2)β(~q1, ~q2), (85)

β1(~q1, ~q2, ~q3) = 2β(~q3, ~q1 + ~q2)αs(~q1, ~q2), (86)

β2(~q1, ~q2, ~q3) = 2β(~q3, ~q1 + ~q2)β(~q1, ~q2), (87)

γ1(~q1, ~q2, ~q3) = α(~q1 + ~q2, ~q3)αs(~q1, ~q2), (88)

γ2(~q1, ~q2, ~q3) = α(~q1 + ~q2, ~q3)β(~q1, ~q2). (89)

The resulting redefinitions of parameters that appear in (38) and (42) are given by

cα,(2) = G · cδ,1 − cδ2,Gδ2 − cs2,1 (90)

cβ,(2) = cδ2,Gδ2 + cs2,1

cI,(2) = −G · cδ,1 + cδ2,Gδ1 + cδ2,Gδ2 + cδ2,1 + 2
3
cs2,1

cα1,(3) = 1
2
G2 · cδ,1 − G · cδ2,Gδ2 −

1
2

(
cδ,Gδ1 − cδ,Gδ2

)
+ cδ,Uδ1 − G · cs2,1 + cs2,Gδ2 −

1
2

(
cst,Gθ1 − cst,Gδ1

)
+ cψ,Uθ1 − cψ,Uδ1 + cψ,Gδ1 + 1

2
cs3

cα2,(3) = G · cδ2,Gδ2 − cδ,Gδ2 + cδ,Uδ2 + G · cs2,1 − cs2,Gδ1 − 2 cs2,Gδ2 −
1
2

(
cst,Gθ2 − cst,Gδ2

)
+ cψ,Uθ2 − cψ,Uδ2 + cψ,Gδ2 − cs3

cβ1,(3) = cδ,Vδ12
+ cs2,Gδ1 + 1

2

(
cst,Gθ1 − cst,Gδ1

)
+ cψ,Vθ12

− cψ,Vδ12
− cψ,Gδ1

cβ2,(3) = cδ,Vδ22
+ cs2,Gδ2 + 1

2

(
cst,Gθ2 − cst,Gδ2

)
+ cψ,Vθ22

− cψ,Vδ22
− cψ,Gδ2 + 1

2
cs3

cγ1,(3) =
(
Vδ11 + Vδ12

)
cδ,1 − cδ,Vδ12

− cs2,Gδ1 −
1
2

(
cst,Gθ1 − cst,Gδ1

)
+ cψ,Vθ11

− cψ,Vδ11
+ cψ,Gδ1

cγ2,(3) =
(
Vδ21 + Vδ22

)
cδ,1 − cδ,Vδ22

− cs2,Gδ2 −
1
2

(
cst,Gθ2 − cst,Gδ2

)
+ cψ,Vθ21

− cψ,Vδ21
+ cψ,Gδ2 −

1
2
cs3

cα,(3) = −3
2
G2 · cδ,1 −

(
Vδ11 + Vδ12

)
cδ,1 + cδ,Vδ11

+ cδ,Vδ12
+ G ·

(
2 cδ2,Gδ1 + 3 cδ2,Gδ2

)
− 1

2

(
cδ,Gδ1 + 3 cδ,Gδ2

)
+ 2G · cδ2,1 − 2 cδ2,Gδ2 + 7

3
G · cs2,1 − cs2,Gδ1 −

7
3
cs2,Gδ2 + 2

3

(
cst,Gθ1 − cst,Gδ1

)
− cδs2 − 1

2
cs3

cβ,(3) = −
(
Vδ21 + Vδ22

)
cδ,1 + cδ,Vδ21

+ cδ,Vδ22
− G · cδ2,Gδ2 + cδ,Gδ2

+ 2 cδ2,Gδ2 − G · cs2,1 + cs2,Gδ1 + 7
3
cs2,Gδ2 + 2

3

(
cst,Gθ2 − cst,Gδ2

)
+ cδs2 + 1

2
cs3

cI,(3) = G2 · cδ,1 − 2G
(
cδ2,Gδ1 + cδ2,Gδ2

)
+ cδ,Gδ1 + cδ,Gδ2 − 2G · cδ2,1 + 2

(
cδ2,Gδ1 + cδ2,Gδ2

)
− 4

3
G · cs2,1 + 4

3

(
cs2,Gδ1 + cs2,Gδ2

)
+ 2

9
cs3 + 2

3
cδs2 + cδ3
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where the coefficients that appear here are the symbolic integrals over the time-dependent
functions defined in Appendix A that come from the expansion (34).
They read

cδ,1(a) =

∫ a da′

a′
cδ(a, a

′)
D+(a′)

D+(a)
, (91)

cδ2,Gδσ(a) =

∫ a da′

a′
cδ(a, a

′)
D+(a′)2

D+(a)2
Gδσ(a′)

cs2,1(a) =

∫ a da′

a′
cs2(a, a′)

D+(a′)2

D+(a)2
cδ2,1(a) =

∫ a da′

a′
cδ2(a, a′)

D+(a′)2

D+(a)2
,

cs3(a) =

∫ a da′

a′
cs3(a, a′)

D+(a′)3

D+(a)3
cδ3(a) =

∫ a da′

a′
cδ3(a, a′)

D+(a′)3

D+(a)3

cδ,Uδσ(a) =

∫ a da′

a′
cδ(a, a

′)
D+(a′)3

D+(a)3
U δσ(a′) cδ,Gδσ(a) =

∫ a da′

a′
cδ(a, a

′)
D+(a′)3

D+(a)3
G(a′)Gδσ(a′)

cδ,Vδσσ̃(a) =

∫ a da′

a′
cδ(a, a

′)
D+(a′)3

D+(a)3
Vδσσ̃(a′) cδs2(a) =

∫ a da′

a′
cδs2(a, a′)

D+(a′)3

D+(a)3

cδ2,Gδσ(a) =

∫ a da′

a′
cδ2(a, a′)

D+(a′)3

D+(a)3
Gδσ(a′) cs2,Gδσ(a) =

∫ a da′

a′
cs2(a, a′)

D+(a′)3

D+(a)3
Gδσ(a′)

cst,Gδσ(a) =

∫ a da′

a′
cst(a, a

′)
D+(a′)3

D+(a)3
Gδσ(a′) cst,Gθσ(a) =

∫ a da′

a′
cst(a, a

′)
D+(a′)3

D+(a)3
Gθσ(a′)

cψ,Uδσ(a) =

∫ a da′

a′
cψ(a, a′)

D+(a′)3

D+(a)3
U δσ(a′) cψ,Vδσσ̃(a) =

∫ a da′

a′
cψ(a, a′)

D+(a′)3

D+(a)3
Vδσσ̃(a′)

cψ,Uθσ(a) =

∫ a da′

a′
cψ(a, a′)

D+(a′)3

D+(a)3
U θσ(a′) cψ,Vθσσ̃(a) =

∫ a da′

a′
cψ(a, a′)

D+(a′)3

D+(a)3
Vθσσ̃(a′)

cψGδσ(a) =

∫ a da′

a′
cψ(a, a′)

D+(a′)3

D+(a)3
Gδσ(a′)

(
Gδ1(a′)− Gθ1(a′)

)

30



For completeness, we here explicitly write the Ci operators that appear in (42):

∗C(1)
δ (~q1) = 1 (92)

∗C(2)
δ (~q1, ~q2) = β(~q1, ~q2)

∗C(2)
α (~q1, ~q2) = α(~q1, ~q2)− β(~q1, ~q2)

∗C(2)
I (~q1, ~q2) = 1

∗C(3)
δ (~q1, ~q2, ~q3) = − 3

14
α1(~q1, ~q2, ~q3) +

3

7
α2(~q1, ~q2, ~q3) +

2

7
β2(~q1, ~q2, ~q3) +

3

14
γ1(~q1, ~q2, ~q3)

∗C(3)
α1

(~q1, ~q2, ~q3) = α1(~q1, ~q2, ~q3)− α2(~q1, ~q2, ~q3)

∗C(3)
β1

(~q1, ~q2, ~q3) = −α2(~q1, ~q2, ~q3) + β1(~q1, ~q2, ~q3)− γ1(~q1, ~q2, ~q3)
∗C(3)

γ2
(~q1, ~q2, ~q3) = −α1(~q1, ~q2, ~q3) + 2α2(~q1, ~q2, ~q3)− β2(~q1, ~q2, ~q3) + γ2(~q1, ~q2, ~q3)

∗C(3)
α (~q1, ~q2, ~q3) = α(~q1, ~q2)− β(~q1, ~q2)

∗C(3)
β (~q1, ~q2, ~q3) = β(~q1, ~q2)

∗C(3)
I (~q1, ~q2, ~q3) = 1

∗C(3)
Y (~q1, ~q2, ~q3) = −α1(~q1, ~q2, ~q3) + 2α2(~q1, ~q2, ~q3)− β2(~q1, ~q2, ~q3) + γ1(~q1, ~q2, ~q3),

where the Ci are related to the ∗Ci by

C(n)
i (~k, a) =

∫
d3q1

(2π)3
. . .

d3qn
(2π)3

(2π)3δD(~k− ~q1− . . .− ~qn) ∗C(n)
i (~q1, ..., ~qn) δ

(1)
~q1

(a) . . . δ
(1)
~qn

(a). (93)

C Deriving flow terms

We here derive the flow terms coming from the Taylor expansion

δ(~xfl(a, a′), a′) = δ(~x, a′)− ∂iδ(x, a′)
∫ a

a′

da′′

a′′2H(a′′)
vi(~x, a′′) (94)

+
1

2
∂i∂jδ(x, a

′)

∫ a

a′

da′′

a′′2H(a′′)
vi(~x, a′′)

∫ a

a′

da′′′

a′′′2H(a′′′)
vj(~x, a′′′)

+∂iδ(x, a
′)

∫ a

a′

da′′

a′′2H(a′′)
∂jv

i(~x, a′′)

∫ a

a′′

da′′′

a′′′2H(a′′′)
vj(~x, a′′′) + . . . .

In the bias expansion from [30, 60] we integrate over time integral kernels such as cδ(a, a′), which
we will be including in the following. We will often us the former definition vi = −a2H

D′+
D+ C

∂i
∂2 θ,

as well as the star notation from (93).
First, we expand the overdensity and velocity divergence perturbatively. Apart from δ(2),
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the only second-order term is in the first line, which is given by

−
∫ a da′

a′
cδ(a, a

′) ∂iδ
(1)(a′)

∫ a

a′

da′′

a′′2H(a′′)
v(1)i(a′′) = (95)

=

∫ a da′

a′
cδ(a, a

′)
D+(a′)

D+(a)
∂iδ

(1)(a)

∫ a

a′
da′′

D′+(a′′)

C(a′′)D+(a)

∂i

∂2
θ(1)(a)

=

∫ a da′

a′
cδ(a, a

′)
D+(a′)

D+(a)
∂iδ

(1)(a)
∂i

∂2
θ(1)(a)

[
G(a)− D+(a′)

D+(a)
G(a′)

]
=
[
cδ,1(a)G(a)− cδ2,Gδ1 (a)− cδ2,Gδ2 (a)

]
∂iδ

(1)(a)
∂i

∂2
θ(1)(a)

wCDM
= cδ,12(a)∂iδ

(1)(a)
∂i

∂2
θ(1)(a) .

Next, we take this same term with δ at second order and v at first order. This gives

−
∫ a da′

a′
cδ(a, a

′) ∂iδ
(2)(a′)

∫ a

a′

da′′

a′′2H(a′′)
v(1)i(a′′) = (96)

=

∫ a da′

a′
cδ(a, a

′)

[
G(a)− D+(a′)

D+(a)
G(a′)

]
∂iδ

(2)(a′)
∂i

∂2
θ(1)(a) .

In Fourier space this reads

=
[
G(a)cδ2,Gδ1 − cδ,Gδ1

] (
α1(~q1, ~q2, ~q3)− α(~q1, ~q2)

)
(97)

+
[
G(a)cδ2,Gδ2 − cδ,Gδ2

] (
α2(~q1, ~q2, ~q3)− β(~q1, ~q2)

)
EdS
= [cδ,2(a)− cδ,3(a)] ∗[∂iδ

(2) ∂
i

∂2
θ(1)]~k(a),

Again, from the same term, we can take δ at linear and v at second order. We have

−
∫ a da′

a′
cδ(a, a

′) ∂iδ
(1)(a′)

∫ a

a′

da′′

a′′2H(a′′)
v(2)i(a′′) = (98)

=

∫ a da′

a′
cδ(a, a

′)
D+(a′)

D+(a)
∂iδ

(1)(a)

∫ a

a′
da′′

D′+(a′′)

C(a′′)D+(a′′)

∂i

∂2
θ(2)(a′′) .

In terms of Fourier space kernels this reads

=

∫ a da′

a′
cδ(a, a

′)
D+(a′)

D+(a)

∫ a

a′
da′′

D′+(a′′)D+(a′′)

C(a′′)D+(a)2
Gθ1(a′′)

(
γ1(~q1, ~q2, ~q3)− α(~q1, ~q2)

)
(99)

+

∫ a da′

a′
cδ(a, a

′)
D+(a′)

D+(a)

∫ a

a′
da′′

D′+(a′′)D+(a′′)

C(a′′)D+(a)2
Gθ2(a′′)

(
γ2(~q1, ~q2, ~q3)− β(~q1, ~q2)

)
=
[(
Vδ11(a) + Vδ12(a)

)
cδ,1 − cδ,Vδ11

− cδ,Vδ12

] (
γ1(~q1, ~q2, ~q3)− α(~q1, ~q2)

)
+
[(
Vδ21(a) + Vδ22(a)

)
cδ,1 − cδ,Vδ21

− cδ,Vδ22

] (
γ2(~q1, ~q2, ~q3)− β(~q1, ~q2)

)
EdS
=

1

2
[cδ,1(a)− cδ,3(a)] ∗[∂iδ

(1)(a)
∂i

∂2
θ(2)(a)]~k,
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where the expression for clustering quintessence takes the same form as for wCDM, and we
used (74).

In the second and third lines of (94) we can take all fields at linear order. We have∫ a da′

a′
cδ(a, a

′)
1

2
∂i∂jδ(x, a

′)

∫ a

a′

da′′

a′′2H(a′′)
v(1)i(~x, a′′)

∫ a

a′

da′′′

a′′′2H(a′′′)
v(1)j(~x, a′′′) (100)

+

∫ a da′

a′
cδ(a, a

′) ∂iδ(x, a
′)

∫ a

a′

da′′

a′′2H(a′′)
∂jv

(1)i(~x, a′′)

∫ a

a′′

da′′′

a′′′2H(a′′′)
v(1)j(~x, a′′′)

=

∫ a da′

a′
cδ(a, a

′)
1

2

D+(a′)

D+(a)
∂i∂jδ

(1) ∂i

∂2 θ
(1) ∂j

∂2 θ
(1)

∫ a

a′
da′′

D′+(a′′)

C(a′′)D+(a)

∫ a

a′
da′′′

D′+(a′′′)

C(a′′′)D+(a)

+

∫ a da′

a′
cδ(a, a

′)
D+(a′)

D+(a)
∂iδ

(1) ∂j∂
i

∂2 θ
(1) ∂j

∂2 θ
(1)

∫ a

a′
da′′

D′+(a′′)

C(a′′)D+(a)

∫ a

a′′
da′′′

D′+(a′′′)

C(a′′′)D+(a)

=

∫ a da′

a′
cδ(a, a

′)
1

2

D+(a′)

D+(a)

(
G(a)− D+(a′)

D+(a)
G(a′)

)2 [
∂i∂jδ

(1) ∂i

∂2 θ
(1) ∂j

∂2 θ
(1) + ∂iδ

(1) ∂j∂
i

∂2 θ
(1) ∂j

∂2 θ
(1)
]

(a)

=

(
G(a)2

2
cδ,1 − G(a)(cδ2,Gδ1 + cδ2,Gδ2 ) +

1

2
(cδ,Gδ1 + cδ,Gδ2 )

)[
∂i∂jδ

(1) ∂i

∂2 θ
(1) ∂j

∂2 θ
(1) + ∂iδ

(1) ∂j∂
i

∂2 θ
(1) ∂j

∂2 θ
(1)
]

(a)

wCDM
= cδ,123(a)

[
∂i∂jδ

(1) ∂i

∂2 θ
(1) ∂j

∂2 θ
(1) + ∂iδ

(1) ∂j∂
i

∂2 θ
(1) ∂j

∂2 θ
(1)
]

(a) .

For completeness, the flow terms from δ2 and s2 read

2
(
G(a)cδ2,1 − cδ2,Gδ1 − cδ2,Gδ2

)
[δ(1)∂iδ

(1) ∂
i

∂2
θ(1)]~k(a) (101)

wCDM
= 2cδ2,12[δ(1)∂iδ

(1) ∂
i

∂2
θ(1)]~k(a) ,

2
(
G(a)cs2,1 − cs2,Gδ1 − cs2,Gδ2

)
[s

(1)
lm∂i(s

lm)(1) ∂
i

∂2
θ(1)]~k(a) (102)

wCDM
= 2cs2,12[s

(1)
lm∂i(s

lm)(1) ∂
i

∂2
θ(1)]~k(a) .
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