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Abstract

This paper considers a typical logistics planning problem for transporting relief items over multiple periods to improve

the disaster relief efforts for an impending hurricane. Since the demand for relief items can not be known in advance,

we assume that the decision-maker (DM) receives forecast advisories about the hurricane’s characteristics sequentially

over time. This information is used to construct a Markov chain (MC) that predicts the hurricane attributes, such as

the landfall location and intensity, which are in turn used to estimate the demand. To solve this problem, we feed

this MC into a fully adaptive multistage stochastic programming (MSP) model. This MSP model allows the DM to

adapt their operational logistics decisions sequentially over time according to the state of the MC and the state of the

logistics system in terms of the relief item inventory allocated. We test this MSP model in a case study and compare

its performance to alternative deterministic models. Our preliminary numerical results show the effectiveness of this

approach.
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1. Introduction
Multistage stochastic programming (MSP) is a mathematical programming model for sequential decision-making un-

der uncertainty. In a typical MSP problem, the goal of the decision-maker (DM) is to construct an optimal policy

that prescribes decision-making over multiple stages of time known as the planning horizon T . To do this, in each the

decision stage t = 1, . . . ,T , the DM observes the current state of the system and influence its behavior by choosing

the action which optimizes his/her objective (e.g., minimizing the total expected cost or maximizing the total expected

profit). MSP models have a colorful range of applications in several areas such as energy [3], finance [5], transporta-

tion, and logistics [7], among others. In this paper, we are concerned with applying MSP models for hurricane relief

logistics planning.

Over the past few decades, many significant hurricanes have hit the United States (US). This resulted in heavy loss

of lives, numerous personal injuries, and consequential material damages. According to the National Oceanic and

Atmospheric Administration (NOAA), a total of 273 hurricanes struck the US between 1851 and 2004. Since 2005 –

the year in which the costliest hurricane in history, Katrina, made landfall in Louisiana – there have been at least 43

major hurricanes. Altogether, these major hurricanes have caused more than 600 billion dollars worth of damage in the

US and the Caribbean, making hurricanes to be among the costliest and the most frequently observed types of natural

disasters. Despite their tragic impacts, unlike other unpredictable natural disasters such as earthquakes, hurricanes can

be detected a few days before they make landfall. Hence, the (forecast) information provided by such early detection

can be leveraged by humanitarian and governmental agencies to prepare and strategically deploy physical and non-

physical resources, such as first-aid commodities, food, water, housing, backup power generators, etc., in what is

known as the pre-disaster logistics planning. Given the evolving uncertainty associated with the hurricane intensity

and the potentially affected locations from which DMs expect requests for relief items, it is natural to consider using

an MSP model to characterize and improve pre-disaster logistics planning.

In this paper, we consider a typical hurricane relief logistics planning situation for prepositioning relief commodities

after a hurricane has been predicted to make landfall within a few days. From the possible locations where the

hurricane is predicted to make landfall, we define an affected potential area (APA) that is at risk of being affected by



the hurricane. Within the APA, there is a set of demand points (DPs) that represent the locations from which we can

expect requests of relief items once the hurricane makes landfall. Such relief items can be shipped from a set of supply

points (SPs), including the main distribution center (MDC). To that end, the goal of the DM is to design an optimal

policy for prepositioning relief items for different SPs and DPs over time. In this context, the optimality of such policy

is characterized by minimizing the overall logistics cost plus the cost of failing to meet the demand for relief supplies.

To construct such policy, we propose an MSP model which allows the DM to adapt the sequential prepositioning

decisions over time as new information about the hurricane characteristics arrives. We evaluate this model in a case

study against several deterministic alternative models that serve as the benchmark policies.

The remainder of this paper is organized as follows. Section 2 reviews the literature on applying mathematical models

for hurricane forecast and hurricane relief logistics. In Section 3, we present the problem description. In Section 4, we

discuss the proposed MSP formulation. In Section 5, we describe the implementation details and present our proposed

approach’s numerical results in a case study. Finally, in Section 6, we conclude with some final remarks.

2. Literature Review
In the literature, there is a good deal of work on applying mathematical models to address the different aspects of

hurricanes. This includes predicting the hurricane’s intensity and track using forecasting models [e.g., 2]; making

decisions about the evacuation, rescue missions, and distributions of emergency supplies [e.g., 13]; diesel fuel supply

chain [e.g., 6], among others. Amongst the models most closely related to the one presented in this paper are the

ones presented in [10, 11]. Here, the authors consider the problem of prepositioning relief items in preparation for the

immediate aftermath of hurricane landfall. In this problem, the DM receives sequential forecast advisories – issued

by the National Hurricane Center (NHC) every six hours – about the predicted wind speed at the time of the hurricane

landfall. Then, the DM uses this information to construct a policy for prepositioning the relief items. As it is common

to assume that earlier advisories have greater uncertainty, whereas logistic costs are much lower at the earlier stages

of planning, the actions ought to be taken by the DM can, therefore, be separated into two layers: (i) when starting

the prepositioning process; and (ii) how much relief items should be propositioned at the different predicted demand

locations. In [10], the authors approach this problem as an optimal stopping problem, whereas, in [11] the authors use

a combination of decision theory and stochastic programming techniques.

One major drawback to the model presented in [10] is that the authors assume that the hurricane’s forecast advisories

– received by the DM – are statistically independent of one another. This issue, however, is addressed in [11], where

the authors model the dependency between sequential forecast advisories using a Markov chain (MC). In this context,

it is assumed that the next forecast depends on the history of advisories through only the current state only, and not

on the previous ones. Another prominent feature of the work presented in [11] is that the model uses a dynamic

approach for prepositioning the relief items. Here, unlike the static model presented in [8], where the DM commits

to a single prepositioning decision only for the entire planning horizon, this dynamic approach allows the DM to

adapt those decisions as new information about the hurricane arrives. To construct such dynamic policy, the authors

decompose the state of the system throughout the planning horizon into three possible states: (i) an initial state where

no prepositioning has been made yet; (ii) an active state where prepositioning decisions can be made; and (iii) a final

state where the estimated time until the hurricane makes landfall would not be enough to perform any prepositioning

operations. At first (time t = 1), the system is assumed to be at the initial state. Then, for each subsequent period, the

DM has to decide whether to start the prepositioning operations or wait until the next forecast advisory arrives. If the

DM chooses to begin the prepositioning operations, the system evolves into the active state where the DM needs to

determine the amount and locations of the relief items to be prepositioned by using the available less accurate forecast

information but with a lower logistics cost. Otherwise, the DM waits until the next time period and faces the same

dilemma again with a more accurate forecast but at a higher logistics cost. Finally, once the estimated remaining

time until the hurricane makes landfall becomes smaller than the time required to perform any prepositioning activity,

the system evolves into the final state, and no more prepositioning is made. To solve this problem, the authors do

the following. First, they consider a set of scenarios S, where each scenario s ∈ S for a hurricane occurrence is

characterized by three attributes: (i) location, (ii) intensity, and (iii) time of landfall. Second, for a given scenario

s ∈ S, to determine if a given time period ts ≤ T is the best time to start prepositioning, the authors evaluate the cost of

acting at time ts compared to waiting for an additional period (i.e., time ts +1). If the cost of waiting is lower than the

risk of acting, the decision of initiating the prepositioning is postponed for time ts +1. Otherwise, the prepositioning

is initiated at time ts. To measure the difference between the cost of acting now and the risk of waiting, the authors

use a decision theory approach that minimizes the expected cost and the maximum regret. In this paper, we consider a



similar problem of prepositioning relief supplies like the one presented in [11]. We also use the Markovian structure for

modeling the underlying stochastic process to predict the hurricane’s characteristics over time. However, we impose

the adaptability of sequential decision-making to the arrival of new information more explicitly via an MSP model.

3. Problem Description
We consider a typical problem setting for relief supply prepositioning in disaster relief logistics planning. The un-

derlying logistics process can be modeled as a multi-period network flow problem. The logistics network is modeled

as a directed graph G = (V,A), where the set of nodes V = {0}∪ I ∪ J consists of the MDC (denoted by node 0), a

set I of SPs, and a set J of DPs. All relief items can be procured from the MDC. From there, the relief items can be

propositioned at the different SPs over a planning horizon of T periods before the hurricane makes landfall at time T .

Then, after the hurricane makes landfall, the items can be delivered from those SPs, as well as the MDC, to the DPs.

Relief items can also be rerouted between different SPs at any point in time during the planning horizon. The objective

is to minimize the total expected cost for serving the demand for relief items, which is modeled as a random variable

denoted by d̃ j, ∀ j ∈ J.

The overall cost function consists of two components: (i) logistics cost, and (ii) penalty cost for failing to serve the

demand shortage (if any is present). The logistics cost consists of three different components, (1) transportation cost,

(2) inventory holding cost, and (3) procurement cost. We denote the unit cost of transporting relief items from an SP

or the MDC i ∈ {0}∪ I to a DP j ∈ J by ca
i j and the unit cost of transporting/rerouting the relief items from the MDC

and an SP i ∈ {0}∪ I to (and between) the different SPs i′ ∈ I by cb
ii′,t . We also denote the unit inventory cost at an SP

i ∈ I by ch
i,t and the unit procurement cost by h. Moreover, we denote the penalty cost for each unit of demand shortage

by p, and in case the total amount of relief items across all the SPs exceeds the total amount of demand across all the

DPs, the surplus can be salvaged at a price of q for each unit of overstock. We also make the following assumptions.

1. The MDC has unlimited capacity, whereas the capacity of each SP is fixed and is given by xi, ∀i ∈ I.

2. The locations of DPs depend on the hurricane’s intensity landfall location, and we do not make decisions re-

garding the selection of DPs.

3. The forecast accuracy increases as the hurricane approaches landfall, whereas the logistics costs are non-

decreasing from one period to the next.

4. All shipments made at the start of period t will arrive at their destinations within one time period, i.e., by the

start of period t +1.

To define the problem formulation, we introduce the following decision variables:

• xt = {xi,t}i∈I , where xi,t denotes the level of storage at SP i ∈ I at the end of period t, ∀t = 1,2, . . . ,T ,

• ft = { fii′,t}i∈{0}∪I,i′∈I , where fii′,t denotes the flow from the MDC/SP i ∈ {0}∪ I to an SP i′ ∈ I, ∀t = 1,2, . . . ,T ,

• y = {yi j}i∈{0}∪I, j∈J , where yi j denotes the final delivery from the MDC/SP i ∈ {0}∪ I to a DP j ∈ J.

As such, for a given time of landfall T , demand levels d̄ j, ∀ j ∈ J, and initial inventory xi,0 at different SPs, ∀i ∈ I, the

corresponding deterministic multi-period disaster relief supply prepositioning problem can be formulated as:

min
xt ,ft ,y

zt(xt , ft ,y) :=
T

∑
t=1

(

∑
i∈{0}∪I

∑
i′∈I

cb
ii′,t fii′,t +∑

i∈I

ch
i xi,t

)

+h

(

T

∑
t=1

∑
i∈I

f0i,t + ∑
j∈J

y0, j

)

+ ∑
i∈{0}∪I

∑
j∈J

ca
i jyi j + ∑

j∈J

p

(

d̄ j − ∑
i∈{0}∪I

yi j

)

+∑
i∈I

q ·

(

xi,T − ∑
j∈J

yi j

)

s.t. xi,t−1 + ∑
j∈{0}∪I, j 6=i

f ji,t − ∑
j∈I, j 6=i

fi j,t = xi,t , ∀i ∈ I,∀t = 1,2, . . . ,T

∑
j∈I, j 6=i

fi j,t ≤ xi,t−1, ∀i ∈ I, ∀t = 1,2, . . . ,T

0 ≤ xi,t ≤ xi, ∀i ∈ I,∀t = 1,2, . . . ,T

∑
j∈J

yi j ≤ xi,T , ∀i ∈ I

∑
{0}∪I

yi j ≤ d̄ j, ∀ j ∈ J

yi j ≥ 0, ∀i ∈ {0}∪ I, j ∈ J.
(1)



4. Markovian MSP Models for Hurricane Relief Logistics Planning
In this section, we present the MSP model where the DM adaptively makes an operational logistics decision at any

stage in the planning horizon t = 1, . . . ,T given the system state. We consider the risk-neutral case, where when

making decisions at any point in time t < T , the DM tries to minimize the immediate cost plus the expected future

cost. To that end, let us first discuss how we can model the evolution of the underlying stochastic process.

4.1 modeling the underlying stochastic process

To predict the demand level at different DPs, the DM receives sequential forecast advisories {st} about the hurricane’s

attributes at the beginning of every period t = 1, . . . ,T of the planning horizon. From these forecast advisories, we

consider two attributes of the impending hurricane’s characteristics: its predicted intensity and location. These at-

tributes can then be used to estimate the demand d̃ j for relief items in each DP j ∈ J once the hurricane makes landfall

at time T .

To model the evolution of the underlying stochastic process governing the expected demand d̃ j, ∀ j ∈ J, we assume

that the hurricane’s intensity and the location at time t = 1, . . . ,T , are given by two independent random variables,

αt and `t , respectively, that is, st := (αt , `t). We also assume that the evolution of αt , and `t can both be modeled as

a MC with finite state spaces A and L , respectively. Moreover, the transition probability matrix for αt is given by

P(αt = n|αt−1 = k) = pα(k,n), and the transition probability matrix for `t is given by P(`t = m|`t−1 = l) = p`(l,m).
Given the independence of αt and `t , we can define the conditional joint probability distribution Pst |st−1

(n,m) :=P(αt =
n, `t = m|st−1) as P(αt = n|αt−1 = k)×P(`t = m|`t−1 = l), ∀t = 1, . . .T . Then, with some abuse of notation, we can

rewrite Pst |st−1
(n,m) = ps(n,m) = pα(k,n)× p`(l,m) and define the state space of the stochastic process formed by s

as S := A ×L . Finally, once the state space S is defined and all the transition probabilities are calculated, a demand

value d̃ j, ∀ j ∈ J is defined for each state st ∈ S (pair of intensity and location realization). These values can then be

used in the MSP formulation of the form that we discuss next.

4.2 MSP formulation

A generic form of the MSP model can be written as:

min
a1∈A1(a0,ξ1)

z1(a1,ξ1)+E|ξ[1]

[

min
a2∈A2(a1,ξ2)

z2(a2,ξ2)+E|ξ[2]

[

· · ·+E|ξ[T−1]

[

min
aT∈AT (aT−1,ξT )

zT (aT ,ξT )

]]]

. (2)

Here, ξ[t] := (ξ1, . . . ,ξt) denotes the history of the stochastic process up to time t, zt(at ,ξt) is the immediate cost paid

by the DM at time t, at is the action taken at time t, and At is the set of feasible actions, ∀t = 1, . . . ,T . In the context

of the relief items prepositioning problem described in the previous section, ξ[t] := st , at := (xt , ft), ∀t = 1, . . . ,T and

aT := (xT , fT ,y). Moreover, zt(at ,ξt) is given by the first two terms in the objective function of (1) for t = 1, . . . ,T −1,

and zT (aT ,ξT ) has the same objective as (1) with the fourth term being replaced by ∑ j∈J p ·max
{

0,
(

d̃ j −∑i∈{0}∪I yi j

)}

and constraints ∑{0}∪I yi j ≤ d̄ j,∀ j ∈ J being removed. Finally, At(at−1,st) is given by the first three sets of constraints

in (1) for all t = 1, . . . ,T −1 and AT (aT−1,sT−1) includes all constraints in (1) associated with t = T .

Problem (2) is a nested formulation at its present form. A common approach to proceed with the computation is to

approximate the underlying process using scenario trees and use a dynamic programming (DP) formulation [1], where

for each state j ∈ S in stage t, given the system state from previous stage t −1, the optimization problem following (2)

can be written as:

Q
j
t (at−1,st) := min

at

{

zt(at ,st)+Q
j
t+1(at)

∣

∣

∣
at ∈ At(at−1,st)

}

, (3)

where Q
j
t+1(at) :=∑k∈S ps( j,k) ·Qk

t+1(at) is the expected cost-to-go function for each t 6= T , and Qk
T+1(aT ) := 0, ∀k ∈

S . This problem can be solved by using a MC variant of the nested Benders decomposition [12].

5. Case Study: Implementation Details and Numerical Results
In this section, we present some preliminary numerical results for the MSP formulation (3) compared to the clairvoy-

ance solution (CV) and the mean value solution (MV) on a set of N sample paths. The solution of MSP problems is

typically non-anticipative, meaning that, when making a decision at time t, the DM does not know the entire sample-

path on how the stochastic process will evolve into a leaf node in the scenario tree. If the non-anticipativity constraints

are relaxed, the formulation decomposes into independent subproblems for each scenario which can then be optimized

individually. This corresponds to the perspective of a clairvoyant, which gives a lower bound to the optimal value

obtained by the MSP formulation (3). The MV solution corresponds to the situation where the DM aggregates all



of the future exogenous information using a point estimator µk,t = E[st |k] for t = 1, . . . ,T , solve the corresponding

deterministic problem and evaluates the resulting solution for each scenario n ∈ N.

We consider the same problem setting as described in [8] and [11]. To create a variety of instances, we consider

different planning horizons T ∈ {4,8,12,16}, a different number of SPs |I| ∈ {3,7,15}, and a different number of

DPs |J| ∈ {6,14,30}. Here, each time period is a six hours time interval, and it is assumed to be enough to preposi-

tion/reallocate the relief items between the different SPs. We also consider a sample size of |N|= 1000 sample paths.

Moreover, we assume that all the components of the logistics (transportation, holding, and procurement) cost scales

by a factor of t∀t = 1, . . . ,T −1, and that the demand is zero before the hurricane makes landfall at time t = T , that is,

d̃ j,st = 0,∀ j ∈ J,st ∈ S, t = 1, . . . ,T − 1. Then, once the hurricane makes landfall at time t = T , a demand of d̃ j,sT
is

incurred at every pair of intensity and location state sT ∈ S.

All of the algorithms were implemented in Julia 1.4.0, using JuMP 0.18.4 package [4], with commercial solver Gurobi,

version 9.0.0 [9]. All of the tests were conducted on a high-performance computing cluster, where we used an R830

Dell Intel Xeon “big memory” compute node with 2.60GHz, 1.0 TB memory, and 24 cores.

In Table 1, we report the following statistics pertaining to different instances: (i) the lower bound (LB) for the objective

value of the MSP formulation denoted by z; (ii) the sample average ẑ plus/minus the sample standard deviation σ̂ for the

upper bound (UB) of the MSP formulation; (iii) the relative gap between the LB z and the statistical UB z+ with a 95%

confidence level, which is given by z+ = ẑ+1.96σ/
√

|N|; (iv) the relative optimality gap of the MSP formulation and

the MV solutions compared to the CV solution; and (v) the computational time (in seconds) for solving and evaluating

the MSP and the MV solutions.

From Table 1, we can make the following observations. First, the relative gap between z and z+, which is given by

(z+− z)/z% is small in the test instances (with the maximum being 2.19%). This means that a near-optimal decision

policy is obtained from the MSP model using the employed algorithm. Second, we can see that the MSP formulation

performs better than the MV solution in terms of the performance of their respective decision policies. Specifically,

for the instances with (|I| = 3, |J| = 6), (|I| = 7, |J| = 14), and (|I| = 15, |J| = 30), compared to the CV solution, the

MSP formulation has an average of 18.76%, 32.02%, and 30.54% in the optimality gap, whereas, the MV solution

has an average of 27.82%, 65.07%, and 53.14% in the optimality gap, respectively. Finally, although the difference in

the performance between the MSP and the MV solutions is not as apparent in instances with the smallest number of

stage T = 4, it is more significant in the instances with a longer planning horizon T . For example, if we consider the

average performance across all the instances where T = 8,T = 12, and T = 16, the relative gap of the MSP formulation

compared to the CV solution is 17.80%, 17.71%, and 17.15%, respectively; and the relative gap of the MV solution

compared to the CV solution is 39.42%, 42.80%, and 52.58%, respectively. This is to be expected. However, since

the number of sample paths increases exponentially as T grows, the MV solution aggregates exogenous information

more heavily, deteriorating the quality of the respective solutions.

Instance Optimal objective value with the MSP formulation Relative gap to CV Time (in seconds)

|I| |J| T z ẑ±1.96σ̂/
√

|N| (z+− z)/z MSP MV MSP MV

3 6

4 21313.00 21465.73 ±314.41 2.19% 51.99% 60.55% 57.16 3.99

8 59364.25 59516.77 ±406.64 0.94% 11.64% 21.02% 332.53 3.83

12 138461.72 139310.98 ±626.53 1.07% 6.04% 15.98% 425.91 3.79

16 206803.88 208315.54 ±1145.40 1.28% 5.37% 13.74% 740.14 3.88

7 14

4 77440.62 77563.14 ±300.40 0.55% 54.97% 57.46% 105.73 6.23

8 105906.96 106208.31 ±1014.38 1.24% 21.34% 50.20% 423.60 6.47

12 128864.70 128907.48 ±1534.38 1.22% 24.42% 65.23% 971.30 6.65

16 144471.32 142657.21 ±1912.50 0.07% 27.32% 87.39% 3280.19 7.37

15 30

4 150119.48 149869.34 ±1107.27 0.57% 60.35% 61.70% 283.91 12.84

8 253459.61 252879.50 ±1922.69 0.53% 20.43% 47.05% 1910.49 14.00

12 266961.48 266508.21 ±3194.60 1.03% 22.65% 47.18% 6710.24 13.50

16 380562.53 382093.32 ±4003.02 1.45% 18.75% 56.61% 22380.76 27.98

Table 1: The LB and UB statistics of the optimal objective value obtained using the MSP formulation (3); the relative

gaps between the LB and the statistical UB; the optimality gaps between the CV and the MSP and MV solutions; and

the computational time (in seconds) for solving and evaluating the MSP formulation and obtaining the MV solutions.



6. Conclusion
This work proposes a fully adaptive MSP model for solving a typical hurricane relief logistics planning problem under

uncertainty. To solve this problem, we assume that a DM receives sequential forecast advisories about an impending

hurricane’s attributes. Then he/she uses this information to construct a MC which predicts the demand for relief items.

Although we assume that the hurricane time of landfall T is fixed, this model can be generalized to a situation where

T is treated as a geometrically distributed random variable in an infinite horizon discounted problem. From our case

study we can see that the relative gap between the lower and the statistical upper bound on the objective value of our

model is very small, with a less than one percent average across all of the instances. We can also see that compared to

the MV solution, the proposed MSP model provides a significantly higher quality decision policy due to its adaptability

inherited in the model formulation – especially for instances where the number of stages in the planning horizon is

large.

Acknowledgements
The authors acknowledge partial support by the National Science Foundation [Grant CMMI 1854960]. Any opinions,

findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily

reflect the views of the National Science Foundation.

References
[1] Richard Bellman. Dynamic programming. Princeton University Press, 1957.

[2] Global Climate and Weather Modeling Branch. The GFS atmospheric model technical report, national weather

service, 2003. URL https://www.emc.ncep.noaa.gov/officenotes/newernotes/on442.pdf.

[3] Vitor L de Matos, David P Morton, and Erlon C Finardi. Assessing policy quality in a multistage stochastic

program for long-term hydrothermal scheduling. Annals of Operations Research, 253(2):713–731, 2017.

[4] Iain Dunning, Joey Huchette, and Miles Lubin. Jump: A modeling language for mathematical optimization.

SIAM Review, 59(2):295–320, 2017.
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