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ABSTRACT
Given that persons with a prior history of respiratory diseases tend
to demonstrate more severe illness from COVID-19 and, hence, are
at higher risk of serious symptoms, ambient air quality data from
NASA’s satellite observations might provide a critical insight into
which geographical areas may exhibit higher numbers of hospital-
izations due to COVID-19, how the expected severity of COVID-19
and associated survival rates may vary across space in the future,
and most importantly how given this information, health profes-
sionals can distribute vaccines in a more efficient, timely, and fair
manner.

Despite the utmost urgency of this problem, there yet exists no
systematic analysis on linkages among COVID-19 clinical severity,
air quality, and other atmospheric conditions, beyond relatively
simplistic regression-based models.

The goal of this project is to glean a deeper insight into sophisti-
cated spatio-temporal dependencies among air quality, atmospheric
conditions, and COVID-19 clinical severity using the machinery
of Geometric Deep Learning (GDL), while providing quantitative
uncertainty estimates. Our results based on the GDL model on a
county level in three US states, California, Pennsylvania and Texas,
indicate that AOD attributes to COVID-19 clinical severity in 39,
30, and 132 counties out of 58, 67, and 254 total counties, respec-
tively. In turn, relative humidity is another important factor for
understanding dynamics of clinical course and mortality risks due
COVID-19, but predictive utility of temperature is noticeably lower.
Our findings do not only contribute to understanding of latent fac-
tors behind COVID-19 progression but open new perspectives for
innovative use of NASA’s datasets for biosurveillance and social
good.
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1 INTRODUCTION
Sincemortality due to COVID-19 tends to be closely linked to a prior
medical history of lung and other respiratory diseases [25, 29, 32],
ambient air quality and other atmospheric conditions might shed an
important light on assessing and predicting the severity of COVID-
19 and associated survival rates. Furthermore, with proliferating
studies on COVID-19 vaccine acceptance, it becomes much more
important to better understand what the optimal strategies for
vaccine allocation shall be, while accounting for various latent
factors associated with COVID-19 dynamics and, in particular, the
increasingly more evidenced impact of polluted air and higher risks
of hospitalization due to COVID-19. However, most current studies
on the linkage of air quality and severity of COVID-19manifestation
tend to suffer from the following shortcomings. First, the majority
of existing results are based on linear models such various forms
of multiple linear regression. Second, the reported results do not
provide a systematic analysis of the associated uncertainties.

In turn, better understanding the impact of atmospheric factors
and air quality on COVID-19 progression and associated mortality
is both urgent and critical, not only in terms of efficient responses to
the ongoing pandemic (e.g., deploying an adequate health carework-
force in areas with expected higher clinical coronavirus severity),
but also in terms of forecasting impending hot spots and developing
more efficient, timely and fair strategies for vaccine allocation.
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Recognizing the need, the current project aims to meet the deci-
sion makers’ need to allocate scarce medical resources including
vaccines for COVID-19 hot spots by addressing the following ques-
tions:

(1) Is regional air quality represented by climatological aerosol
optical depth (AOD) related to normalized COVID-19 mor-
tality and clinical severity?

(2) Does information extracted from satellite observations of
temperature, humidity, and AOD exhibit any predictive util-
ity for forecasting COVID-19 progression and clinical sever-
ity? If yes, what are the best ways to extract themost relevant
information and what can be said regarding the resulting
prediction under uncertainty?

(3) Can we use climatological annual cycles in temperature, hu-
midity, and AOD to perform short- and medium-term fore-
casting of impending COVID-19 hot spots that can be used
by disaster managers to develop more effective responses?
If yes, what are the most useful predictors and how can we
quantify the uncertainty of the resulting forecasts?

The answers to the three overarching questions above are of
critical importance for enhancing our understanding of the hidden
mechanisms behind COVID-19 progression and clinical severity,
that is, which factors do or do not contribute to COVID-19 clinical
course and mortality risks.

In turn, tracking the spatio-temporal dynamics of the spread of
COVID-19 may be viewed as semi-supervised classification on two-
dimensional spaces (i.e., development of maps of a future COVID
spread as a function of temperature, humidity, and AOD maps).
This is why we employed the machinery of geometric deep learn-
ing (GDL) [7, 24] (i.e., deep learning models that are developed
specifically for non-Euclidean objects such as graphs and manifolds
for image and shape analysis) with a goal of classifying the inten-
sity of mapped COVID-19 hospitalizations using observations from
NASA’s satellites.

Our findings based on the GDL delivered forecasts for COVID-19
related hospitalizations in three US states: California, Pennsylvania,
and Texas on a county level basis, suggest that contribution of AOD,
relative humidity and temperature to COVID-19 hospitalizations
may vary drastically from county to county, but overall, AOD tends
to be the most important factor of COVID-19 clinical course. Our
results open up new possibilities for predictive platforms based on
the most relevant NASA’s satellite data, ideally suited for forecast-
ing the subseasonal COVID-19 clinical severity at a county scale in
the United States.

2 RELATEDWORK
Artificial Intelligence (AI) and Machine Learning (ML) for
COVID-19 Biosurveillance Over the last few months, we wit-
ness a tremendous spike of interest in exploring utility of machine
learning (ML) and artificial intelligence (AI) approaches for COVID-
19 biosurveillance and forecasts [8, 36]. Arguably, the largest class
of such approaches concern integration of models from mathemat-
ical biology (i.e., various forms of Susceptible-Exposed-Infected-
Recovered (SEIR) and other compartmental models) with machine
learning tools, aiming to improve interpretability and yield explana-
tory insights on COVID-19 dynamics [2, 5].

Several recent studies use long short-term memory (LSTM) type
models [1, 3, 6, 12, 33] which show promising results in forecasting
COVID-19 progression at the country level and prediction horizons
up to 14 days. There are studies using Recurrent Neural Networks
(RNN) architectures, often in combination with LSTM [31, 35]. Nev-
ertheless, besides the very few most recent studies [26–28], the
analysis of complex relationships between atmospheric conditions,
air quality, and COVID-19 dynamics, using AI and ML algorithms
remain largely unexplored.

COVID-19 and Atmospheric Conditions From the onset of
COVID-19 pandemics, there has appeared a number of contradic-
tory studies on the linkage between atmospheric variables and
COVID19. For instance, Islam et al. [20] report that calm, cold, dry
and overcast conditions are favorable to the transmission of COVID-
19. In contrast, Martins et al. [23] suggest that higher precipitation
may result in higher levels of COVID-19 spread. Cai et al. [9] find
that there exist no correlation between the growth rate of the epi-
demics and daily mean temperature. In turn, studies of Chen et al.
[11] indicate that temperature of 13 − 19◦ C and humidity in the
range of 50% -8% are favorable to the transmission of COVID-19.
Finally, as suggested by Daneshvar et al. [14], Gupta et al. [18], risky
precipitation ranges vary among countries and prediction horizons.
More detailed discussion and comparison of recent findings on
whether atmospheric conditions affect (or do not affect) COVID-19
dynamics can be found, for example, in [25, 29, 32]. One of the ma-
jor unifying problem for these contradictory reports is that these
studies predominantly focus only on relatively simple linearized
relationships among atmospheric variables and COVID-19 records
and tend to lack uncertainty quantification analysis. The goal of
this project is to address those unrealistic linearized assumptions,
using the GDL machinery.

3 PROPOSED FRAMEWORK
3.1 Forecasting Problem
Spatio-temporal Graph Neural Networks aim to discover patterns in
data by learning from temporal and spatial dependencies simultane-
ously. In this paper, we represent the connection between adjacency
counties as a weighted directed graph G = {V, E,𝑊 }, where V
is the node set, |V| = 𝑁 , E ⊆ V ×V is an edge set and𝑊 is the
adjacency matrix with entries {𝜔𝑖 𝑗 > 0}1≤𝑖, 𝑗≤𝑁 for any 𝑒𝑖 𝑗 ∈ E
and 𝜔𝑖 𝑗 = 0, otherwise. Let 𝑃 ∈ Z>0 be the number of different
node features associated with each node 𝑣 ∈ V . Then, a 𝑁 × 𝑃
feature matrix 𝑿𝑡 serves as graph signal observed at time 𝑡 , e.g.
number of hospitalizations and atmospheric variables. Let 𝜏 be the
windows size of past graph signals and ℎ be the time ahead horizon.
The Spatio-temporal Graph Neural Network aims to learn a map-
ping function F (·) that maps the historical data {𝑿𝑡−𝜏 , . . . ,𝑿𝑡−1}
to future data {𝑿𝑡 , . . . ,𝑿𝑡+ℎ}, given a graph G.

3.2 Predictive Geometric Deep Learning
methodology

To model heterogeneous spatial-temporal graph structures as a ho-
mogeneous process of diffusion, here we focus on diffusion convo-
lutional recurrent neural network (DCRNN) [22], a state-of-the-art
geometric deep learning model for COVID-19 clinical severity fore-
casting. Based on daily COVID-19 datasets, to capture the spatial



and temporal dependency, we first incorporate the information in
spatial dimension to the diffusion process. Here, we infer diffusion
using random walk on the graph G, i.e., a Markov process with
transition matrix 𝑹 = 𝑾𝑫−1, where𝑾 ∈ R𝑁×𝑁 is the adjacency
matrix of G and 𝑫𝑖,𝑖 =

∑
𝑗 𝑾𝑖, 𝑗 ∈ R𝑁×𝑁 is the diagonal matrix

of node degrees. Thus, the stationary geometric scattering can be
constructed efficiently based on the transition matrix 𝑹:

𝑷 =

∞∑
𝑘=0

𝑐 (1 − 𝑐)𝑘𝑹𝑘 , (1)

where 𝑐 ∈ [0, 1] denotes the restart probability and 𝑘 is the diffu-
sion step. The 𝐾-steps diffusion convolution between node feature
matrix 𝑿 ∈ R𝑁×𝑃 and the filter 𝑔\ can be described as:

𝑿 ★𝑔\ =

𝐾−1∑
𝑘=0

(
\𝑘,1 (𝑹)𝑘 + \𝑘,2

(
𝑹

⊤ )𝑘 )
, (2)

where \ ∈ R𝐾×2 is the parameter of filter 𝑔\ . Based on the diffusion
convolution operator defined in Eq. 2, a diffusion convolutional
layer of neural network can be built as follows:

𝑯 :,𝑞 = 𝜎
©«
𝑃∑
𝑝=1

𝑿 :,𝑝 ★𝑔Θ𝑞,𝑝,:,:
ª®¬ ∀𝑞 ∈ {1, . . . , 𝑄}, (3)

where Θ ∈ R𝑄×𝑃×𝐾×2 is the trainable parameter tensor, 𝜎 (·) is
the activation function, e.g., ReLU. Except for the spatial domain,
COVID-19 progression forecasting also involves temporal correla-
tions (i.e., temporal dependency) in temporal domain, we utilize
Gated Recurrent Unit (GRU) to learn temporal dynamics. Formally:

𝒛𝑡 = 𝜎 (𝑾𝑧 [𝑯 𝑡−1, 𝑋𝑡 ] + 𝒃𝑧)
𝒓𝑡 = 𝜎 (𝑾𝑟 [𝑯 𝑡−1, 𝑋𝑡 ] + 𝒃𝑟 )

�̂� 𝑡 = tanh
(
𝑾
ℎ̂
[𝒓𝑡 ⊙ 𝑯 𝑡−1, 𝑋𝑡 ] + 𝒃

ℎ̂

)
𝑯 𝑡 = 𝒛𝑡 ⊙ 𝑯 𝑡−1 + (1 − 𝒛𝑡 ) ⊙ �̂� 𝑡 ,

(4)

where ⊙ is the elementwise product; 𝒛𝑖 and 𝒓𝑖 are update gate and
reset gate, respectively; 𝒃𝑧 , 𝒃𝑟 , 𝒃𝑜 ,𝑾𝑧 ,𝑾𝑟 , and𝑾ℎ̂

are trainable
parameters; [𝑯 𝑡−1, 𝑋𝑡 ] and 𝑯 𝑡 are the input and output of GRU
model, respectively.

Figure 1: Example 𝐾-steps diffusion convolution (where
𝐾 = 3). The blue node represents the starting node, gray
nodes represent the 1-hop neighborhood of the starting
node, brown nodes represent the 2-hop neighborhood of the
starting node, and the star★ denotes the node visited via dif-
fusion procedure. \1, \2, \3 are the parameters of the filter.

4 EXPERIMENTS AND RESULTS
4.1 NASA Satellite Datasets
As key predictors, we used daily climatology of surface air temper-
ature and relative humidity (RH) from the Atmospheric InfraRed
Sounder (AIRS; [4]) gridded with spatial resolution of 1◦ × 1◦ (lati-
tude× longitude). The underlying hypothesis is that surface air tem-
perature and RH may affect the airborne survival of coronaviruses,
and AIRS have provided nearly continuous global coverage of these
two key variables since 2002. To calculate climatological mean for
each day of the year, we averaged 17 observations between January
1st, 2003 and December 31st, 2019. For example, the climagological
temperature on January 1st is an average of the 17 New Year’s days
from 2003 through 2019. Our hypothesis here is that the COVID-19
severity may be related to the annual cycles of temperature and
humidity. As such, using observations for 2020 would have not
made any considerable difference in our result. In addition, satellite
observations always include missing values. By using the 17-year
averages, we could fill most of missing values. The atmospheric
variables representing each county are spatially averaged using all
of the grid points within the county, so these values are not on
regularly spaced grids any more.

AOD is a measure of the amount of light that atmospheric
aerosols scatter and absorb and a monotonic function of air qual-
ity related to particulate matter near the ground. To investigate
whether NASA’s AOD observations exhibit prediction skills for the
COVID-19 clinical severity and, as such, can be used for detection
of impending COVID-19 hotspots, we assess information in AOD
distributions from the MODerate resolution Imaging Spectrora-
diometer (MODIS; [21]) onboard NASA’s Terra satellite. Numerous
epidemiological studies (e.g., [13, 19, 30, 34]) have associated local
hotspots of relatively high AOD (representing poor air quality) with
increased risk of morbidity and mortality. Along the same vein, to
evaluate relationship of AOD and COVID-19 (if any), we generate
daily climatology of AOD using the 19-year observations between
January 1st, 2001 and December 31st, 2019. The AOD climatology
is then gridded with the same spatial resolution as temperature and
RH. Figure 2 presents maps of the mean AOD, temperature, and RH
from the MODIS and AIRS instruments over the contiguous United
States. Not surprisingly, AOD is relative high in heavily polluted
metropolitan areas in coastal counties.

4.2 COVID-19 Datasets
Our experiments have been carried out using collected data in
the three states: California, Pennsylvania and Texas. Particularly,
our methodology produces daily COVID-19 progression and hos-
pitalization forecasts at county-level resolution. Daily records on
COVID-19 cases, deaths and hospitalizations are taken from the
CovidActNow project1 and Johns Hopkins University2, see [15].
These data sources also include curated time series from official
state and county dashboards, the U.S. Department of Health and
Human Services, Centers for Medicaid and Medicare Services, New
York Times, Covid Tracking Project; and aggregated data sources
from the World Health Organization, European Center for Disease

1Available at https://covidactnow.org/
2Available at https://github.com/CSSEGISandData/COVID-19

https://covidactnow.org/
https://github.com/CSSEGISandData/COVID-19


Figure 2: (a) Aerosol optical depth (AOD) in the MODIS averaged for the 19 years between 2001 and 2019. (b) Surface air tem-
perature [K] and (c) relative humidity [%] in the AIRS averaged for the 17 years between 2003 and 2019.

Prevention and Control. For information about the COVID-19 dis-
ease progression, and additional modeling resources, we use the
MIDAS online portal for COVID-19 modeling research3. We build
a county connection network, for each state in our study, based on
the official County Adjacency File Record Layout4 provided by the
United State Census Bureau.

4.3 Experimental Setting
In our experiments, we use daily data of eleven months of 2020,
from February 1 to December 31, and split the graph signals into
training set, first 80% of days (268), and test set, last 20% of days
(67). We train the DCRNN architecture with lagged daily reported
counts, i.e. 5 lags, to produce a 15 days ahead forecasting. The
setting for the Recurrent Graph Neural Network methodology (i.e.,
DCRNN) is as described in Section 3, including a rectified linear
activation function. In practice, we use RMSE as metric to assess
the predictive capability of the forecasts.

We have special interest in modelling the severity of COVID-19
and evaluate its relationship with atmospheric variables. Here, we
consider that the time series of hospitalizations at county level
describes the seriousness of the infectious disease, thus we select
such time series as our target variable. Since hospitalizations exhibit
complex spatio-temporal dependencies, including nonseparability
of the covariance structure, we do not normalize time series of
hospitalizations at the county level. To verify the impact of adding
NASA Satellite data in the Recurrent Graph Neural Network model,
we use an experimental setting with next key elements:

- As primary input variables we use daily historical values of
two set of variables, 1) Set A: only number of hospitalizations
at county level, and 2) Set B: number of hospitalizations and
number of deaths at the county level.

- To contrast the overall performance on each experiment we
measure RMSE of global model, average on 10 runs, and
perform statistical hypothesis testing on equality of RMSEs.

3Available at https://midasnetwork.us/covid-19/
4Available at link: County Adjacency File

- We geographically locate the counties in which notice an
improvement in forecasting results when adding an atmo-
spheric variable.

Note that Set A is based on historical COVID-19 related hospital-
ization records, while Set B includes additional historical COVID-19
related death records. We use both sets A and B to evaluate whether
any additional historical variables on COVID-19 clinical severity
(here in a form of COVID-19 related death records) contain valuable
predictive information, also shared by AOD, temperature and RH.
That is, in statistical terms, we assess whether AOD, temperature
and RH bring any predictive information compared to a broad range
of the already existing knowledge on COVID-19 severity. Note that
while certainly the COVID-19 related death records and hospitaliza-
tions are dependent variables, their dependence is also non-trivial
both over space and time. For instance, correlations among death
and hospitalization records range from 1% in Trinity County in
CA to 96% in Placer County in CA (similar dynamics occurs in
TX and PA). This phenomenon is due to multiple factors, ranging
from highly varying time periods after initial hospitalization to
death to socio-economic disparities in healthcare access [16, 17].
In turn, analyzing Set B allows us to account for additional latent
factors not available in Set A, while investigating the impact of
AOD, temperature and RH on COVID-19 clinical severity.

Furthermore, there are a few missing counties in our experiment
since these counties do not provide hospitalization data on a system-
atic basis (no imputation is performed here). Similarly, there exist
multiple missing at random daily AOD measurements in various
counties. We apply a quantile-based imputation method to address
AOD missing values.

Finally, we emphasize that in this project we focus on assessing
predictive utility of AOD, temperature and RH for COVID-19 clinical
severity, rather than on forecasting COVID-19 clinical severity per
se. As such, following the conventional time series methodology
(see, e.g., [10]), we condition our analysis on the predictive model,
that is, in our case DCRNN. As mentioned before this GDL model
allows us to address nonlinearities in relationships of atmospheric
and COVID-19 variables which are inaccessible with simpler lin-
earized approaches such as autoregression. Hence, the considered

https://midasnetwork.us/covid-19/
https://www.census.gov/programs-surveys/geography/technical-documentation/records-layout/county-adjacency-record-layout.html
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DCRNN model forms an adequate basis for evaluating contribu-
tions of various informational sources to forecasting performance.
In turn, comparison of DCRNN with other competing predictive
approaches falls under the theme of forecasting COVID-19 clinical
severity per se, and we leave it for future extensions of this project.

Model parameters We use the adjacency matrix as weight ma-
trix, where each node represents a county and edges represent
border connections between counties. DCRNN layer includes learn-
ing of additive bias, has 256 output channels, and set the filter size
to 1.0. To reduce overfitting, we apply the dropout regularization
method with probability set to 0.2. By executing 10 runs in each

experiment, we ensure having enough data to analyze the weight
initialization influence on our model performance.

All source codes and datasets are available online5.

4.4 Averaged relative Contribution of
Atmospheric Conditions to COVID-19
Related Hospitalizations

Table 1 summarizes the root mean squared errors (RMSE) for 15-day
ahead forecasts of COVID-19 related hospitalizations in Califor-
nia, Pennsylvania, and Texas, averaged over all counties in the

5Source code available at Github repository (click here)

https://github.com/Covid-19-papers/Recurrent-Graph-Neural-Network-on-COVID-19-and-NASA-Satellite-data


corresponding state. We observe that in California RH leads to the
highest decrease of average RMSE for 15-day ahead forecasts of
COVID-19 related hospitalizations, based both on the previous his-
tory of hospitalizations and mortality (Sets A and B). While AOD
tends to contribute less than RH, it is also found to be a highly
statistically significant predictor for both Sets A and B. In turn,
temperature has no utility in explaining COVID-19 related hospi-
talizations in California. In general, magnitude of forecast errors in
California is much higher than in Texas and Pennsylvania, which
is likely to be attributed to substantially higher population, more
diverse terrain and more heterogeneous land use classes (see panels
(g) and (h) in Figures 3, 4 and 5.)

In Pennsylvania, AOD exhibits the highest predictive utility for
hospitalizations regardless of the type of input variables already
in the model (i.e, Sets A and B), while both temperature and RH
demonstrate no positive impact in explaining dynamics of COVID-
19 related hospitalizations in Pennsylvania, except of RH yielding
a contribution on the border of significance for Set A.

Finally, in Texas both AOD and RH are highly statistically signif-
icant predictors of COVID-19 related hospitalizations, regardless
of the type of input variables already in the model (i.e, Sets A and
B). Remarkably, RH appears to exhibit the highest predictive utility
across all scenarios in Texas, except of training set A where the
highest gain is yielded by AOD. In turn, as in California and Penn-
sylvania, temperature is likely to have no impact on COVID-19
related hospitalizations in Texas.

Overall, the contributions of AOD and RH as predictors in the
testing scenarios vary across states. In particular, we find that gains
of AOD are 4.8% (Set A) and 3.5% (Set B) in CA, 4.9% (Set A) and
3.7% (Set B) in PA, and 16.6% (Set A) and 12.4% (Set B) in TX. The
contributions of RH on test sets are 12.9% (Set A) and 9.9% (Set B)
in CA, 0.7% (Set A) in PA, and 23.1% (Set A) and 19.5% (Set B) in TX.
The obtained phenomena can be partially explained by intrinsic
dependency of AOD and RH on terrain variability, while differences
among the results for Sets A and B are also likely to be attributed
to substantial disparities in health care access across states.

4.5 Relative Contribution of Atmospheric
Conditions to COVID-19 Related
Hospitalizations on a County Level

We now turn to a finer scale, or county-based evaluation of our
results. Table 2 shows numbers of counties in California, Penn-
sylvania, and Texas, where 15-day forecasts for COVID-19 related
hospitalizations have been improved by adding NASA’s satellite
variables on a county level, while Figure 3 depicts geographical
spreads of these counties. Total number of counties depends upon
data availability, which are 55 (CA), 60 (PA), and 251 (TX). We find
that AOD tends to improve hospitalization forecasts in about half of
all counties, outperforming RH in all cases on a county level except
of Set A in Texas. In turn, counties where RH enhances 15-day
forecasts for COVID-19 related hospitalizations largely appear to
be also the counties where AOD exhibits a predictive utility and
groups of such counties tend to be more compactly located (Fig-
ure 3). These findings echo our earlier hypothesis on dependency
of AOD and RH as a function of terrain.

Table 1: Root Mean Squared Errors (RMSE) for 15-day ahead
forecasts of COVID-19 related hospitalizations, based on the
Recurrent GNNmodel in three US states: (a) California (CA),
(b) Pennsylvania (PA), and (c) Texas (TX), averaged over each
state. Each cell contains mean±std. Numbers in bold and
italic fonts denote the best and second-best results, respec-
tively. Hypothesis testing among RMSEs is performed with
one-sided two-sample 𝑡-test based on 10 runs; ∗,∗∗ ,∗∗∗ denote
𝑝-values of < 0.1, 0.05, 0.01 (i.e. significant, stat significant,
highly stat significant results), respectively.

Variables Baseline +AOD +Temp +RH

Set A (train) 210.50±1.71 196.30±3.03∗∗∗ 212.60±5.28 170.80±5.02∗∗∗
Set A (test) 492.10±2.96 468.50±5.55∗∗∗ 493.10±7.67 428.30±8.20∗∗∗
Set B (train) 199.50±1.77 190.40±1.63∗∗∗ 211.50±3.08 171.10±5.12∗∗∗
Set B (test) 476.00±3.09 459.40±2.87∗∗∗ 491.50±4.51 428.90±8.39∗∗∗

(a)

Variables Baseline +AOD +Temp +RH

Set A (train) 8.04±0.17 7.62±0.07∗∗∗ 13.37±1.45 8.11±0.11
Set A (test) 98.74±1.20 93.88±0.68∗∗∗ 123.68±4.24 98.05±0.41∗
Set B (train) 7.75±0.10 7.42±0.05∗∗∗ 12.91±0.86 7.87±0.05
Set B (test) 96.49±1.28 92.89±0.72∗∗∗ 121.86±3.31 97.46±0.37

(b)

Variables Baseline +AOD +Temp +RH

Set A (train) 40.00±1.05 34.61±1.12∗∗∗ 48.90±1.30 31.68±0.70∗∗∗
Set A (test) 90.50±2.28 79.22±2.67∗∗∗ 105.10±2.59 69.63±1.81∗∗∗
Set B (train) 37.30±1.21 30.89±0.43∗∗∗ 48.60±2.07 31.26±0.89∗∗∗
Set B (test) 85.10±2.47 70.94±1.09∗∗∗ 104.70±4.17 68.54±2.11∗∗∗

(c)

Finally, temperature appears to show none or limited predic-
tive utility in all counties of California, Pennsylvania, and Texas,
regardless of the input data already in the model.

Table 2: Number of counties in three US states: California
(CA), Pennsylvania (PA), andTexas (TX),wherewe improved
15-day forecasts for COVID-19 related hospitalizations by
adding NASA’s satellite variables on a county level. Total
number of counties are 55 (CA), 60 (PA), and 251 (TX).

CA PA TX
Variables Set A Set B Set A Set B Set A Set B

+AOD 49 39 25 30 122 132
+Temp 21 27 1 5 124 42
+RH 36 35 13 5 182 93
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Figure 4: Pennsylvania’s counties which show an improvement (green) in forecasting by adding AOD, Temp and RH during
testing phase, using variables in sets A (top) and B (medium) as baseline (see Table 2), along with population and terrain maps.

5 LESSONS LEARNED
For the past year, COVID-19 is responsible for more than 2 million
deaths worldwide. Recognizing the urgent need for a comprehen-
sive understanding of COVID-19 dynamics, the current study eval-
uated the utility AOD, temperature, and RH from NASA’s satellites
in modeling spatio-temporal clinical severity of COVID-19. The
GDL model using the three variables as predictors demonstrates
the value added by observations from satellites in predicting hos-
pitalization and death due to COVID-19 15 days in advance at a
county scale. Although our GDL predictions are made only in the
three US States, the results have indicated that COVID-19 severity
dynamics cannot be readily modeled with linear combinations of
the three variables at each county. Unlike seasonal flu, the COVID-
19 severity cannot be explained with temperature. The prediction
skill of RH for hospitalization and mortality may be related to air-
borne transmission of SARS-CoV-2, but this is beyond the scope of
this study. To predict the spatio-temporal dynamics of COVID-19
severity, it is important to consider chronic respiratory diseases of
residents in each county. Since both AOD and RH used in this study
have been consistently observed by a single instrument for the last
two decades, the climatological AOD and RH maps could reflect
underlying structural properties and quantify the dynamics of the
topological properties in ambient air quality and associated risk of

chronic respiratory diseases. As such, the predictability obtained by
AOD and RH may result from the similarity of spatio-temporal vari-
ability between risk of respiratory diseases and COVID-19 clinical
severity.

6 PATH TO DEPLOYMENT
To provide a highly available, globally accessible repository and
searchable catalog for the GDL model, we will release Singularity
images of the GDL model through the OpenNEX (Open NASA
Earth eXchange; https://opennex.org) Science App Store. OpenNEX
app store is a community-driven platform where scientists can
securely publish their codes, application programming interface
(API), workflows, containers, and machine images. The OpenNEX
app store also provides intelligent recommendation engine to find
images relevant to a user’s research, the wish-list facility where
users can call for specific customizations, and flexible options for
integrating newly generated or updated images into its searchable
catalog.

The forecast of COVID-19 clinical severity using the GDL model
will be expanded for the entire US states by speeding up the simu-
lations on NVIDIA DGX clusters at the NASA Center for Climate
Simulation. Parallel processing capabilities and elastic scalability
of the Advanced Data Analytics Platform (ADAPT) science cloud
(https://www.nccs.nasa.gov/services/cloud-computing) will allow

https://opennex.org
https://www.nccs.nasa.gov/services/cloud-computing
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Figure 5: Texas’s counties which show an improvement (green) in forecasting by adding AOD, Temp and RH during testing
phase, using variables in sets A (top) and B (medium) as baseline (see Table 2), along with population and terrain maps.

us to run virtual machines (VMs) for simulating hospitalization
and mortality of multiple states. The satellite datasets of AOD, tem-
perature, and relative humidity will be published in a public data
repository such as figshare (https://figshare.com).

7 CONCLUSION AND FUTUREWORK
We have explored contribution of NASA’s satellite observations of
AOD, temperature, and RH as potential predictors of COVID-19
related hospitalizations in three US states: California, Pennsylva-
nia, and Texas, on a county level basis. We have found that while
the impact of these atmospheric variables on COVID-19 clinical
severity varies from county to county, both AOD and RH appear
to deliver consistently strong predictive utilities across all states

and all input data scenarios. These findings suggest that NASA’s
satellite observations of AOD and RH can deliver important com-
plementary insights into modeling which geographical areas are at
the highest risks of COVID-19 and that such satellite data shall be
necessarily combined with more traditional epidemiological data
in order to develop a reliable predictive platform for COVID-19
tracking.

ACKNOWLEDGMENTS
The project has been supported by NASA grant 20-RRNES20-0021
under the Rapid Response and Novel Research in Earth Science,
the UTSystem-CONACYT ConTex program, and NSF RAPID grant

https://figshare.com/


DMS 2027793. The authors are grateful to Rishabh Wagh for assis-
tance with data curation and data visualization.

REFERENCES
[1] M. Alazab, A. Awajan, A. Mesleh, A. Abraham, V. Jatana, and S. Alhyari. 2020.

COVID-19 Prediction and Detection Using Deep Learning. Int. J. of Computer
Information Systems and Industrial Management Appl. 12 (05 2020), 168–181.

[2] S. O. Arik, C.-L. Li, J. Yoon, R. Sinha, A. Epshteyn, L. T. Le, V. Menon, S. Singh,
L. Zhang, N. Yoder, et al. 2020. Interpretable sequence learning for COVID-19
forecasting. In NeurIPS.

[3] P. Arora, H. Kumar, and B. Panigrahi. 2020. Prediction and Analysis of COVID-19
Positive Cases using Deep Learning Models:A Descriptive Case Study of India.
Chaos Solitons & Fractals 139 (06 2020), 110017. https://doi.org/10.1016/j.chaos.
2020.110017

[4] H. H. Aumann, M. T. Chahine, C. Gautier, M. D. Goldberg, E. Kalnay, L. M.
McMillin, H. Revercomb, P. W. Rosenkranz, W. L. Smith, D. H. Staelin, L. L. Strow,
and J. Susskind. 2003. AIRS/AMSU/HSB on the aqua mission: Design, science
objectives, data products, and processing systems. Ieee Transactions on Geoscience
and Remote Sensing 41, 2 (2003), 253–264. https://doi.org/10.1109/Tgrs.2002.
808356

[5] P. Bedi, P. Gole, N. Gupta, and V. Jindal. 2020. Projections for COVID-19 spread
in India and its worst affected five states using the Modified SEIRD and LSTM
models. arXiv:2009.06457 (2020).

[6] H. Bouhamed. 2020. Covid-19 cases and recovery previsions with Deep Learn-
ing nested sequence prediction models with Long Short-Term Memory (LSTM)
architecture. 8 (04 2020), 10–15.

[7] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. 2017.
Geometric deep learning: going beyond euclidean data. IEEE Signal Processing
Magazine 34, 4 (2017), 18–42.

[8] J. Bullock, A. Luccioni, K. H. Pham, C. S. N. Lam, and M. Luengo-Oroz. 2020.
Mapping the landscape of artificial intelligence applications against COVID-19.
Journal of Artificial Intelligence Research 69 (2020), 807–845.

[9] Y. Cai, T. Huang, X. Liu, and G. Xu. 2020. The effects of “Fangcang, Huoshenshan,
and Leishenshan” hospitals and environmental factors on themortality of COVID-
19. PeerJ 8 (2020), e9578.

[10] C. Chatfield. 2013. The analysis of time series: theory and practice. Springer.
[11] B. Chen, H. Liang, X. Yuan, Y. Hu, M. Xu, Y. Zhao, B. Zhang, F. Tian, and X.

Zhu. 2020. Predicting the local COVID-19 outbreak around the world with
meteorological conditions: a model-based qualitative study. British Medical
Journal open 10, 11 (2020), e041397.

[12] V.K.R. Chimmula and L. Zhang. 2020. Time series forecasting of COVID-19
transmission in Canada using LSTM networks. Chaos, Solitons, and Fractals 135
(2020), 109864 – 109864.

[13] M. Coccia. 2020. Factors determining the diffusion of COVID-19 and suggested
strategy to prevent future accelerated viral infectivity similar to COVID. Science
of the Total Environment 729 (2020). <GotoISI>://WOS:000537441700020

[14] M.M. Daneshvar, M. Ebrahimi, A. Sadeghi, and A. Mahmoudzadeh. 2021. Climate
effects on the COVID-19 outbreak: a comparative analysis between the UAE and
Switzerland. Modeling Earth Systems and Environment (2021), 1–14.

[15] E. Dong, H. Du, and L. Gardner. 2020. An interactive web-based dashboard to
track COVID-19 in real time. The Lancet Infectious Diseases 20, 5 (1 May 2020).
https://doi.org/10.1016/S1473-3099(20)30120-1

[16] J. P. Donnelly, X. Q. Wang, T. J. Iwashyna, and H. C. Prescott. 2021. Readmission
and death after initial hospital discharge among patients with COVID-19 in a
large multihospital system. JAMA 325, 3 (2021), 304–306.

[17] C. Faes, S. Abrams, D. Van Beckhoven, G. Meyfroidt, E. Vlieghe, N. Hens, et al.
2020. Time between symptom onset, hospitalisation and recovery or death:
Statistical analysis of Belgian COVID-19 patients. Int. J. of Environmental Research
and Public Health 17, 20 (2020), 7560.

[18] S. Gupta, G. S. Raghuwanshi, and A. Chanda. 2020. Effect of weather on COVID-
19 spread in the US: A prediction model for India in 2020. Science of the total

environment 728 (2020), 138860.
[19] Y. Han, J. C.K. Lam, V. O.K. Li, P. Guo, Q. Zhang, A. Wang, J. Crowcroft, S. Wang,

J. Fu, Z. Gilani, and J. Downey. 2020. The Effects of Outdoor Air Pollution
Concentrations and Lockdowns on Covid-19 Infections in Wuhan and Other
Provincial Capitals in China. https://doi.org/10.20944/preprints202003.0364.v1

[20] N. Islam, S. Shabnam, and A. M. Erzurumluoglu. 2020. Temperature, humidity,
and wind speed are associated with lower Covid-19 incidence. MedRxiv (2020).

[21] R. C. Levy, S. Mattoo, L. A. Munchak, L. A. Remer, A. M. Sayer, F. Patadia,
and N. C. Hsu. 2013. The Collection 6 MODIS aerosol products over land and
ocean. Atmospheric Measurement Techniques 6, 11 (2013), 2989–3034. https:
//doi.org/10.5194/amt-6-2989-2013

[22] Y. Li, R. Yu, C. Shahabi, and Y. Liu. 2018. Diffusion convolutional recurrent neural
network: Data-driven traffic forecasting. International Conference on Learning
Representations (2018).

[23] L. D. Martins, I. da Silva, W. V. Batista, M. de Fátima Andrade, E. D. de Freitas,
and J. A. Martins. 2020. How socio-economic and atmospheric variables impact
COVID-19 and influenza outbreaks in tropical and subtropical regions of Brazil.
Environmental research 191 (2020), 110184.

[24] J. Masci, E. Rodolà, D. Boscaini, M. M. Bronstein, and H. Li. 2016. Geometric deep
learning. In SIGGRAPH ASIA 2016 Courses. 1–50.

[25] A. Núñez-Delgado, Y. Zhou, and J. L. Domingo. 2021. Editorial of the VSI “Envi-
ronmental, ecological and public health considerations regarding coronaviruses,
other viruses, and other microorganisms potentially causing pandemic diseases”.
Environmental Research 192 (2021), 110322.

[26] S. Prasanth, U. Singh, A. Kumar, V. A. Tikkiwal, and P. H.J. Chong. 2021. Fore-
casting spread of COVID-19 using Google Trends: A hybrid GWO-Deep learning
approach. Chaos, Solitons & Fractals 142 (2021), 110336.

[27] J. Rasheed, A. Jamil, A. A. Hameed, U. Aftab, J. Aftab, S. A. Shah, and D. Draheim.
2020. A survey on artificial intelligence approaches in supporting frontline
workers and decision makers for COVID-19 pandemic. Chaos, Solitons & Fractals
(2020), 110337.

[28] I. Segovia-Dominguez, Z. Zhen, R. Wagh, H. Lee, and Y. R. Gel. 2021. TLife-
LSTM: Forecasting Future COVID-19 Progression with Topological Signatures of
Atmospheric Conditions.. In PAKDD (1). 201–212.

[29] Copernicus Climate Change Service. 2021. Climate Data Store – Monthly Climate
Explore for COVID-19. https://cds.climate.copernicus.eu/apps/c3s/app-c3s-
monthly-climate-covid-19-explorer?delay=selected%20month&year_month=
January%202021.

[30] L. Setti, F. Passarini, G. De Gennaro, P. Barbieri, S. Licen, M. G. Perrone, A.
Piazzalunga, M. Borelli, J. Palmisani, A. Di Gilio, E. Rizzo, A. Colao, P. Piscitelli,
and A. Miani. 2020. Potential role of particulate matter in the spreading of
COVID-19 in Northern Italy: first observational study based on initial epidemic
diffusion. Bmj Open 10, 9 (2020). <GotoISI>://WOS:000576641100012

[31] F. Shahid and A. Zameer. 2020. Predictions for COVID-19 with deep learning
models of LSTM, GRU, and Bi-LSTM. (08 2020).

[32] M. H. Shakil, Z. H. Munim, M. Tasnia, and S. Sarowar. 2020. COVID-19 and
the environment: A critical review and research agenda. Science of the Total
Environment (2020), 141022.

[33] P. Wang, X.-Q. Zheng, G. Ai, D. Liu, and B. Zhu. 2020. Time series prediction
for the epidemic trends of COVID-19 using the improved LSTM deep learning
method: Case studies in Russia, Peru and Iran. Chaos,Solitons & Fractals 140 (08
2020), 110214. https://doi.org/10.1016/j.chaos.2020.110214

[34] X. Wu, R. C. Nethery, M. B. Sabath, D. Braun, and F. Dominici.
2020. Air pollution and COVID-19 mortality in the United States:
Strengths and limitations of an ecological regression analysis. Sci-
ence Advances 6, 45 (2020). https://doi.org/10.1126/sciadv.abd4049
arXiv:https://advances.sciencemag.org/content/6/45/eabd4049.full.pdf

[35] A. Zeroual, F. Harrou, D. Abdelkader, and Y. Sun. 2020. Deep LearningMethods for
Forecasting COVID-19 Time-Series Data: A Comparative Study. Chaos, Solitons
& Fractals 140 (07 2020), 110121. https://doi.org/10.1016/j.chaos.2020.110121

[36] A. Zeroual, F. Harrou, A. Dairi, and Y. Sun. 2020. Deep learning methods for
forecasting COVID-19 time-Series data: A Comparative study. Chaos, Solitons &
Fractals 140 (2020), 110121.

https://doi.org/10.1016/j.chaos.2020.110017
https://doi.org/10.1016/j.chaos.2020.110017
https://doi.org/10.1109/Tgrs.2002.808356
https://doi.org/10.1109/Tgrs.2002.808356
<Go to ISI>://WOS:000537441700020
https://doi.org/10.1016/S1473-3099(20)30120-1
https://doi.org/10.20944/preprints202003.0364.v1
https://doi.org/10.5194/amt-6-2989-2013
https://doi.org/10.5194/amt-6-2989-2013
https://cds.climate.copernicus.eu/apps/c3s/app-c3s-monthly-climate-covid-19-explorer?delay=selected%20month&year_month=January%202021
https://cds.climate.copernicus.eu/apps/c3s/app-c3s-monthly-climate-covid-19-explorer?delay=selected%20month&year_month=January%202021
https://cds.climate.copernicus.eu/apps/c3s/app-c3s-monthly-climate-covid-19-explorer?delay=selected%20month&year_month=January%202021
<Go to ISI>://WOS:000576641100012
https://doi.org/10.1016/j.chaos.2020.110214
https://doi.org/10.1126/sciadv.abd4049
https://arxiv.org/abs/https://advances.sciencemag.org/content/6/45/eabd4049.full.pdf
https://doi.org/10.1016/j.chaos.2020.110121

	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Framework
	3.1 Forecasting Problem
	3.2 Predictive Geometric Deep Learning methodology

	4 Experiments and Results
	4.1 NASA Satellite Datasets
	4.2 COVID-19 Datasets
	4.3 Experimental Setting
	4.4 Averaged relative Contribution of Atmospheric Conditions to COVID-19 Related Hospitalizations
	4.5 Relative Contribution of Atmospheric Conditions to COVID-19 Related Hospitalizations on a County Level

	5 Lessons Learned
	6 Path to Deployment
	7 Conclusion and Future Work
	Acknowledgments
	References

