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Abstract—This paper aims to propose a three-dimensional (3D)
point process that can be employed to generally deploy unmanned
aerial vehicles (UAVs) in a large-scale cellular network and
tractably analyze the fundamental network-wide performances
of the network. This 3D point process is devised based on a
2D marked Poisson point process in which each point and its
random mark uniquely correspond to the projection and the
altitude of each point in the 3D point process, respectively.
We elaborate on some important statistical properties of the
proposed 3D point process and use them to tractably analyze
the coverage performances of a UAV-enabled cellular network
wherein all the UAVs equipped with multiple antennas are served
as aerial base stations. The downlink coverage of the UAV-enabled
cellular network is found and its closed-form results for some
special cases are explicitly derived as well. Furthermore, the
fundamental limits achieved by cell-free massive antenna array
are characterized when coordinating all the UAVs to jointly
perform non-coherent downlink transmission. These findings are
validated by numerical simulation.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have found a wide range
of applications thanks to their outstanding capability of agilely
moving in three-dimension (3D) space, which relieves spatial
limitations caused by two static terminals. Despite the agile
and flexible mobility of UAVs, it may not really facilitate
communications in a wireless network where many UAVs are
arbitrarily deployed and a considerable amount of co-channel
interference is created accordingly. The 3D deploying problem
for a UAV-enabled cellular network with UAVs serving as
aerial base stations is involved in the issue of simultaneous
multi-user coverage, and thereby it is much more complicated
and difficult than the 3D deploying problem for a cellular-
connected UAV network that merely needs to tackle the issue
of single UAV coverage at a time. Deploying methods for
a UAV-enabled cellular network should be able to exploit
the mobility of UAVs in order to ameliorate the fundamental
coverage limit of the entire cellular network, yet how to
evaluate the deploying methods in a tractable and network-
wide way remains unclear until now.

There are indeed some prior works that modeled UAV-
enabled wireless networks in a large-scale sense, e.g., [1]–[3].
However, the majority of them simply assumed that all UAVs
in a network hover at the same fixed altitude. For example,
reference [1] investigated the coverage problem for a finite
network model assuming a number of UAVs are uniformly

distributed at the same fixed altitude in the network. The
coverages based on UAV-centric and user-centric strategies
for multi-UAV-assisted NOMA networks were studied in [2].
Reference [3] proposed a UAV-assisted wireless network for
the malfunction areas and used a user-centric cooperation
scheme to evaluate the coverage and normalized spectral
efficiency of the network. These prior works all assumed
that all UAVs hover at the same fixed altitude in a network
so that their analyses cannot practically reflect how they are
influenced by a real-world deployment of UAVs with a random
altitude. Some prior works already tried to relax the modeling
assumption of “fixed altitude” when modeling multiple UAVs
in the sky. Reference [4], for example, studied the coverage
probability in a 3D deployment model of UAVs wherein all
UAVs were distributed within a specific range of altitude that
was uniformly divided into a certain number of levels.

A few prior works also adopted 3D homogeneous PPPs to
model UAV-enabled cellular networks. Reference [5] exploited
the limits of the coverage and volume spectral efficiency of a
mmWave UAV cellular network in which a UAV’s altitude
was modeled as a function of the UAV’s projection. The
coverage and network throughput of a NOMA-assisted UAV
network modeled by a 3D homogeneous PPP were analyzed
in [6], whereas reference [7] considered spectrum sharing
when analyzing the success probability and total network
throughput of a UAV-enabled network modeled by a 3D PPP.
Modeling the distribution of UAVs by 3D PPPs leads to two
practical issues. One is that UAVs are low-altitude platforms
and cannot be arbitrarily positioned in infinitely large 3D space
modeled by a 3D PPP. The other is that the path-loss exponent
of any wireless links in a wireless network modeled by a 3D
PPP needs to be greater than three in order to make analysis
bounded, yet such a constraint on the path-loss exponent is
not practically true for most 3D wireless links with a path-
loss exponent smaller than three.

Although these aforementioned prior works successfully
conducted some analyses for specific problems, in general
their outcomes are not easily generalized to a network-wide
scenario in a large-scale UAV-enabled cellular network in
that their generality is subject to their simplified models and
assumptions of deploying UAVs in a wireless network. In
contrast, this paper proposes a 3D modeling approach to
deploying large-scale UAV-enabled cellular networks, which



is much more general and practical for UAV deployment than
the prior works in the literature. As such, we are able to obtain
much more accurate analytical results by employing it. Other
main contributions of this paper are summarized as follows.
By employing the proposed 3D point process to position all the
UAVs in the sky, we consider the angle-projection-independent
locating (APIL) scenario in which the elevation angle and the
projection of each UAV are independent, which leads to high
tractability in analysis. We are thus able to explicitly derive the
downlink coverage and the cell-free downlink coverages for all
the UAVs doing non-coherent joint transmission. Furthermore,
the numerical results show that in general the downlink
coverages are insensitive to the different distributions of the
elevation angle and of UAVs that have the same mean so that
they can be approximated by the derived expressions using the
mean of the elevation angle of a UAV.

II. THE PROPOSED 3D POINT PROCESS MODEL

Suppose a 2D homogeneous PPP of density λ can be
denoted by the following set on the plane of R2:

Φx , {Xi ∈ R2 : i ∈ N+}. (1)

In accordance with Φx, we propose the following 3D point
process Φu:

Φu ,

{
Ui ∈ R2 × R+ : Ui = (Xi, Hi), Xi ∈ Φx,

Hi = ‖Xi‖ tan(Θi),Θi ∈
[
0,
π

2

]
, i ∈ N+

}
, (2)

where Xi is the projection of point Ui on the plane of R2,
‖Xi‖ is the distance between the origin1 and Xi, and Θi is the
(random) elevation angle from the origin to point Ui. Hence,
the “altitude” of point Ui is Hi that is the distance from Xi to
Ui such that Φu can be viewed as a marked version of Φx in
which each point has a mark as its altitude. Since ‖Yi − Yj‖
denotes the Euclidean distance between points Yi and Yj for
i 6= j, we know ‖Xi‖ = ‖Ui‖ cos(Θi) and thus ‖Ui‖ =
‖Xi‖ sec(Θi).

A. The LoS Probability of Channels and The APIL Scenario

A link between two spatial points is called a LoS link
provided it is not visually blocked from one point to the other.
A low-altitude-platform communication scenario is considered
in this paper and the LoS model of a 3D channel in [10] is
adopted so that we have the following LoS probability of the
3D channel between the origin and a point Ui ∈ Φu proposed
in [10]:

ρ (Θi) ,
1

1 + c2 exp (−c1Θi)
, (3)

where c1 and c2 are environment-related positive constants
(for rural, urban, etc.), and thereby whether or not point Ui is

1Without loss of generality, in this paper we use the origin as a reference
point for the locations of the points in point sets such as Φx and Φu to
express their relevant equations, results, and observations. According to the
Slivnyak theorem [8] [9], the statistical properties of a PPP evaluated at the
origin are the same as those evaluated at any particular point in the PPP.

Fig. 1. The proposed 3D point process Φu is used to model the locations of
the UAVs in a cellular network. The projection of point Ui ∈ Φu is denoted
by Xi and a typical user located at the origin associates with UAV U? serving
as its aerial base station. The APIL scenario is considered in this paper, that
is, Θi and ‖Xi‖ are independent for all i ∈ N+ and Hi = tan(Θi)‖Xi‖
depends on Θi and Xi.

LoS for the origin is completely determined by its elevation
angle Θi from the origin.

For the 3D point process Φu, we will specifically consider a
positioning scenario in which the elevation angle and projec-
tion of each point in Φu are independent, which is referred to
as the angle-projection-independent locating (APIL) scenario
in this paper. An illustration of the proposed 3D point process
Φu for the APIL scenario is depicted in Fig. 1. In the figure,
we employ Φu to model the 3D locations of UAVs in a
cellular network and the projections of the UAVs on the
X−Y (ground) plane form a 2D homogeneous PPP Φx. In the
APIL scenario, the elevation angle and the projection of each
point in Φu are independent, i.e., Θi and Xi are independent
for all i ∈ N+ and all Θi’s are assumed to be identically
and independently distributed (i.i.d.) random variables (RVs)
in this paper. The APIL scenario properly characterizes the
situation that locating point Ui ∈ Φu is accomplished by using
two independent parameters Θi and Xi and such a situation
refers to when each point (UAV) in Φu is randomly positioned
at a certain elevation angle whose distribution can be observed
at the origin. In the following, we will analyze some important
statistical properties related to Φu in the APIL scenario.

B. Distance-Related Distributions in Φu

Suppose a non-negative RV R? is defined as

R? , max
i:Ui∈Φu

{
WiLi‖Ui‖−α

}
, (4)

where α > 2 is a constant2, Li ∈ {1, `} is a Bernoulli RV that
is equal to one if an LoS link between the origin and point
Ui exists and ` otherwise, and Wi ∈ R+ is a non-negative
weighting RV associating with Ui and independent of all Li’s
and Ui’s. Note that ` ∈ [0, 1] is referred to as the NLoS channel
attenuation factor since it is used to model the penetration

2If ‖Ui‖−α stands for the path loss between node Ui and the origin, α is
referred to as the path-loss exponent, which will be used in Section III.



loss of an NLoS link, Wi is independent of Lj and Uj for all
i, j ∈ N+, all Wi’s are assumed to be i.i.d., and the distribution
of Li depends on the location of Ui as indicated by the LoS
probability in (3). We then have the following theorem.

Proposition 1. Suppose the moment of Wi exists (i.e.,
E[W a

i ] < ∞ for all a > 0) for all i ∈ N+. If the APIL
scenario is considered, the cumulative density function (CDF)
of R? defined in (4) can be found as

FR?(r) = exp
(
−πλE

[
W

2
α

]
ωr−

2
α

)
, (5)

where FZ(·) denotes the CDF of RV Z and ω is defined as

ω , E
{

cos2(Θ)
[
ρ(Θ)

(
1− ` 2

α

)
+ `

2
α

]}
. (6)

Proof: See Appendix.
The results in Proposition 1 are very general since they are

valid for the general distributions of W and Θ. Accordingly,
they can be employed to find the distributions of some specific
RVs related to set Φu. To demonstrate this, we discuss some
special cases of R? in the following.

1) Wi = Li = 1: In this case, R? in (4) reduces to
R? = maxUi∈Φu ‖Ui‖−α so that R−

1
α

? = minUi∈Φu ‖Ui‖ is
the shortest distance between the origin and set Φu. Thus,
using FR?(r) in (5) helps find the CCDF of R−

2
α

? as

F c
R

− 2
α

?

(y) = exp

(
− πλE

[
cos2(Θ)

]
y

)
, (7)

which indicates that R
−2/α
? ∼ exp(πλE[cos2(Θ)]) is an

exponential RV with mean 1/πλE[cos2(Θ)], and it is exactly
the CCDF of the square of the shortest distance between the
origin and a 2D homogeneous PPP of density λE[cos2(Θ)] [8],
[9]. Namely, this observation manifests that the 3D point
process Φu proposed in (2) can be equivalently viewed as
a 2D homogeneous PPP of density λE[cos2(Θ)] as long as
the elevation angle and the projection of each point in Φu are
independent.

2) Wi = 1: For this case, R? in (4) reduces
to R? = maxi:Ui∈Φu Li‖Ui‖−α and thus R

− 1
α

? =

mini:Ui∈Φu{L
− 1
α

i ‖Ui‖}. Thus, the distribution of R−
1
α

? can re-
flect how the LoS effect impacts the distribution of the shortest
distance between the origin and set Φu. By considering W = 1
in (5), we can obtain F c

R
− 2
α

?

(y) as shown in the following:

F c
R

− 2
α

?

(y) = exp (−πλωy) , (8)

i.e., R−
2
α

? ∼ exp(πλω), which reveals the following point set

Φ̃u ,
{
Ũi ∈ R2 × R+ : Ũi = L

− 1
α

i Ui, Li ∈ {1, `}, Ui ∈ Φu

}
(9)

can be viewed as a thinning PPP from Φx with density λω.
When ` = 0, R−

1
α

? is the shortest distance of the LoS link
from the origin to set Φu and F c

R
− 2
α

?

(x) in (8) reduces to

e−πλE[ρ(Θ) cos2(Θ)]y . Therefore, in the APIL scenario the LoS

points in Φu are equivalent to a 2D homogeneous PPP of
density λE[cos2(Θ)ρ(Θ)].

These above observations learned from R? considerably
help us understand some fundamental and intrinsic properties
of Φu and they are very useful for the following analyses.

III. MODELING AND ANALYSIS OF A 3D UAV-ENABLED
CELLULAR NETWORKS USING Φu

In this section, we employ the proposed 3D point process
Φu in (2) to model the random locations of UAVs in a cellular
network, as shown in Fig. 1. The salient feature of using Φu to
model the 3D locations of the UAVs, as we will see, is not only
to generally characterize the distribution of the UAVs hovering
in the sky but also to properly and tractably analyze the
performances of a UAV-enabled cellular network. Our focus
in this section is on the study of the coverage performance of
a UAV-enabled cellular network in which a tier of UAVs are
deployed in the sky that serve as aerial base stations in the
network and the locations of the UAVs are modeled by Φu,
i.e., Ui in Φu denotes UAV i and its location in the network.
Suppose there is a typical user located at the origin and each
user in the UAV-enabled cellular network associates with a
UAV that provides it with the (averaged) strongest received
signal power. Namely, the UAV associated with the typical
user is given by

U? , arg max
i:Ui∈Φu

E
[
PLiGi‖Ui‖−α|Ui

]
= arg max

i:Ui∈Φu

PE[G]Li
‖Ui‖α

= arg max
i:Ui∈Φu

Li
‖Ui‖α

, (10)

where P is the transmit power of each UAV, Gi ∼ exp(1)
denotes the fading channel gain between the typical user and
Ui, α > 2 denotes the path-loss exponent in this context, and
Li, as already defined in (4), is used to characterize the LoS
and NLoS channel effects in the channel between Ui and the
typical user. The second equality in (10) is due to considering
the independence between Gi and Ui as well as conditioning
on Ui, and the third equality is owing to removing constants
P and E[G] does not affect the result of finding U?.

A. The SINR Model

Let I0 be the aggregated interference power received by the
typical user that does not include the signal power from U?
so that it can be written as

I0 ,
∑

i:Ui∈Φu\U?

PGiLi‖Ui‖−α. (11)

All Gi’s are assumed to be i.i.d. and they are independent of
all Li’s and Ui’s. Note that each UAV is associated with at
least one user so that the “void” UAV phenomenon is not
modeled in I0 [11] [12]. In addition, each UAV allocates
different resource blocks (RBs) to different users associating
with it, i.e., no users associating with the same UAV can share
the same RB.

Each UAV is assumed to be equipped with N antennas
whereas each user is equipped with a single antenna. Accord-
ing to (10) and (11), if each UAV is able to perform transmit



beamforming to its user, the signal-to-interference plus noise
power ratio (SINR) of the typical user can be defined as

γ0 ,
PG?L?‖U?‖−α

I0 + σ0
, (12)

where G? ∼ Gamma(N, 1) is the fading channel gain from U?
to the typical user, L? ∈ {1, `} has the same distribution as Li,
and σ0 denotes the thermal noise power from the environment.
The downlink coverage (probability) of a user in the network
can thus be defined as

pcov , P [γ0 ≥ β] = P
[
PG?L?‖U?‖−α

I0 + σ0
≥ β

]
, (13)

where β > 0 is the SINR threshold for successful decoding.
In the following, we will analyze pcov by considering whether
the elevation angle and the projection of each UAV are inde-
pendent or not. In the following section, we will employ the
model of the UAV-enabled cellular network proposed in this
section to analyze the coverage performance of the network.

B. Downlink Coverage Analysis
In this subsection, we would like to study the downlink

coverage pcov in (13) by considering the APIL scenario, i.e.,
elevation angle Θi and projection Xi of UAV Ui are indepen-
dent for all i ∈ N+. The following proposition specifies the
analytical result of pcov in this scenario.

Proposition 2. If the APIL scenario is considered, the down-
link coverage defined in (13) can be found as

pcov =
dN−1

dτN−1
E
[

τN−1

(N − 1)!
exp

(
− σ0D

α
2
?

τP

− πλωD?IG
(

1

τ
,

2

α

))]∣∣∣∣
τ= 1

β

, (14)

where D? ∼ exp(πλω) and function IG(u, v) is defined as

IG (u, v) , uv

(
πv

sin(πv)
−
∫ u−v

0

dr

1 + r
1
v

)
. (15)

Proof: Please refer to Appendix D in [13] for the com-
plete proof, which is omitted due to limited space.
We adopt an exponential RV D? with mean 1/πλω in (14) to
make pcov show in a neat form so as to clearly see how pcov is
impacted by D? and other network parameters. The physical
meaning of D? is the square of the shortest distance between
the typical user and set Φ̃u, i.e., D? , ‖Ũ?‖2

d
= L

− 2
α

? ‖U?‖2

where Ũ? is the nearest point in Φ̃u to the typical user and d
=

stands for the equivalence in distribution. In other words, pcov
is highly dependable upon the distribution of elevation angle
Θ and ` for a given density λ because the distribution of D?

is parameterized with λω. To make this point much clear, we
use Jensen’s inequality to find a lower bound on pcov in (14)
as

pcov ≥
1

(N − 1)!

dN−1

dτN−1

{
τN−1 exp

[
−
Nσ0Γ

(
1 + α

2

)
τP (πλω)

α
2

− IG
(
N

τ
,

2

α

)]}∣∣∣∣
τ= 1

β

, (16)

which reduces to the following neat inequality for N = 1:

pcov ≥ exp

[
−
βσ0Γ

(
1 + α

2

)
P (πλω)

α
2
− IG

(
β,

2

α

)]
. (17)

The inequalities in (16) and (17) apparently show that in-
creasing λω improves pcov . This is because users are able
to associate with a nearer UAV and receive stronger power
from the UAV when deploying UAVs more densely even
though more interference is generated as well. Also, pcov
improves whenever λω can be maximized by optimizing
the distribution of Θ. We will demonstrate some numerical
results in Section IV to show how pcov varies with different
distribution cases of Θ.

An effective method to significantly improve the coverage
of users is to make users associate with multiple UAVs so
that the UAVs can do coordinated multi-point (CoMP) joint
transmission. The upper limit of the downlink coverage of a
user associating with multiple UAVs can be achieved when
all the UAVs are coordinated to jointly transmit to the user at
the same time, which is referred as to the cell-free downlink
coverage. Since perfectly coordinating and synchronizing all
the UAVs in a large-scale network to do coherent transmission
is hardly possible in practice, non-coherent joint transmission
is a feasible way for all the UAVs to jointly achieve the cell-
free downlink coverage in that it has lower implementation
complexity and does not require high backhaul capacity if
compared with its coherent counterpart. When all the UAVs
perform non-coherent CoMP joint transmission to a user, the
cell-free downlink coverage of the user can be defined as [14],
[15]

pcfcov , P

[
P
∑
i:Ui∈Φu

GiLi‖Ui‖−α

σ0
≥ β

]
, (18)

where Gi ∼ Gamma(N, 1) for all i ∈ N+ since all the UAVs
can do transmit beamforming to the user. The explicit result
of pcfcov can be found as shown in the following proposition.

Proposition 3. If all the UAVs are deployed based on the
APIL scenario and coordinated to do non-coherence joint
transmission, the cell-free downlink coverage defined in (18)
is derived as

pcfcov = 1− L−1

{
1

s
exp

[
− πλs

2
αω

(N − 1)!
Γ

(
N +

2

α

)
Γ

(
1− 2

α

)]}(
βσ0

P

)
, (19)

which reduces to the following closed-form result for α = 4:

pcfcov = erf

(
π

3
2λω

2(N − 1)!

√
P

βσ0
Γ

(
N +

1

2

))
, (20)

where erf(z) , 2√
π

∫ z
0
e−t

2

dt is the error function for z > 0.

Proof: Please refer to Appendix E in [13] for the complete
proof, which is omitted due to limited space.



TABLE I
NETWORK PARAMETERS FOR SIMULATION [10]

Transmit Power (mW) P 50
Density of set Φx (points (UAVs)/m2) λx 1.0× 10−7 ∼ 1.0× 10−5

Number of Antennas N 1, 4, 8, ∞ (or see figures)
Noise Power (dBm) σ0 −92.5
Path-loss Exponent α 2.75

Parameters (c1, c2) in (3) for Suburban (24.5811, 39.5971)
NLoS Channel Attenuation Factor ` 0.25

SINR Threshold (dB) β −10 (or see figures)

IV. NUMERICAL RESULTS

In this section, we will provide some numerical results to
verify the previous analytical results of the coverage for the
APIL scenario in Figs. 2 and 3. The numerical results of
the downlink cell-free coverage will be presented in Fig. 4.
The network parameters adopted for simulation are shown
in Table I. We consider the tangent of the elevation angle
of a UAV is a Gamma RV with shape parameter a and rate
parameter b (i.e., tan(Θ) ∼ Gamma(a, b)) because using such
a Gamma RV to model tan(Θ) is able to generally characterize
different distributions by setting different values of a and b so
that appropriately adjusting a and b can make Θ reasonably
distribute between 0 and π

2 . For example, tan(Θ) becomes
deterministic and equal to tan(θ) such that Θ is equal to
constant θ if b = a/ tan(θ) and a → ∞ and it becomes
an exponential RV with rate parameter 1/b if a = 1. Figs. 2
and 3 show the simulation results of the downlink coverage
pdlcov when tan(Θ) is a constant and a Gamma RV, respectively.
As we can see, the simulation results of pdlcov in Figs. 2(a)
and 3(a) do not differ much when θ < 45◦, which reveals that
in general pdlcov is insensitive to the distribution of Θ when the
mean of Θ is not very large. In fact, this phenomenon can be
inferred from (14) in that pdlcov is affected by the distribution of
Θ through ω in (6) that is insensitive to the distribution of Θ
when the mean of Θ is not large. Realizing this phenomenon
is quite useful since we can quickly and accurately calculate
pdlcov using the mean of the elevation angle of UAVs in (14)
without knowing the real distribution of Θ, which is in general
not easy to find in practice.

Figs. 2(a) and 3(a) validate the correctness and accuracy of
the expression in (14) since the curve of the analytical result
of pdlcov in (14) completely coincides with the curve of the
simulated result of pdlcov . Moreover, there exists an optimal
value of the mean of Θ about 20◦ for λ = 1×10−7 (UAVs/m2),
which maximizes pdlcov . Note that pdlcov decreases as the mean
of Θ increases over 20◦ since the downlink SINR is now
dominated by the interference in this situation even though the
received signal power also increases. The 3D plots in Figs 2(b)
and Fig. 3(b) further show how pdlcov varies with the mean of
Θ and λ. Generally speaking, the optimal value of the mean
of Θ that maximizes pdlcov changes with density λ and pdlcov
converges up to a constant as λ goes to infinity, i.e., pdlcov
barely depends on λ as the network is dense and interference-
limited.

According to Fig. 4 that shows the numerical results of pcfcov ,
we can observe a few interesting and important phenomena.

Fig. 2. Simulation results of pdlcov for the APIL scenario when N = 4 and
the elevation angle of each UAV is a constant θ with respect to the origin (i.e.,
tan(Θ) ∼ Gamma(a, a/ tan(θ)) as a → ∞): (a) 2D simulation results of
pdlcov versus elevation angle θ for λ = 1×10−7 (UAV /m2), (b) 3D simulation
results of pdlcov versus density λ and elevation angel θ.

Fig. 3. Simulation results of pdlcov for the APIL scenario when N = 4
and the elevation angle of each UAV is a Gamma RV with shape parameter
a and rate parameter a/ tan(θ), i.e., tan(Θ) ∼ Gamma(a, a/ tan(θ)): (a)
2D simulation results of pdlcov versus elevation angle Θ for λ = 1 × 10−7

(UAV/m2), (b) 3D simulation results of pdlcov versus density λ and mean of
elevation angel θ.

Fig. 4. Simulation results of cell-free downlink coverage pcfcov for λ =
1 × 10−6 (UAV/m2) and N = 1, 2, 4, 8,∞: Simulation results of pcfcov
versus SINR threshold β for the APIL scenario and the elevation angle of
each UAV is a constant equal to θ = 25◦.

First, the analytical results of the downlink cell-free coverages
in the figure perfectly coincide with their corresponding simu-
lated results, which validates the correctness of the expression



in (19). Second, the downlink cell-free coverages for different
numbers of antennas are almost identical and this reveals that
UAVs do not need to install multiple antennas to improve their
coverage in the cell-free scenario so that UAVs can become
lighter so as to save more power when flying. Third, the
downlink cell-free coverage pcfcov significantly outperforms the
downlink coverage pdlcov , as can be seen in the figure.

V. CONCLUSION

In the past decade, using 2D PPPs to model large-scale cel-
lular networks had given rise to a great success in tractably an-
alyzing the generic performance metrics of cellular networks.
Nevertheless, straightforwardly employing a 3D PPP to deploy
UAVs in a cellular network not only poses an unrealistic
constraint on the path-loss exponent of 3D path-loss channel
models, but also ignores a spatial deployment limitation in a
cellular network. To tackle this issue, this paper proposes a 3D
point process whose projections consist of a 2D homogeneous
PPP and altitudes are the marks of the 2D homogeneous PPP.
The fundamental properties of the proposed 3D point process
are studied for the APIL scenario and they pave a tractable
way to analyze the downlink coverage of a UAV-enabled
cellular network modeled by the proposed 3D point process.
The downlink coverage is explicitly derived and its closed-
form expression is also found for a special channel condition.
In addition, cell-free downlink coverage and its upper limits
are also derived when all the UAVs in the network can do
non-coherence joint transmission.

APPENDIX

Consider the APIL scenario so that Xi and Θj are indepen-
dent for all i, j ∈ N+. Since ‖Ui‖ = ‖Xi‖ sec(Θi), the CDF
of R? defined in (4) can be written as

FR?(r) = P
[

max
i:Ui∈Φu

{
WiLi

[‖Xi‖ sec(Θi)]α

}
≤ r
]

(A.1)

(a)
= E

{ ∏
i:Ui∈Φu

P
[

WiLi
[‖Xi‖ sec(Θi)]α

≤ r
]}

(b)
= exp

(
−2πλ

∫ ∞
0

P
[

WL

[x sec(Θ)]α
≥ r
]
xdx

)
, (A.2)

where (a) follows from the fact that all
WiLi[‖Xi‖ sec(Θi)]

−α’s are independent and (b) is obtained
by first considering the independence between all RVs Wi,
Li, ‖Xi‖, and Θi for all i ∈ N+ and then applying the
probability generation functional (PGFL) of a homogeneous
PPP to Φx

3. According to (3), P[WL[x sec(Θ)]−α ≥ r|Θ]
can be further expressed as

P
[

WL

[x sec(Θ)]α
≥ r
∣∣∣∣Θ] = P

[(
W

r

) 1
α

cos(Θ) ≥ x
∣∣∣∣Θ
]
ρ (Θ)

+ P

[(
`W

r

) 1
α

cos(Θ) ≥ x
∣∣∣∣Θ
]

[1− ρ (Θ)] .

3Note that the subscript i in (a) is dropped in (b) for notation simplification
and such a subscript dropping is used throughout this paper whenever there
is no notation ambiguity.

Therefore, we can have the following:

2

∫ ∞
0

P
[

WL

[x sec(Θ)]α
≥ r
∣∣∣∣Θ]xdx

= ρ(Θ)

∫ ∞
0

P

[(
W

r

) 1
α

cos(Θ) ≥ x
∣∣∣∣Θ
]

dx2 + [1− ρ(Θ)]

×
∫ ∞

0

P

[(
`W

r

) 1
α

cos(Θ) ≥ x
∣∣∣∣Θ
]

dx2

= cos2(Θ)
[
ρ(Θ) + [1− ρ(Θ)]`

2
α

]
E
[
W

2
α

]
r−

2
α

since
∫∞

0
P[Z ≥ z]dz = E[Z] for a non-negative RV Z. This

gives rise to the following result:

2

∫ ∞
0

P
[

WL

[x sec(Θ)]α
≥ r
]
xdx

= E
{

cos2(Θ)
[
ρ(Θ)

(
1− ` 2

α

)
+ `

2
α

]}
E
[
W

2
α

]
r−

2
α ,

and then substituting this identity into (A.2) yields the expres-
sion in (5).
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