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In this paper, we present a game-theoretic analysis of ransomware. To this end, we provide theoretical and
empirical analysis of a two-player Attacker-Defender (A-D) game, as well as a Defender-Insurer (D-I) game;
in the latter the attacker is assumed to be a non-strategic third party. Our model assumes that the defender
can invest in two types of protection against ransomware attacks: (1) general protection through a deterrence
effort, making attacks less likely to succeed, and (2) a backup effort serving the purpose of recourse, allowing
the defender to recover from successful attacks. The attacker then decides on a ransom amount in the event of
a successful attack, with the defender choosing to pay ransom immediately, or to try to recover their data first
while bearing a recovery cost for this recovery attempt. Note that recovery is not guaranteed to be successful,
which may eventually lead to the defender paying the demanded ransom. Our analysis of the A-D game shows
that the equilibrium falls into one of three scenarios: (1) the defender will pay ransom immediately without
having invested any effort in backup, (2) the defender will pay ransom while leveraging backups as credible
threat to force a lower ransom demand, and (3) the defender will try to recover data, only paying ransom when
recovery fails. We observe that the backup effort will be entirely abandoned when recovery is too expensive,
leading to the (worst-case) first scenario which rules out recovery. Furthermore, our analysis of the D-I game
suggests that the introduction of insurance leads to moral hazard as expected, with the defender reducing
their efforts; less obvious is the interesting observation that this reduction is mostly in their backup effort.

1 INTRODUCTION

Ransomware is a major type of cybercrime that organizations face today. It is a form of malicious
software, or malware, that encrypts files and documents on a computer system, which can be a
single PC or an entire network, including servers. Victims are often left with little choice: to regain
access to their encrypted data without a decryption key, they have to either pay a ransom to the
criminals behind the ransomware, or try to restore from data backup (or rebuild the system in the
absence of backup). Various real-world examples of these scenarios are given in the next section
when describing our models. It is more than a mere nuisance for companies, even small ones, if
vital files and documents, networks or servers are suddenly encrypted and inaccessible. Even worse,
a successful ransomware attack is often publicly and brazenly announced by the criminal, making
it known that one’s corporate data is being held hostage, adding pressure on the victim to resolve
it quickly, which almost always means swift payment.

This past year of a global pandemic saw a sharp increase in ransomware attacks. Group-IB
reported that ransomware attacks surged by 150% in 2020 with the average extortion amount
doubling [1]. According to Check Point [2], a new organization became a victim of ransomware
every 10 seconds in 2020 with remote workers experiencing a sharp uptick in such threats. Data
from NinjaRMM’s 2020 Ransomware Resiliency Report also shows that ransomware incidents
resulted in damages of between one and five million dollars for 35% of organizations whose IT
professionals were surveyed [3].

This increase in threats has also accelerated discussion by the insurance industry on whether and
how to provide ransomware coverage. The most recent court ruling on G&G Oil Co v. Continental
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Western Insurance Co. by the Indiana Supreme Court [4] further brings into sharp focus the
importance of much needed clarity in insurance coverage pertaining to ransomware payment and
will likely spur more development on this front.!

In this study, we are interested in understanding what firms can do to reduce damages from
potential ransomware attacks and the role that ransomware insurance can play. We do so by
modeling and analyzing the strategic decision making in a ransomware attacker-defender-insurer
ecosystem. Specifically, we introduce two sequential games.

The first, attacker-defender (A-D) game models the interactions between an attacker (their action
being ransom demand) and a (risk-averse) defender (their actions including protection, backup,
pay or not pay, as detailed below).? This is formulated as a complete information game, where the
attacker is assumed to know the defender’s data value, risk attitude, cost of general protection, cost
of data backup, and cost of data recovery. This puts the attacker in a rather strong position, and
allows us to examine their best possible strategy in terms of ransom demand; it also serves as a
worst-case scenario for the defender.

The second, defender-insurer (D-I) game models the interactions between a (risk-averse) defender
who is seeking ransomware insurance and an insurer who determines the policy terms of the
insurance. This is formulated as a complete information game between the defender and insurer,
with the attacker being a non-strategic third party (whose ransom demand is input to the game
model). This model treats the ransomware attack as a constant existence much like ambient noise,
and is justified by the fact that many such attacks are not targeted and the ransom amount is
set based on empirical knowledge of past successes rather than on individual victims’ specific
information.® This modeling choice also allows us to focus on the contractual relationship between
the defender and insurer and better understand the impact of insurance.

Since both are sequential, multi-stage games, the solution concept we employ is the subgame
perfect equilibrium [6]. Equilibrium outcome of the A-D game (ransom demand) is used as input to
the D-I game as the defender’s outside option, since insurance purchase is assumed to be voluntary.
However, this setup is in general not equivalent to a three-way, attacker-defender-insurer game,
which remains an interesting direction of future research.

There is a very rich literature on game theoretic attacker-defender models for generic attack
types, see e.g., [7-9], and an emerging literature of game theoretic analysis of ransomware attacks.
Examples include [10], which proposes a two-stage model that considers backup effort on the
defender’s part, but without the possibility of recovery failure or deterrence effort. Researchers also
draw heavily from game-theoretic literature on the more traditional form of kidnapping for ransom
to obtain insights on its digital parallel, ransomware. Examples include [11, 12] which invoke the
use of a negotiation model, which is critical to the successful recovery of a kidnapping victim in
the traditional form of ransom, and [13], which examines the impact of cooperative (negotiate or
pay) vs. competitive (avoid payment) strategies on the attacker and the victim.

Research on ransomware insurance are much more limited, despite an increasing literature
on ransomware and its economic, vendor, and consumer impact, see e.g., [14], and an increasing

!n this case G&G fell victim to a ransomware attack and paid $35K in ransom. They sought coverage under their crime
insurance policy which was denied by their insurer, Continental Western Insurance, citing G&G had declined computer virus
and hacking coverage, and that the ransom payment was “voluntarily transferred” to the hacker, among other arguments.
G&G sued. Lower courts sided with the defendant, awarding the insurance company summary judgement; this was vacated
by the Indiana supreme court, stating that neither defendant nor plaintiff could be awarded summary judgment in the case.
2The assumption of risk-aversion is because a risk-neutral defender would have no incentive to purchase insurance, which
is the focus of our next game.

3While this assumption is consistent with historical data, it is quite likely that we are witnessing the onset of a major trend
shift, with increasingly targeted attacks and much higher ransom demand, see e.g., the recent Colonial Pipeline case [5].
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literature on cyber insurance in general, see e.g., [15-18]. In particular, [15] presents a network
model where the insurer is attack aware, but the insurance contracts is not designed specifically for
ransomware coverage. We will further discuss points that distinguish our study from prior works
in the next section.

The remainder of the paper is organized as follows. In Section 2 we provide a general overview
of our models and summarize main findings. In Section 3, we introduce the A-D game, and analyze
properties of the subgame perfect equilibrium. In Section 4, we introduce the D-I game, and study
its equilibrium and solution methods. In Section 5, we use numerical experiments to visualize
equilibrium strategies for both the A-D and D-I games, and summarize empirical findings. We
conclude and discuss future work in Section 6.

2 MODEL OVERVIEW AND MAIN FINDINGS

We will assume that the attacker is financially driven, and the objective behind the attack is
monetary gain. This rules out the case where the attacker simply seeks to destroy data without any
real intention of releasing the decryption key, as was the case in the NotPetya malware attack in
June 2017 [19], masquerading as ransomware but designed to cause maximum damage.

We will assume that the cost for launching a ransomware attack is negligible, which eliminates
“attack or not attack” as a decision for the attacker: if it costs nothing, then the attacker will always
launch an attack. In reality many ransomware attacks are indeed very low cost, such as through
attachment in a spam email, see e.g., CryptoLocker [20], Avaddon [21], and can be easily automated
to target a large population. Since our focus is on the interaction between a single attacker and a
single defender (one of a large number of defenders or would-be victims), it seems reasonable to
assume that the attacker does not dwell on this decision for each individual target.

We will also assume there is no negotiation post-attack; in other words, once an attack is
successful, a ransom demand is issued, which is either payed in full or turned down. Post-attack
negotiation is a crucial part of kidnapping for ransom and arguably the most important mechanism
in the successful recovery of the kidnapping victim [22]. Ransom negotiation has been modeled in
the case of ransomware attacks as well in the literature, see e.g., [11]; however, this so far seems to
be rare in practice. One possible reason is again that a typical attacker targets a large amount of
entities at the same time, which makes negotiation impractical. At the same time, ransom demand
is typically not as high as a real kidnapping (e.g., $189 in the AIDS Trojan case [23], $750 in the
CtyptoLocker case [20], $500-$1500 in the Hermes case [24], or $35K for an oil and gas company
such as G&G [4]), which encourages payment in full or signals lack of room for negotiation.

It is worth noting that the most recent Colonial Pipeline case [5], where the victim promptly
made $4.4M in ransom payment, may be ushering in a new era in ransomware attacks: we may
start to see increasingly targeted, costly attacks demanding much higher ransom payment; we may
also start to see more involvement of law enforcement agencies in the payment decisions.

There are a few key elements in our model.

(1) The first is the separation of data backup effort from general protection measures. This
separation is consistent with defenses generally recommended to protect against ransomware
attacks [25], and gives the defender two types of actions or efforts to invest in prior to
an attack. General protection measures (e.g., employee training against social engineering,
software upgrades and vulnerability patching, etc.) serve the purpose of deterrence, and make
an attacker’s effort less likely to succeed. Data backup serves the purpose of recourse, in
the event a ransomware attack is successful, so that the defender may have the ability to
recover their data (but recovery is not guaranteed so there is residual risk) without having to
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pay ransom. As an example, Fujifilm recovered from a ransomware attack by restoring their
network from backups [26].

(2) The second is a recovery cost to capture the cost that the defender incurs in delaying ransom
payment while trying to recover their data. This models the cost of business interruption
following an attack until the crisis is resolved. This combined with the previous feature
gives the defender an additional decision point after an attack succeeds: they can decide to
pay right away or try to recover their data, knowing that the recovery may ultimately fail,
in which case they may be forced to pay ransom, or rebuild the system in the absence of
backup. As an example, after refusing to pay a ransom demand of $52,000, the city of Atlanta
eventually spent $2.6M to rebuild their system [27]. In another example, the malware Jigsaw
deletes files gradually as time passes, effectively increasing the victim’s cost when delaying
payment [28].

Our main findings are summarized below.

The Attacker-Defender (A-D) game. Since the attacker is strategic in this game, they will seek to
achieve a higher expected monetary gain. It seems obvious to assume that the attacker will prefer
a higher ransom. However, a high ransom will push the defender to invest in backup and attempt
to recover data first instead of paying ransom immediately. If so, the attacker is then faced with
an increased likelihood of receiving nothing (if data recovery is successful). On the other hand, a
lower ransom may persuade the defender to pay without trying to recover data, which removes
the recovery cost associated with data recovery as well as the possibility of failure. Our analysis of
the A-D game suggests that the equilibrium point is one of three types summarized below.

(1) The attacker demands a ransom equal to the data value in case of a successful attack. The
defender pays immediately without having invested anything in data backup. Paying ransom
immediately is a common case in the real world. For example, the Colonial Pipeline CEO
Joseph Blount agreed to pay a $4.4 million ransom to DarkSide after the company was
attacked [5]; the report reveals that Blount decided to pay ransom almost immediately.

(2) The defender invests zero?* or positive effort in data backup, but nevertheless pays ransom
immediately. In response, the attacker’s ransom demand is lower than the data value, in-
centivizing the defender to not attempt data recovery. In this case data backup serves as a
credible threat so as to lower the ransom demand, but is not actually used.

(3) The defender invests zero or positive effort in backup and attempts data recovery, paying the
ransom only if recovery fails; at the same time, the attacker charges a ransom equal to the
data value. This case occurs far less often than the other two cases, and only happens when
the defender has low risk-aversion and has a relatively low cost of recovering data.

Note that the first case is a worst-case scenario for the defender, allowing the attacker to charge
the highest possible ransom knowing that the defender will have no choice but to pay. This case
occurs when the recovery cost is relatively large. In comparison, in the other two cases the defender
uses data backup to lower the attacker’s profit and their own expected loss, either using backup
as leverage to force the attacker to charge a lower ransom, or to leave them empty-handed by
recovering from backup. The second case occurs when the recovery cost is in a middle range, and
the third case when the recovery cost is low. We observe that a more risk-averse defender is more
likely to rule out recovery, due to fear of recovery failure, which makes them bear both the recovery
cost and the ransom demand. It is noteworthy that the highest backup effort occurs in the second

“Note that our model does not necessarily assume that a zero backup effort results in no recovery options, e.g., in case the
defender has access to a no-cost backup option. Therefore, in this and the following case the defender may still benefit from
backups while not investing any backup effort.
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case, which is only leveraged as a threat but never used. Our numerical results show that a more
risk-averse defender is more likely to fall into the second case, i.e., making a compromise by paying
a lower ransom directly to the attacker, while lower risk-aversion means one is willing to pay the
highest ransom (either immediately or after failed recovery attempt).

The Defender-Insurer (D-I) game. In this game the attacker is a non-strategic third party, but
serves as the defender’s outside option (outside the insurance contract) to ensure that the defender’s
utility is not lower after purchasing insurance. The non-strategic assumption comes from our belief
that whether the defender is insured or not is generally not public knowledge. Our main findings
in this game are:

(1) The introduction of insurance causes the defender to invest less in efforts overall. This
manifestation of moral hazard has been observed in other insurance models, that the insureds
lower their effort once they have transferred all or part of their risk to the insurer. The more
interesting observation, however, is that this effort reduction is much more concentrated on
backup than on deterrence. In particular, we observe that, numerically, the backup effort is
almost completely abandoned under insurance, while some investment in deterrence remains,
albeit at a reduced level. This is despite the fact that the insurer (under an optimal policy)
covers almost the entire effort cost by the defender (in the form of premium discount) and
covers all losses upon a successful attack.

(2) The defender’s utility remains the same inside or outside insurance, and the attacker’s utility
increases, due to lower levels of backup and deterrence efforts. The insurer’s profit (whenever
it is positive) is essentially drawn from taking advantages of the defender’s risk-aversion.
Our numerical results support this claim by showing that the insurer’s profits increase as the
defender becomes more risk-averse.

(3) The introduction of insurance does not significantly alter the defender’s decision making in
dealing with the attacker (in terms of paying vs. recovering), but only their effort amount.

3 THE ATTACKER-DEFENDER (A-D) GAME

In this section we introduce and analyze the attacker-defender (A-D) game. This game involves two
players, an attacker and a risk-averse defender, making sequential moves over multiple stages. A
diagram illustrating this multi-stage game and all its possible outcomes is given in Figure 1, where
the two players’ utilities, denoted by U, and Uy, are written out and explained in more detail below.

The defender’s utility Uy takes the form Uy = f,(x), where x is the total cost borne by the
defender and y > 0 represents the risk attitude of the defender, with a larger y indicating more risk
aversion.

The defender holds data of value I > 0. The sequential game consists of the following four stages.

Stage I. The defender chooses a deterrence effort W > 0 (such as investing in an effective firewall,
employee education against phishing campaigns, etc.), as well as a data backup effort Y > 0.

Stage II. The attacker launches an attack with a success probability of (W), a non-increasing
and convex function of the defender’s deterrence effort W. We will denote by 6, = 0(0) the
attack success probability under zero protection effort, and by 0. = limy_,. 6(W) the minimum
achievable attack success probability.

o If the attack fails, then the game ends with U, = 0 and Uy = f, (W +Y).

o If the attack succeeds, then the attacker gains access to and encrypts the defender’s data, and
demand a ransom in the amount R (this is the attacker’s main decision and we will derive its
equilibrium value below); the game then processes to stage IIL
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Choose W, Y

Failure (1 — (W)

(y(W+7Y),0)

Success (8(W))
Attacker
Choose R

Defender

Pa ecover estroy

(fy(W+Y+R),R) Recovery (y(W+Y+1),0)

Failure (¢(Y)

Success (1 — e(Y))

(y(W+Y+C),0)

(y(W+Y+C+R),R) (fy(W+Y+C+1),0)

Fig. 1. The Attacker-Defender (A-D) game tree, with corresponding utilities (Uy, U,) under each possible
game outcome. Rounded corners indicate the player whose turn it is to move, and ovals indicate stochastic
events (with probabilities written next to each outcome).

Stage III. The defender chooses between (1) paying ransom R immediately, (2) not paying ransom,
allowing data to be destroyed, or (3) trying to recover data first. Define A; € {Pay, Destroy, Recover}
to be the defender’s action in this stage.

e If A; = Pay, the game ends with U, = Rand Uy = f,(W + Y +R).

e If A} = Destroy, the game ends with U, =0 and Uy = f, (W +Y +1).

e If A; = Recover, the defender incurs recovery cost C > 0 to try to recover data, and the game
proceeds to stage IV. The introduction of C captures the cost the defender incurs in delaying
ransom payment while trying to recover their data, such as the cost of business interruption
following an attack until the crisis is resolved.

Stage IV. In this stage the defender attempts to recover data, with a failure probability of ¢(Y), a
non-increasing and convex function of the backup effort Y. We will similarly use ¢, = £(0) and
£ = limy_, £(Y) to denote the failure probability under zero backup effort and the minimum
achievable failure probability, respectively.

e If recovery succeeds, the game ends with U, =0 and Uy = f,(W + Y + ).

e Ifrecovery fails, then the defender can choose to pay the ransom or allow data to be destroyed,
with A, € {Pay, Destroy} denoting said action.
- If A; = Pay, the game ends with U; = Rand U = f, (W +Y + C +R).
- If A; = Destroy, the game ends with U, =0 and Uy = f,(W + Y+ C +1).
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3.1 Subgame Perfect Equilibrium

Due to the sequential-move nature of the A-D game, our solution concept is the subgame perfect
equilibrium, simply referred to as the equilibrium for short below. Denote by (W*, Y*, A}, A}) the
defender’s equilibrium strategy, and R* the equilibrium ransom demand. Similarly, we Wlll use the
notation 6* = (W) and ¢* = ¢(Y*). Below we analyze the existence, uniqueness, and expression
of the equilibrium solution using backward induction. While the technique is conceptually well
established, its application in this game is quite involved due to the number of stages we need to
consider. We will assume an exponential utility function, i.e., f, (x) = —e¥*.

Consider the last two stages of the model. To maximize their utility, the attacker will not demand
a ransom larger than the data value I, so as to ensure the defender will not favor destruction over
payment in stages III and IV. Therefore, R* < I, A] € {Pay,Recover}, and A} = Pay. In stage III,
the defender compares (1 —¢*)f, (W* +Y* +C) + " f,(W*+Y* +C+R") and f,(W* + Y* + R") to
determine whether to attempt data recovery. Without loss of generality, we assume that in case of
a tie, the defender will pay ransom immediately. Thus we have:

A = Pay (1—£%)eV(CR) 4 g¥erC > 1,
171 Recover  Otherwise.

In stage II, the attacker solves the following two optimization problems with respect to the
defender’s possible actions.

(a) If A7 = Pay: The attacker solves the following optimization problem:

maxg R
Riyy=19 st.  (1-e)er @R 4 € > g, (1)
0<R<IL

(b) If A7 = Recover: The attacker solves the following problem:

maxg R
R;ecover = s.t. (1 - g*)eY(C_R) +e'erC < 1, (2)
0<R<Z<I
LEmMA 3.1. Define e, = ey:y_,c_)l_l < 1. Eqn (1) always has a feasible solution. Eqn (2) has a feasible

solution if and only if €* < ¢ep,. Furthermore,
(1) if " > ep, then only Eqn (1) has a solution, which is RPay I
(2) if € < ep, both (1) and (2) have one solution, which are R
R*

Recover —

Pay—C+1log1 fyc < I and

= I, respectively.

Proor. Note that the left-hand side in the constraints of Eqns (1) and (2) are decreasing in R,
and the constraint of Eqn (1) holds strictly for R = 0 (since y, C > 0, thus e > 1). Therefore, Eqn

(1) always has a feasible solution, while this is not necessarily true for Eqn (2). If the constraint
erI-9

of Eqn (1) is satisfied for R = I, which is equivalent to £* > = ¢y, then it also holds for

all 0 < R < I, therefore R;‘,ay

solving (1 — £*)e?(C R 4 ¢%e¥C = 1, yielding R=C + 1 ; log e

= I and Eqn (2) is infeasible. Otherwise we can find 0 < R < I by
Then the constraint of Eqn (1)

*yC

holds for 0 < R < R, and the constraint of Eqn (2) holds for R < R < I. Therefore, RPay =R <TIand
R;ecover = I o
The attacker compares R;, and Rg, .., (if they both exist) to determine the optimal ransom

amount. Note that in case of a successful attack, the attacker’s expected payout is Ro.y for A} = Pay,
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* *
and ¢ RRecover

case of a tie the attacker chooses R

= ¢*I for A} = Recover. Again, without loss of generality, we will assume that in
;ay, resulting in A} = Pay.

3.2 Main results

If C > I, then ¢, < 0, resulting in a degenerate case where R* = Ry, = I regardless of ¢*. The

following lemma characterizes R* for C < I.

THEOREM 3.2. Assume C < I, and defineg : [0,ep] = Rasg(e) =C — el + )l/log =. Then one

1_
l—seeY
of the following cases applies.

(a) g(¢) has at most a single root in (0, €). In this case the attacker will always choose R* = R},

Pay*
I & > ey,
R =R, = 1 1—¢* 3
Pay C+-log——— & < ¢gp. ®)
Y 1—¢*eY
(b) g(¢) has two roots &1 < em in (0, &). In this case the attacker will choose R* as follows.
R;ay =1 & > ep,
1 _ *

R Rppy =C+ » log T_arC & Lgore, <€ <egp, (4)

Riecover =1 & < & < &y

Furthermore, C > )l/ log(yI + 1) is a sufficient (but not necessary) condition for ruling out (b), resulting
inR* = R;ay.

Proor. If ¢* > &, then from Lemma 3.1 only Eqn (1) has a solution and R* = R;ay = ]. Otherwise,
for the attacker to choose R;ay in the equilibrium, we must have R;ay > &*R% = ¢*I, which is

Recover
equivalent to g(¢*) > 0. We have:

g(0)=C>0,

g(en) = (1 —ep)I >0,

g)=— - —1 1,
yle©—¢) y(1-¢)

g'(e) = — ! - ! >0
y(e¥C —e)2  y(1-e)?

y(I-C) _ _erC _ .
where we have used the fact that 0 < ¢ < &, = “7— l = 0< lef,_l < e "¢ —¢ < 1—¢. Since

g(¢) is strictly convex and positive for both ends of the range [0, ], then one of the following
must be true.

e g(¢) has at most a single root in (0, €3), and is therefore non-negative for all 0 < ¢ < &,. Then
the attacker will always choose R* = R;, , resulting in case (a).
e g(¢) has two roots ¢, €y, in (0, ). Assume ¢; < &y, then g(¢) is only negative for ¢; < ¢ < &,.
The attacker will choose R* = R;ecover foreg <e<éep,and R* = R;ay otherwise; this results
in case (b).
Finally, If ¢’ (0) = Lfl -I>20&C2 )l/ log(1 + yI), then g is non-decreasing, and therefore

positive, for all 0 < ¢ < ¢, resulting in case (a). m]
At stage I the defender determines W* and Y* as follows.

W*,Y* = arg min { (1 - (W) + 0(W) min {(1 —£(Y))e"C + e(Y)eV (CHR) ¥k }) eY(W+Y)} . (5)
W,Y 20



Deterrence, Backup, or Insurance: A Game-Theoretic Analysis of Ransomware 9

The equilibrium can then be found by finding the solution to Eqn (5) and either (3) or (4),
depending on the number of roots of g(¢) in (0, &4). Using Theorem 3.1, we define the follow subsets
of Ryg: S ={Y >20: R* =R;,, =I1},8={Y >20:R" = R;,, <I},and 83 ={Y > 0: R* =
Riecover = 1} Note that depending on the values for &, and ¢w, any, but not all, of these subspaces
might be empty. Both S; and S are either the empty set or a (open or closed) interval. S; is either
empty, a single interval, or the union of two intervals. The equilibrium of the A-D game satisfies

one of the following cases.

(a) R* = R;ay =LY =0¢€S;,and W* = argminy, ., {(1 +O(W) (e - 1)) eYW}.

(b)) C<R"=R; =C+ )1/ log 11_—5 < I (with ¢" = ¢(Y™") given from below) and

Pay —g*eyc

W*,Y* = arg min {(1 +6(W) (e”cl_—g(y) - 1)) eY(W+Y)} )

W>0,YeS, 1—e(Y)er®
() CSR =R oo =Iand
W*, Y = argmin {(1 +O(W) ((1 +e(Y) (e - 1)) erC 1)) eY<W+Y>} .
W>0,YeSs

Note that in the first case we are using the fact that Uy = — (1 + 0(W)(e"! — 1)) eYW+Y) and
therefore the optimal backup effort is zero. The defender can solve each case separately, and choose
the equilibrium with the largest utility.

3.3 Discussion

In general, a high recovery cost C discourages the defender from making a recovery attempt
and encourages the attacker to demand the highest ransom R* = I. The only way (in the non-
degenerate case) for the defender to induce a lower ransom (< I is to exert sufficiently high backup
effort Y so as to satisfy e(Y) < ¢p; this acts as a credible threat to discourage high ransom, an
observation that does not appear to have been noted in prior works. Note, however, that even in
this scenario the lower ransom is only true when accompanied by the defender’s equilibrium action
to pay immediately; in other words, the discounted ransom amount is offered in exchange for not
attempting recovery. When the defender’s action is to try and recover data first, the attacker again
demands the highest ransom, a logical choice as the defender has no option but to pay ransom if
their recovery attempt fails. Theorem 3.2 further shows that C > % log(1 + yI) ensures that the

defender will always favor ransom payment over recovery. Since )1/ log(1 + yI) is decreasing in y, a
more risk-averse defender is more likely to pay ransom instead of attempting recovery; a point that
we also observe in our numerical experiments. Theorem 3.2 also suggests that the highest backup
efforts (resulting in ¢* < ¢;) are not used directly, but are leveraged to force the attacker to lower
their ransom demand for immediate payment, another observation seen in our numerical results in
Section 5.

The fact that W plays no part in the attacker’s decision is easily explained, since the attacker’s
decision on R is made after the attack has succeeded, which is conditioned on whatever value W is.
However, W does play a role by providing general protection against attacks, and reducing the
attacker’s expected payout.

4 THE DEFENDER-INSURER (D-1) MODEL

Now consider the contract between the defender and an insurer providing ransomware insurance.
Strictly speaking, this is a two-stage game (more commonly known as a Stackelberg game with
a leader and a follower [29]), where the insurer (the leader) sets the format of the contract (what
and how contract parameters are to be determined depending on the defender’s actions) and
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the defender best responds, which then determine the contract terms. This is formulated as a
complete information game between the two, thus eliminating typical issues caused by information
asymmetry (unobservable actions can worsen moral hazard, and unobservable types lead to adverse
selection). This simplification is a first step toward understanding the role insurance plays in the
specific case of ransomware attacks; the basic model can then be extended to include the more
general issue of information asymmetry.

As mentioned earlier, in the D-I game we shall model the attacker as a non-strategic third party,
whose likelihood of success and subsequent ransom demand are input to the D-I model. In doing
so we treat the ransomware attack as a constant existence, which is in accordance with the fact
that many such attacks are non-targeted with a generic ransom amount set based on empirical
and market knowledge rather than on individual victims’ specific information; such an attacker is
also effectively agnostic of whether a given victim has ransomware insurance. We will also use the
A-D game to obtain the defender’s option outside the insurance contract: u® = E[U}] denotes the
defender’s equilibrium expected utility outside the contract.

Similar to the A-D game, the defender has two actions prior to an attack: deterrence (W) and
backup (Y); and two actions post a successful attack with probability 6(W): try to recover data
(and possibly pay if recovery fails with probability ¢(Y)) and pay immediately.

We will again assume an exponential form for the defender’s utility function, i.e., Uz = f,(x) =
—e¥*, where x is the total cost borne by the defender, including the cost of effort, insurance and
ransom, less coverage.

To capture all of the above, we will assume a linear insurance contract that consists of the tuple
(0<p,0<ab<1,0<z71<1)and detailed below:

e p > 0 is the premium the defender pays the insurer for the contact.

e g and b characterize the defender’s fraction of efforts after the insurer subsidizes for W, Y,
respectively; in other words, the actual cost of the effort of the defender are aW and bY with
the insurer returning (1 — a)W and (1 — b)Y to the defender as discounts on the premium.
Note that neither a nor b can be 0 (i.e., the insurer cannot subsidize 100% of the effort), for
otherwise the defender will seek infinite W, Y, respectively. Accordingly, we will define small
a and b that bound a and b away from 0, respectively.

e Upon a successful attack, if the defender decides to recover data first, then the insurer will
cover 1 — z fraction of the total loss; this loss consists of the defender’s recovery cost if
recovery is successful, or the recovery cost plus the ransom if recovery fails.

o If the defender decides to pay immediately, then the insurer covers 1 — 7 fraction of the
ransom.

As can be seen, we are affording the insurer multiple options and significant flexibility in
designing the insurance contract; this is intended to help us understand questions such as whether
the insurer would incentivize deterrence and backup efforts differently, or whether it is in the
insurer’s interest to incentivize recovery and discourage immediate payment by offering a low z,
and so on. The defender’s utilities under all possible actions and outcomes in this D-I game are
illustrated in Figure 2.

Define Ué" to be the defender’s utility inside a cyber insurance contract. Then the expected
utility E[U}"] can be written as

E[UY] = (1 - 0(W) + (W) min {(1 —£(Y))er*C + e(Y)er?* (R, eYTR}) g (PraW+bY)

Define U to be the insurer’s utility. Consider the indicator F = ]].{(I_S(Y))eyzC+£(Y)e)/Z(C+R) >er R}
with F = 1 indicating that the defender will choose to pay immediately (A; = Pay) and 0 otherwise
(A; = Recover). Then the insurer’s expected utility is affected by the premium, the effort subsidies,
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Insurer

Choose (a, b,z 7, p)

Defe@

Choose W, Y

Failure (1 — O(W) Success (0(W))

fy(p+aW +bY)

£(p+aW +bY +7R)
Success (1 — £(Y) ailure (e(Y))
f,(p+aW +bY +2C)

Pay

fy(p+aW +bY +z(C+R))

Fig. 2. The Defender-Insurer (D-1) game tree, with corresponding utility of the defender Ué" under each
possible game outcome. Rounded corners indicate the player whose turn it is to move, and ovals indicate
stochastic events (with probabilities written next to each outcome). Note that the defender’s actions are not
in response to the insurer in the D-I game, but rather actions they would take against an attack; while these
actions are not part of the D-I game, they must be anticipated in order to compute the actions (W, Y).

as well as the loss, and can be written as

E[U] =p-(1-a)W — (1 -b)Y —F- O(W)(1-2)(C+e&(Y)R) - (1 -F) - 6(W)(1 - 1)R .

4.1 Subgame Perfect Equilibrium

As mentioned earlier, the D-I game is also a sequential-move game that involves two stages. Below
we detail the backward induction process we use to find a subgame perfect equilibrium. Denote
by (p*,a*, b*, z*, t*) the insurer’s equilibrium strategy, and (W*, Y*) the defender’s. Formally, the
subgame perfect equilibrium is the solution to the following optimization problem.

arg max p—-1-a)W-(1-b)Y-FI(W)(1-2)(C+e(Y)R) - (1-F)O(W)(1-17)R
W.Y,p,ab,zr

s.t. E[U™] > u°, (6)
W,Y € argmax]E[Ui"] , (7)
W,Y>0

p>20,a<a<1,b<b<1,0<z7<1.

Recall u” = E[U}] is the equilibrium expected utility of the defender outside the contract, i.e.,
from the previous A-D game presented in Section 3. Here the first constraint (6) ensures individual
rationality, i.e., the defender will only enter into the contract if it does not lower their expected
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utility. The second constraint (7) ensures incentive compatibility, i.e., given the contract terms the
defender is going to take actions W, Y to maximize self-interest. It’s not hard to verify the above
problem is always feasible.

LEMMA 4.1. At the equilibrium, p* can be expressed as

1 —u°

=—1lo .
P 14 & (1-0(W*) +0(W*) min {(1 — e(Y*))er='C + £(Y*)er? (C+R) erv'R1) ey (@’ W+b"Y")

This is easy to see because at the equilibrium the defender must be indifferent between purchasing
and not purchasing the contract (otherwise the insurer can always adjust the premium by the right
amount so that equality E[Ué"] = u° is attained while increasing the insurer’s utility). Therefore,
p* can be computed by setting equality in Eqn (6), yielding the expression above.

In the first stage of this two-stage D-I game, the insurer solves the following two sub-problems
that correspond to the defender’s possible actions (pay or recover) in the event an attack is successful.

(a) A; = Pay. The following optimization problem yields equilibrium actions by both the defender
and the insurer, denoted by (W4, Y1, a1, b1, z1, 71), if the defender chooses to pay immediately:

1 —u°
1 -W-Y-0(W)(1-1)R 8
;rggixr Y Og(l -0(W) +9(W)erR) W)(1-1) ®)
s.t. W,Y € argmin {(1 —9(W) + H(W)eYTR) ey(aW+bY)} ’
W,Y >0

(1= ¢(Y))er™C + e(Y)er*(CHR > oy R
a<a<1,b<b<1,0<z7<1.

(b) A; = Recover. The following optimization problem yields equilibrium actions by both the
defender and the insurer, denoted by (Wa, Y, az, b, 22, 72), if the defender chooses to recover

data first:
1 ) ( —u° ) o)
arg max —1lo
W,g,a,b,z,r Y Bli- O(W) +0(W)(1 - £(Y))er*C + O(W)e(Y)er=(C+R)

~W —Y - 0(1-2)(C+e(Y)R)

st. WY eargmin {(1 — (W) + O(W)(1 - £(Y))e™C + 9(W)e(Y)eYZ(C+R)) eﬂ“W”’Y)} ,
W.,Y>0
(1—e(Y))e"™C + e(Y)eV* (R < o7k

a<a<1,b<b<1,0<z7<1
LEMMA 4.2. Both Problem (8) and Problem (9) always have feasible solutions.

Proor. Consider Problem (8), take 7 =0,z = 1, a = 1, b = 1. We can verify the second constraint
holds:
(1 _ E(y))eyzc + g(Y)eYZ(C+R) — (1 _ E(Y))eyc + S(Y)eY(C+R)
>(1—e(Y))e'C +e(Y)e?C = e'C > 1=¢'R .
Obtain (W, Y) from the first constraint, and we find a feasible solution (W, Y, a, b, z, 7). Similarly,

for Problem (9), we take z =0, 7 = 1,a = 1, b = 1, and derive (W, Y) from the first constraint. It
can be easily verified that this (W, Y, a, b, z, 7) is a feasible solution. O

The way the insurer solves their optimzation problem is to compare the solutions to the above
two sub-problems, B[U (p1, W1, Y1, a1, b1, z1, 71) | and E[U (pa, Wa, Ya, az, bz, 25, 72) |; whichever yields
higher utility value is the course of action (i.e., pay vs. recover) that the insurer wants to induce
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the defender to take in the event of an attack. This decision then dictates the optimal contract
(p*,a*,b*,z%,7%). This is then presented to the defender. Since these contract terms are jointly
optimal with the defender’s actions W*, Y* with respect to the defender’s utility Ué", the defender
best responds with the intended W*, Y* for the intended choice (pay vs. recover). This is how the
subgame equilibrium is arrived at.

While existence is clear, we have not established uniqueness of the equilibrium. To compute
the equilibrium unambiguously, we will assume the following tie-breaking rules without loss of
generality: In the event the two sub-problems yield the same utility for the insurer, they will choose
(p*,a*,b",z",7%) = (p1, a1, b1, 21, 1), resulting in A7 = Pay and W* = W}, Y* = Y;. Note that the
two sub-problems cannot yield identical tuples as optimal solutions; this is because the second
constraints in the two are mutually exclusive under the same Y. In addition, if two or more contract
parameter tuples yield the same utility in the same sub-problem, the insurer breaks the tie by
choosing the one with the highest parameter value in the order (a, b, z, 7, p), i.e., selecting the one(s)
with the highest g, and of those still tied, selecting the one(s) with the highest b, and so on.

4.2 Main results

While we don’t have closed-form solutions to the above problem, below are a few results that
provide some partial characterizations of the equilibrium solution. These properties prove very
helpful in our numerical experiments presented in Section 5 as they drastically simplify the solution
space. Here we assume an exponential form of (W) = ,e™*W and e(Y) = g,e Y.

ProprosITION 4.3. For the sub-problem in Eqn (8), the optimal efforts (W1, Y1) is given by

A(e¥TIR_1)0,
Vo=ow=1" v U 2 Y eRna,)
s — YT R_
% log M Otherwise
yai

Further, for special case 6, = 1 (always being successfully attacked if doing nothing in deter-
T1R_
rence), and R = I (ransom demand is at its maximum), then a; < %,

- y7iR_
% log WTII)H", i.e., the deterrence effort is strictly positive.

meaning Wy =

Proor. For the first sub-problem, in inspecting the constrains we see W and Y can be optimized
separately. The only constraint on Y is Y > 0, thus the optimal value is 0. The constraint then
becomes W € arg min {(1 — 0)er®W 4 ger(@W+TR) } Solving it gives us the expression given in the
theorem.

If R = I, we show that W; = 0, Y; = 0 will result in the insurer’s utility E[U;] < 0.

First we show that at the equilibrium of the A-D game, u° is lower bounded by —(1 — 6, + 6,e"?).
Consider the case where W = Y = 0 and A; = Pay. Then the defender’s expected utility is
E[Ug] = —(1 =0, +6,e"®) > —(1-0, + 0,e""). Therefore at the equilibrium, u® > —(1 -6, +0,e'’)
must hold, otherwise the defender can move to W =Y = 0, and A; = Pay to achieve a higher utility
(note that the defender moves first in the game).

Return to the D-I game, with Wi, Y; = 0 we have

1—0, + 0,erR

E[U] =  log 0,(1- )R
y

IA

1 —u°
)—/log(m) —0,(1-17)R

IA

1
p log(1 — 0, + 6,e"") — 6,1
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When 6, = 1 the upper bound is non-positive. Thus to ensure there’s a market, we must have

— T1R_
W, = 4 log Uora)er g, 0

PROPOSITION 4.4. For the sub-problem in Eqn (9), the optimal efforts (Wa, Y2) can be characterized
as follows depending on the values of ay and by:
o Ifa, > ;%’ by > 5, then W, = Y, = 0;

e Ifa; > f—/, b, < %, then Wy, = 0, and

I 1
0 by 2 Yo 1-0p+0p eV ?2C
Y, = () C Ooeoe??2C (e¥Z2R_1)
1 Ooeo(eV?2(THR) —e¥22C) (—yby) ;
4 log B (18,10, 7720 otherwise
o Ifa; < %, by > 5, thenY, = 0, and
A 1
> 4 —
W, = 0 az = Y (1 146, (g,e¥22(CHR) 1 (1—¢,) e¥?2C -1)
A— [Z ’ : .
%log % (foeYZZ(CJ“R) +(1—¢g)er®C —1) otherwise

e Ifa; < %, b, < 5, then
Wo, Y, € arg min {eyaWﬂ/bY + eo(eyzC _ l)e(ya—/l)Wﬂ/hY + eogaeyzC(eyzR _ l)e(ya—/l)W+(yb—,u)Y} )
W=0,Y>0
Proor. The expected utility of the defender in this case can be simplified.
E[Uén] — ey(aW+bY) + eo(eyzC _ 1)e(ya—A)W+ybY + gogoeyzC(eyzR _ 1)e(ya—A)W+(yb—,u)Y.
It’s not hard to verify that when ya > A, then W, = 0, since the first term is strictly increasing while
the last two are non-decreasing with W. Similarly, yb > p will ensure Y, = 0. When W, = 0, the

optimal Y, = arg minyzo{eyby +0,(e7C — 1)e"?Y + 0,¢,e77C (eV*R — 1)e(r’=MY} Solving it yields
the closed form of Y,. Similarly when Y, = 0, we can also get a closed form for W;. ]

Note that, in the last case of Proposition 4.4, the closed form of (W5, Y,) is not presented, however
using KKT conditions [30] we can numerically solve the problem efficiently.
Finally, we can also bound the insurer’s maximum possible utility.

PROPOSITION 4.5. At the equilibrium, the expected utility of the insurer is upper bounded by
Llog(~u°).
Y

Proor.
E[Ul=p-(1-a)W-(1-b)Y-F-0(W)(1-2)(C+e(Y)R)—(1-F)-0(W)(1-1)R
1
< p < —log(-u°),
p y 8
where the last two inequalities come from Lemma 4.1. O

5 NUMERICAL EVALUATION

To further analyze the A-D and D-I games, in this section we will examine and visualize the
equilibria of these games using numerical simulations. We will assume an exponential form for
O(W) and (Y), ie, (W) = O,e*" and £(Y) = eoe*¥. We also set I = 1 for our experiments,
therefore computed costs/rewards in this section are all relative to the data value.

)
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Fig. 3. Equilibrium strategies (W*, Y*, R*) of the A-D game plotted as a function of C and y. We use I = 1 for
all simulations.

5.1 A-D model

To visualize how the equilibrium strategies of the attacker and the defender change with respect to
the recovery cost C and risk attitude y, we compute and plot W*, Y*, and R* as a function of these
parameters. Figure 3 displays our results, where we have generated plots using different 6(W)
and £(Y). The first column in Figure 3 shows the equilibrium strategies for (W) = 0.5¢"**" and
£(Y) = 0.9¢71%Y In the second column we alter (W) to be less effective by setting (W) = 0.5¢7>".
Alternatively, in the third column we assume that backup is less effective by setting 6(Y) = 0.9e Y.

As discussed in Section 3, we can divide the game parameters into three regions depending on the
equilibrium strategy types they support. On the left-side of each figure (low C) the attacker chooses
R* = I, while the defender will attempt recovery before paying the ransom. On the right-side of
each figure (high C) the attacker will again choose R* = I, while the defender will pay the ransom
immediately. In the region between these two, the attacker will lower the ransom to ensure that the
defender will pay without attempting recovery. While both y and C play a role in determining the
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type of the equilibrium, we observe that C is the main driver. An increasing C forces the defender
to shift from attempting recovery to paying ransom immediately. Note that Laszka et al. [10] derive
a similar result with respect to the unit cost of backup in their model.

In the high recovery cost region, the backup effort is abandoned as discussed in Section 3, and
the defender has to rely on deterrence effort to lower the expected loss. Interestingly, however, in
the other two regions, the attacker seems to favor one type of defense over the other, with one of
W™ or Y* being low. We also observe that a more effective backup effort relative to the deterrence
effort (the second column in Figure 3) seems to expand the middle region.

Another interesting observation is that, in the middle region, though the defender pays ransom
immediately (backup is not used), backup effort is still made (and is significantly higher than
deterrence effort in the first and the second columns). As mentioned earlier, in this case backup
is used as a credible threat to the attacker to lower the ransom. It is indeed noteworthy that the
highest backup effort occurs in this region: when the defender has invested the most in backup
effort, they will also choose to pay immediately. This observation is supported by Theorem 3.2,
where ¢* < ¢ is followed by accepting a lower ransom.

Though C is the main driver, a larger y enlarges the width of the middle region, meaning that a
more risk-averse defender is more willing to accept the attacker’s low ransom compromise. A large
y also shrinks (and in some cases completely eliminates) the recovery region.

5.2 D-I model

We also visualize the equilibrium of the D-I game in Figure 4, using the same parameters as Figure
3. We shall assume that the attacker acts according to the equilibrium of the A-D game, i.e., the
ransom amount at each point is equal to what is presented in Figure 3.

Comparing the two games, we observe that the recovery region remains roughly the same,
which means the defender basically keeps the original decision making regardless of the contract.
However, the defender’s efforts are very different. The defender will almost always abandon the
backup effort under insurance, while the deterrence effort is reduced but positive as compared
to the equilibrium of the A-D game. While the presence of moral hazard is not surprising, it is
interesting to see that it affects the backup effort more drastically than the deterrence effort. An
explanation for this is that the deterrence effort controls the overall probability of a successful
attack, while the backup effort only affects the expected loss when going down the recovery path.
Therefore, the latter has a smaller effect on the overall loss, and is abandoned first in the presence
of insurance; this is compounded by the fact that the attacker is non-strategic in the D-I game, a
consequence of which is that the backup effort cannot be used as a credible threat, unlike in the
A-D game.

On the insurer’s utility, we first observe that it is positive in almost all cases. In particular, for
large y, it is nearly half of the data value in some cases, clearly demonstrating the existence of such
a market for insurance. Note that the optimal a*, b* are at the minimum values a and b, respectively,
with 7* = 0 for the pay region, and z* = 0 for the recovery region. These values suggest that the
defender essentially only pays the premium, while the costs of effort and losses from a successful
attack are all but completely covered by the insurer.

In addition, with the introduction of insurance, the attacker gains a slightly higher payout due
the reduction of the defender’s effort. Note that the defender’s utility remains the same inside and
outside of the contract. This means that the attacker is essentially cutting into the insurer’s potential
profit. Nevertheless, the insurer is still making a profit by taking advantage of the defender’s risk
aversion, with their profit increases as the defender becomes more risk averse.
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Fig. 4. Equilibrium strategies (W™, Y*, U/) of the D-I game plotted as a function of C and y.

6 DISCUSSION AND CONCLUSION

This paper presented and analyzed two game theoretic models involving ransomware attacks.

In the Attacker-Defender (A-D) game we analyzes the strategic interaction between an attacker
(whose action is choosing a ransom amount) and a defender deciding on their effort levels. We
identify three types of equilibria, mainly dependent on the cost of data recovery and the level of
risk-aversion for the defender. Our findings show that the backup effort is often used as a credible
threat against the attacker to induce a lower ransom, rather than as a real recovery measure. We
also detect that a highly risk-averse defender is more likely to arrive at a compromise with the
attacker, accepting a lower ransom and paying immediately.

Our analysis of the Defender-Insure (D-I) game suggests that the introduction of insurance
causes the defender to almost completely abandon backup effort and reduce their deterrence effort.
At the same time, the insurer offers to cover all efforts through premium discounts, and cover all
potential losses. The insurer’s profit is then derived from the risk-aversion of the defender, which
increases as the defender becomes more risk-averse. However, in presence of insurance, the attacker
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also enjoys a higher payout due to lower efforts by the defender. Nevertheless, our empirical results
show that there is still a market for insurance.

Analyzing a three-way A-D-I game model where the attacker is also strategic is an important
direction for future work. Furthermore, analyzing and providing potential solutions for the present
moral hazard issue, and studying the problem under incomplete information assumptions are other
possible extensions for the current work.
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