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Abstract
Animals exhibit remarkable feats of behavioral flexibility and multifunctional control that remain challenging for robotic
systems. The neural and morphological basis of multifunctionality in animals can provide a source of bioinspiration for
robotic controllers. However, many existing approaches to modeling biological neural networks rely on computationally
expensive models and tend to focus solely on the nervous system, often neglecting the biomechanics of the periphery. As a
consequence, while these models are excellent tools for neuroscience, they fail to predict functional behavior in real time,
which is a critical capability for robotic control. To meet the need for real-time multifunctional control, we have developed a
hybrid Boolean model framework capable of modeling neural bursting activity and simple biomechanics at speeds faster than
real time. Using this approach, we present a multifunctional model of Aplysia californica feeding that qualitatively reproduces
three key feeding behaviors (biting, swallowing, and rejection), demonstrates behavioral switching in response to external
sensory cues, and incorporates both known neural connectivity and a simple bioinspired mechanical model of the feeding
apparatus. We demonstrate that the model can be used for formulating testable hypotheses and discuss the implications of
this approach for robotic control and neuroscience.
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1 Introduction

Multifunctionality, a basis for behavioral flexibility, is crit-
ical for navigating and adapting to a complex changing
environment. In animals as well as humans, multifunc-
tionality is observed across a wide range of behaviors.
Living systems must smoothly shift from one behavior to
another while varying specific behaviors to handle changing
environmental conditions. Even relatively simple organisms
demonstrate multifunctional control. For example, grass-
cutter ants use their mandibles to cut stalks of grass, carry
them to the nest, and manipulate them once in their nests
[127]; frogs exhibit swimming, walking, and hopping gaits
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[142,143]. The tremendous range and adaptability of con-
trol are observed evenmore strongly in humanmanipulation:
humans can use their hands to lift barbells substantially heav-
ier than their own body weight, but also use the very same
hands to play complex piano concertos.

Despite the obvious importance of multifunctionality for
animal systems, truly multifunctional control remains a chal-
lenge for robotics [129]. To develop robotic controllers for
multifunctional behavior, one possible approach would be to
develop a methodology that can map multifunctional bio-
logical systems onto simulated devices or robots. Such a
methodology would enable researchers to develop control
architectures through rapid prototyping and simulation. The
controllers could then be effectively improved by compari-
son to the original biological system and by assessing their
effectiveness as a simulated controller for an artificial device.
Including known neurons, connections, and biomechanics
underlying multifunctional behavior allows the models to
immediately suggest testable experimental hypotheses, clar-
ifying the biological mechanisms of multifunctionality. At
the same time, to make the simulation useful for artificial or
robotic devices, the modeling framework should run faster
than real time. A computationally efficient, biologically rele-
vant framework could then lead to direct real-time control of
the original biological system and of an artificial robotic sys-
tem, and thus provide a bridge from neuroscience to robotics.

Whatmediatesmultifunctional behavior in biological ner-
vous systems, and what can we learn from them for robotic
control? Three alternative neural architectures have been pro-
posed for multifunctional control: dedicated control circuits,
population-based control circuits, and re-organizing control
circuits [109]. The first alternative dedicates a control cir-
cuit to each behavioral function. For example, an escape
circuit might suppress and override a swimming circuit [69].
Functionally decomposing behavior, and assigning dedicated
control to each function, has historically been the traditional
approach to robotic control, such as in traditional finite state
machines [102,112,125,131]. The drawback is that control-
ling awide repertoire of behaviors can lead to a combinatorial
explosion, making this approach impractical in general, and
it is clearly not used for most animal behaviors. A sec-
ond alternative is encoding solutions through the activity
of a neuronal population. For example, the direction of a
motor response may be encoded by a broadly tuned pop-
ulation of neurons [50,51,132]. Population encoding is the
basis of many machine learning approaches to robotic con-
trol [135]. A drawback of this solution is that it is difficult
to isolate subnetworks with specific functionalities, so it can
be difficult to understand how the system works. A third
possibility, which appears to be a more common solution in
biological systems [109], is that of reorganizing circuits: by
varying the timing and phasing of activity and incorporating
feedback from the periphery (body), single circuits can be

reconfigured to produce several multifunctional behaviors.
For example, the same multifunctional circuit in crustacea
can be reconfigured to generate qualitatively different inges-
tive behaviors [133,134]. Despite increasing evidence that
this third alternative may be the most common for biological
control, relatively few robotic control architectures are based
on this solution.

How can one effectively implement any of the three neu-
ral architectures for multifunctionality? One possibility is to
use machine learning to allow the controller to “learn” amul-
tifunctional network architecture. Machine learning has led
to many applications and predictive modeling approaches by
relying on large training datasets and intense computational
power [1,56,61,68,78,145,156,163]. Since the relationship
between network form and function is often very com-
plex, it has not been easy to understand how the resulting
networks actually function, or to use them to direct experi-
mental analyses of an actual biological system. Thus, another
approach has been to develop detailed models of individ-
ual neurons and networks based on actual experimental
measurements; the detailed dynamics of individual neurons
can be approximated usingmulticonductance,multicompart-
ment biophysical models [45,64,89]. The drawback of this
approach is that large numbers of parameters must be set
experimentally, and given the variability within nervous sys-
tems, the resulting network may not capture the original
dynamics of the system [8,57,100,124]. A potential third
way has been to use more phenomenological neural mod-
els to capture aspects of neural architecture and dynamics
with a greatly reduced set of parameters, and these have been
successfully used for biological modeling and control [123]
including those inspired by insects [9,10,18,151,152], lob-
sters [2–4],Pleurobranchaea [17], lampreys [19,85,123] and
fish [44], salamanders [11,58], and other tetrapods [70,71].

Possible nominal model approaches to capture neural
circuit dynamics include the use of integrate-and-fire neu-
rons [77,105,153], rate models [161], discrete asynchronous
event-based models [6], and at the simplest level, Boolean
models or finite automata [2,128,131]. Integrate-and-fire
nodes have been successfully implemented in synthetic ner-
vous systems using neuron pool circuit models for robotic
control [70,71,151,152]. However, the complexity of the ani-
mal models used for bioinspiration precludes the possibility
of capturing full circuit connectivity or individual identifi-
able neurons. Population firing rate models are often used
to represent neural activity for therapeutic brain–machine
interface technologies development [93,95,115]. Firing-rate
models of neural networks go back at least to the Wilson–
Cowan equations [40,160,161] and have helped understand
neural behaviors as diverse as spontaneous pattern forma-
tion [46], processing of sensory input signals [7,16,162],
and motor control [8,24,62,138,140,145]. Boolean network
models, being closely related to finite state machines, origi-
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nated with the seminal study by McCulloch and Pitts [102]
and have found application in robotics and as reduced mod-
els of biological systems such as gene regulatory and signal
transduction networks [39,42,52,88,117–119,130]. Of these
nominal models, Boolean network models likely provide the
lowest computational cost, while still capturing the overall
on/off behavior of neuronal bursting. Such models have been
used to describe neural activity recorded during multifunc-
tional behaviors [2] and are the foundation of finite automata
[102]. Boolean networkmodels can be used to capture awide
range of biological phenomena [37,59,117,119,141] and can
even be extended to capture stochastic processes [126].

In many neural models, the focus is on the network con-
troller, without accounting for the dynamics of the periphery,
or body. For applications in bioinspired robotic control, a
computational modeling approach is needed that captures
both the dynamics of the neural circuitry and the critical
interactions between the brain, the body, and the environ-
ment [23,27].Aswith neural components, a variety ofmodels
have been developed to capture the nonlinear properties
of individual muscles and their organization into muscular
structures [169]. The complexity of such muscle models can
vary from capturing muscle biochemical kinetics using a
cross-bridge model [43,60,122,166,168] to spring–damper
representations such as used in the linear Hill muscle model
[63,136]. Suchmodels can be fit to match muscle physiology
observed in animal systems [167] and used to model com-
plex musculature such as muscular hydrostats [25]. When
modeling or fittingmusclemodels to experimental data, indi-
viduality, and variability of model parameters is important,
and one should not use average values [13–15]. However,
fitting to individual values creates additional computational
overhead, and it is possible that the model may not capture
the behavior of a range of individuals. Fundamentally, the
role of these muscle models is to capture the integration of
muscle activation dynamics into a resulting tension. Once
again, although these muscle models are important for mod-
elingmechanical systems, complex structures involving both
the kinematics and kinetics of multiple muscles, in general,
will have high computational overhead [116,148,149]. Thus,
if a simulation is to run faster than real time and be able to
be rapidly fit to a given individual, one must use simplified
models. For the work presented here, we were interested in
generating a model that can run faster than real time, and
have done this using a very simplified muscle model for the
biomechanics.

To meet the need for computationally efficient, explain-
able, multifunctional controllers, we have developed a
hybrid Boolean network model framework, i.e., primar-
ily using Boolean network elements but using continu-
ous mechanical models. This framework combines discrete
Boolean logic calculations of neural activity with simpli-
fied semi-continuous second-order muscle dynamics and

peripheral mechanics. To our knowledge, mixed Boolean
(neural)/continuous (biomechanical) models have not pre-
viously been used for motor control. The use of Boolean
logic for capturing neural activity results in a computation-
ally efficient control algorithm that can run faster than real
time. The use of a simplifiedmodel of the peripheralmechan-
ics provides sufficient sensory feedback for the controller to
adjust to changing environmental conditions and allows key
characteristics of each of the multifunctional behaviors to be
observed. To demonstrate mapping from a knownmultifunc-
tional biological system, an animal model is needed with a
relatively small neural network controlling awell-understood
musculature. Therefore, we demonstrate this model frame-
work for multifunctional control using the experimentally
tractable model system of feeding in the marine mollusk
Aplysia californica. The resultingmodel controls a simplified
mechanical model of the feeding apparatus and successfully
demonstrates ingestive behaviors, including biting and swal-
lowing, as well as rejection of inedible materials. In this
paper, we will first describe prior models of the Aplysia feed-
ing neural circuitry and periphery, then describe our novel
Boolean model framework. We will demonstrate how the
hybridBoolean controller is developed based onobservations
from behavioral, biomechanical, and electrophysiological
experiments and the existing literature. Finally, we will use
the resulting model to show multifunctional control and
illustrate how it can be used to make testable experimental
predictions.

2 Prior models of Aplysia feeding and neural
circuitry

Feeding behavior in Aplysia is multifunctional and has been
well characterized. Three key feeding behaviors are observed
in the intact animal: biting, swallowing, and rejection. Ani-
mals flexibly switch between behaviors as sensory inputs
vary, e.g., switching from biting to swallowing once food
(seaweed) is successfully grasped. Moreover, as the animal
encounters seaweeds that impose varying mechanical loads,
the animal may robustly adjust the magnitude and duration
of force it exerts to ingest the seaweed [53,97]. These multi-
functional behaviors provide a model system for intelligent
robotic grasper control. Previous models of the neural cir-
cuitry and peripheralmechanics have been reported that form
the foundation for the hybrid Boolean model presented here,
and we will briefly review the relevant aspects of these pre-
vious models.

2.1 Prior neural circuit analyses andmodels

There is a wealth of information on the circuitry control-
ling feeding in the experimentally tractable Aplysia nervous
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system. The tractability is a result of several factors: there
are relatively few neurons responsible for feeding behav-
ior (on the order of 200 motor neurons and dozens of
key interneurons [21,147]); neurons in Aplysia are large,
pigmented, and have similar synaptic inputs, outputs, mor-
phology and biophysical properties from one animal to the
next, and can thus be identified as unique individuals [86];
the somata, which are the largest parts of the neurons,
are electrically excitable and electrically compact, so that
stimulating or inhibiting the neuron at the soma controls
its outputs [31]. Together, these features make it possible
to determine detailed neural circuitry that applies across
all animals. In particular, the neural circuitry involved in
Aplysia feeding has been extensively studied [33]. Two gan-
glia contain the primary neurons responsible for generating
the relevantmultifunctional behavior: the cerebral and buccal
ganglia. The buccal ganglion contains many of the pri-
mary motor neurons that innervate the musculature of the
feeding apparatus, as well as interneurons and sensory neu-
rons involved in feeding [33]. The cerebral ganglion is the
primary locus for many key interneurons responsible for
guiding behavioral switching [33]. Many of the neurons of
the feeding circuitry can be consistently identified between
animals due to their location, size, and electrical character-
istics [26,28,74,84,146,154,159]. In particular, many of the
motor neurons innervating keymuscles have been previously
identified, including B3/B6/B9 innervation of the I3 retrac-
tor muscle [29,30], B31/B32/B61/B62 innervation of the I2
protractor muscle [72], B7 innervation of the hinge retrac-
tor [164], B8a/b innervation of the grasper [29,47,111], and
B38 activation of the anterior region of the I3 retractor mus-
cle [30]. The coordination of these motor outputs is mediated
via many known interneurons both in the buccal and cerebral
ganglia [33].

The neural circuitry controlling feeding in isolation from
the musculature that mediates feeding has been modeled in
detail. Cataldo et al. [22] developed a network model with
Hodgkin–Huxley-type neurons incorporating known data on
conductances and the roles of important second messengers
in individual identified neurons mediating feeding behav-
ior (using the SNNAP modeling platform [170]) which has
been recently updated by Costa et al. [32]. Figure 1A shows
details of the neural circuitry included in this model. This
model includes key motor neurons and interneurons in the
buccal ganglia. Using this approach, they were able to gener-
ate ingestion-like and rejection-like neural activity. However,
the model did not take into account the role of many relevant
cerebral–buccal interneurons (CBIs) in switching between
the behaviors and thus could not differentiate between bite-
like and swallow-like patterns, nor did it provide control of a
simulated periphery, and thus could not incorporate sensory
feedback during feeding, which we have argued may play a
critical role in generating robust feeding behavior [97,137].

Alternative conceptual models have included a wider assort-
ment of CBIs (Fig. 1B), such as the circuits proposed by Jing
et al. [79–83], in which the CBIs involved in switching from
ingestive to egestive behavior, as well as from biting to swal-
lowing, are included (Fig. 1C). These models highlight the
importance of the CBIs in behavioral multifunctionality, but
do not include a model of the periphery to capture the role of
biomechanics in behavior. This priorwork provides a founda-
tion for the development of real-time or faster-than-real-time
controllers based on this animal model by identifying key
neurons involved in the multifunctional behavior.

2.2 Prior mechanical models

While many studies have investigated the neural circuitry
underlying Aplysia feeding behavior, and some have devel-
oped detailed models of that circuitry, fewer have considered
the critical role of the peripheral biomechanics on the control
architecture and behavior. However, the parallel evolution of
the peripheral musculature and control circuitry result in a
tightly coupled system [23]. To understand and create mul-
tifunctional controllers, we must understand the interactions
of the complete system.

Kinematic and kinetic models of the Aplysia feeding
apparatus have previously been reported in the literature.
Based on MRI images during feeding, kinematic models
have been developed to capture the mechanics of feeding
[41,113]. These models highlight the morphological com-
putation inherent in the feeding apparatus. In particular, the
kinematic changes observed during feeding reveal how shape
changes in the grasper can change the mechanical advantage
of key muscles [116,148]. In addition to kinematic models,
basic kinetic models have been proposed which capture the
dynamics of key structures throughout feeding [148]. Such
models can be extended through the inclusion of kinematic
reconfiguration observed through MRI imaging [116]. How-
ever, the existing mechanical models do not yet include the
neural circuitry needed for controller development.

2.3 Prior neuromechanical models

Abstract neuromechanical models, which combine neural
control and biomechanics into a unified model of Aplysia
feeding, have also be developed, such as a stable hete-
roclinic channel model [97,137]. This model captures the
CPG-like activity of the feeding circuitry using three mutu-
ally inhibitory nodes representing pools of motor neurons.
Though the nodes do not map precisely to known neural con-
nectivity, their dynamics can be simulated rapidly, connected
to basic kinematic models of the periphery, and respond to
changes in sensory inputs, such as the load on the seaweed.
Furthermore, stable heteroclinic channel controllers have
been successfully translated to robotic applications [67,158].
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Fig. 1 A The SNNAP model of key Aplysia feeding circuitry recently
presented by [32] (reproduced with permission). This model includes
many key motor neurons and interneurons as well as CBI-2. B A net-
work diagram reproduced with permission from Jing et al. showing

key cerebral–buccal interneurons responsible for behavioral switching
in feeding [80]. C Behavior-specific modules proposed by Jing et al.
(Copyright 2004 Society for Neuroscience), reproduced from [79] per
The Journal of Neuroscience reuse permission guidelines

However, suchmodels do not provide insight into the detailed
neural mechanisms underlying multifunctional control.

3 Models andmethods

Our approach tomodeling beginswith experimental observa-
tions from intact animals of both their feeding behavior and
recordings of the major motor neuronal activity controlling
feeding. These observations of the functional outputs of the
system motivated an outside-to-inside modeling approach:
first, a minimal set of peripheral structures and muscles are
represented; second, the direct controllers of those muscles
(motor neurons) are added; finally, layers of local and ulti-
mately global control mediated by interneurons are added.

3.1 Experimental methods and data analysis

The activity patterns of identified neurons during distinct
feeding behaviors were obtained experimentally from intact
animals via chronically implanted electrodes. Materials and
procedures are described in detail by [53] and are summa-
rized here.

Adult Aplysia californica (200–450g) were anesthetized
via injection of isotonic magnesium chloride solution
(333mM) and immersion in chilled artificial sea water (1–5◦
C) for at least 10min. A small incision in the body wall near
the head was made which permitted access to the feeding
apparatus (buccal mass). Differential electrodes, comprised
of twisted pairs of fine (25-μm diameter), insulated stainless
steel wires (see [34] for fabrication details), were implanted
on the protractor muscle I2, the radular nerve (RN), and buc-
cal nerves 2 (BN2) and 3 (BN3). Together these recording
sites permitted extracellular monitoring of nearly all of the
major motor neurons of the circuitry controlling feeding (I2:
B31/B32/B61/B62; RN: B8a/b; BN2: B38, B6/B9, B3; BN3:
B7), as well as an important pair of multiaction interneurons
(BN3: B4/B5) [96]. The incision was closed with a suture.
Animals recovered after 1–3days.

Instrumented animals were presented with different food
stimuli to elicit different feeding responses. To elicit bites,
which are failed attempts to grasp food [92], dried nori
(Deluxe Sushi-Nori, nagai roasted seaweed, Nagai Nori,
USA INC, Torrance, Ca) was touched to the rhinophores,
anterior tentacles, and perioral zone until protractions of
the feeding grasper were visible. To elicit swallows, ani-
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mals were permitted to grasp and ingest the food. To elicit
rejections, animals were first enticed to partially swallow a
polyethylene tube by simultaneously touching nori to the
perioral zone; after several centimeters of tubing were swal-
lowed, the nori was removed, and eventually the animal
rejected the tube by pushing it out of the mouth using its
grasper.

For some swallows, anunbreakable food stimulus (double-
sided tape between two uniform strips of dried nori) was
anchored to a force transducer and suspended vertically over
the animal. The animal attempted to swallow the strip, but
because it was anchored and unbreakable it could only make
progress until tension began to develop in the anchored strip.
After this, the animal continued to attempt to swallow despite
the increase in load for up to several minutes.

An electromyogram from the protractor muscle I2 and
extracellular nerve signals from RN, BN2, and BN3 were
digitally recorded, along with swallowing force measured
by the force transducer. Video was captured simultaneously
so that behaviors could be reviewed during analysis.

Analysis of experimental data was aided by the Python
package neurotic (NEURoscience Tool for Interactive Char-
acterization) [54], and analysis procedures were similar to
those described by [53]. Briefly, spikes were detected using
window discriminators. Units corresponding to identified
neurons can be identified from nerve recordings because
axonal nerve projections and the relative amplitude and
timing of spikes is consistent from animal to animal [96].
Amplitude thresholds were determined manually. Spikes
were grouped into bursts using firing frequency criteria (see
[53] for details; for B7, the burst initiation and termination
frequencies were 20Hz and 10Hz, respectively, based on
observations by [164,165]). Video was used to determine the
timing of inward movement of food during swallowing and
outward movement of tubing during rejection.

3.2 Simplifiedmodel framework for multifunctional
control

To develop a simplified model of multifunctional control, we
employed a demand-driven complexity approach: rather than
modeling the complex dynamics of all possible units in the
neural network, and the detailed biomechanics, we identified
key neuronal elements based on functional outputs during
behavior,modeledminimal associated peripheralmechanics,
and refined both models to reproduce multifunctional behav-
iors. The result is a hybrid Boolean model consisting of the
peripheral biomechanics and neural circuitry. Neural activ-
ity is represented using discrete Boolean units, whereas the
biomechanics are calculated continuously in space using a
semi-implicit integration scheme (see Appendix A.1). In the
following sections, we present the proposed hybrid Boolean

Fig. 2 Biting, swallowing, and rejection have distinct functional, �
kinematic, and neural control characteristics. A1 Biting is illustrated
schematically in a sequence of cross sections of the feeding appara-
tus. Biting begins with strong protraction of the open grasper towards
the jaws (to the right), mediated by the protractor muscle I2 and the
motor neurons B31/B32 and B61/B62; the grasper closes (indicated
by a shape change from circular to elliptic) near the peak of protrac-
tion through the action of closure motor neurons B8a/b; having failed to
grasp food, the closed grasper retracts weakly towards the esophagus (to
the left), mediated by activation of the hinge muscle via B7 and the jaw
muscle I3 via B6/B9. A2 Outputs of the motor control system (mus-
cle and nerve activity) were recorded during biting, allowing timing
of identified motor neuron activity to be determined. An understand-
ing of the biomechanics (A1) and the neural control permits mapping
the motor pattern to the kinematic sequence (circled numbers). Col-
ored boxes around spikes indicate bursts of activity sufficiently intense
to elicit functional movements. Bars indicate the protraction (P) and
retraction (R) phases. A3 A simplified, discrete representation of the
bursts of motor neuronal activity in A2. In this column, the I2 motor
pool is abbreviated to “B31/B32” for brevity. B1 Swallowing begins
with pinching the anterior jaws, mediated by the motor neuron B38,
to prevent loss of food while the open grasper protracts; protraction is
weaker than in biting; the grasper closes; the closed grasper retracts
strongly to deliver food to the esophagus through recruitment of the
jaw motor neuron B3, as well as intensified activation of B6/B9 and
B7. B2 The motor pattern contains indications of each kinematic dif-
ference between biting and swallowing. Swallowing force and time of
inward movement of food are also indicated. The multiaction interneu-
rons B4/B5 are also active at a moderate level during swallowing and
may act to delay the jaw motor neurons. B3 A discrete representation
of the motor neuronal activity in B2, with B4/B5 active at a moderate
level (dashed line). C1 Rejection begins with closing of the grasper;
the closed grasper strongly protracts, expelling inedible material; the
jaws are delayed from closing, giving the grasper enough time to open
(indicated by a shape change from elliptic to circular) so that food will
not be pulled back in during retraction; the open grasper retracts.C2An
essential difference between rejection and the ingestive behaviors is the
timing of grasper closure, seen in the motor pattern as B8a/b activity
during protraction. B4/B5 is very intensely activated during rejections
and is responsible for the delay in jaw closure. Outward movement of
the inedible material is also indicated. C3 In the discrete representa-
tion of C2, B4/B5 intensity is elevated relative to swallowing. Note
that motor patterns (A2, B2, C2) are plotted on identical time scales
to emphasize differences in duration; discrete representations (A3, B3,
C3) are rescaled for direct comparison of burst phasing. B1 and B2 are
modified from [53] with permission

model framework applied to the multifunctional feeding
behavior of Aplysia.

3.3 System identification based on key
biomechanical and neural elements

Aplysia’s feeding behavior is multifunctional. As an animal
attempts to ingest food, it bites (a failed grasp); once it suc-
ceeds in grasping food, it pulls it into the buccal cavity (i.e., it
swallows). If it encounters inedible material, it pushes it out
of the buccal cavity (i.e., it rejects food). The animal must
continuously shift flexibly among these different behaviors as
it encounters the changing properties of food (e.g., mechani-
cal load, toughness and texture). Based on the known neural
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Fig. 3 A novel biomechanical model of the feeding system. A A
schematic showing the position of the feeding apparatus (black) within
the body of Aplysia (red). B A sketch of the buccal mass, drawn by
Dr. Richard F. Drushel, with a cut-away to reveal internal muscula-
ture, reproduced with permission from [149]. C A planar schematic
of the buccal mass showing the I2, I3, I4, and hinge muscles, and the
position of seaweed during ingestion. D A 2D schematic representa-
tion (top) of the 1D biomechanical model (bottom) implemented in the
hybrid Boolean network framework. This model does not account for
the masses or shapes of any of the components. All positions and forces
are constrained to the x-direction. The effect of the body and neck on
the head is represented by the spring constant Kh where the reference

position of the spring x0 corresponds to the ground plane (i.e., x0 = 0).
The presence and fixation of seaweed to a force transducer varies based
on the behavior being simulated. During swallowing, a force thresh-
old determines whether the seaweed is fixed to the force transducer, or
breaks away. This allows the mechanical strength of the seaweed to be
varied. The details of the stimuli are presented in Fig. 3 and the associ-
ated text. E All possible forces on the head (top) and grasper (bottom).
To model interactions of the seaweed with the jaws (yellow circles,
top) and with the grasper (magenta circle, bottom), the friction forces
between the seaweed and the relevant jaws (Ff ,h) and grasper (Ff ,g)
are calculated, based on the pressure at the location and user-specified
coefficients of friction (see Appendix A.5)

circuitry in the buccal ganglia and our recordings of each of
the three feeding behaviors in intact behaving animals, we
identified critical motor neurons and musculature necessary
to reproduce multifunctional feeding in simulation.
Biting: In Aplysia, biting is characterized by strong protrac-
tion of the grasper, which closes prior to peak protraction
as it attempts to grasp food, followed by weak retraction
when food is not grasped (Fig. 2A1; circled numbers indi-
cate specific phases of the kinematics and are also used for the
corresponding bursts of neural activity in parts A andB of the
figure, respectively). Since biting is an attempt to grasp food,
the power stroke is the protraction phase. See Fig. 3 and 4A.
As grasping attempts are unsuccessful in this behavior, no

force is applied to the seaweed. Key muscles and motor neu-
rons involved in this behavior include the protractor muscle
I2 and its associated motor neurons B31/B32 and B61/B62
[72], the grasper closermuscle I4 and itsmotor neuronsB8a/b
[29,47,111], and to a lesser extent the jaw closer muscle I3
and its motor neurons B6/B9 [29]. In the experimental data
shown in Fig. 2A2, the very limited B6/B9 activity is proba-
bly insufficient to mediate the level of retraction observed in
previously reported magnetic resonance imaging data [114].
It is therefore likely that additional muscle units are required
for the onset of retraction. Indeed, previous biomechanical
models suggest that the hinge muscle, which is activated by
neuron B7 [164], plays a critical role in retraction during
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Fig. 4 Demonstration of one cycle for each of the multifunctional
behaviors. Bold arrows at the bottomof each schematic indicate changes
in grasper position from one behavioral phase to the next, whereas bold
arrows at the top indicate changes in head position. A A schematic rep-
resentation of the simplified model during biting. No seaweed or tube is
present and only the grasper moves throughout the cycle.BA schematic
representation of the simplified model during swallowing. Seaweed is
present and fixed to a force transducer. Of particular note is the motion
of the head during swallowing. Because the seaweed is fixed to the rigid
force transducer, the activation of the I3 muscle when the seaweed is

being firmly grasped results in the head being pulled forwards along the
seaweed (B, Retraction panel), so long as the force on the seaweed does
not exceed the force threshold. C A schematic representation of the
simplified model during rejection. Rather than seaweed, a tube is simu-
lated to provide mechanical stimulation without any chemical cues. The
tube is not fixed to an external object and is therefore free to be pushed
forward during the rejection. Note the outward movement of the marks
on the tube after the rejection cycle concludes (C, Rest panel). For both
biting and rejection, there is a slight forward motion of the grasper from
the fully retracted position to the rest configuration shown here

biting [148]. As a result of this analysis, the demand-driven
model should incorporate four muscle groups (I3, I2, grasper
closure, and hinge) and four neural groups (B6/B9, B31/B32,
B8a/b, and B7) to produce biting.
Swallowing: If seaweed is successfully grasped at peak pro-
traction during a bite, swallowing is initiated (Fig. 2B1).
Since during swallowing, animals ingest food, the power
stroke is the retraction phase with the grasper closed on
seaweed. See Fig. 3 and 4B. To re-position the grasper to
pull more seaweed inwards, it is then weakly protracted
while open. If it were protracted too strongly, it might push
seaweed out. Thus, during the retraction phase, the animal

exerts strong forces on seaweed, whereas during protraction,
it exerts minimal or even slightly negative forces. Similar
muscle groups are activated in swallowing as are in biting,
but with changes in duration and intensity. In addition, to
prevent seaweed from slipping out, the anterior region of
the I3 jaw muscle is pinched closed by activating the B38
motor neuron [104]. The changes in motor neuronal timing
(Fig. 2B2) can be understood from the biomechanics: First, to
ensure that seaweed is not pushed out during protraction, the
activation of the grasper closure motor neurons B8a/b occurs
near the end of protraction (rather than overlapping the end of
protraction, as is observed during biting). Second, to ensure
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that protraction is weaker, the protractor muscle I2 is less
strongly activated than in biting. Third, to ensure that the
grasper releases near the end of retraction, the grasper motor
neurons B8a/b and the jawmotor neurons B6/B9 cease activ-
ity at about the same time. Fourth, themajor jawmotor neuron
B3 is recruited to generate greater retraction force. Finally,
to maintain a hold on seaweed after the grasper opens, the
B38 motor neuron is activated during the protraction phase
to pinch the anterior of the jaw muscle onto seaweed.
Rejection: If an inedible object is detected as a result of the
combined sensory cues in the esophagus (e.g., a noxious
mechanical stimulus), grasper (a lack of chemical stimulus),
and at the lips (a lack of chemical stimulus), the inedi-
ble material will be rejected. This is a critical behavior
for the animal, as it must be able to free the buccal cav-
ity of inedible material in order to locate edible food. In
rejection, the power stroke is characterized by strong pro-
traction with the grasper closed, followed by retraction with
the grasper open (Fig. 2C1). See Figs. 3 and 4C. Similar
to swallowing and biting, the I3 muscle, the I2 muscle, and
the I4 muscle are all activated. However, the timing changes
(Fig. 2C2): First, the grasper closer motor neurons B8a/b are
activated during the protraction phase (i.e., during activation
of the I2 protractor muscle and the B31/B32/B61/B62 motor
neurons), rather than during the retraction phase, ensuring
that the grasper closes and pushes out inedible material
[110,111]. Second, since the inedible material is not retained
during the protraction phase, the B38 motor neuron is not
activated, and no pinch is observed. Finally, since it is crit-
ical to retract the grasper with its halves open (so as not
to pull inedible material back in), the jaw motor neurons
(B6/B9/B3) are initially inhibited at the onset of retraction
by the B4/B5 multiaction neurons (since closure of the jaw
muscles would push the grasper halves shut); instead, ini-
tial retraction is mediated by the hinge muscle (activated by
motor neuron B7) [165].

This analysis of the animal data allows us to identify the
key muscles and motor neurons necessary to produce the
multifunctional behaviors of interest (Table 1) and allows us
to develop a simplified biomechanicalmodel of the periphery
to integrate into our controller model.

3.4 Biomechanical model

Understanding the biomechanics of the periphery is impor-
tant for developing effective multifunctional control. In
Aplysia, there are several key muscle groups that contribute
to feeding behavior. Protraction of the grasper is primarily
mediated by the I2 muscle, innervated by neurons B31/B32,
which have both interneuronal andmotor neuronal functions,
and by motor neurons B61/B62 [72]. The motor neurons
B8a/b activate the I4 muscle which results in closing of the
grasper and pressure on the seaweed [111]; in strong swal-

Table 1 Keymuscle and motor neurons included in the hybrid Boolean
network model of the Aplysia feeding apparatus

Muscle Role Motor neurons References

I2 protraction B31/B32/B61/B62 [72]

I3 retraction; pinch B3/B6/B9; B38 [29,30,104]

I4 grasper closure B8a/b [29,47,111]

hinge retraction B7 [164]

lows, in which the grasper is more protracted, grasper closure
also induces a retraction force at the onset of grasping [164].
Retraction is primarily mediated by the activity of the I3
muscle; in addition, when the grasper is very strongly pro-
tracted, the hinge contributes to retraction during biting and
rejection [148]. Additionally, during swallowing, the anterior
region of the I3 muscle tightens down on seaweed to prevent
its release and expulsion during the protraction phase when
the grasper is open [104]; we will refer to this action as a
pinch. These key muscle groups provide the foundation for
the biomechanical model (Fig. 3A–C).

Using thesemuscle groups, we derived a simplifiedmodel
of the feeding apparatus that captures the basic mechanics of
the head, grasper, and seaweed along a one-dimensional axis.
In our model, mechanically tough seaweed is firmly affixed
to a force transducer as described in Sect. 3.1 (Fig. 3). In
this preparation, the mechanically tough seaweed is unable
to move relative to the force transducer during swallowing so
long as the seaweed is unbroken. As a consequence, rather
than the animal being stationary and pulling the seaweed
into the esophagus, the animal grasps the seaweed and pulls
its head forward along the seaweed, so that seaweed moves
into the head during the retraction phase but may then move
out again as the animal releases the seaweed under tension
(Fig. 4B). Thus, in this simplified biomechanical model,
the forces and motion of the grasper vary with the type of
behavior (Fig. 4 A–C) and depend on the friction exerted
by the grasper on the seaweed, the friction exerted by the
jaws (anterior portion of the I3 muscle) on the seaweed, and
the mechanical strength of the seaweed. For this simplified
model themasses of the bodies are neglected due to the quasi-
static nature of Aplysia feeding muscle movements wherein
the inertial forces are low relative to the viscous and elastic
forces.

Muscle forces are determined by a first-order relation-
ship between normalized motor neuron activity, N , and
normalized muscle activation, A, and a first-order rela-
tionship between activation and normalized tension, T ;
numerically, this is implemented using a first-order accurate
semi-implicit integration scheme based on operator splitting
(see Appendix A.1) which makes it relatively easy to add
new components to the control network:
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Table 2 Key interneurons in both the cerebral and buccal ganglia
included in the hybrid Boolean network model of the Aplysia feeding
apparatus

Neuron Primary behaviors References

CBI-2 biting and rejection [79]

CBI-3 biting and swallowing [80,81,107]

CBI-4 swallowing and rejection [79]

B64 protraction-to-retraction transition [74]

B4/B5 rejection [81]

B20 rejection [81,82]

B40 biting [79,82]

B30 swallowing [79]

dA

dt
= N (t) − A(t)

τm
−→ A(t + h)

= τm A(t) + hN (t)

τm + h
(1)

dT

dt
= A(t) − T (t)

τm
−→ T (t + h)

= τmT (t) + hA(t)

τm + h
(2)

where A is the muscle activation, τm is the activation time
constant of the givenmuscle, N is the activity of the innervat-
ingmotor neuron (see Sect. 3.5 andAppendixA.3), T ismus-
cle tension, and h is the time step. Similar equations can be
used to express the grasper and pinch pressures. Muscle ten-
sions are combined with equations for normalized mechan-
ical advantage and a maximum force parameter in units of
force to calculate applied force on the grasper, head, and food
objects. Activation–tension, activation–pressure, tension–
force, and pressure–force relationships for each muscle as
appropriate can be found in Appendices A.4 and A.5.

The subsequent motion of the grasper and head is calcu-
lated based on the contributions of individual muscles and
the friction applied to the seaweed by the grasper and jaws.
In the absence of external forces, the motions of the head fall
between x0 = 0 (i.e., rest) and 1 (i.e., full extension of the
head, Fig. 3D). Similarly, the grasper motion falls between
0 (i.e., full retraction), and 1 (i.e., full protraction).

The motions of the head and grasper are calculated based
on quasi-static equations of motion. In a systemwith inertial,
viscous, elastic, and applied forces, the equations of motion
can be expressed in the form:

Fapp − kx − cẋ = mẍ (3)

In Aplysia feeding, accelerations and masses are small, so
inertial forces are negligible [149]. Therefore, the equations
of motion simplify to have the form:

Fapp − kx = cẋ (4)

which can be written as:

ẋ =
∑

F

c
(5)

where
∑

F includes both the elastic forces, −kx , as well
as any applied external forces. Therefore, the motions of the
head and grasper are calculated as:

d

dt

[
xg
xh

]

=
[ Fg

cg
Fh
ch

]

(6)

where xg and xh are the positions, Fg and Fh are the net
forces, and cg and ch are viscous damping coefficients for
the grasper and head, respectively. For convenience we set
cg = ch = 1.

For this model, the total force on the grasper (Fg) includes
the forces due to contraction of the I2muscle (FI2), I3muscle
(FI3), and hinge (Fhinge), a spring connecting the grasper to
the head (Fsp,g) representing the surrounding musculature
and connective tissue, and friction due to the interaction of
the grasper with an object, e.g., seaweed or tube, (Ff ,g):

Fg = FI2 + Fsp,g − FI3 − Fhinge + Ff ,g (7)

The total force on the head (Fh) includes those listed above
as well as friction between the jaws and the object (Ff ,h)
and a spring representing the musculature and connective
tissue connecting the head to the rest of the body (Fsp,h). In
Appendix A.5, we show how this simplifies to:

Fh = Fsp,h + Ff ,g + Ff ,h (8)

Details for calculating each of these component forces
can be found in Appendix A.5, and a table of symbols can
be found in Appendix A.2. This model represents a substan-
tial simplification of the continuum mechanics of the soft
bodied structures that make up the Aplysia feeding appa-
ratus. However, the model captures the key muscle groups
identified in the animal experiments, as well as some of
the configuration-dependent mechanical advantages of these
muscles. Additionalmuscle groups and kinematic effects can
be easily added into the hybrid Boolean model expressions.

3.5 A Boolean networkmodel of neural circuitry

Rather than using a complex neuralmodel, each neuron in the
hybrid controller presented here is represented by a Boolean
logic statement. In contrast to highly detailed models of neu-
ral activity which are relatively computationally expensive,
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Fig. 5 An example node in the Boolean network model. This example
neuron is innervated by one excitatory input, S1, and two inhibitory
inputs, S2 and S3

such as leaky-integrate-and-fire models [77,105,153], sim-
ple spiking models [76], or Hodgkin–Huxley neurons [64],
the Boolean representation of neurons approximates neural
activity based on bursts of activity observed in the animal
data (Fig. 2).

As a first approximation, such bursts can be represented
as on during firing activity and off when quiescent. In the
Boolean representation, the activity of the neuron (whether
it is active or inactive) is determined by the combined logic
of the inputs. For example, a simplified neural unit, N1, with
three inputs is shown in Fig. 5. If these inputs are equally
weighted, then node N1 can only be active if S1 is active and
if inputs S2 and S3 are not active. Therefore, the activity of the
node N1 at the next discrete step, ( j + 1), can be calculated
using Boolean logic based on the state of the synaptic inputs
at the current discrete step, ( j), as follows:

N1( j + 1) = S1( j) ( ! S2( j)) ( ! S3( j)) (9)

where the inputs Si and output N1 have numeric values 0
(off) or 1 (on), ! represents Boolean negation, and the AND
operator is implemented using multiplication. To account
for neurons with variable bursting intensities, we extend
the Boolean framework to include three-state model neu-
rons such that quiescence is represented as 0, weak firing
as 1, and strong firing as 2. If a normal logical AND were
used, the difference between states 1 and 2 would be lost,
but this difference remains when variables are multiplied.
In our model, all neurons are standard Boolean elements,
i.e., either on or off, except for the B4/B5 interneuron,
which has been implemented using the ternary representa-
tion based on observations in our animal experiments. For
this ternary unit, the Boolean negation, ! NB4/B5, is unde-
fined. Instead, our implementation tests whether the neuron
is off (NB4/B5 < 1), firing weakly (NB4/B5 == 1), or firing
strongly (NB4/B5 ≥ 2). Each of these statements can then
be negated using standard Boolean negation ( ! ). Details of
the implementation of this ternary neuron can be found in
Appendix A.3.

To account for known variations in the strength of inputs
to neurons, additional logical calculations can be added to
refine the activation of a given model neuron. For example,

if N1 is active if S1 is activated or if S2 is not activated but
is still inhibited by any activation of S3, the logic calculation
could be modified as follows:

N1( j + 1) = (S1( j) ‖ ( ! S2( j))) ( ! S3( j)) (10)

where ‖ represents the OR operator. When modeling three-
state neural inputs that can fire strongly, ORs can be
implemented using addition to preserve the magnitude of
firing.

3.5.1 Motor control layer

In our simplifiedmodeling framework, once the keymuscula-
ture has been identified, amotor control layer is implemented.
This layer consists of motor neurons known to innervate the
key musculature (Table 1) and is built using Boolean model
neurons (Fig. 6): B31/B32/B61/B62 for activating the I2 pro-
tractor muscle; B8a/b for closing the grasper; B6/B9/B3 for
activating the I3 retractor muscle; B38 for pinching the ante-
rior jaws; and B7 for activating the hinge muscle.

Though much is known about the Aplysia feeding cir-
cuitry, there are still open areas of investigation, including
exact sensory feedback pathways. Therefore, in the proposed
model, we have implemented proprioceptive sensory feed-
back based on the kinematics of the grasper. In some cases,
these sensory pathways directly innervate motor neurons in
the current framework. However, it is likely that these are
mediated through sensory neurons and interneurons in the
animal. Such additional units could be easily added to the
framework as they are identified. These sensory feedback
inputs are implemented based on tunable thresholds of the
grasper position andpressure of closing. Such thresholdsmay
allow themodel to be fit to individual animals or enable mod-
ulation of the network by tuning the values of thresholds.
It should also be highlighted that in this model the larger
motor pool B31/B32/B61/B62 is sometimes abbreviated as
B31/B32; the rationale for doing so is that B31/B32 have
both motor neuronal and interneuronal properties [74].

3.5.2 Local coordination

Building on the first layer of the model, we can add local
coordination through the inclusion of known interneurons
(Fig. 7). This layer coordinates the functional timing of the
activity in the motor layer such that effective behaviors are
generated. For the Aplysia case study presented here, this
layer includes key interneurons identified in prior literature
including B30, B40, B64, and B20. In addition, we have
included B4/B5 based on the existing literature documenting
its importance (e.g., [49,157,165]) and our own preliminary
data that it may play a role in mediating grasper release
needed to switch rapidly to rejection (unpublished obser-
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Fig. 6 Schematic of themotor control layer based on the keymotor neu-
rons and musculature identified previously (Fig. 2). See Appendix A.3
for logic formulations. Sensory feedback pathways (inputs to motor
neurons) are hypothesized based on the relative timing of motor neu-
ronal activity. These sensory pathways are implemented in the model
as acting directly on the motor neurons, but are likely to act via sensory
neurons and interneurons in the actual neural circuitry. In this diagram,

the grasper pressure inputs to B6/B9 and B3 and to B31/B32 are shown
without end caps. These connections vary depending on the behavioral
state as indicated by the insets in the bottom left corner of the image.
Behavioral state is controlled in the Boolean logic equations based on
the activity of Cerebral–Buccal Interneuron 3 (CBI-3) and the sensory
state of the mechanical stimuli in the grasper. See Appendix A.3 for
detailed circuit specifications and Fig. 8 for the full network diagram

vations). In this model, B30 and B40 are represented as a
single model neuron as they both serve primarily to provide
inhibition to B8a/b during ingestive behaviors [79]. The dif-
ferences in how they are activated (B30 receives excitatory
stimuli from CBI-4, and B40 receives excitatory input from
CBI-2 [79]) are included in the model neuron’s logic (see
Appendix A.3). The connectivity of this layer with the motor
layer was established based on the previous literature. As
with the motor layer, some sensory feedback pathways are
proposed such that proprioceptive inputs can excite or inhibit
specific interneurons based on the grasper position relative
to model thresholds.

3.5.3 Global coordination and behavioral switching

This two-layer model, when properly stimulated, can inde-
pendently produce the three behaviors of interest. However,
it does not allow coordinated behavioral switching based on
external sensory cues. To add this capability, we add a cere-
bral ganglion layer, again referring to the existing literature,
which responds to three external stimuli: mechanical and
chemical stimulation of the lips, and mechanical stimulation
in the grasper (Fig. 8). Cerebral–buccal interneurons 2 and
4 (CBI-2 and CBI-4) play critical roles in rejection as well
as in biting and swallowing, respectively [79]. The transition
from egestive to ingestive behaviors appears to be handled, at

least in part, by the inhibition of key buccal interneurons by
CBI-3 [81,107].Although there are otherCBIs that have been
shown to play some role in feeding behaviors, such asCBI-12
modulating the timing of protraction and retraction in swal-
lowing [83], CBIs 2, 3, and 4 were selected as a minimum
set to generate behavioral switching among the behaviors
of interest. Using a demand-driven complexity framework,
additional CBIs or CBI effects could be included in future
iterations if such variations in timingwere deemed necessary.

3.6 Availability of model code

The model was implemented in MATLAB, and source
code is available at https://github.com/CMU-BORG/Aplysia-
Feeding-Boolean-Model. Archived code is available through
Zenodo (doi:10.5281/zenodo.3978414).

4 Results

4.1 Multifunctional behavior control in the Aplysia
feeding Booleanmodel

Using the hybrid Boolean model approach, we developed a
functional controller based on known neural circuitry while
taking into consideration the effect of the peripheral biome-
chanics. Using only 20 of the possible thousands of neurons
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Fig. 7 Schematic of the local control layer added to the motor con-
trol layer shown previously. See Appendix A.3 for logic formulations.
The local control layer consists of known interneurons in the buccal
ganglia based on the previous literature (Tables 1 and 2). In this dia-

gram, the retraction-triggered proprioceptive feedback to B4/B5 varies
with behavioral state as shown by the inset (3). This feedback is only
present during rejection and is inhibitory during this behavior. See
Appendix A.3 for detailed circuit specifications

in the Aplysia ganglia, the Boolean model is capable of pro-
ducing multifunctional behaviors (Fig. 9). In the presence
of mechanical and chemical stimulation at the lips, the con-
troller generates rhythmic biting patterns characterized by
a strong protraction followed by a relatively weaker retrac-
tion, with grasper closure in-phase with retraction. As no
seaweed is in the grasper, no force is experienced by the sea-
weed (Fig. 9A). If mechanical stimulation is applied to the
grasperwhilemechanical and chemical stimulation is present
at the lips, indicating the presence of edible material in the
grasper, the model qualitatively reproduces swallowing with
a weaker protraction phase followed by a strong retraction
(Fig. 9B). This results in high positive (ingestive) force being
applied to the seaweed during the retraction phase. In con-
trast, the presence ofmechanical stimulation at the lips and in
the grasper without chemical stimulation at the lips indicates
the presence of inedible material in the grasper. Under such
conditions, the model successfully generates rejection-like
behaviors (Fig. 9C). The inedible material is grasped during
the protraction phase, resulting in a negative (egestive) force
being applied to it during protraction, pushing it out of the
buccal cavity.

In addition to being multifunctional, the Boolean model
framework exhibits robustness within a single behavior. Dur-

ing Aplysia feeding, robustness is observed when animals
attempt to feed on seaweeds of varying mechanical strength
or that are attached to the substrate by a holdfast. Increas-
ing mechanical load increases the duration of swallows
overall and the retraction phase in particular [53,73,137].
The Boolean model presented here reproduces this phe-
nomenon even though the behavior has not been explicitly
programmed. The adjustment to seaweed strength is instead
an emergent property of the control network and biome-
chanics. By including a force threshold in our biomechanical
model, we can vary the force at which the seaweed “breaks”,
thereby allowing the grasper to move again as it is no longer
anchored to the rigid force transducer (Fig. 3). Increasing
the strength of the seaweed by increasing the value of this
threshold results in a longer period for each swallow due to
the increased retraction duration (Fig. 10), as is observed in
behaving animals [53].

4.2 Behavioral switching based on sensory cues

Truly multifunctional controllers need to be able to appropri-
ately switch between behaviors. In addition to being able to
reproduce distinct behavior through coordinated variation of
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Fig. 8 Schematic of the full Boolean network controller including the
cerebral interneurons for behavioral switching and global control. See
Appendix A.3 for logic formulations. External sensory cues are imple-
mented as acting directly on relevant cerebral–buccal interneurons.
However, such proprioceptive and exteroceptive feedbackmay bemedi-
ated through additional sensory neurons or interneurons in the actual
neural circuitry of the animal. CBIs interact primarily with the local

control layer to control behavioral switching. Strong inhibition from
CBI-3 that overrides other inputs to B20 is shown with a bold connec-
tion. Dashed connections from B4/B5 represent hypothetical inhibition
and excitation that occurs only if the presynaptic node is strongly acti-
vated (represented as a 2 in the modeling framework, rather than the
Boolean 0 or 1)

motor neuron activation, the model can also switch between
behaviors in response to changing sensory inputs.

In the animal, a change from biting to swallowing motor
patterns is observed when seaweed is present at the lips and
the grasper successfully grabs the seaweed, so the grasper
now senses a mechanical stimulus. We assessed the con-
troller’s ability to reproduce this transition by applying a step
change to the mechanical stimulus in the grasper near the
peak of protraction during the biting cycle (Fig. 11A). As a

result, the model successfully transitioned from biting-like
to swallowing-like neural and behavioral patterns.

Similarly, a transition from swallowing to rejection is
observed when inedible food is detected in the grasper. This
transition can be seen in the animal by inducing it to bite and
swallow a polyethylene tube while simultaneously touching
the lips with food, and removing the food stimulus after some
length of tubing has been ingested. This behavioral transition
is observed in the model when chemical stimuli are removed
during swallowing. This results in a sensory state in which
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Fig. 9 The hybrid Boolean network model and simplified periphery
is capable of producing the functional characteristics of the three tar-
geted behaviors: biting (A), swallowing (B), and rejection (C). A In
biting, chemical stimuli are present at the lips while mechanical stimuli
are absent at the lips and at the grasper. This results in motion of the
periphery which includes a strong protraction (open bars above grasper
motion) followed by weaker retraction (closed bars), and grasper clo-
sure coincides with retraction. No force is applied to the seaweed as it is
not yet grasped. Thickening of the grasper motion trace represents the
position of the grasper when closing pressure would be great enough to
hold an object firmly. In biting this has minimal effect as no material
is present in the grasper. B In swallowing, both mechanical and chem-
ical stimuli are present at the lips and mechanical stimuli are present
in the grasper. Protraction of the grasper results in near zero force on

the seaweed, whereas retraction of the grasper results in strong positive
force on the seaweed. The arrow indicates the recoil of the grasper at
the time it first releases the seaweed. Thickening of the grasper motion
trace represents the position of the grasper when static friction between
the grasper and object is present, indicating that the seaweed is being
firmly grasped. C In rejection, a mechanical stimulus (inedible mate-
rial) is present at both the lips and in the grasper, but chemical stimuli
are absent. Grasper closure coincides with protraction. Protraction of
the grasper results in increasingly negative forces (pushing the ined-
ible material out) while retraction results in forces approaching zero.
Thickening of the grasper motion trace represents the position of the
grasper when static friction between the grasper and object is present,
indicating that the tube is firmly grasped

only mechanical stimuli are present both at the lips and in
the grasper. As a consequence, the model successfully transi-
tions from swallowing to rejection (Fig. 11B). A sudden drop
in force on the seaweed is observed as the grasper briefly
releases the seaweed and transitions to grasping the seaweed
during protraction in order to push the seaweed out of the
feeding apparatus. As implemented in the model, changes in
activity due to sensory stimuli happen instantaneously. The
impact of transition dynamics could be investigated in future
model iterations through the inclusion of temporal dynamics
in modeling the CBIs and sensory feedback.

4.3 Using themodel to propose testable hypotheses

The modeling framework provides a significant advan-
tage over population-based neural control schemes such as
machine learning because the network is explainable and
grounded in an animal’s neurobiology. As a consequence,
the model is a tool not only for robotic control, but also for
generating and testing potential neurobiological hypotheses.

To mimic electrophysiology experiments, “electrodes” can
be added to the Boolean logic statements for a given model
neuron as excitatory or inhibitory inputs, and the Boolean
architecture can be extended to include a strongly excited
state wherein activity is set to 2 rather than 1, as was imple-
mented for B4/B5.

One such testable hypothesis is the role of the B4/B5mul-
tiaction neurons in behavioral switching. Gardner has previ-
ously shown that these multiaction neurons have widespread
outputs to many neurons within the buccal ganglia [49]. Fur-
thermore,B4/B5have been observed to be intensely activated
during rejection and less so in biting and swallowing [157],
an observation that is also seen in the animal data shown
above (Fig. 2). B4/B5 have also been observed to fire strongly
in response to sudden increases in load on seaweed during
swallowing [55]. The intense firing in B4/B5 may be critical
for delaying the onset of activity in the jaw muscles during
rejection. As the grasper protracts closed and retracts open
during rejection, it passes through the lumen of the jaws as it
rejects the inedible material. If the jaws closed prematurely,
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Fig. 10 Characteristic examples of grasper motion and measured
force on the force transducer during swallowing with varying seaweed
strength thresholds, zS . Thickening of the grasper motion trace repre-
sents the position of the grasper when closing pressure would be great
enough to hold an object firmly. In the top and bottom panels, protrac-
tion is indicated by the open bars above grasper motion and retraction
by closed bars. Seaweed thresholds increase from zS = 0.1 (top), where
seaweed breaks early in retraction and force on the transducer quickly
drops to zero, to zS = 0.5 (bottom), at which point the seaweed does
not break during the swallow attempt. The cycle period of swallows
increases with increasing seaweed strength

the grasper could be forced shut and food could be pulled
back into the buccal cavity [165]. These observations led us
to hypothesize that strong activation of B4/B5 could be used
to trigger transient rejection behavior.

To test this hypothesis, we have postulated connections
fromB4/B5 to CBI-2 (excitatory) and CBI-3 (inhibitory) and
added them to the Boolean model, as well as an electrode
to strongly excite B4/B5 transiently. In the actual animal,
the postulated connections may be indirect. Additionally,
the model makes it possible to easily include a refractory
period associated with a connection. We have included one
such refractory period for CBI-3, which again may be indi-
rect, during which it remains inhibited after strong inhibition
from B4/B5. To test the hypothesis that B4/B5 stimulation
can temporarily switch behavior from ingestion to rejec-
tion in the model, we strongly excited B4/B5 as the grasper
approached the peak of retraction. This strong excitation
resulted in inhibition of B8a/b and therefore the pressure on
the seaweed was released, causing an abrupt drop in force.
The model then transitioned to rejection-like behavior for
the duration of the CBI-3 refractory period, after which the
model returned to swallowing-like behavior (Fig. 12). In the

absence of these postulated connections, the model does not
transition to rejection-like behavior when B4/B5 is strongly
excited (data not shown). The model thus makes specific
testable predictions.

5 Discussion

The hybrid Boolean model framework applied to Aplysia
feeding results in a multilayer controller based on the known
neural circuitry and peripheral biomechanics of the animal.
This model is capable of reproducing three key behaviors
observed in feeding (Fig. 9), reproduces robustness within
a behavior by adjusting to varying mechanical load during
swallowing (Fig. 10), captures the ability to switch between
behaviors in response to sensory cues (Fig. 11), and pro-
vides a straightforward means of using the model to suggest
testable hypotheses about circuit function (Fig. 12). The
model is easily extensible as additional neural units or sen-
sory feedback pathways are identified or if additional features
of the biomechanics need to be captured.

5.1 Limitations

There is a long-standing debate in the neurobiology com-
munity on the relative roles of central pattern generator-like
circuitry, where a rhythmic pattern can be generated in the
absence of sensory feedback, versus chain reflexes, where
each phase of the pattern initiates sensory feedback critical
for generating the next part of the behavior [91]. It is likely
that both modalities contribute to behavior. For example,
central pattern generators are heavily influenced by sensory
feedback [120] and chain reflexes have central components
[5,19,121]. Since ourmodel focuses on behavioral forces and
movements, we constructed it to depend heavily on sensory
feedback and less on the intrinsic internal dynamics of the
neural circuit. As a consequence, removing all sensory inputs
will stop the model from oscillating. This is an application
of demand-driven complexity to reduce computational cost
by focusing on a reduced set of internal connections, cells,
and dynamics sufficient to qualitatively reproduce multi-
functionality. Such intrinsic mechanisms, however, could be
added to the model in future iterations. A testable hypothesis
from these observations would be that in the intact behaving
animal, sensory feedback may play as significant a role as
intrinsic mechanisms during feeding. This hypothesis is sup-
ported by recent related work highlighting the importance of
sensory feedback in shaping the functional motor outputs in
central pattern generator circuits underlying insect locomo-
tion [99]. In Aplysia, this question could be investigated in
intact animal models as well as in suspended buccal mass
preparations [103] to determine the relative importance of
these factors.
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Fig. 11 By changing the combination of external stimuli, the hybrid
Boolean network controller can appropriately switch between behav-
iors. A When mechanical and chemical stimuli are present at the lips,
but no mechanical stimuli are in the grasper, the network produces
biting-like behavior. A step change, halfway through the simulation, in
the mechanical stimuli in the grasper representing a successful grasp

attempt switches the network to producing swallow-like behavior. B
When mechanical stimuli are present at the lips and in the grasper, and
chemical stimuli are present at the lips, themodel produces swallowing-
like behavior. Loss of chemical stimuli at the lips halfway through the
simulation triggers the model to initiate rejection-like behavior

Though the model provides an accessible framework for
capturing known networks for multifunctional control, it still
hasmany parameters thatmust be set. Themodel architecture
can easily be implemented based on known circuit connec-
tivity. Thresholds, time constants, and maximum forces can
be approximated through measuring the relevant strength of
synaptic inputs and relevant force and movement outputs.
However, if it is important for a modeling application to cap-
ture the detailed time series of neural and muscle activity,
such as individual spikes or bursting, more details may be
required (see Sect. 2). On the other hand, if the focus is on
overall behavior and the system has slowmuscles, fast details
may not be as important for obtaining appropriate behav-
ioral outputs. In future work, parameters could be found
using automated approaches such as optimization ormachine
learning.

Additionally, the model implementation does not cap-
ture the cycle-to-cycle variability observed in actual animal
behavior [35]. Although deterministic control is useful in
many robotic applications, variability plays a critical role
in behavioral flexibility. Variability is observed not only

between individuals, but also within a given individual as
it repeats a behavior. Indeed, variability in biological control
contributes to the overall success of behaviors and species
[35,100]. For example, by using different techniques to pull
on seaweed, the animal may be able to effectively fatigue the
material and cause it to break [90,144]. As a consequence,
animals may vary a behavior even if the mechanical load is
identical, which is not yet captured by our current model.
The importance of variability in cyclic neural activity is cer-
tainly not limited to Aplysia. For example, highly variable
motor patterns and muscle outputs have been observed in
the stick insect, Carausis morosus, which may help the ani-
mal locomote in complex environments or avoid predation
[65,66]. Variation within the systemmay also stem from tun-
ing of temporal dynamic time constants, which impact how
the muscles respond to variable motor-neuronal inputs [66].
Althoughmany robots can be programmed to handle a variety
of situations, fewer robots are capable of autonomous multi-
functional behaviors [129]. A biologically inspired approach
may allow variability to be effectively harnessed to improve
autonomous robot performance. Moreover, harnessing vari-
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Fig. 12 In a hypothetical experiment in which postulated network con-
nections are added, strong B4/B5 stimulation leads to transient egestive
behavior. The modeling framework allows the network to be easily
modified to accommodate the addition of “electrodes” to stimulate
individual neurons, as well as individual timing properties, such as
refractory periods. Here, strongly stimulating B4/B5 (red rectangular
overlay) with the postulated connections for the B4/B5 neuron shown
as dashed lines in Fig. 8, and with a refractory period affecting CBI-3,
results in temporarily switching from swallowing-like to rejection-like
behavior (blue rectangular overlay)

ability might allow closed loop controllers of the nervous
system to be fit to individual animals. On the other hand,
some variability observed in animal behavior may not be true
stochasticity, but rather results from changing internal states
due to neuromodulation (e.g., [36]). As the neural locus of
such internal states and effects is identified, these variables
could be included in our modeling framework in the future
to better capture these effects. The model could be extended
to include variability through the inclusion of stochastic pro-
cesses for activity switching in each node. Furthermore, the
faster-than-real-time speed (2–3 orders ofmagnitude on stan-
dard CPU hardware) of the model allowsmany instantiations
with small parameter variations to be run in parallel, thereby
capturing the variability observed both within a given behav-
ior and between individual animals, or for finding optimal
solutions.

Although we have demonstrated faster-than-real-time
simulations for the Aplysia feeding test case presented here,
as more complex networks are implemented in this frame-

work, the computational cost of modeling the network will
increase. The computational cost for additional Boolean neu-
rons will scale roughly linearly with the number of neurons.
While this poses little problem for the Aplysia circuitry,
where we envision doubling or even tripling the number
of neurons in future models, when modeling mammalian
systems with orders of magnitude more neurons, faster-
than-real-time simulations may not be achievable without
simplifying the model neurons to groups, or implementing
the model using hardware logic.

A final limitation of the current model is that, due to the
Boolean, instantaneous nature of our external sensory cues,
intermediate behaviors [110], such as repeatedly moving the
seaweed back and forth, are not captured. Additionally, the
model does not include intermediate transition dynamics
when switching behaviors, but these dynamics could easily
be added. Previous literature has demonstrated the impor-
tance of such intermediate behaviors. For example, before
rejections, the animal may attempt to reposition food and
retry swallowing [87,110]. This ability to selectively repo-
sition, reject, and swallow along a continuum of behaviors
is important for feeding efficiency [87]. Although the cur-
rent model does not capture these behaviors, modifications to
the interneuronal circuitry motivated by experimental find-
ings and by hypothesized connections may better capture
these behaviors. Furthermore, this modeling framework can
generate testable hypotheses for the mechanisms underlying
behavioral switching, which can be investigated in simula-
tion. Such switching mechanisms are important not only in
Aplysia, but also in locomotion when switching from for-
ward to backwards walking [48], switching from standing
to walking [12], and transitioning through speed-dependent
gaits [38].

5.2 Conclusions and future directions

The hybrid Boolean network control framework presented
here leads to a bioinspired, computationally efficient con-
troller capable of producing key multifunctional behaviors
observed in the animal. Its computational efficiency stems,
in part, from using a demand-driven complexity approach
which minimizes the number of neurons and connections
used to reproduce the desired behavior. This framework
and the use of the semi-implicit integration scheme in
Appendix A.1 allow new nodes and connections to be added
with relative ease through modification of the Boolean logic
statements. As a consequence, additional neurons, tempo-
ral effects, connections, and sensory pathways can easily be
added based on the existing literature [33] and future experi-
mental results. Although additional neurons and connections
were not necessary to produce multifunctionality, includ-
ing them may improve controller robustness. Our modeling
framework will make it possible to clarify how sensory feed-
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back affects behavior as additional connections are added.
Moreover, our simple biomechanical model could readily
be incorporated into a much more realistic neural circuit
model [22,32] to assess the role of sensory feedback on more
detailed neural mechanisms, even though this may reduce
computational efficiency.

More complex biomechanical models can also be inter-
faced with the hybrid Boolean controller to capture mor-
phological intelligence, i.e., how the structural biomechanics
itself contributes to the control of the system. In the Aplysia
feeding system, morphological intelligence is demonstrated
by the effect of changes in the grasper shape on the
mechanical advantage of the I2 and I3 muscles [116]. The
phase in which shape changes occur can either increase the
mechanical advantage of a muscle, allowing it to generate
higher forces, or diminish themuscles effectiveness, creating
regions where the timing of the control signal is less critical.
More realistic muscle models could further improve accu-
racy, but this will have to be balanced against the potential
computational cost. The simplicity of the modeling frame-
work allows morphology and more detailed biomechanical
models [113,116,149] to be integrated in future iterations.

Althoughwehave applied themodel framework toAplysia
feeding, the framework can be extended to many other multi-
functional systems. In Aplysia feeding, differences between
the key behaviors are largely the result of shifts in phasing
between muscle activity in the grasper relative to protrac-
tion and retraction (Fig. 2). Similarly, in locomotion, changes
in relative timing of swing and stance are observed as ani-
mals transition from walking to running [20,94,98]. Another
multifunctional behavior observed in legged systems, hop-
ping, uses the same periphery as walking and running but
synchronizes the phase of muscle activity between legs
[108,155]. The framework can be adapted to such multi-
functional behaviors through application of the multilayered
controller design. Similar approaches have been previously
reported in mammalian neural circuit controllers using more
physiological neuron models [75,101,106].

The modeling framework has several advantages over
other control and modeling approaches. Similar to the dis-
crete event-based neural network model recently reported
by [6], this modeling approach allows rapid simulation of
multifunctional behavior. However, unlike such prior dis-
crete models, the Boolean model framework presented here
includes the known neural circuitry and simplified biome-
chanics of the periphery. The direct relationship to the
underlying circuitry makes it possible to both generate and
test specific neurobiological hypotheses; at the same time, the
relative simplicity of the networkmakes it attractive as a basis
for robot control. Furthermore, unlike current artificial neural
network architectures, synthetic nervous systems including
the hybrid Boolean model are explainable: the structure of
the networks directly informs the functional outputs of the

systems. Although the connections and trained weights of
artificial neural networks may provide similar control capa-
bilities, these networks must be trained on large datasets.
Part of the strength of synthetic nervous systems is that they
use a basis set of dynamics derived from biological neurons
and thus can generate robust control even without additional
training [70,71,150–152].
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A Appendices

A.1 Semi-implicit integration scheme

Suppose a continuously varying quantity x satisfies the initial
value problem

dx(t)

dt
= −(x(t) − x∞(y2(t), . . . , yn(t)))

τ
, x(t0) = x0

(11)

where x∞(t) is set by the other variables in our system, say
{yi }ni=2, generally following some nonlinear dependencies,
and τ is a fixed time constant. We would like to implement a
numerical approximation to the exact solution for x , namely

x(t) = e−(t−t0)/τ x0 + 1

τ

∫ t

t0
e−(t−s)/τ x∞(y2(s), . . . , yn(s)) ds,

(12)

along with the remaining variables that satisfy their own dif-
ferential equations. Euler’s forward method is convenient
to implement but prone to numerical instability. Euler’s
backward or implicit method is numerically stable but com-
putationally expensive, as it requires solving an implicit
equation at each step. Both methods proceed from a discrete
approximation of the derivative, namely

x(t + h) − x(t)

h
≈ dx

dt
. (13)
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In both cases we create an update rule x(t) → x(t + h), by
evaluating the right-hand side of (13) at either time t or time
t + h, and solving for x(t + h).

Forward:

x(t + h) − x(t)

h
= −(x(t) − x∞(y2(t), . . . , yn(t))

τ
(14)

x(t + h) = x(t) − x(t) − x∞(y2(t), . . . , yn(t)

τ
h

(15)

Backward:

x(t + h) − x(t)

h

= −(x(t + h) − x∞(y2(t + h), . . . , yn(t + h))

τ
(16)

x(t + h) = τ x(t) + hx∞(y2(t + h), . . . , yn(t + h))

τ + h
. (17)

Since the variables y2, . . . , yn appear on the right-hand side
of (17) evaluated at the later time point, t+h, (17) is part of a
system of n nonlinear equations that must be solved simulta-
neously to determine the system state at t+h. Both numerical
schemes (15) and (17) are first-order accurate, meaning that
the truncation error between the true solution (12) and the
numerical approximation scales asO(h2) on each time step,
with a global error (after T /h time steps for a simulation of
total runtime T ) that is O(h).
Semi-implicit: In our model implementation, we use a semi-
implicit method based on the approximation

x(t + h) − x(t)

h
≈ −(x(t + h) − x∞(y2(t), . . . , yn(t))

τ
,

(18)

namely

x(t + h) = τ x(t) + hx∞(y2(t), . . . , yn(t))

τ + h
. (19)

At each time step we update x using a weighted average
of its past value x(t) and its target value x∞(t), with the
(short) timestep h and the intrinsic time constant τ providing
the relative weight of past and future. We expect an accurate
approximation to (12) provided h � τ . As we show below,
themethod is first-order accurate, and numerically stable, but
it does not require solving an implicit equation at each time
step. Thus, this method combines the advantages of both the

forward and backward methods. The method may be seen as
an example of operator splitting.[139]

To see that (19) is first-order accurate, we assume that
x(t) is smooth enough to have Taylor expansions through
the second order. Thus, for h � 1 we may write

x(t + h) = x(t) + h
dx

dt
(t) + O(h2), as h → 0 (20)

= x(t) + h
x∞(y(t)) − x(t)

τ
+ O(h2) (21)

= x(t)
τ + h

τ + h
+ h

x∞(y(t)) − x(t)

τ + h

(
τ + h

τ

)

+ O(h2)

(22)

= τ x(t)

τ + h
+ hx(t)

τ + h
+

(
τ + h

τ

)
hx∞(y(t))

τ + h

−
(

τ + h

τ

)
hx(t)

τ + h
+ O(h2) (23)

= τ x(t)

τ + h
+ hx∞(y(t))

τ + h
+ hx(t)

τ + h
− hx(t)

τ + h
+ O(h2)

(24)

= τ x(t)

τ + h
+ hx∞(y(t))

τ + h
+ O(h2), as h → 0. (25)

Thus, the semi-implicit scheme (19) is first-order accurate in
the time step h.

To see that (19) is numerically stable, suppose that we fix y
so that x∞(y) = c, a constant. Clearly if x(t) = c then x(t +
h) = c as well, so x = c is a fixed point of the iteration (19),
under this assumption. Numerical stability follows if we can
show that x = c is a stable fixed point for all h > 0, aswe now
establish. Let x(t0 + nh) = c + an, with a0 arbitrary. Then

an+1 = x(t0 + nh + h) − c (26)

= τ x(t0 + nh) + hc

τ + h
− c (27)

= τ(c + an) + hc

τ + h
− c (28)

= τ

τ + h
an → 0, as n → ∞ (29)

no matter the size of the timestep h > 0. Thus, the scheme
(19) is both (first-order) accurate and numerically stable.

The head and grasper position variables xh, xg form a lin-
early coupled pair, for which we can extend the semi-implicit
algorithm given in one-dimensional form above. In general,
consider a nonhomogeneous linear systemexpressed in terms
of a vector x, a matrix A, and a forcing vector b:

dx
dt

= A(t)x(t) + b(t). (30)

To set up a semi-implicit first-order iteration scheme, observe
that

x(t + h) − x(t)
h

= A(t)x(t + h) + b(t) + O(h2), so (31)
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x(t + h) − hA(t)x(t + h) = x(t) + hb(t) + O(h2), therefore
(32)

x(t + h) = (I − hA(t))−1 (x(t) + hb(t)) + O(h2). (33)

Dropping the O(h2) term and writing the update scheme in
MATLAB style notation gives

x(t + h) = (I − h ∗ A(t))\(x(t) + h ∗ b(t)). (34)

(Here the backslash notation M\u stands for M−1u, i.e.,
the least-squares solution y to the linear system My = u.)
Comparing this update scheme with (19), it is easy to check
that they are consistent for a single variable by setting A =
−1/τ and b = x∞/τ .

In our case the head and grasper positions xh and xg com-
prise a linearly coupled system, x, and the coupling matrix A
is 2 × 2, so I − hA can be inverted explicitly, provided h is
smaller than the reciprocal of the largest positive eigenvalue
of A. (If no eigenvalues of A are positive real numbers, then
I − hA can always be inverted.) For a general 2 × 2 system
the update rule reads

(
x1(t + h)

x2(t + h)

)

= 1

1 − hTrA + h2 det A
(

(1 − hA22)(x1 + hb1) + hA12(x2 + hb2)
hA21(x1 + hb1) + (1 − hA11)(x2 + hb2)

)

, (35)

with all time-varying elements of the right-hand side eval-
uated at time t . In (35) TrA and det A denote the trace
and determinant of A, respectively. Thus, truncating terms
of order O(h2) and higher gives a first-order semi-implicit
update scheme for two-component state and forcing vectors
x and b:

x(t + h) = 1

1 − hTrA(t)
[(

I + h

(−A22 A12

A21 −A11

))

x(t) + hb(t)

]

. (36)

In (36) I denotes the 2 × 2 identity matrix.

A.2 Table of symbols

Table 3 provides a table of symbols.

Table 3 Table of symbols

Symbol Meaning

x0 Reference position

xh Head position relative to reference (83)

xg Grasper position relative to reference (83)

xg/h = xg−xh Grasper position relative to head

Ni Boolean state of neuron i

Ai Muscle activation associated with muscle i

Ti Muscle tension associated with muscle i

τm Muscle activation time constant

ch Damping coefficient for head movements

cg Damping coefficient for grasper movements

TI2 I2 protractor muscle tension (79)

TI3 I3 retractor muscle tension (76)

Thinge Hinge muscle tension (81)

PI4 Grasper pressure (72)

PI3,ant. Anterior I3 pinch pressure (74)

FI2 I2 protractor muscle force (85)

FI3 I3 retractor muscle force (87)

Fhinge Hinge muscle force (88)

FI4 Grasper closing force (90)

FI3,ant. Anterior I3 pinch force (100)

FI2,max Scaling parameter for I2 protractor muscle
force

FI3,max Scaling parameter for I3 retractor muscle
force

Fhinge,max Scaling parameter for hinge muscle force

FI4,max Scaling parameter for grasper closing force

FI3,ant.,max Scaling parameter for anterior I3 pinch force

Fh Net force on head (97)

Fg Net force on grasper (84)

Fo Net force on object, force on transducer
during swallowing (104)

[hinge stretched] =
[xg/h > 0.5]

Boolean state of hinge stretch

[unbroken] =
[Fo ≤ zs ]

Boolean state of seaweed unbroken

[lipschem] Boolean state of chemical stimulus at lips

[lipsmech] Boolean state of mechanical stimulus at lips

[graspermech] Boolean state of mechanical stimulus in
grasper

Kg Grasper spring constant

Kh Head spring constant

x0g/h Rest length of grasper spring

x0h Rest length of the head spring

μs,g Coefficient of static friction between grasper
and seaweed

μk,g Coefficient of kinetic friction between grasper
and seaweed

μs,h Coefficient of static friction between head
(jaws) and seaweed

μk,h Coefficient of kinetic friction between head
(jaws) and seaweed
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A.3 Boolean logic of Aplysia feeding control

The following sections detail the logic implementations for
the activity of each neuron in the controller network. All neu-
rons, except for B4/B5, are implemented as standardBoolean
elements and are eitherOFF (0), orON (1). B4/B5 is a ternary
unit which is either OFF (0), weakly ON (1), or strongly ON
(2). The activity state of B4/B5 must be checked using con-
ditional logic prior to negation, as ! NB4/B5 is undefined (see
Sect. 3.5). These interactions include known direct connec-
tions between neurons based on previous literature as well
as hypothesized connections that may be direct or indirect,
and indirect sensory feedback pathways. Sensory feedback
pathways involving proprioception of the grasper position
and pressure exerted by the closed grasper are gated by logic
tests of position and pressure relative to user-specified thresh-
olds. Allowing these thresholds to vary in response to activity
levels of interneurons and external sensory cues provides
an approximation of neuromodulation. All time varying ele-
ments on the right side of the logic equations are at time
( j).
Cerebral Interneurons

1. Metacerebral Cell

NMCC( j + 1) = [arousal] (37)

2. CBI-2
CBI-2 is activated by sensory inputs present in biting and
rejection, but not in swallowing.

NCBI-2( j + 1)

= NMCC ( ! NB64)
( ([lipsmech] [lipschem] ! [graspermech]

) ‖
([graspermech] ! [lipschem]) )

(38)

With the hypothesized connections in Sect. 4.3, these
equations change to:

NCBI-2( j + 1)

= NMCC ( ! NB64)
( ([lipsmech] [lipschem] ! [graspermech]

) ‖
([graspermech] ! [lipschem]) ‖ (NB4/B5 ≥ 2)

)

(39)

3. CBI-3
CBI-3 is activated by sensory inputs present in biting and
swallowing, but not in rejection.

NCBI-3( j + 1) =NMCC [lipsmech] [lipschem] (40)

With the equations and refractory period proposed in
Sect. 4.3, the logic implementation for CBI-3 changes
to include a gating state variable based on whether or not

the neuron is in a refractory state following strong inhi-
bition. Similar logic could be added to other nodes in the
network as needed based on animal experiments. This
period was included here as part of the hypothesis that
strong activation of B4/B5 triggers rejection in animals
that are swallowing. This hypothesis and an assessment
of whether this refractory period occurs in CBI-3 in ani-
mal preparations or whether this effect is due to another
mechanism could be tested experimentally. The equation
becomes:

NCBI-3( j + 1) = NMCC [lipsmech] [lipschem]
(NB4/B5 < 2)

( ! [refractoryCBI-3]
)

(41)

4. CBI-4
CBI-4 is activated by sensory inputs present in swallowing
and rejection, but not in biting.

NCBI-4( j + 1) = NMCC
([lipsmech] ‖ [lipschem]) [graspermech]

(42)

Buccal Interneurons

1. B64
Activity in NB64 is influenced by the activity of the
NMCC and NB31/B32. It is also excited by protraction and
inhibited by retraction. The proprioceptive feedback is
implemented as:

B64proprioception

= (NCBI-3 (([graspermech] [protractedNB64,swallow]) ‖
(( ! [graspermech]) [protractedNB64,bite])) ) ‖
(( ! NCBI-3) [protractedNB64,reject]) (43)

where

[
protractedNB64,swallow

] = [xg/h > zB64,swallow] (44)
[
protractedNB64,bite

] = [xg/h > zB64,bite] (45)
[
protractedNB64,reject

]
= [xg/h > zB64,reject] (46)

This amounts to the threshold being depend on the behav-
ior with different threshold values for bites, swallows, and
rejections.

NB64( j + 1) =NMCC ( ! NB31/B32) B64proprioception

(47)

2. B4/B5
NB4/B5 has been shown to have varying effectswhen firing
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strongly versus weakly. To represent this in the modeling
framework, quiescence is represented as 0, weak firing
as 1 and strong firing as 2. The neurons are quiescent
during biting, and they fire weakly during the retraction
phase of swallowing.Theneuronsfire stronglywhen stim-
ulatedwith the external electrode and during the retraction
phase of rejection. During rejection, B4/B5 is observed to
cease firing, allowing B3/B6/B9 to fire briefly at the end
of the behavior. To implement this, we have used a pro-
prioceptive feedback pathway which inhibits the activity
of B4/B5 once the grasper has reached a user-specified
level of retraction.

NB4/B5( j + 1) = NMCC

(

( ! [electrodeB4/B5])
(
2( ! NCBI-3) NB64

[protractedNB4/B5
]

+ NCBI-3 [graspermech] NB64
)

+ 2 [electrodeB4/B5]
)

(48)

where

[protractedNB4/B5
] = [xg/h > zB4/B5] (49)

3. B20

NB20( j + 1)

= NMCC
(
NCBI-2 ‖ NCBI-4 ‖ NB31/B32

) ! NCBI-3 ! NB64

(50)

4. B40/B30
NB40/B30 has fast inhibitory and slow excitatory connec-
tions to NB8. To capture this, we record the time (j) at
which NB40/B30 transitions between states for later use in
the NB8 activity calculations (see below). First, the activ-
ity of NB40/B30 in the next time step is determined:

NB40/B30( j + 1) = NMCC
(
NCBI-2 ‖ NCBI-4 ‖ NB31/B32

) ! NB64

(51)

After calculating the new activity, we assess transitions
as defined by the following pseudocode:
if (NB40/B30( j) == 0AND NB40/B30( j +1) == 1), then
set tNB40/B30,on = j;
if (NB40/B30( j) == 1AND NB40/B30( j +1) == 0), then
set tNB40/B30,off = j;

Buccal Motor Neurons

1. B31/B32
NB31/B32 receives input from interneurons and propri-
oceptive feedback. To capture possible modulation of

NB31/B32 and generatemultifunctional behavior under dif-
ferent sensory cues, behavior-dependent proprioceptive
inputs are implemented. Though the resulting full equa-
tion for NB31/B32 activity is large, it can be broken down to
three sections: (1) if NCBI-3 is active and there is sensory
stimuli in the grasper (swallowing), (2) if NCBI-3 is active
and there is NOT sensory stimuli in the grasper (biting),
and (3) if NCBI-3 is NOT active (rejection).

NB31/B32( j + 1)

= NMCC

(

NCBI-3

[graspermech](( ! NB64) ((![pressureNB31/B32,ingestion]) ‖ NCBI-2)

(( ! NB31/B32) [retractedNB31/B32,swallow,off]+
NB31/B32 [retractedNB31/B32,swallow,on]))

( ! [graspermech])(( ! NB64) ((![pressureNB31/B32,ingestion]) ‖ NCBI-2)

(( ! NB31/B32) [retractedNB31/B32,bite,off]+
NB31/B32 [retractedNB31/B32,bite,on]))+

( ! NCBI-3)
(
( ! NB64) [pressureNB31/B32,rejection]

(NCBI-2 ‖ NCBI-4)

(( ! NB31/B32) [retractedNB31/B32,reject,off]+
NB31/B32 [retractedNB31/B32,reject,on]

)
)

(52)

where

[pressureNB31/B32,ingestion] = [Pg > 0.5pmax] (53)

[pressureNB31/B32,rejection] = [Pg > 0.25pmax] (54)

[retractedNB31/B32,swallow,off] = [xg/h < zNB31/B32,swallow,off]
(55)

[retractedNB31/B32,swallow,on] = [xg/h < zNB31/B32,swallow,on]
(56)

[retractedNB31/B32,bite,off] = [xg/h < zNB31/B32,bite,off]
(57)

[retractedNB31/B32,bite,on] = [xg/h < zNB31/B32,bite,on]
(58)

[retractedNB31/B32,reject,off] = [xg/h < zNB31/B32,reject,off]
(59)

[retractedNB31/B32,reject,on] = [xg/h < zNB31/B32,reject,on] (60)

2. B6/B9/B3

NB6/B9/B3( j + 1)

= NMCC NB64 ( ! (NB4/B5 ≥ 2))
(

(
(NCBI-3 ( ! [graspermech])) [pressureNB6/B9/B3,bite]

)+
(
(NCBI-3 [graspermech]) [pressureNB6/B9/B3,swallow])+

( ! NCBI-3) ( ! [pressureNB6/B9/B3,reject])
)
)

(61)
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where

[pressureNB6/B9/B3,bite]
= [Pg > zNB6/B9/B3,bite,pressure)] (62)

[pressureNB6/B9/B3,swallow]
= [Pg > zNB6/B9/B3,swallow,pressure)] (63)

[pressureNB6/B9/B3,reject]
= [Pg > zNB6/B9/B3,reject,pressure] (64)

3. B8a/b
NB8 receives fast inhibitory and slow excitatory input
from NB40/B30 [33,79]. In the Boolean framework here
we implement this as an excitatory input immediately fol-
lowing cessation of NB40/B30 activity for a user-specified
duration (durationNB40/B30,excite). Prior to calculating a new
value for NB8, we first check whether the synaptic con-
nection from NB40/B30 is excitatory with the following
statements:
if (NB40/B30( j) == 0AND j < (tNB40/B30,off

+ durationNB40/B30,excite)), then set NB40/B30, excite = 1
else set NB40/B30, excite = 0

NB8( j + 1) =NMCC ( ! (NB4/B5 ≥ 2))

((NCBI-3 (NB20 ‖ (NB40/B30, excite))

( ! NB31/B32))+
(( ! NCBI-3) NB20))

(65)

4. B7

NB7( j + 1) = NMCC
((

( ! NCBI-3 ‖ [graspermech])
([protractedNB7,reject] ‖ [pressureNB7

]))+
(
(NCBI-3 ! [graspermech]) ([protractedNB7,bite]
‖ [pressureNB7

])))

(66)

where

[
protractedNB7,reject

]
= [xg/h > zB7,reject] (67)

[
protractedNB7,bite

] = [xg/h > zB7,bite] (68)
[
pressureNB7

] = [Pg > zNB7,pressure] (69)

5. B38

NB38( j + 1) = NMCC [graspermech]
(

NCBI-3 [retractedNB38 ]
)

(70)

where

[retractedNB38 ] = [xg/h < zB38] (71)

A.4 Muscle forces

Contact forces, such as the pressure resulting from grasper
closure and force due to the anterior pinch, are implemented
as second-order responses to neural activation using the
semi-implicit integration scheme, Eq. (19), as shown in the
following equations.

1. Grasper Pressure

PI4(t + h) = τI4PI4(t) + hAI4(t)

τI4 + h
(72)

AI4(t + h) = τI4AI4(t) + hNB8(t)

τI4 + h
(73)

2. Pinch Pressure

PI3,ant.(t + h) = τI3,ant.PI3,ant.(t) + hAI3,ant.(t)

τI3,ant. + h
(74)

AI3,ant.(t + h)

= τI3,ant.AI3,ant.(t) + h(NB38(t) + NB6/B9/B3(t))

τI3,ant. + h
(75)

Muscle tensions for the remaining musculature were calcu-
lated using a second-order response to the neural activity as
outlined in the following equations.

1. I3 Tension

TI3(t + h) = τI3TI3(t) + hAI3(t)

τI3 + h
(76)

AI3(t + h) = τI3AI3(t) + hNB6/B9/B3(t)

τI3 + h
(77)

2. I2 Tension
Time constants for I2 were tuned independently for
ingestion and egestion to account for the experimental
observations that egestions have a longer period than
ingestions. Such variation in responsiveness of the animal
may exist due to differences in neuromodulation between
the behaviors. Therefore, the time constant for I2 is cal-
culated as:

τI2 = NCBI-3 τI2,ingestion

+( ! NCBI-3) τI2,egestion (78)

TI2(t + h) = τI2TI2 + hAI2

τI2 + h
(79)
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AI2(t + h) = τI2AI2(t) + hNB31/B32(t)

τI2 + h
(80)

3. Hinge Tension

Thinge(t + h) = τhingeThinge(t) + hAhinge(t)

τhinge + h
(81)

Ahinge(t + h) = τhingeAhinge(t) + hNB7(t)

τhinge + h
(82)

A.5 Biomechanical model

The motions of the head and grasper are calculated based on
the quasi-static equations of motion:

d

dt

[
xg
xh

]

=
[ Fg

cg
Fh
ch

]

(83)

where xh is the position of the head relative to the ground
frame, xg is the position of the grasper relative to the ground
frame, and ch and cg are the damping coefficients for the
motion of the head and grasper, respectively. The forces on
the grasper and head can be calculated as outlined in the
following sections.

A.5.1 Forces on the grasper

The positive direction for xg corresponds to protraction
(Fig. 3). The sum of forces on the grasper is

Fg = FI2 + Fsp,g − FI3 − Fhinge + Ff ,g (84)

where the component forces are defined and calculated as
follows:
FI2: The force due to the I2 muscle. This value is dependent
on the tension of the muscle as well as the mechanical advan-
tage. It is scaled by a tunable maximum parameter, FI2,max,
and is calculated as follows:

FI2 = FI2,maxTI2(t)(1 − xg/h) (85)

where xg/h = xg − xh is the position of the grasper relative
to the head.
Fsp,g: The force in the spring connecting the grasper to the
head. This spring represents the surrounding musculature of
the esophagus, buccal mass, and extrinsic muscles which are
not explicitly modeled. This is calculated as:

Fsp,g = Kg(x
0
g/h − xg/h) (86)

where Kg is the spring constant and x0g/h is the rest length of
the spring.

FI3: The force due to the I3 muscle which pushes the grasper
backwards during retraction. This force is due to tension in I3
closing the muscular toroids. This value is dependent on the
tension of the muscle as well as the mechanical advantage.
It is scaled by a tunable maximum parameter, FI3,max, and is
calculated as follows:

FI3 = FI3,maxTI3(t)(xg/h − 0) (87)

Fhinge: The force due to the hinge. This value is dependent on
the tension of themuscle aswell as themechanical advantage.
It is scaled by a tunable maximum parameter, Fhinge,max, and
is calculated as follows:

Fhinge = [hinge stretched]Fhinge,maxThinge(t)(xg/h − 0.5)

(88)

where [hinge stretched] = [xg/h > 0.5] determines whether
the hinge is sufficiently stretched to produce any force [148].
Ff ,g: Friction resulting from the grasper closing on an object.
To determine Ff ,g it is necessary to check if the grasper is
slipping against the object by checking the inequality:

|FI2 + Fsp,g − FI3 − Fhinge| ≤ |μs,gFI4| (89)

where μs,g is the coefficient for static friction between
the grasper and the object. FI4 is the normal force due to
the grasper muscle I4 closing on the object. This is calcu-
lated directly as the grasper pressure defined in the previous
appendix applied to a unit area scaled by a parameter.

FI4 = FI4,maxPI4(t) (90)

If the condition in Eq. (89) is true, then the contact is in a
state of static friction and Ff ,g is calculated as:

|Ff ,g| = FI2 + Fsp,g − FI3 − Fhinge (91)

If the condition in Eq. (89) is not true, the contact is sliding
and is in a state of kinetic friction, and Ff ,g is calculated as:

|Ff ,g| = μk,gFI4 (92)

where μk,g is the coefficient for kinetic friction between the
grasper and the seaweed.

The sign of the friction force is dependent on which direc-
tion the grasperwould bemovingwithout the friction present,
and Ff ,g can be calculated as:

Ff ,g = −sgn(FI2 + Fsp,g − FI3 − Fhinge)|Ff ,g| (93)
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A.5.2 Forces on head

The forces on the head are calculated as:

Fh = Fsp,h − Fsp,g − FI2 + FI3 + Fhinge + Ff ,h (94)

The muscles and grasper spring exert forces on the head
equal and opposite to those on the grasper. As the muscles
contract and apply forces to move the grasper forward, this
also stretches the spring between the grasper and head pro-
portionally to the muscle force. For the quasi-static model,
acceleration is assumed to be negligible and therefore the
forces on the grasper must equal zero.

0 = Fsp,g + FI2 − FI3 − Fhinge + Ff ,g (95)

Solving for the spring forces, Fsp,g , and substituting into
Eq. (94) yields:

Fh = Fsp,h+��FI2−��FI3−���Fhinge+F f ,g−��FI2+��FI3+���Fhinge+F f ,h

(96)

which simplifies to:

Fh = Fsp,h + Ff ,g + Ff ,h (97)

where Fsp,h is the spring force between the head and neck
of the animal, Ff ,g is the previously calculated friction force
between the grasper and the object, and Ff ,h is the friction
force resulting from the jaws pinching on the object. These
components are calculated as follows.

Fsp,h = Kh(x
0
h − xh) (98)

where Kh is the spring constant and x0h is the rest length of
the spring.

To determine the value of Ff ,h it is necessary to check if
the jaws are slipping relative to the seaweed by checking the
following inequality:

|Fsp,h + Ff ,g| ≤ |μs,h FI3,ant.| (99)

where μs,h is the coefficient for static friction between the
jaws and the seaweed. FI3,ant. is the normal force due to the
anterior portion of the I3 jaw muscle closing on the seaweed.
This is calculated directly as the pinch pressure defined in
the previous appendix applied to a unit area, scaled by a
parameter, and multiplied by a mechanical advantage term:

FI3,ant. = FI3,ant.,maxPI3,ant.(t)(1 − xg/h). (100)

If the condition in Eq. (99) is true, the jaws are in static
friction and Ff ,h is calculated as:

|Ff ,h | = Fsp,h + Ff ,g (101)

If the condition in Eq. (99) is not true, the jaws are slipping
and Ff ,h is calculated as:

|Ff ,h | = μk,h FI3,ant. (102)

where μk,h is the coefficient for kinetic friction between the
jaws and the seaweed.

The sign of the friction force is dependent on which direc-
tion the head would be moving without the friction present
and Ff ,h can be calculated as:

Ff ,h = −sgn(Fsp,h + Ff ,g)|Ff ,h | (103)

A.5.3 Force on objects

The force on the object if unbroken is equal to the sum of
the friction forces where we use the conventions that positive
force indicates tension on the force transducer:

Fo = Ff ,g + Ff ,h (104)

If Fo ≤ zs , where zs is the user defined seaweed strength,
the seaweed is not broken and the motion of the bodies is
calculated based on the forces calculated in the previous sec-
tions. If Fo > zs , the seaweed is broken and can no longer
transmit forces to the head or grasper. Therefore, the forces
on the head and grasper are recalculated as:

Fh = Fsp,h (105)

Fg = FI2 + Fsp,g − FI3 − Fhinge (106)

A Boolean tracking variable [unbroken] is used to track
whether the seaweed is intact (1) or broken (0). Once the
seaweed breaks, it is not restored until the grasper has com-
pleted a new protraction and grasp motion. For this model,
we have implemented this by resetting [unbroken] = 1 if
at the current timestep [unbroken] == 0 AND xg/h < 0.3
AND xg/h( j + 1) > xg/h( j). These thresholds were tuned
manually for this implementation.

A.5.4 Updating grasper and head positions

All of the forces in this biomechanical model are linearly
dependent on the position of the head, xh, and grasper, xg.
Therefore, they can each be rewritten in the form:

F = AF

[
xg
xh

]

+ bF (107)
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As a consequence, the equations of motion can be rewrit-
ten in the form

d

dt

[
xg
xh

]

=
[

A11
ch

A12
ch

A21
cg

A22
cg

] [
xg
xh

]

+
[
b1
b2

]

(108)

This can then be integrated with the semi-implicit integra-
tion scheme in Appendix A.1 as:

x(t + h) = 1

1 − hTrA(t)
[(

I + h

(−A22 A12

A21 −A11

))

x(t) + hb(t)

]

. (109)
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