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Abstract—Stochastic gradient Langevin dynamics (SGLD) has
gained the attention of optimization researchers due to its
global optimization properties. This paper proves an improved
convergence property to local minimizers of nonconvex objec-
tive functions using SGLD accelerated by variance reductions.
Moreover, we prove an ergodicity property of the SGLD scheme,
which gives insights on its potential to find global minimizers of
nonconvex objectives.

I. INTRODUCTION

In this paper we consider the optimization algorithm
stochastic gradient descent (SGD) with variance reduction
(VR) and Gaussian noise injected at every iteration step.
For historical reasons, the particular randomization format of
injecting Gaussian noises bears the name Langevin dynamics
(LD). Thus, the scheme we consider is referred as stochastic
gradient Langevin dynamics with variance reduction (SGLD-
VR). We prove the ergodicity property of SGLD-VR schemes
when used as an optimization algorithm, which the normal
SGD method without the additional noise does not have. As
the ergodicity property implies the non-trivial probability for
the LD process to visit the whole space, the set of global
minima will also be traversed during the iteration. We also
provide convergence results of SGLD-VR to local minima in
a similar style to [Xu et al., 2018]. Taken together, the results
show that SGLD-VR concentrates around local minima, but is
never stuck at a particular point, and thus is useful for global
optimization.

We apply the SGLD-VR scheme on the empirical risk
minimization (ERM) problem:

Zfz 1)

which often arises as a sampled version of the stochastic

flw; &) dE, where € is
the collection of training data and w is the parameter for the
model, i.e., F(w) may be the expectation of a loss function
with respect to stochastic data £, F(w) = Ef(w, &), so then
filw) = £(w, &) for i.i.d. realizations (&;)?_,. In the following
text we use x instead of w as the input for the objective f in
order to conform to optimization literature conventions. The
usual SGD framework for ERM problems is at every gradient

minimize f(w

optimization problem: min F(w) =
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step to form a minibatch subsampled from {1,...,n} and
include only the sampled terms (with a reweighting) in the
sum, in order to reduce computational complexity. Variance
reduction which exploits the finite-sum structure of Eq. (1)
accelerates convergence, and LD is is used in the SGD scheme
to enable the ergodicity property.

A. Prior art

The Langevin dynamical equation describes the trajectory
X (t) of the following stochastic differential equation

dX, = —VU(X,)dt + o dB,, )

where B, is a Wiener process. This equation characterizes
the continuous motion of a particle subject to fluctuations
(due to nonzero temperature) in a potential field U, and
in the limit 0 — oo approaches Brownian motion. Using
this dynamic as a master equation, through Kramers—Moyal
expansion one can derive the Fokker-Planck equation, which
gives the spatial distribution of particles at a given time, thus
a full characterization of the statistical properties of a particle
ensemble [Kramers, 1940].

a) LD and sampling: The connection between Langevin
dynamics (LD) and the distribution of particle ensemble
reveals the potential of applying LD on sampling. Suppose
that the distribution of interest is 7(x) and that there exists
a function U such that w(x) = %, then the
LD equation using this U defines a stochastic process with
stationary distribution 7r(x). To numerically implement the LD
equation for sampling purposes, one needs to discretize the
continuous LD equation. A simple version of the discretization
is the unadjusted Langevin algorithm (ULA),

X1 = Xi + Axy, Axy = -0 VU (xk) + po/Tker - (3)

where €, ~ N(0,14), x € R% and py = 0. The Gaussian noise
term enables the scheme to explore the sample space and the
drift term guides the direction of exploration. One common
modified scheme is the Metropolis adjusted Langevin algo-
rithm (MALA), where upon the suggested update by ULA,
there is an additional accept/reject step, with the probability
of accepting the the update as 1 A %
Naturally two central questions reTated to this sample
scheme arise: whether or not the distribution of samples



generated by LD converges, and if so, to m; and what is
the mixing time of LD (i.e., how long does it takes for
the LD to approximately reach equilibrium hence generating
valid samples from the distribution 7). The first question
motivates the importance of MALA: in terms of the foral
variation (TV) distance, while ULA can fail to converge for
either light-tailed or heavy-tailed target distribution, MALA is
guaranteed to converge to any continuous target distribution
[Meyn and Tweedie, 2009]. Regarding the second question
about convergence speed, researchers have investigated the
sufficient conditions for ULA and MALA respectively to
guarantee exponential (geometric) convergence to target distri-
bution. [Mengersen and Tweedie, 1996] show for distributions
over R, the necessary and sufficient condition for MALA to
converge to target distribution 7(x) at geometric speed is that
m(x) has exponential tails. The sufficiency of this condition
is generalized to higher dimension in [Roberts and Tweedie,
1996b]. The seminal work by [Roberts and Tweedie, 1996a]
shows that MALA cannot converge at geometric speed to
target distributions that are in essence non-localized, or heavy-
tailed.

In parallel there have been works to show the convergence
of LD for distribution approximation in terms of Wasserstein-2
distance [Dalalyan and Karagulyan, 2017] and KL-divergence
respectively [Cheng and Bartlett, 2018].

A particular case of interest for the application of LD on
sampling is to find the posterior distribution of parameters x
in the Bayesian setting, where the updates are set as

N
Axy =y, (Vp(xk) +Y  Viogp(& | Xk)) + Viker (4)

i=1

where €, ~ N(0,I) and p(x,£) is the joint probability of
parameters x and data £. To maximize the likelihood, [Welling
and Teh, 2011] suggest to use the format of stochastic gradient
descent in the derivative term of (4). [Borkar and Mitter, 1999]
show that this minibatch-styled LD will converge to the correct
distribution in terms of KL divergence.

b) LD and optimization: The main focus of this paper is
on optimization. LD offers an exciting opportunity for global
optimization due to the exploring nature of the Brownian mo-
tion term. Simulating multiple particles to obtain information
about the geometric landscape of the objective function—
thus locating a global minimum—is often too computationally
expensive to be practical. Notice that when one considers the
convergence to a distribution, the exploring nature of LD due
to continually injected Gaussian noise of constant variance
is the key factor, while for the purpose of optimization, one
usually exploits noises with diminishing variance since the
goal is to converge to a point.

The technique to achieve this point convergence is anneal-
ing, which means decreasing the variance of the noise as ¢
grows. Formally, let the objective function be U and we con-
struct the probability distribution pr(x) = % exp (—@),
where Z is the normalization factor. The key observation is
that as the parameter 7' — 0, the distribution pp(x) will

concentrate on the global minima. This parameter 7" is usually
referred to as temperature, alluding to the alloy annealing
process where as temperature decreases, the structure of the
metal evolves into the most stable one, hence reaching the
state with minimum potential energy. To formulate LD for
optimization, one essentially takes the usual LD equation but
with the variance term o now a function of time, o = v/T'(t):

dx; = VU (x¢) dt + \/T(t) dB,

The pioneering work by [Chiang et al., 1987] shows that with
the annealing schedule T'(t) o (logt)™!, then LD will find the
global minimum. The work by Chiang et al. does not specify
how to simulate the continuous version of Langevin dynamics,
thus not providing information on the convergence of discrete
approximations (such as the Euler-Maruyama method) for LD.
[Gelfand and Mitter, 1991] fill this gap by proving that with
an annealing schedule 1, o k= and T} oc (kloglogk)™!,
the discretized LD will converge to the global minima in
probability, though the convergence may be slow (and im-
proving slow convergence is the motivation for the variance
reduction scheme we analyze). More recently, [Raginsky et al.,
2017] use optimal transport formalism to study the empirical
risk minimization problem. Their proof uses the Wasserstein-
2 distance to evaluate distribution discrepancy and consists of
two parts: first they show that the discretization error of LD
from continuous LD accumulates linearly with respect to the
error tolerance level, and then they show that the continuous
LD will converge to the true target distribution exponentially
fast.

c) Variance reduction (VR) and LD: In this paper we aim
to apply variance reduction techniques in the setting of LD to
accelerate the optimization process and to derive an improved
time complexity dependence on error tolerance level. We use
the term “time complexity” to be proportional to the iteration
count.

The main algorithm we consider in this paper is stochastic
gradient Langevin dynamics (SGLD) with variance reduction,
which consists of two sources of randomness: one from
stochastic gradients, the other from Gaussian noise injected
at each step. Previous work have investigated the SGLD for
optimization to find local minimizers [Chen et al., 2019, Zhang
et al., 2017], and reported results for convergence to approxi-
mate second order stationary points.

In particular, [Xu et al., 2018] show that with constant-
variance Gaussian noise injected at each step, SGLD-VR finds
an approximate minimizer with time complexity (9(\/—;7)~e0<d> ,

2
in contrast to the time complexity O(Z) - e9(? for SGLD
without variance reduction acceleration, where n is the number
of component functions in the ERM; see Figure 1 which lends
some experimental evidence that SGLD-VR can outperform
regular SGLD. We aim to improve the dependency on ¢ in
the analysis. We also point out that when the variance of the
Gaussian noise is set as constant in SGLD, the function value
or the point distance between an optimal point and the iterate
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Fig. 1: Example of training a neural net for binary classification
with 2 hidden layers, n = 1000 training points, sigmoid activation
function, 1o = 103, v = 1, po = 1072, batch size B, = 100, and
B. = 10. SGLD-VR converges to a good solution, in terms of both
training and testing error, more quickly than either SGLD or regular
SGD. The /2 loss was used for training, but the error reported in the
figure is the misclassification rate.

can never go to zero, but can at best be bounded by a constant
depending on the size of variance.

The specific VR technique we use was originally proposed
to reduce the variance of the minibatch gradient estimator in
stochastic gradient descent for convex objectives by [Johnson
and Zhang, 2013] and separately by [Defazio et al., 2014].
[Reddi et al., 2016, Allen-Zhu and Hazan, 2016] have re-
spectively generalized the application of VR techniques to
nonconvex objectives and provided convergence guarantee to
first-order stationary points.

In essence, we use the control variate technique to construct
a new gradient estimator by adding an additional term to the
minibatch gradient estimator in SGD (Vggp) and this term
is correlated with Vggp, thus reducing the variance of the
gradient estimator as a whole. More specifically, consider the
classic gradient estimator of function f in (1) at point x:
Vsap = ﬁ > icr Vfi(x), where T C [n]. If there is another
random variable (r.v.) Y whose expectation is known, then
we can construct a new unbiased gradient estimator V of the
function f at point x as V = Vgap + a(Y —EY), where «

is a constant. If o = —%ﬁ’y), then the variance of the

new gradient estimator V is Var[V] = (1 — x2)Var[Vsap] <
Var[Vsgp], where k is the Pearson correlation coefficient
between Vggp and Y. Usually one may not be lucky enough
to have access to such a r.v. Y whose covariance with Vgap is
known, therefore the constant « for the control variate needs
to be chosen in a sub-optimal or empirical manner.

Finally we want to mention that [Dubey et al., 2016]
introduce the VR technique to Bayesian inference setting
where the objective is the posterior and the gradient estimator
is constructed with a minibatch of training data. However, the
given convergence guarantee is in terms of mean squared error
of statistics evaluated based on posterior, instead of posterior
distribution of the parameter.

d) Contributions: This paper discusses the convergence
properties of SGLD with variance reduction and shows the

ergodicity property of the scheme. Our main contributions
upon the prior art is the following:

« We provide a better time complexity for the SGLD-
VR scheme to converge to a local minimizer than the
corresponding result in [Xu et al., 2018].

« We show the ergodicity property of SGLD-VR scheme
based on the framework set for SGLD scheme in [Chen
et al., 2019].

e) Notation: Bold symbols indicate vectors, for example
a vector x € RY where d stands for the dimension of
Euclidean space. We use o to indicate the starting index of
a minibatch, 7., as the shorthand for Zf: o Mi» and [n] =
{1,2,...,n}.
II. ALGORITHM AND MAIN RESULTS

The main algorithm is given as Algorithm 1.

Algorithm 1 Variance reduced stochastic gradient Langevin
dynamics (SGLD-VR)

Require: initial stepsize 1y > 0 and variance pg > 0, stepsize
decay exponent v > 1, batch size By, epoch length B,
1: Initialize x¢ = 0, X(?) = x,
2: Define the stepsize and variance sequences:

m= gy and py = 0 (5)

3 for s =0,1,2,---, 4 — 1 do

4 w=VfEE)

5: for (=0,1,--- ,B.— 1 do

6: Set index t = sB, + 1

7: Draw I, C [n] of size |I;| = By, > uniformly, with
replacement

8: Draw €; ~ N (0,1)

° Vi= g Yier, (Vi) = VL, &) + %) o
gradient estimator _

10: update x;4+1 = X — Vi + pr€g

11: end for

12: ;((S) = X(s41)B,

13: end for

A. Convergence to a first-order stationary point

We start stating the main results with computing the time
complexity for the SGLD-VR to converge to an e—first order
stationary point. We define x* to be an e-first order stationary
point (FSP) if ||V f(x*)|| < e.

Our first assumption is very standard [Bauschke and Com-
bettes, 2017]:

Assumption 1 (Lipschitz Gradient). f is continuously differ-
entiable, and there exists a positive constant L such that for
all x and y, |V f(x) = Vf(y)| < Llx -yl

Theorem 1. Under Assumption 1, for any p € (0,1), then
with probability at least 1 — p, the time complexity for the
LD described in Algorithm 1 to converge to an e-first order

stationary point x* is O <§2fd), where Ay = f(xo)—f(x*).
p



Method w. VR noise magnitude setting convergence target Time complexity m
~(d+1/5
[Raginsky et al., 2017] no constant global min. @) <_g—io>
0€
[Xu et al., 2018] yes constant global min. @) (m exp(O(d))
€
) ApdL?
[Zhang et al., 2017] no constant local min. o —
€
A
This work yes diminishing w. poly. speed local min.* O <_2f> + exp (O(ed))
€

TABLE I: Comparison between convergence results for variants of LD optimization schemes.

* indicates convergence target

is actually a e-second-order stationary point, which coincides with a local minimizer when € < ,/q under Assumption 4. t
means that with the noise magnitude fixed, the optimized empirical error cannot be arbitrarily close to true minimal empirical

error, thus returning an approximate global minimizer.

B. Ergodicity

In this work we show that the discretized variance reduced
LD (SGLD-VR) has an ergodic property which gives the iter-
ation process the potential of exploring wider space, thus with
positive possibility of traversing through the global optimal
point. We make the following regularization assumptions.

The following assumption says essentially that f is bounded
below by a known value (and without loss of generality, we
can assume f is non-negative). This automatically holds for
ERM problems when the loss function is non-negative, as is
typical.

Assumption 2 (Nonnegative objective). The objective function
is nonnegative.

The next assumption is more complex and we discuss it in
Remark 1.

Assumption 3 (Regularization conditions). There exist non-
negative constants |11, o and 11, 1o such that for all x € R4,

[V £(x)|? > pa f(x) — (6)
%1% < paf(x) + s 7

Remark 1. We make the same regularization assumptions as
in [Chen et al.,, 2019]. A similar regularization condition
to (6) commonly used in previous literature is the (m,b)-
dissipative condition [Mattingly et al., 2002, Raginsky et al.,
2017, Xu et al., 2018, Zhang et al., 2017], which reads
that there exist positive constants m and b such that for
all x € R4, (Vf(x),x) > m|x|? — b. [Dong and Tong,
2020] show that the dissipative condition implies (6), which
renders the assumption (6) weaker. Another interpretation
of (6), in conjunction with Assumption 2, is that this is
a slightly weaker version of the Polyak-Lojasiewicz (PL)
inequality [Karimi et al., 2016]; choosing 15 to be the minimal
value of f gives the PL inequality, but the PL inequality itself
is stronger since it implies that any stationary point (i.e., where
Vf(z) = 0) is globally optimal. Equation (7) implies that
f is supercoercive [Bauschke and Combettes, 2017], and in
particular coercive, and thus has bounded level sets.

Consider the function f(x) = o(Ax) + v||x||3 + C, which
describes the connection between one neuron and the layer
below it in a feedforward neural network with coefficient
matrix A, the activation function ¢ as tanh or sigmoid, and a
Tikhonov regularization term with magnitude v and a constant
C. This is an example which satisfies Assumptions 1, 2, and
3. Examples with more types of activation functions such
as ReLu and more types of regularization terms such as (1,
or extensions to multilayer feedforward networks or convo-
lutional neural networks can also be constructed if they are
defined region-wise to cater for near-origin behavior and far-
field behavior in the regularization assumption 3 respectively.

In Theorem 2 we show that there is a nonzero probability
that the LD iteration will eventually visit any fixed point within
a level set of interest.

Theorem 2 (Ergodicity). Under assumptions 1, 2, and 3, with
the same parameter setting as in Lemma 7, for any accuracy
£ > 0, failure probability p > 0, and any point s € R* which
locates in the level set {x : f(x) < O(€)}, there is a finite
time horizon

d
1+ In f(xo) + ——sl2)
_ f( O) 5((\/%—1)43*1/25)

T=0
~ po f(xo)+2¢ p2
EPL1 (1/)1 + 2770.[/372 ( 5) 2+ 7772 Ld)

e

®)

such that
Pr(||x; —s|| <€ for some t <T)>1—p )

C. Convergence to an e-second-order stationary point

An e-second-order stationary point is a more restrictive type
of e-first order stationary point, and is more likely to be an
actual local minimizer.

Definition 1. Consider a smooth function f(x) with continu-
ous second order derivative. A point X is an e-second-order
stationary point if

IVf(x)| <e and /\(VQf(x))mm > g2

(10)

where A(*)min is the smallest eigenvalue.



We make the strict saddle assumption which is common
in nonconvex optimization literature [Ge et al., 2015, Lee
et al., 2016, Jin et al., 2017, Mokhtari et al., 2018, Lee et al.,
2019, Vlatakis-Gkaragkounis et al., 2019, Sun et al., 2019, Liu
and Yin, 2019, Li, 2019, Huang and Becker, 2020]; i.e

Assumption 4 (Strict saddle). There exists a constant ¢ > 0
such that for all first-order stationary points Xisp, we have

|A(V2f(xfsp)>| > q > 0.

Assumption 5 (Lipschitz Hessian). f is twice continuously
differentiable, and there exists a positive constant Lo such
that for all x and y, ||V2f(x) — V2f(y)| < La|x — y||.

Theorem 3. Under Assumptions 1, 4 and 5, setting the
stepsize decay parameter v € [1,2] and py = O(e), with
probability O W

LD described in Klgorlthm 1 to converge to an e-second
is (9( ) + exp (O(ed)), where

the time complexity for the

order stationary point x*

Ay = f(xo) = f(x*).

ITI. PROOF SKETCH
A. Convergence to a first-order stationary point

We first bound the expectation of the square of the gradient
norm in a minibatch step of SGLD-VR. To estimate the time
needed to converge to a first-order stationary point (FSP), we
compute the dependence of the gradient norm bound on the
iteration count ¢. The quantity that plays a central role in
the argument is the Lyapunov function, which is essential in
constructing the upper bound for gradient norm and connects
the argument between successive minibatches.

Lemma 4 (Bound of variance of SVRG gradient estimator
[Reddi et al., 2016]). In an epoch, the SVRG gradient estima-
tor satisfies

2

E (%] < 2B [|VF(x0)[?] + 25 E

5Bl — =)

Y

Adapting the framework in [Reddi et al., 2016] for the
LD setting, the following lemma bounds the expectation of
the gradient norm for the SGLD-VR iteration sequence in a
minibatch:

Lemma 5. Define the weight sequence (ci) recursively as ¢; =
cer1(1+ Beme + 277’f ) + njsz with cg, = 0, and then define
the Lyapunov functwn Ry = E[f(x¢) + ct||x¢ — X||?] for each
epoch. Define the normalization sequence vy = 1y — ’Btl e —
ntQL—than with n; and By > 0 set to ensure y; > 0. Under
Assumption 1, inside an epoch,

R, — R L d
e ( +Ct+1> pt
Mt 2 Mt

Remark 3 in the supplementary material shows that there
always exists choices of 7y and v (hence 7; via (5)) and (5;)
to ensure y; > 0.

E[IIV£(xo)l?) <

Now we use the bound of the gradient norm within a
minibatch to build the norm bound of the SGLD-VR gradient
estimator for the whole iteration in the following lemma, with
which one can derive the time complexity for the SGLD-VR
scheme to converge to a FSP as in Theorem 1:

Lemma 6. Let ¥ = ming<i<7—1 v+ where vy, is defined in the
previous lemma, and v > 0. Then under Assumption I,

fxo) = f(x*)  d (L ) Co

E[||Vf(xa)\\2]§7_+% - tco Tv

T 5 (12)

where X, is randomly chosen from the entire iterate sequence
and Cy is a universal constant.

B. Ergodicity

The ergodicity argument is comprised of two parts: recur-
rence and reachability.

a) Recurrence: The LD term in the optimization scheme,
due to its random-walk nature, is the key for the reachability
argument. In this section we follow the framework of [Chen
et al., 2019] while giving new specific proofs.

We first show that with Langevin dynamics, the iteration
process will visit sublevel sets of interest, for instance the
collection of compact neighborhoods of all local minimums,
infinitely many times. Lemma 7 is the first pillar to establish
the ergodicity result. In its proof, we first give a more explicit
characterization of function value decrease between two suc-
cessive SGLD-VR updates than the characterization using the
Lyapunov function R, for the discussion of convergence to
first-order stationary points in lemma 5. Next, we construct
a supermartingale involving the objective function value and
iteration count. Through the introduction of a stopping time
sequence which records the time of the iteration visiting
targeted sublevel sets, one can establish the expectation of any
entry in this stopping time sequence, thus proving the lemma.

Our main lemma is Lemma 7 where we give an explicit
upper bound of the expected time of visiting a given level set
for the j-th time (5 > 1).

Lemma 7 (Recurrence). For a fixed § > 0, let ng be the index
such that n,, <6, and ny be the sequence of iteration index
Ng+1 = mins{s 18> Nk, Nny:s > 5}

Under Assumptions 1, 2 and 3, there exists a constant C’1

such that for constants o = 1 — 2exp(—(1 — Cl)u15)

2, 2Ld In £&n0)

2(py + 0 (M2f(xo) +2thy) + p§n0 ), K = q=55 the

stopping tlme sequence {1} defined as 1o = K and 141 =
min{t : ¢t > 7, + 1, f(xp,) < 20B} satisfies

503 (13)

4 1
Remark 2. As we have assumed that f > 0 which is common
for ERM problems since the loss function is usually non-
negative, it is desirable that f(x,,) goes to 0 as the iteration
proceeds. Thus, the choice of  for analytical purposes would

5 ~ .
be § B for some e-target level one deems appropriate.



Method Bounded Grad. Lip.  Hess. Lip. Regularization Other assumptions

1) stoch. grad. sub-exp. tails
[Raginsky et al., 2017] fand ||V £ yes no (m, b)-dissipative 2) init. pt. sub-Gauss. tails
[Xu et al., 2018] none yes no (m, b)-dissipative none
[Zhang et al., 2017] IV £]| and || V2 £|| yes yes (1, 0)-dissipative grad. sub-exp. tails
This work none yes yes Assumption 3 strict saddle

TABLE II: Comparison between assumptions made for variants of LD optimization schemes. The Hessian Lipschitz assumption

is used only for claims about second-order convergence.

b) Reachability: As lemma 7 shows, when the expected
time for the iterates to revisit a certain level set of interest
for j-th time is finite (j is any positive integer), we call such
a level set recurrent. We show that when the SGLD iteration
sequence starts from a recurrent compact set, there is a positive
possibility for the sequence to visit every nearby first-order
stationary point.

Lemma 8 is the core lemma to establish the ergodicity result
for the LD optimization scheme. The core idea behind its proof
is to leverage the exploratory potential of a radial Brownian
motion process to show that there is a non-trivial probability
for the Gaussian noise accumulation in the LD scheme to visit
a pre-designated point in space.

Lemma 8 (Ergodicity due to Brownian motion). Given any se-
quence ay, > 0, let zj, = Zle po/ai€; where €; ~ N (0, I),
for any target vector z* and distance r, there exists a positive
function py such that

Pr(||z, — ]| < 7. [zl < |2l + 7 Yk =1, ,n)

Zpl(rap()vtnvz*) (14)

with p1(0, po,tn,2z*) = p1(r,0,t,,2*) = 0.

We leverage Lemma 8 to show the reachability of SGLD-
VR scheme, which is the second pillar to establish the ergod-
icity result. The core idea behind the proof of Lemma 9 is to
balance the influence on the iterates from gradient descent and
Gaussian noise accumulation respectively, and show that the
exploratory potential behind the Gaussian noise accumulation
will fulfill the desired property of reachability.

Lemma 9 (Reachability). Assume the same stepsize batch
setting as in Lemma 7 and the gradient Lipschitz condition
in Assumption 1, with respect to an arbitrary target point s
in the level set {x : f(x) < €}. there is a constant Cq; x dL
and constant Csy such that for any € > 0,

1
Pr (”an‘+1 - S” < g) > ipl(gap()7tni+1vs) (15)

where € = € + 6Ca1 + 20/ Cas.

Theorem 2 follows by bounding the probability Pr(r, > T')
for some predesignated 7', where we define 7, = min{¢: ¢ >
0, |xn, — s|| < €}. With the marker sequence of iteration
index ny = ming{s : 8§ > Ng_1, Nny_,:s > %} and the
auxiliary stopping time sequence 79 = K, 7¢4+1 = min{¢ : ¢ >
Tr + 1, f(xn,) < €}, where B and K are objective-specific

constants, one writes Pr(7, > T) = Pr(r. > T,7; > T) +
Pr(r. > T,7; < T) and bound each term by Lemma 7 and
Lemma 9 respectively.

C. Convergence to a second-order stationary point

By far in the literature there are two common ways to argue
the convergence to second-order stationary points (SSP)

o show that f(xr) — f(x0) < Ay with probabilistic
guarantee to ensure the continual function value decrease
at saddle point ( [Jin et al., 2017])

« show that ||x — x*|| decreases in the probabilistic sense
as T increases ( [Kleinberg et al., 2018]).
The time complexity of this approach has the exponential
dependency on the inverse of the error tolerance. So in
this work we resort to the previous approach.

The argument to show sufficient function value decrease
from a FSP in [Jin et al., 2017] uses two iterate sequences
to demonstrate the continual function value decrease at saddle
point. Now that the noise is injected at every iteration, the
geometric intuition that the trapping region is thin plus the
probabilistic argument should be able to give a similar proof.

In the LD setting we exploit the property of Brownian mo-
tion to show the escape from saddle point, i.e. to characterize
the perturbed iterate has high probability in the direction of
descent,

(Xt - xfsp)TVQf(stp)(xt - XfSP) < _C

The proof contains four steps:
1) We show that A; := S i+t vni€; will lead to saddle

l=n;
point escape, i.e. ATV?f(xp)A; < —(. Specifically,
show that A; has projection on the direction of \;,, more
than ¢ with high probability, which exploits the property
of Brownian motion and the idea that the trapping region
is thin when faced with LD ( [Jin et al., 2017]).

2) We show that when x € U(xsp, ) Where ||Aj]| < 7
for j = ngmi + 1,0 ;i1 — 1, [Vf(x)|| < e, thus
the first order expansion does not contribute to function
value change.

3) We show that the update x’ = x+A; will lead to function
value decrease, thus the SGLD algorithm has to terminate,
thus converging to SSP.

4) Compute 7ggp by taking account of the time needed for
escaping saddle points and the time needed for achieving
sufficient function value decrease.



IV. CONCLUSION

In this paper we consider the application of the scheme
stochastic gradient Langevin dynamics with variance reduction
on minimizing nonconvex objectives, prove the probabilistic
convergence guarantee to local minimizers, and prove corre-
sponding ergodicity property of the scheme which leads to
non-trivial probability for the scheme to visit global minimiz-
ers.
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APPENDIX
SUPPLEMENTARY MATERIAL
A. Proofs of first-order stationary point convergence property
In this section we prove the result for first-order convergence property (theorem 1) as well as the needed lemmas.
Lemma 10 (Repeat of lemma 5). Define the weight sequence {c;} recursively as ¢ = ce1(1 + Beme + Qm ) + "t with

B, = 0, and then define the Lyapunov function R, = E[f(x;) + ¢;||x; — X||?] for each epoch. Define the normallzation
sequence 7y = 1 — '“ Ny — N2 L — 2ci41n? with 0y and B; > 0 set to ensure y; > 0. Under Assumption 1, inside an epoch,

R, — R L dp?
E (VS ()] < =Bt +( +ct+1) dri.
Yt Yt

2

Proof. We find upper bounds to the Lyapunov functions R; in terms of the negative norm of the SVRG gradient estimator, thus
proving the lemma. We bound the two terms in the Lyapunov functions respectively. For notational simplicity let V f(x;) =
Vt == E I [Vt]

For the first term f(x;,1) in the Lyapunov function, using Prop. 12,

I _
E[f(xe41)] = E [ f(xe) — || Vel* + 5(77t2||vt||2 + P?€t||2)}

2

)

_ CS . Young 2 8 -
(Vi, X = x0) < [IVelllxe =% < g5 IVell® + B llx — X

E [|lxe+1 — X[*] = E [[[xe1 — x¢ +x¢ — X[|*] = E [[|xe1 — xel|” + IIxe — X[|* + 2(x¢41 — %4, %¢ — X))]
=E 7 IVell? + pfllel” + llxe — X[1* 4 20 (Ve, X — x4)]
d ~ n
<E [0Vl + pfllecll® + (1 + neBe)llxe — X[|* + B*iHVtHQ]

For the second term ||x¢41

Putting these two terms together into R, 1, we have

c L ~ ~
R <8 |10 + (55 < ) IV + (5 4 coon ) GRITHIR + 8lledl?) + (14 meralix - 1

(11) C L
< 70+ (Z5E ok (L 2yt ) I9P + (5 + ) el
t
n; L? =112
+ (L mBo)eer + (L +2000) 1) e — %2
L ~
— 5 |16 = el + (5 o ) el + culx ~ %P
L
~ B B[V B (5 ) ]
2 L 2
= Ry — E [%]Vel’] + 3 T o) pid.

We set {;} and 7o properly (see the remark below this proof) such that —y; = m;‘“ ne + (L + 2ce41)n? < 0 for all
t=0,1,---,Be — 1. This can always be achieved as ¢, is a decreasing sequence and c; is negatively related to ;. Then

L
E ['Yt||vt||2] < —Rt+1 + R + (2 + Ct+1> p?d (16)

O

Remark 3. We show that the 7o and {f3;} sequence setting in the end of the proof of lemma 5 always exists. For now we can
assume [3; = ( is a constant. Then we can define an upper bound sequence for {c;} as

mL®, | mL?

+ = Ce1(1+ Bno B )+ -
- )
with ¢g, = 0. Then, ¢; < ¢ for 1 <t < B,. Consequently, for expression simplicity assuming ¢ = 1 + Sy + 2"03L "
"%L?’ 770L3 e
_ = _ mr
- Enoﬁ"éif T el we have
¢+ D B
Cty1+ D ¢



It follows that L (G +D)=¢g, +D =D, and & = (¢B — 1)D. We need to set 3 in a way such that v, > 0 for all
1<t< B.. As

need

Ve > (1 - E —nolL — 260no> ne > 0,

a sufficient condition to assure the second inequality above is

(1
Co (B + 27)0> +noL < 1 (17)

57;0 L3

Let Bno be small while 5 > 1, then the L.h.s. of (17) is of the order Beno = which can ensure (17) to hold.

Br]OLZ ’

Lemma 11 (Repeat of lemma 6). Let ¥ = ming<i<7—1 7y where 7, is deﬁned in the previous lemma, and v > 0. Then under
Assumption 1,
fxo) = f(x*)  d (L Co
E[|Vf(x)|’] < ———"2 4+ — (= —, 18
1976} < HEIED 4 2 (D) 20 (18)
where X, is randomly chosen from the entire iterate sequence and Cy is a universal constant.

Proof. We set cg, = 0 so that R(()o‘) =f (x(()a)) and R%lc) =f (X(Bo:)) for the fixed epoch «. Per line 10 in Algorithm 1, the

ending point of the previous epoch is the starting point of the next epoch, i.e., x(()a) = xgjl). Summing up all the iteration
steps in each epoch, we have

B B 97 T—1
;O (a) f(Xo) _ f(xr) I E [H_GH ] Z <§ + C(¢ mod Be)+1> p?

Y v —o

‘H

[\/j o

[

When p; is set as O(tu/Q) where v > 1, as ct is bounded w.r.t. a fixed epoch, Zt o PP =O(T""). (The v = 1 case
leads to logarithmic growth of summation of p?, which does not affect the following result.) Then consider the LHS of the
inequality as the average over all iterates, then

T

E H|vf(xa)H2] < f(XO)lef( H || ZO < + C(t mod B, )+1>

Sﬂm%f&ﬂ+ci( )25 el

T _S) (L o) G

— 1
Ty 2 TV (19)

O

Proof of Thm. 1. Per (19), we see that the time complexity for the LD to converge to an e-first order stationary point is
(’)(Af d) Another way to phrase the time complexity is through the hitting time of LD to a first-order stationary point (fsp)
Ttsp- T0 estimate the expected time for the iteration sequence to enter a fsp neighborhood,

T
Pr(rip > T) =Pr([|Vf(x)|| > e, VI <T) < Pr(; ; IV f(x¢)]] > €>

E[L S0 V)]

3
_ ElIVIGall o VEIIV(xa)l]

)

€ €
where the 2nd inequality is due to Markov’s inequality, and the expectation in the final line is taken over choosing a uniformly
from {1,...,T} in addition to the other random variables, and the final inequality is Jensen’s inequality.
Thus, using Lemma 6,
A f d (L CO let
Pr(m, > T - = p, 20
r(Trsp ) < \/T7+ <2+ O)TV P (20)

where p is the failure probability. As 7 is a positive constant independent of d,e and T, the equation above transforms into
%—i—f{( +C)CO—€p.ASV21,T=O<Afd O

ye?p )*
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B. Proofs of ergodicity properties

Let F; be the filtration generated by (xg,...,X;) and associated random variables (I; and €;) for (x;) the sequence from
Algo. 1. We write E[- | F;] as just E [-] when the conditioning is clear from context.
We start with a simple proposition that will be used in several of the proofs.

Proposition 12 (variant of the Descent Lemma). For x; generated via Algo. I, under the Lipschitz assumption I, then the
expectation conditioned on F; satisfies

B )] < B | 1)+ (VG xens = xi) + 5 bxess = ]3]

L ~
=5 |50~ mlViIP + 5 (1T + )| a1

Proof. The first inequality uses the L-smoothness of function f and the second equality uses the SVRG update in algorithm
1 (x¢41 — x¢ = —1:V¢ + pr€;) and the unbiasedness of the gradient estimator V. O]

1) Recurrence:

Lemma 13 (Repeat of lemma 7). For a fixed 6 > 0, let ny be the index such that n,, < 6, and ny, be the sequence of iteration
index npy1 = ming{s : s > Ny, Nn,.s > 0}
Under the regularization assumption 3, Lipschitz assumption I and nonnegativity asmmptlbn 2, there exists a constant C

FGng)

such that for o« =1 —2exp(—(1 — C1)u16), B =2(¢1 + 27’"" (ugf(xo) + 2¢2) + p" ) and K = ﬁ the stopping
time sequence {1}, defined as 1o = K and Tj,41 = min{t : ¢ 2 T+ 1, f(xp,) < 263} Where (xy) is the sequence generated
by Algo. 1, satisfies

4 1

Proof. Conditioned on F; and f(X(*)) < f(xq) for the largest s such that t > sB,, we have

@D n?L 7L
E[f(xes)] < fGx) = mel| Vell® + E S5 Ve)? + S E e

(1 2L L? - p?Ld
< 1) = VP + T (29 + 2 I - %) +

e 2
= 700 — (e~ DIV + L P 4 2
2 100 — 0~ DIV + 2 () + 7 00) + 20) + P2
(14 2L ) — g DIV 4 2 ) 4+ 20) 4 2
g(1+2m2§jm)f(>ct)(mnfL)(ulf(Xt)dn) Z’EL (n2f(x0) + 2005) + ?;d

2L3 o2 L3 2Ld
= <1 — e + 7 < Bm + u1L>> f(xe) 4+ (ne — L)Y + 7723 (2 f(x0) + 2tp2) + pf'2

2213 2Ld
né (2 f (x0) + 2tp2) + th
]

<exp (—(1 = Cr)pame) f(xe) + (e — i L)r + (23)

Here (' is a positive constant such that no(zfjgj + L) < Cy < 1 for small enough .

We introduce an index partition to characterize the function value decrease. Let n be the index such that n,, < 4§, and ny
be the sequence of iteration index ny41 = ming{s : s > ng, Ny,.s > d}. Then 19y, ., < 20.

Before the proof proceeds, we recall the that the stepsize and variance are set (for some v > 1) as

11



Thus p: = po, /%. Iterating (23) m times, we have
E f(xt4m) < exp (—(1 — C1)paneetm—1) f(xe) +

t+m—1 3 2
2n; L Ld
Z exp (—(1 = C1) 1 Mit1t+m—1) N (1/11 + nB (2f(x0) + 2¢2) + pgﬂo )

i=t

t+m—1 T3 2
<exp(—(1 = C)manueem—1) F(xe) + > i (¢1 + 2L (2 f(x0) + 2¢p2) + poLd)

i—t Be 2770
o2n, L3 2Ld
<exp (—(1 = CO)paneerm—1) f(Xe) + Nectrm—1 <¢1 + % (naf(x0) + 2¢2) + pgno ) (24)
Setting t = ngx_1 and m = ny — ni_1, inequality (24) takes the form
2, L? 2Ld
E f(xn,) < exp (_(1 - Cl)ﬂlnnk—linkfl) FXnp_y) + Mgy ng—1 (1/)1 + %(MZ]C(XO) + 27/)2) + p;ﬁ())
e
2y, L 2Ld
<exp (—(1 — C)p16) f(Xny_y) + Mgy mp—1 (wl + %(ugf(xo) + o) + pgno > (25)
e
20y L3 2Ld
< exp (—(1 = C1)kp18) f(%ny) + 02 (¢1 + T (12 (x0) + 20) + ’);no ) . (26)
=B
Consider a function value threshold M := 20 B. From (26), it follows that E f(x,,) < M when
f(xng)

In =55 —
= (1-Cr)mo K
Now we show that the expected time for the function value to decrease to below this threshold M is upper bounded by a finite
number, thus justifying the recurrence of the iteration process to a compact sub-level set. (Note that under the regularization
assumption (7), all sub-level sets are compact.) To better exploit the indices partition {nj} of the iteration sequence, define
f(Xn,,) :=Vi, and 7 = min{k : k > K, f(x,,) < M}. We claim that

Virk +adB - (7' AN k)
is a supermartingale with & = 1 — 2exp (—(1 — C1)p10), i.e.
E [Vias1) +adB(7 A (k+ 1)[Viar] < Vipr + adB(1 A k) 27)

When 7 < k, (27) holds trivially. When 7 > k + 1, then Vi41 > M. The relation (27) to show in this case takes the form
adB < Vi, — E [Viy1|Vk]. To let this happen, taking inequality (25) into consideration, a sufficient condition is E [V} 1|V}] <
exp(—(1—=C)pu16)Vyx +0B < Vi —adB, ie. (1+a)dB < (1 —exp(—(1 — C1)p16)) Vi. Considering that 7 > k+ 1 implies
Vi > M, the previous sufficient condition to show can be further strengthened to (1 + «)0B < (1 —exp(—(1 — C1)u1d) M,
which is catered for per definition of a.

To show that a sub-level set is going to be visited by the iteration sequence for infinitely many times, we introduce the
stopping time sequence {74} where 79 = K and 741 = min{t : ¢t > 7, + 1, f(xp,) < M}. Per the same argument as in
previous paragraph, E [V;, ., + adB7ii1|7] < Vi1 + adB(7), + 1), which gives

Th41
adBE [Thp1 — 1 — U] S Vg1 —E Vo, |7k]

Taking total expectation, and summing over all k£ from O to j with 79 = K, we have

J
abB(E[r;] = K = j) <> E[Vyi1 — Vo] (28)
k=0
By (23), E [V, 41] <exp(—(1 — Cy)pans,) Vo, + g <V + g, thus
B B
ie.

1
+K+j(5—=+1)

4
1< =
]E[Tj]_a 2a0
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2) Reachability: The following Lemma 14 is stated as a fact, whose proof is straightforward computation, and will be
needed for bounding the variance of the variance-reduced gradient estimator later in this section.

Lemma 14 (Variance of subset selection). Consider a dataset {a;}Y | with mean

Select b elements uniformly (1 < b < N) out of this dataset, and denote the index set of these selected elements as L. The
subsampled mean, which is a random variable, is
1
£=7> ai

i€T
The variance of & is
Ez[|§ —al* =E7(&* - 2(¢,a) +a%) =E7£* - a°
N
N-b N-b 1 9
= — = - - i a 2
Lemma 15 will be used to show that inside a stepsize batch, the reachability property will not be hindered by the gradient

descent part in the iteration, thus allowing the Gaussian noise terms to give the desired property.

Lemma 15. Let n be a positive integer, then for any sequence ay, > 0 such that there is a constant v and Z;.Lzl aj < 2v, let
Fo denote the o-algebra generated by z1,- - - ,7,. Suppose & is a sequence of random vectors such that

E(&|F2) =0 E(l&l*]F2) < Co

Let y, = Z?Zl a;&;, then
1
Pr(|lyx|l < 4vy/C2) > B (30)

Proof. In the proof for this lemma, all expectations are conditioned on JF,. With Jensen’s inequality, (E [|£x )2 < E (||€x]|?) <
Cs. By Markov’s inequality,

k k
Elyel _ EIS 06l _ EXS alél

1
P > 4u\/Cy) < h
r(llysll = 4V C) < - o Wi, S T wvg 53

O

Lemma 16 (Repeat of lemma 8). Given any sequence ay > 0, let z = Zle po/ai€; where €; ~ N (0, 1), for any target
vector z* and distance r, there exists a non-negative function py such that

Pr(||z, —2"[| <7, [lz]l < [l2"[ +7 Vk =1,---,n) = pi(r, po, tn, 2")

with p1(0, po, tn,z*) = p1(r,0,t,,2*) = 0.

Proof. We first give lower bounds to factors Pr(||z, —z*|| < r) and Pr(||zx|| < ||z]|+7 Vk = 1,--- ,n) respectively, and then
conclude the proof with Pr(||z, —z*|| < r, |lzx] < ||lz||+7 VE=1,--- ,n) > Pr(||z, —2z*|| < 7) -Pr(||z¢| < ||z +r Vk =
1’ DR 77’?})0

d
For Pr(||z, — z*|2 < 7), [|1Zn — 2|2 < ||1Zn — 2*[1 = D gimey |(Zn)dim — 25im | therefore Pr(||z, — z*|s < r) >
Pr(|(zn)dim — 24im| < § Vdim € [d]) = Hgim:l Pr(|(zn)dim — 25im| < 5)- Notice that (z,)dim has the distribution of the
Brownian motion By, where t; = p? Zle a;, k =1,2,--- ,n. By [Karlin and Taylor, 1975], Pr(|(zn)dim — Z3im| < g) =

2iim T s 5
/ Pt (28imrv) Ay, where py(z,y) = \/Z exp(—Z52) cosh(22). Hence,
max {2 — 5.0
* r d
ZaimtTaq
Pr(|z, —z*ll» <) > | min / P (2 v) dy 31)
dim max{z},  —%,0}
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For Pr(||zx|| < ||z*|| + r, Vk € [n]), we have the following lower bound:

*
Pr(||z|| < ||z*|| + r, Vk € [n]) > Pr (mkax |(zk)dim| < HZ|\/|C;‘7”’ Vdim € [d})
d
[zl + 7
=P <
r IHI?X| (zp)1 | < Nz
ID B.M.
Iz + )\
=(1-P >
( r (mkax |(zx)1] > V7
Now notice Pr(maxy |(zx)1] > Hz\/‘lgr) = Pr(maxk(zk)l > Hz:/||3+r or ming(zg); < —W) < Pr(maxy(z;), >
”z*%) + Pr( ming(zg)1 < Hz:/HEJrT) = 2Pr( maxy(zg)1 > Hz*%) Then, by the reflection principle of Brownian motion,
|z +?"> ( [l +7")
Pr | max(zp)1 > ——~— | =2Pr | (z2p)1 > ————
( 2x(ze )1 d (Zn)1 Nz
Therefore,
d
Pr(zell < |12 47 vk € [n]) > | 1-aPr | (2, > 1Z1ET
~—— Vd
~N(0,tr)

_ (1_4:1%((?/”%1 > ”Z:/ﬂ%r)y
R )

(1—2(1—Pr (_”z:/!%T . (3%1 . HZ;%T))Y

llz* ||+~ 9
o[ e,
z* || 47
~ 7L V2T
d
llz*[| +r L (||lz*]| +7)?
> 4— —_ ] -1 32
—< Vordt, CP\T2T at, 32)

Let pi1(r, po,tn,z*) be the product of two lower bounds (31) and (32) above, recall that ¢, = p% Z;;l a;, we define
p1(r, po,tn,z*) as the following,

* r d

A ]+ L=+ )

pl(r’ Po; br 7Z*) = HllIl/ bt, (Z*im?y) dy : (4 exXp <_ ) - 1) (33)
L (d’m max (=50} V2mdty, 2 dtn

2 2
where p, (2. ) = \/Z exp(~£522) cosh(22).
To make the dependence of the first factor in p; on parameters more explicit, for some § € (max{z},, — 5,0}, 25 + 5)-

d
ot 2 25 )%+ &2 25 €
/ P, (Zgima y) dy > \/7€Xp( ( d1m2) 5 ) COSh( dim )g
max{z} 0} Tty tn t

_ 2 <6Xp(— (’Zé{im _5)2) +€Xp(— (Z§1m+€)2)> r

Tty 2t 2t, 2d
2 (im = _ Gl +O° 7

> = 9 _ \"dim o dim

=\ =, \/eXp( 2, o, )2

_ 2 (Zéim)2 + 62 r

=\ 7 o o, a

D) ok, 2 + ok, + 7\2
> 7exp(—( dlm) ( dim d) )f
\ 7ty 2ty d

14



We thus redefine p; as

d d
/2 (28im)” + (2dim + 5)°\ 7 lz*]| + 7 1 (Jlz*]| +r)*
ty,z*) = - — fdim LIS KA D [ (7R i S S e LA I | 34
P 0, b, ) (%%h? ty P 21, ) V2rdt, CP\"2 dt, G

then we have the lemma 8. O

Lemma 17 (Repeat of lemma 9). Assume the same stepsize batch setting as in lemma 7 and the gradient Lipschitz condition
in assumption 1, with respect to an arbitrary target point s in the level set {x : f(x) < O(€)}, there is a constant Coq o< dL
and a constant Cay, for any € > 0, there exists a non-negative pi (€, po,tn, . ,,s) such that

1 -
r (||Xn7‘,+1 - S” < E)) > ipl(ga vath,S) (35)
where € = ¢ + 6C1 + 20+/Coas, and p; is given in lemma 8.

Proof. Denote x, = X,, and d = s — X,. Recall the SGLD scheme in a batch goes as

k
X1 =Xk — Tk Vi + prer = Xo — > _ Vi + prer
=0
k 1 1 k

- Z Ni+o (vf(XHO) + (Evf1l+a (Xi+o) — Vf(Xl)) - (Evfll+o(§) - Vf(i))) + Z Pi+o0€l+o

1=0 1=0
=Y oV (XKio) = Vi + 2 (36)

=0

where we define yj, :== >, m($Vin(x) = Vix)) —m($V LX) — V(X)) and z := K 000, /€. Note that X
can change as moving from stepsize batch ¢ to ¢ + 1 may involve different SVRG batch reference points.
Let m = n;11—n;. Per law of total probability, Denote the event £;1 = {||zn, , —1—d|| < €, ||zx]| < [|d|+€ V& € [m]+n;},
then
Pr (|lxn, = sl <&) 2 Pr([xn,, —sll <&| &) - Pr(€in) (37)

where Pr (€;41) is lowered bounded by p; from lemma 8. What is left in this proof is to bound the first factor in the above
equation.

Now we bound the gradient difference terms in (36), thus computing the probability Pr (||xp,,, — || < & &i41).

As the gradient is bounded inside a stepsize batch {7,, : 7,,,,~1}, by lemma 14, each summation term in y; has the
following variance upper bound

B 1
Bﬁ; [V fi(xi) = Vf(x)|* < mn I Z IV f5 (1) = V(<)||2 := Cao

Within the gradient batch, the term || Y 5" "ao V(i) < maxen, ,, 1] || V.f (Xipo) | it~ "Mso <

dmaxen, 1] [|Vf(Xi40)||. After the iteration has proceeded sufficiently, per convergence properties first-order stationary
points in lemma 5, the boundedness of gradients in the gradient batch can be controlled by a constant Co; = O(dL). The
unbiasedness of SVRG gradient estimator makes lemma 15 applicable to yy:

nip1—1

Pr(||an‘+1 - S” S g‘ gi+1) Pr ||X0 - Z nl+0vf Xl+0) yni+171 + z’ﬂi+171 - SH g 2'/:l| gi+1)
=0
ni+1—1

r(l = Y w0V Kito) = Ynior -1+ Zni, o1 — dl| <E[Eip1)

niy1—1

> Pr(]| Z MoV f(Xiyo)ll < 0Ca1, [[Ynipy—1ll < 46Ca2, | Eir1)
=0

2 Pr(||yﬂi+1*1|| < 40Cs2, |5i+1) >

DN =

where the last inequality is due to the fact that the first part of the event is a certain event with the iteration having proceeded
sufficiently and the choice of § to bound the sum of stepsize update in a batch.
O
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Now we are ready to prove the ergodicity result for the SGLD-VR scheme with the recurrence and reachability results
above.

Theorem 18 (Repeat of theorem 2). Under regularization condition 3, Lipschitz assumption I and nonnegativity assumption
2, with the same parameter setting as in lemma 7, for any € > 0, p > 0 and a point s which locates in the level set

{x: f(x) <O(E)}, there is a

1 d ¢
T-0 e 1+ 1n f(x0) + 4( sl + ) ; (38)
ppon (4 LA LRI o S L) (75 — De'/%)
such that
Pr(||x; —s|| <& for somet <T)>1—p (39)

Proof of Thm. 2. Recall the definition of the stopping time sequence: 7o = K, Ti41 = min{t : t > 7, + 1, f(xp,) < M =
20B}. By defining 7, = min{t : ¢t > 0,[|x,, —s|| < &} and setting § = 55, we show that Pr(7, > T') < p with a proper
choice of T'. For any J,

Pr(r., >T)=Pr(r. >2T,7;>T)+Pr(r. > T,7; <T)
<Pr(r;>T)+Pr(|xn, +1—s|>&7, <T, Vk € [J])
<Pr(r; >T)+Pr([[xn,, +1 —s| > & Vke[J])

Lemma 7 gives that E7; < 2 + K + J(515 4 1), thus by Markov inequality

E LK+ J(55+1
Pr(r; >T) < [7,] <@ (505 *1) (40)
T T
1
To ensure the last bound is below the pre-specified threshold §p, we need to take
4 1
24K+ J(55+1
T—[a p(w )]+1 (41)
2
By lemma 9, there is a p, = p;/2 > 0 such that
J
. J let D
Pr(|xn,, +1 sl > & Vk € [J]) = [[ Pr(lxn, +1 —s] >8) < (1 -p2)” < 3 (42)
k=1

P In 2
In < "

= > = .
In(1 = pa(&, po,tn,, +1)) = P2(€ postn,, +1)
We consider the dependence of 1" on the error tolerance £, dimension d and initial perturbation parameter pg. Recall po = % P1
and we will upper bound it to rid of the dependence on ¢,,:

To ensure the upper bound to be less than g, a sufficient condition is that J >

P2 (gv £0, t’na S)

- (8dim)? + (Sdim + 5)2)2~>d . (4”5_,_;5 o (_1M> ) 1>d

1 . 2
) (g}gl nty, exp( 2t, V2mdt, 2 dt,

N\ d
1 . 2 1. ¢ 1
= 2 (I}Eg‘l \/7" ((Sdim)2 + (Sdim + %)2) exp(_z)d> . (4\/% B 1)

Therefore, a sufficient condition for (42) to hold is

- (ln 2) s 2 I 43)
p/ dim 2 exp(—1)E _(4L_1)d
\/W(<Sdam)2+<sdim+g)z) P{—3)a N
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In F(xng)

Recall from lemma 7 parameter settings K = ﬁ, = 2(4hy + 2n,Lo (sz(Xo) + sz) + Po I ) and o = 1 —

2exp(—(1 — C1)p16). In light of the remark post the lemma 7, ¢ is to be set as (5 x B~ for the purpose of minimizing the
empirical risk. Combining (41) and (43), the total amount of time needed for (9) to hold is

LK+ J(E+1)
p

2

d
1 +1n f(xo) + ——(llslEd’
_ F((A=—1e-1/22)

- O B}
3 2f(}(0 212 i
Ep/'l’l ("/}1 2"70L £ B) 1o Ld)

T= +1

(44)

C. Proofs of second-order stationary point convergence property

Proof of Thm. 3.

a) Step 1: Assume the stepsize decay parameter v € [1, 2] for simplicity. We show that A; := 1“ ! V/ni€; will lead
to saddle point escape, i.e. ATV?f (x¢p)A; < —(. Specifically, we show that the projection of A; on the direction of Api,
is than ¢ with high probability, which exploits the property of Brownian motion and the idea that the trapping region is thin
when faced with LD [Huang and Becker, 2020].

At a fixed first-order stationary point X, due to the spatial homogeneity of Brownian motion, w.l.o.g. assume that e; is the
unit eigenvector corresponding to the smallest eigenvalue of V2 f(xgs,). To have ATV f (x1p)A; < —(, a sufficient condition
i Amin (V2 (%£sp)) (A0)7 + L[| Ai]|? — (A;)3) < —C. Assume for now that ||A;]|?> < r?, then this condition can be phrased
as Amin (V2 f (Xgsp)) (A0)T + L(r? — (A))1) < —q(A)3 4+ L(r? — (A;)3) < —¢, i.e. the first component of A; satisfies

¢+ Lr?

@Btz

=0 (45)

Nip1— 1
l=n;

Now we compute the probability for (45) to fail within the time 7; :=
Define o = min{t | ((A:)1(£))* > Q}. Then

/Nt for a standard 1D Brownian motion.

]ETQ o Q
T,  dT;’

Pr((45) fails to hold within time T;) = Pr(rg > T;) <

Here we point out that the failure probability for (45) is low due to the large denominator. 7; = > ,"F'" ! Vi <

l=n; —

\/(niﬂ —ny) Z?;;Ll_l m &~ +/(n;+1 — n;)d. Note that n; 11 — n; = O (n; exp(d)), then n; = O(exp(id)), thus

T; = exp(O(id)) (46)

. . . ip1—1
Remark: consider the case ¥ = 1 as an example for the preceding claim. As ?_fll_
— b

and n;41 = n; exp(d). The corresponding time in continuous domain

m ~ 0 and ng = 1, n; ~ exp(id)

Z v~ /””1 \/7%*(175—2\/770(\/”1‘4&— —Vni)
l=n;

2\/o(Vieet — /i) = 24/ (v/exp() — 1) = 2/ exp(id) (v/exp(3) — 1),

b) Step 2: We show that when x € U(xssp, ) Where |A;]| <1 for j =n;,n; +1,--- ,nip1 — 1,
first order expansion does not contribute to function value change. Due to the Lipschitz gradient, set

T = max E ié—?
N L'\ Lg |’

17
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While the projection onto e; builds up, we compute the probability that the iteration is still constrained within the e-
neighborhood of xggp:

d
Pr(A? — (A3 <r* —Q whent <T;) = Pr(z #2 <r* —Q when t <T})
2

_d—1 1
d

[
5
r(42) Jo
a-1 1 9 d=1
T ——(r" — 7 =P 47
I(£2 )( Q) (47

As T; increases exponentially w.r.t. index ¢, P; decreases accordingly, i.e. , within a stepsize batch, the probability for the
iteration to remain bounded within the vicinity of a FSP is decreasing. Hence, the saddle point escape process can be thought
of as a binomial trial with decreasing success probability, and the expected time for the iteration process to escape all saddle
points is at least proportional to F(%).

¢) Step 3: Show that the update x’ = x + A; will lead to function value decrease, thus the SGLD algorithm has to

terminate, thus converging to SSP.

Denote the event A; = {ATV? f(xgsp,)A; < —C and ||A;]| < r}. From steps 1 and 2, Pr(A4;) > (1 — -2)P,. We show
that under the assumption that event A; happens function value decrease is guaranteed. Note that within a minibatch,

2 2

Be—1 Be—1
Ellxe —XI> =E | Y xup1 —%u|| =E [ D nu(Vfi,(Kur1) = Vi, (X) + V(X)) — puen
B:—l - —1
<S2E[ D nu(Vii, (Kur1) = Vi, (R) + VIR)|* + 2B | Z pucal
Bcil B -1
=2 > (Vi (xut1) = Vi, (R) + V@) P+ 2] D pueul?
oo Bt
<2E > nn (IVfi, us) P+ IVF®) = VL ®)IP) +2d Y ol
Be—1 Be—1
(29) 2
<2DFUZOnU1+E +2duzopu (48)

For function value decrease in the descent process, we have
_ I .
f(x) —E f(xe41) 2 E [(Vf(xe), % — Xeq1) — §||Xt — Xpp1|
- N I N ,
=E (Vf(x¢), Vi) — §|\77ka — prek|

- L
=E ntIVf(Xt)Iz—(n?IIVt||2+PfII6tI2)}

> B [Vl - 5 (a2 CUTI0017] + 2T~ R0 + a2l

2
Be—1 Be—1
8) L3 L
> (=i DIV F(xe)|* ~ *m (3Dr Z o +2d Z pu) = 5pid =0 (%)
R

Here notice that 27~ n2 = O(nor") and 327 ~" p2 = O(por 1), and set B, = max{ ngfd, 1} and § = O(r) (which
consequently gives the order of 7)?), then R = O(&? )
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When a saddle point is encountered, within a minibatch with probability (1 — dQTi)Pi, we have
f(xo) - f(xo + Al) = f(xo) - f(stp) + f(stp) - f(xfsp + Az) + f(xfsp + Az) - f(XO + Az)
1 L
= i)~ (i) + FATV i) 2P ) 1000 = F i) 4 i+ A0 F o + )

> f00) = fOxip) + F iy + 80) = fx0 + A5) = STV xi) i+ 2 A

¢ Lo
> f(%0) = f(xesp) + f(xesp + A4) — f(x0 + A¢) + 9 ?7“3
¢ Ly 4 2 2
zi_FT —2L7“ :O(E)
Set ¢ = %, the time complexity to attain sufficient function value decrease before reaching a SSP is O m;f* .
5

d) Step 4: Now we give the description of 7ggp to finish the proof. In light of setting { = %52, consequently 72 — Q =

Wzﬂ). From (47) together with (46), the probability for constrained perturbation accumulation within the stepsize batch
gdt 1
YLd—1gd—1 ) " exp(0(idd)) *

Assume the iteration sequence escapes saddle points in each stepsize batch where a saddle point is encountered. Setting
the stepsize sum threshold 6 = O(£/B) to be consistent with the setting of § in the proof for theorem 2 and lemma 9, with

s given as P = O (o
is given as e

probability O (W , the SGLD converges to a local minimum within time
X - Jx
rosp = O (f(f’)zf) T exp (O(ed)), (49)
3 N————’

N——————" escaping saddles

descent

where the first term accounts for the step needed for sufficient function value decrease, and the second term accounts for the
time needed to escape saddle points as computed in equation (46).
O
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