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Jubelgas et al. 2008; Uhlig et al. 2012; Booth et al. 2013;
Salem & Bryan 2014; Salem et al. 2014; Pakmor et al.

2016; Ruszkowski et al. 2017; Wiener et al. 2017; Chan

et al. 2019; Buck et al. 2020) and small-scale ISM tur-

bulence (e.g., Braun et al. 2014; Schmidt et al. 2014;
Semenov et al. 2016, 2021; Kretschmer & Teyssier 2020;

Kretschmer et al. 2021). Such models differ by their
sink, source, and extra transport terms (such as cosmic

ray transport or turbulent diffusion). Without these

terms, the behavior of the nonthermal energy is anal-

ogous to the thermal energy and consists of advection

with gas density and the “PdV ” work done during gas
compression or expansion.

Implementation-wise, nonthermal energies can be

modeled using the methods developed for modeling the

thermal energy of the gas. Such methods were intro-

duced to follow gas temperature in highly supersonic

flows typical for galaxy formation simulations1 where
the modeling of thermal energy requires special atten-

tion. Indeed, when the flow is subsonic or only mod-
erately supersonic, the thermal energy can be derived
as the difference between the total and kinetic energy,
eth = etot − ekin, which are readily available in conser-

vative methods that follow the gas mass, momentum,
and total energy. However, when the flow is highly su-
personic, the difference etot − ekin becomes small and

comparable to the truncation errors of etot and ekin, re-
quiring a more accurate method for modeling eth.

Two such methods for modeling thermal energy have

been introduced in the early days of hydrodynamic
galaxy formation simulations. In the “dual-energy” for-
malism proposed by Bryan et al. (1995), thermal energy
is modeled as a separate variable in addition to total

energy, with the PdV source term being computed ex-
plicitly. The second method, proposed by Ryu et al.

(1993), models the gas entropy as a separate variable,

which then can be used to compute temperature or ther-

mal energy. The key advantage of the latter method is

that gas entropy obeys a conservative equation, at least

outside of shocks and in regions of the flow where dis-

sipative processes are negligible. The entropy equation
can thus be solved accurately without explicit source
terms that can introduce significant errors.

Both these methods involve several parameters in-

cluding the criteria that are used to decide whether eth

1 For example, the motion of the cold ISM due to galactic
rotation and translational velocity (cs ∼ 1–3 km s−1, v ∼

100–300 km s−1), accretion of cold gaseous streams at high red-
shifts, and other motions of T ∼ 104 K gas in the IGM (cs ∼

10 km s−1, v ∼ few 100 km s−1) are flows with extremely high
Mach numbers, v/cs > 30.

should be taken from the explicitly modeled variable or
synchronized with the total energy as eth = etot − ekin
(Bryan et al. 1995; Ryu et al. 1993; Springel 2010;

Teyssier 2015). In most idealized problems, both meth-

ods and different synchronization criteria work compa-

rably well, and their differences tend do be small even in

more realistic problems (e.g., Costa et al. 2020). How-

ever, in some cases, these choices can have significant

effects. For example, Villasenor et al. (2020) showed

that the formation of shock-heated gaseous halos in the

IGM can be strongly delayed by the choice of the criteria

used to synchronize thermal and total energies.
The choice of the method for modeling of nonthermal

components may have an even more significant impact.

Indeed, the special treatment of thermal energy is re-

quired only in the extreme regime of highly supersonic

flows, which are typically limited to a small fraction of

the problem volume and where thermal pressure is by

definition negligible. In contrast, nonthermal energies

must be followed separately from the total energy in the

entire simulation domain. Therefore, the choice of the
method can impact results via the dynamical effect of
nonthermal pressure and via its effect on other phys-

ical processes—such as star formation, radiative cool-

ing, chemistry, etc.—which are sometimes coupled to

the nonthermal energy.
In this paper, we explore the impact of different

choices in modeling nonthermal energy on the evolution

of gas using a series of idealized tests and more realis-

tic simulations of an isolated L? galaxy. The paper is

organized as follows. In Section 2, we review the meth-

ods of Bryan et al. (1995) and Ryu et al. (1993) and

provide additional details about our implementation of
these methods in the ART galaxy formation code. We

also outline a simple method that can be used to im-
plement the injection of nonthermal energy on shocks
(Section 2.3). In Section 3, we compare the two meth-

ods in shock tube and hydrodynamic Zel’dovich pancake

tests and show that the energy-based method results in

the spurious generation of nonthermal energy on shocks

while the entropy-conserving method can enforce the in-
tended adiabatic behavior. Then, in Section 4, we fur-

ther compare the methods in simulations of an isolated

L? galaxy and show that the choice of the method can

significantly impact galaxy properties. In Section 5, we

discuss our results and propose a novel method for mod-
eling unresolved turbulent energy by capturing numeri-

cal dissipation with the entropy-conserving scheme. We
summarize our conclusions in Section 6.
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2. IMPLEMENTATION OF THERMAL AND
NONTHERMAL ENERGIES

To explore the impact of specific choices made in

modeling nonthermal energy components, we use ide-
alized tests and more realistic simulations of an iso-
lated galaxy performed with the adaptive mesh refine-

ment (AMR) hydrodynamics and N -body code ART

(Kravtsov 1999; Kravtsov et al. 2002; Rudd et al. 2008;

Gnedin & Kravtsov 2011). The hydrodynamic fluxes in

the ART code are handled by a second-order Godunov-

type method (Colella & Glaz 1985) with a piecewise lin-
ear reconstruction of states at the cell interfaces (van

Leer 1979) and a monotonized central slope limiter

based on Colella (1985).

Here we summarize our implementation of different

methods for solving the set of advection equations with

PdV -work source terms for the thermal and nonthermal
energy components. The key assumption is that the

adiabatic evolution of these components can be mod-

eled separately from any non-adiabatic processes, which

can be added via source terms. Thus, during a hydrody-

namics step and before the source terms are applied, the

internal energies of the thermal and nonthermal compo-

nents evolve adiabatically:

∂eth
∂t

+∇ · (ethuuu) = −Pth∇ · uuu, (1)

∂ent
∂t

+∇ · (entuuu) = −Pnt∇ · uuu. (2)

Here and throughout the paper, eth and ent denote en-

ergies per unit volume, and ∇ ≡ (∂/∂x, ∂/∂y, ∂/∂z) is

the gradient operator. For clarity, we consider a single

nonthermal energy component, ent, but all of the re-
sults and conclusions can be trivially generalized for an

arbitrary number of such energy components.2 In our
calculations we assume an ideal gas equation of state for

each of the components: Pi = (γi−1)ei with i ∈ [th, nt].

The above set of equations is coupled with gas dynam-

ics via the total pressure P = Pth +Pnt. In addition, as

thermal and nonthermal energies contribute to the gas

total energy, etot, a suitable method should be adopted

to ensure that etot = ekin+eth+ent, where ekin = ρuuu2/2,
when such synchronisation is appropriate.

The choice of the synchronization method is dic-

tated by the expected behavior of nonthermal energies

across shocks. Indeed, in shocked regions, the difference

2 For multiple nonthermal components, ent,i, each component i
obeys Equation (2) and its individual equation of state (Pnt,i =
(γnt,i − 1)ent,i, in our implementation); the total pressure of gas
becomes P = Pth +

∑
i Pnt,i, and ent in the expression for etot

and Equation (3) is replaced by
∑

i ent,i.

etot − ekin contains the adiabatic change of eth and ent
and the kinetic energy converted into thermal energy by

the shock. In the absence of a subgrid model for non-

thermal energy generation within shocks, the conserva-

tive choice is to assume that all non-adiabatic energy

increase across shocks is thermalized,

eth = etot −
ρuuu2

2
− ent, (3)

while the energies of the nonthermal components change

adiabatically.
In general, nonthermal energies can be generated

within shocks, e.g., via cosmic ray acceleration and tur-

bulence driving, which can be taken into account in

the partitioning of etot − ekin between eth and ent (Sec-

tion 2.3). It is also worth noting that the shock struc-
ture and jump conditions are generally expected to be

modified by kinetic non-MHD effects and propagation of
cosmic rays across the shock (e.g., Voelk et al. 1984; Hag-

gerty & Caprioli 2020; Bret 2020; Hin Navin Tsung et al.

2020). These modifications are uncertain and depend

on the details and physical parameters of shocks, which

generally are not possible to model self-consistently in

cosmological simulations. Thus, the effects of such mod-

ifications need to be modeled phenomenologically as a

part of the CR shock injection model.

In the remainder of this section, we outline two meth-

ods implemented in the ART code for solving Equa-

tions (1)–(2) and our choices of synchronization crite-

ria that determine when eth is reset using Equation (3).

These methods were originally developed for modeling

thermal energy in highly supersonic flows by Bryan et al.

(1995) and Ryu et al. (1993), and in this paper we ex-

plore their behavior in the context of modeling nonther-

mal energies. In principle, different energy components

can be treated using different methods, however, we opt

for a consistent treatment of all components using the

same method.

2.1. Energy-based scheme

In the “dual energy” formulation proposed by Bryan

et al. (1995), Equations (1)–(2) are solved in their orig-

inal form: the energies eth and ent are advected using

conservative mass fluxes, and the PdV work is added as
a source term, making the scheme non-conservative.

In Godunov-type methods, these source terms can be
computed relatively accurately and efficiently because

the time-averaged velocity of gas at a given interface is

computed during the solution of the Riemann problem

across cell interfaces and can be used for an accurate

estimate of ∇ · uuu.
This method of advancing eth and ent is used in re-

gions where the flow is highly supersonic and the values
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of eth from etot can become smaller than the truncation
error of the scheme, meaning highly inaccurate. In re-

gions of modest Mach number, eth is synchronized with

etot using Equation (3). Specifically, the energies are

synchronized in cells with

etot − ekin
etot

> η1, (4)

with the value of η1 = 10−3 suggested by Bryan et al.

(1995). This condition is equivalent to the Mach number

threshold of M <
√

2(η−1
1 − 1)/(γ(γ − 1)) ≈ 40.3 Ad-

ditionally, Bryan et al. (1995) applies a second criterion

based on the Mach numbers of adjacent cells:

etot,j − ekin,j
max(etot,j−1, etot,j , etot,j+1)

> η2, (5)

where j denotes the cell to which the criterion is applied

and j ± 1 its immediate neighbors. We use the value of
η2 = 0.1 as in the original scheme of Bryan et al. (1995),

which corresponds to M . 4 and makes this a signifi-
cantly more conservative criterion than Equation (4).

Overall, these two criteria are used to select the

method by which eth is evolved—i.e., either by updating

its value from etot (Equation (3)), or by solving Equa-

tion (1) independently of etot. We choose to always fol-
low ent using Equation (2). For smaller η1 and η2, eth
is evolved synchronously with etot in a larger fraction
of the simulated volume, which in the limiting case of

η1 = η2 = 0 corresponds to not using the dual energy

formulation at all.

Note that our implementation slightly differs from the

original scheme of Bryan et al. (1995), in which the first
criterion is only used to identify the cells in which ther-

mal pressure is computed using explicitly advected eth,
while only the second criterion is used to decide whether

to synchronize eth and etot. This is done to limit the dy-

namical effect of explicitly advected eth on the solution.

However, given that the first criterion selects only the

gas with eth � etot, the modeling of eth in such gas

should have negligible effect on the dynamics of the gas.

We thus opt to use the first criterion to synchronize eth
with etot and always compute pressures from explicitly

advected eth and ent.

2.2. Entropy-conserving scheme

Ryu et al. (1993) proposed an alternative method,

where a modified entropy, ρSi ≡ Pi/ρ
γi−1, is followed

3 In the absence of nonthermal energy components, this relation
follows from etot = ekin + eth and ekin = ρu2/2 = M2ρc2s/2 =
M2γ(γ−1)eth/2. In presence of nonthermal components, M and
γ correspond to effective values.

as a separate variable instead of energy. The equations
for ρSi can be derived by combining Equations (1)–(2)

with the continuity equation,

∂ρ

∂t
+∇ · (ρuuu) = 0, (6)

which gives

∂ρSth

∂t
+∇ · (ρSthuuu) = 0, (7)

∂ρSnt

∂t
+∇ · (ρSntuuu) = 0. (8)

These equations are in the conservative form and thus

can be solved with a numerical scheme that conserves

ρSth and ρSnt to machine precision.4 Given that the

gas density can also be conserved to machine precision,
this means that we can get accurate estimates of the
entropy of the thermal and nonthermal energy compo-
nents, Sth and Snt, using ρS and ρ and computing the

entropy fluxes, Sρuuu, consistently with the mass fluxes,

ρuuu. Specifically, to compute the advection flux of en-
tropy across a given cell interface, we interpolate the

value of Si = Pi/ρ
γi (which can be thought of as a

proxy for entropy per unit mass) at the upwind side of

the interface using the same reconstruction scheme as for

all other variables, and multiply it by the average mass

flux from the solution of the Riemann problem (Springel

2010).5

The criteria for synchronizing Si with the total energy

of the gas, etot, also differ qualitatively from those in the
energy-based method. Indeed, thermal entropy can be

generated in shocks and Equation (7) therefore becomes

invalid in regions with strong shocks, meaning that etot
must be used instead. Thus, apart from the threshold on

the Mach number of the flow, additional criteria must be

used to identify shocked regions. For example, Ryu et al.

(1993) check if the flow is locally converging (∇·uuu < 0)
and the pressure jump across the cell is larger than a

chosen threshold value.

An alternative method to identify shocked regions was

proposed by Springel (2010, Section 3.5). This method

is based on the idea that in Godunov-type methods the

production of entropy is taken care of by the shock(s)

4 In fact, as was pointed out by Ryu et al. (1993), one can con-
struct an arbitrary number of conservative quantities of the form
Pαρ1−γα with α ∈ (−∞,∞). This can be easily checked by
expanding the conservation equation for such a quantity and us-
ing Equations (1), (2), and (6). The entropy conservation form
corresponds to α = 1.

5 We also tried using the “raw” value of Si from the upwind cell
without reconstruction but found that using reconstructed values
of Si better preserves sharp contact discontinuities in different
pressure components.
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present in the Riemann solution for the hydrodynamic
fluxes across cell interfaces. For weak shocks, the dis-

sipated energy is strongly subdominant to the adia-

batic increase of internal energy, and therefore one can

identify the regions with strong production of entropy

by defining a threshold in the Mach number of such

“Riemann shocks.” Springel (2010) suggests the value
MR,crit = 1.1, so that etot is used in the regions where

MR > MR,crit on at least one of the cell’s interfaces. Al-

though the relation between the shocks in the Riemann

solutions and the physical shocks in the simulated flow is

not direct, the total entropy generated by the real shock

accumulates from the increments produced by the “Rie-

mann shocks” on the interfaces resolving the real shock,

which warrants the above criterion.

In our experiments, we find that the MR,crit threshold

alone cannot prevent spurious heating in regions with

strong velocity gradients. Such gradients can be inter-

preted by the Riemann solver as a discontinuity produc-

ing a sufficiently strong shock with a Mach number that
can satisfy the above criterion. To filter out such cases,
we require that the velocity of the shock(s) in the Rie-
mann solution must be sufficiently large compared to

the local flow velocity. In addition, to avoid injection of

entropy in poorly resolved highly supersonic flows, we

also require that the right-hand side of Equation (3) is

not strongly subdominant to etot, which is analogous to
the criteria used by Ryu et al. (1993) and Bryan et al.

(1995).

Based on extensive experiments we find that the fol-

lowing set of criteria work well to identify shock regions:

max(MR) > 1.1, (9)

|sR,max|/|vcell| > 0.1, (10)

(etot − ekin − ent)/etot > 10−3, (11)

where max(MR) is the maximal Mach number of the

“Riemann shocks” at the interfaces of a given cell,

|sR,max| is the corresponding shock velocity, and |vcell| is
the gas velocity in the cell. When all of the above criteria

are satisfied, the thermal energy is synchronized with to-

tal energy according to Equation (3), meaning that ther-

mal entropy is injected into the cell in the amount cor-
responding to the energy dissipated by the shock. Oth-
erwise, the evolution of thermal energy is followed using

the entropy conservation Equation (7). To enforce adia-

batic behavior of nonthermal energy components, their

evolution is always followed by Equation (8).
As was pointed out by Springel (2010), one significant

disadvantage of such a scheme is that it forfeits strict
conservation of energy. In structure and galaxy forma-
tion simulations, however, the total energy is usually not

conserved anyway owing to radiative cooling, radiative

or feedback heating, star formation, etc. All of these
processes are uncertain and modeled approximately. At
the same time, as we show below, in the idealized tests,

the entropy-conserving scheme performs either compa-

rably or better than the energy-based scheme. If the

strict conservation of energy is nevertheless desirable,

one may use the energy-based scheme for thermal en-
ergy, computing eth from etot when possible, and the

entropy-conserving scheme for all nonthermal compo-
nents.

2.3. Generation of nonthermal energies in shocks

Synchronizing eth with etot according to Equation (3)
implies that all kinetic energy dissipated by shocks is

thermalized. However, the synchronization procedure

can easily be modified to account for nonthermal energy

generation on shocks, such as cosmic ray acceleration or

driving of small-scale turbulence when these components

are modeled as ent. Indeed, if the adiabatic evolution

of eth and ent can be enforced during a hydrodynamic
step, then at the end of the step the difference ediss ≡
etot − ekin − eth − ent in each cell will correspond to

the total energy dissipated by shocks during the step.

Therefore, to convert a fraction ζ of this energy into a

nonthermal component, one only needs to add ζediss to
ent and the remaining (1− ζ)ediss to eth. For ζ = 0, this

scheme is equivalent to using Equation (3).
As we demonstrate in Section 3.2, this scheme works

remarkably well when the adiabatic index of the injected

energy is the same as that of the thermal energy, and

it produces reasonable results when the adiabatic in-

dices are different (e.g., for cosmic rays with γnt = 4/3).

At the same time, this scheme is trivial to implement

within the entropy-conserving scheme as it requires only

a minor modification of the energy synchronization al-

gorithm, while a number of previous implementations

of energy injection on shocks required on-the-fly shock-

finding algorithms. Note that if ζ depends on the prop-

erties of the shock, as is generally the case for cosmic

rays, the shock-finding algorithm is still needed to mea-

sure these properties for physical shocks. For example,

one may try to estimate the local properties of the shock

by considering several adjacent cells or using more com-

plex algorithms (e.g., Ryu et al. 2003; Pfrommer et al.

2006; Skillman et al. 2008; Schaal & Springel 2015).

However, the energy partitioning scheme can still be

used to inject the corresponding nonthermal energy.

3. IDEALIZED TESTS

3.1. Shock tube test with adiabatic nonthermal energy

Figure 1 shows the results of a shock tube test with

an additional nonthermal fluid representing cosmic rays
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does not affect the compressibility of the gas. As the
right column in the figure shows, our injection scheme

works well in this case.

3.3. Zel’dovich pancake test

The formation of a Zel’dovich pancake is a stringent

test for an implementation of thermal and nonthermal

energies because it involves both a purely adiabatic stage

with extremely supersonic gas motion and the formation

of strong shocks after the crossing time.
The solution for density, ρ(x), and velocity, u(x), of a

sine perturbation evolving from an initial redshift zi to

some later redshift z can be expressed in a parametric

form (Zel’dovich 1970):

x(q, z) = q − 1 + zc
1 + z

sin(kq)

k
, (12)

ρ(q, z) = ρ0

[

1− 1 + zc
1 + z

cos(kq)

]

−1

, (13)

u(q, z) = −H0

1 + zc√
1 + z

sin(kq)

k
, (14)

where q is the Lagrangian coordinate, ρ0 is the average

density, k = 2π/λ is the wavenumber of the initial per-

turbation, and the amplitude of the wave is described
by the redshift of wave crossing, zc.

For ease of comparisons, we choose parameters sim-
ilar to Bryan et al. (1995), Trac & Pen (2004), and

Springel (2010): λ = 64h−1 Mpc and zc = 1, and

initialize the test at zi = 100. We add a nonther-

mal energy component with γnt = 5/3 and initialize

eth and ent so that their initial entropies are constant

with values corresponding to the average temperatures
of Ti = (µmp/k)Siρ

γ−1
0 = 30 K and 70 K for thermal

and nonthermal components, respectively (where µmp

is the average particle mass in units of the proton mass).

Both entropy components are expected to be con-

served until the formation of the shocks at the wave
crossing, and the solution for temperatures is therefore

T (q, z) = Ti

[

(

1 + z

1 + zi

)3
ρ(q, z)

ρ0

]γ−1

. (15)

Figure 5 shows the results of the Zel’dovich test be-

fore (z = 2) and after (z = 0) the formation of shocks.

Both energy-based and entropy-conserving schemes pro-

duce good results for gas density and velocity: during

the adiabatic stage, eth and ent are negligible and thus

their treatment does not affect the solution, while the
agreement after the wave crossing indicates that both

methods capture the formation of physical shocks at
z = zc = 1.

In contrast, the solutions for the thermal and nonther-
mal components are quite different. As the lower left

panel shows, before the crossing redshift, the energy-
based scheme conserves nonthermal entropy to sub-
percent level, while the thermal entropy suffers from
strong numerical heating at the very center of the wave.

The entropy-conserving scheme, in contrast, ensures en-
tropy conservation for both components until the shock
forms. After shock formation, both schemes produce

similar results for thermal entropy, while the solution

for nonthermal entropy in the energy-based scheme suf-

fers from strong spurious heating at the shocks. The

error has the same origin as the errors discussed in

Section 3.1 and is completely absent in the entropy-
conserving scheme.

The differences in thermal energy evolution before

crossing illustrate the effects of the criteria selected to

synchronize eth and ent with etot − ekin. Large value of

thermal energy in the center in the energy-based scheme

occurs because thermal energy is reset there from etot,

while eth is still smaller than etot by orders of mag-
nitude. The truncation error of the scheme (typically

∼ 10−3–10−2 etot) thus propagates into eth as it is reset

via eth = etot − ekin − ent, leading to orders of mag-

nitude increase in the temperature at the wave center.

This resetting in the center occurs because the criterion

(etot − ekin)/etot > η can be satisfied near the center of

the wave, where u ∼ 0 even though the flow is highly
supersonic in the adjacent cells. Accounting for neigh-

boring cells in the criterion (Equation (5)) or setting the

threshold η to a larger value does not prevent this issue,

but only delays its onset because the error in etot − ekin
accumulates with time.

The entropy-conserving scheme adopts additional cri-
teria based on the Mach number and velocity of the

shocks in the Riemann solution (Equations (9) and (10))

that filter out such cases, ensuring entropy conservation

until the wave crossing. In addition, given that during

the adiabatic stage the conservation of entropy is en-

forced instead of etot, the errors in etot − ekin do not

accumulate.

4. ISOLATED GALAXY SIMULATIONS

To test different methods for modeling nonthermal en-

ergies in a more realistic environment, we use simula-

tions of an isolated ∼L? galaxy. Specifically, for the

tests presented below, we use a snapshot from our fidu-

cial simulation explored in Semenov et al. (2017, 2018,

2019) as the initial conditions. Below, we briefly de-

scribe the aspects of this simulation that are most rel-
evant to the current study and refer the reader to our

previous papers for more details.
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(2020) indicate that these issues can be corrected by
the proper choice of thermal energy synchronization pa-

rameters, meaning that both energy- and entropy-based

schemes can accurately and robustly model thermal en-

ergy. However, our results show that the choice of such

scheme for any nonthermal component(s), such as sub-

grid turbulence or cosmic rays, does make a difference.

This is because nonthermal components are necessarily

evolved separately from the total energy in the entire

simulation domain, while such treatment of the thermal

energy alone is only needed in a limited volume corre-

sponding to highly-supersonic flows.
Many modern fluid dynamics codes employ different

schemes to separately model the coherent bulk motion

of the fluid and small-scale motions (Trac & Pen 2004;

Springel 2010; Duffell & MacFadyen 2011, 2015; Hopkins

2015; Duffell 2016). Such “moving mesh” approaches al-

leviate the inaccuracy of the thermal energy calculation
from the total energy by absorbing a significant fraction

of kinetic energy into the motion of the mesh. However,
our results are equally relevant for these approaches be-
cause they indicate that the entropy-conserving scheme
is the preferred choice for modeling the energies of non-

thermal components. Indeed, for the energy-based for-

mulation, the errors in the nonthermal entropy origi-

nate from the nonadiabatic part of the explicit PdV

source term inside numerically smeared shocks which

occur both in Eulerian and moving-mesh fluid dynamics

schemes.

How much the choice of the scheme matters depends

on the problem at hand. In the relatively dense parts

of the ISM, where cooling is efficient, the spurious gen-

eration of energy near shocks may be inconsequential

as it is dissipated efficiently. On the other hand, as we
showed in the previous section, this choice may result
in non-negligible changes in the star formation rate of a

galaxy, the structure of the ISM, and in particular qual-

itatively different star formation in the central regions

of the simulated galaxy.
Regardless of numerical issues, a strong argument for

the entropy-based scheme for nonthermal energy com-

ponents can be made in models that include the injec-

tion or dissipation of energy in shocks. For example,

both turbulence and cosmic ray energy can be gener-

ated at shock fronts and, as we discussed in Section 2.3,

such generation can be handled with ease in the entropy-

conserving scheme.
This approach can be especially advantageous for

sourcing nonthermal energies on radiative shocks. The

existing methods based on on-the-fly shock finding al-

gorithms estimate dissipated energy by measuring the

pressure jump across the shock. This can be inaccurate

when the pressure in the post-shock region is subject to

significant radiative losses. This issue can be alleviated

in the proposed method because the energy dissipated

by shocks at all cell interfaces can be converted to non-

thermal components before radiative losses occur. We

leave a more detailed investigation of this issue and a

comparison of different methods to future study.

Finally, the entropy-conserving scheme can provide

another significant advantage for modeling subgrid tur-

bulence because the resolved turbulent energy dissipated

by numerical viscosity can be captured into the subgrid

turbulent energy implicitly, as we outline in the next
section. This allows one to avoid explicit modeling via

source terms that require calibration and can be rather
uncertain.

5.2. Sourcing subgrid turbulence via capturing kinetic

energy dissipated by numerical viscosity

Explicit modeling of unresolved turbulence in galaxy

formation simulations can significantly improve the

modeling of processes that depend on the small-scale

turbulent structure of the ISM, such as star formation,

mixing and transport of metals, and the effect of gas

clumping on cooling and chemical reaction rates. Such

subgrid models of turbulence require a prescription for

the energy transfer from the resolved flow to unresolved

scales.
For example, in the Large Eddy Simulation (LES) ap-

proach adopted in Section 4.2 (see Garnier et al. 2009

and Sagaut 2006 for reviews), such source terms are

modeled using explicit closure relations, which can be

calibrated against direct high-resolution simulations of

turbulence (e.g., Schmidt & Federrath 2011). These clo-

sures are the major source of uncertainty in modeling
subgrid turbulence, especially when the onset of the tur-
bulent cascade is not sufficiently resolved or the local

flow is significantly different from the direct simulations

used to calibrate the closures.

On the other hand, the strict enforcement of entropy
conservation opens up a new, more generic way for mod-

eling the energy cascade to unresolved scales via track-
ing the local dissipation of the resolved kinetic energy.
Indeed, as our results show, this scheme can be used

to accurately follow adiabatic evolution of thermal and

nonthermal energies during each hydrodynamics step.

In regions where thermal energy can be computed reli-

ably via the difference of the total and kinetic energies,

etot − ekin, the change of this energy during a single

step can be compared to the the adiabatically evolving

sum eth + eturb modeled separately using the entropy-



16 Semenov, Kravtsov, Diemer

conserving scheme.6 The difference between the two es-
timates will then correspond to the total kinetic energy

dissipated by numerical viscosity in each cell during the

step.

In most galaxy simulations, this dissipated energy is
converted directly into heat and then quickly radiates

away. In the real ISM, however, the energy is transferred
to turbulent motions on small scales and decays on a
longer timescale, close to the local eddy-turnover time.

The above method can be used to capture this energy

and to convert it into heat on a physically-motivated

time scale, e.g., turbulent cell-crossing time with an

order-of-unity pre-factor that can be calibrated in di-
rect simulations of turbulence as in LES simulations.

Even though the dissipation of kinetic energy in this

method is purely numerical and happens on the scale of

a few computational cells, empirical evidence suggests

that the rate of dissipation is correct. Indeed, turbulent
box simulations carried out with different codes gener-

ally find turbulent spectra consistent with theoretical ex-
pectations, suggesting that the rate of the energy trans-
fer on resolved scales is modeled correctly (e.g., Kritsuk
et al. 2011). Given that in developed turbulence, this

energy transfer rate is equal to the dissipation rate on

the viscous scale, the rate of numerical dissipation must

also be equal to the physical dissipation rate.

One additional issue that needs to be considered in
such an approach is that not all kinetic energy dissipated

by numerical viscosity should source the subgrid turbu-

lence. For example, numerical viscosity can dissipate en-

ergy in laminar shearing flows, but no turbulence should

be generated in this case. In the context of the LES ap-

proach, this motivates usage of the “shear-improved”

versions of the schemes, in which the bulk flow of the
gas is factored out from the source terms of subgrid tur-
bulence (Lévêque et al. 2007; Schmidt et al. 2014). Con-

versely, a fraction of the energy dissipated by resolved

shocks can drive turbulent motions in the post-shock re-

gion instead of being fully thermalized. These examples

show that an approach described above should include

a model for how the dissipated energy is apportioned
between thermal and subgrid turbulence energy based
on the local flow properties, such as the shear-improved

approach and the scheme outlined in Section 2.3.

The idea of unresolved turbulence sourcing by numer-

ical dissipation is a part of a more general assumption

upon which the concept of the Implicit Large Eddy Sim-
ulations (ILES) is based (see, e.g., Grinstein et al. 2007

6 Note that in the presence of cooling, the dissipation of energy
can be accounted for in such a comparison during a single step.

for a review): as long as a hydrodynamics solver satis-
fies the basic physical properties of the equations of hy-
drodynamics, such as conservation of mass, momentum,

and energy, as well as causality and positivity, the effect

of truncation errors at the resolution scale is equivalent

to the net effect of unresolved scales. In this context, the

approach outlined above captures the energy transfer to
unresolved scales for the explicitly modeled subgrid tur-
bulence without explicit and uncertain terms and closure
relations. Instead, the energy transfer is implicitly han-

dled by the hydrodynamic solver. The subgrid turbulent

energy can then be used to model star-formation, metal

diffusion, and gas clumping factor in exactly the same

way as in the LES simulations.

6. SUMMARY AND CONCLUSIONS

We have investigated the accuracy of energy-based

and entropy-conservative schemes in modeling nonther-

mal energy components. These schemes were initially

introduced for modeling thermal energies of highly su-
personic flows where eth is strongly subdominant to the

total and kinetic energies and therefore cannot be ac-

curately computed as the difference between the two.

The energy-based scheme numerically solves the explicit

equation for the energy density evolution, which cannot

be written in conservative form. The entropy-conserving

scheme, on the other hand, uses a conservative equation

for modified entropy and can thus conserve the entropy

of an energy component to machine precision.

We have examined the performance of the schemes in

following the subgrid turbulence and cosmic ray energy

in the standard shock tube and Zel’dovich pancake tests

and simulations of a realistic isolated L? galaxy. Our

results can be summarized as follows.

1. The energy-based scheme results in a spurious gen-

eration of nonthermal energy on shocks in the

shock tube and Zel’dovich pancake tests, while the

entropy-conserving method evolves the energy adi-

abatically to machine precision (see Figures 1, 3,
and 5).

2. The magnitude of the nonthermal entropy error
in the post-shock region increases with the adia-

batic index of the nonthermal component and with

the compression ratio of the shock (see Figure 2).

The latter is particularly relevant for the cold ISM

where shocks can be strongly compressible due to

efficient radiative cooling.

3. In simulations of an isolated L? galaxy with

a turbulence-based star formation prescription,

switching between the energy-based and entropy-

conserved schemes result in a qualitative change of
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morphology, in particular, large qualitative differ-
ence of star formation in the center of the galaxy

(Figure 7), and ≈ 20–30% change of the star for-

mation rate away from the center (Figure 9).

4. We outline and test a simple, physical method

for the injection of nonthermal energy on shocks.

This method can be used in conjunction with the

entropy-conserving scheme and can simplify the

implementation of, e.g., injection of cosmic rays

and driving of subgrid turbulence by shocks (see

Section 2.3 and Figure 4).

Finally, we discuss how the entropy-conserving scheme

can provide a straightforward way to capture the kinetic

energy dissipated by numerical viscosity into the sub-

grid turbulent energy implicitly, without explicit source
terms that require calibration and can be rather uncer-

tain. It will be interesting to investigate the performance

of such an approach using idealized simulations of tur-

bulence and realistic galaxy formation simulations.

Although both methods have been shown to perform

well in modeling the evolution of thermal energy, our

results indicate that the entropy-conserving scheme is

a preferred choice for modeling nonthermal energy com-

ponents. This conclusion is equally relevant for Eulerian

and moving-mesh fluid dynamics codes.
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Kritsuk, A. G., Nordlund, Å., Collins, D., et al. 2011, ApJ,

737, 13, doi: 10.1088/0004-637X/737/1/13

Leitner, S. N., & Kravtsov, A. V. 2011, ApJ, 734, 48,

doi: 10.1088/0004-637X/734/1/48
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