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ABSTRACT

We compare the performance of energy-based and entropy-conservative schemes for modeling non-
thermal energy components, such as unresolved turbulence and cosmic rays, using idealized fluid
dynamics tests and isolated galaxy simulations. While both methods are aimed to model advection
and adiabatic compression or expansion of different energy components, the energy-based scheme
numerically solves the non-conservative equation for the energy density evolution, while the entropy-
conserving scheme uses a conservative equation for modified entropy. Using the standard shock tube
and Zel’dovich pancake tests, we show that the energy-based scheme results in a spurious generation
of nonthermal energy on shocks, while the entropy-conserving method evolves the energy adiabatically
to machine precision. We also show that, in simulations of an isolated L, galaxy, switching between
the schemes results in ~ 20-30% changes of the total star formation rate and a significant difference
in morphology, particularly near the galaxy center. We also outline and test a simple method that
can be used in conjunction with the entropy-conserving scheme to model the injection of nonthermal
energies on shocks. Finally, we discuss how the entropy-conserving scheme can be used to capture the
kinetic energy dissipated by numerical viscosity into the subgrid turbulent energy implicitly, without
explicit source terms that require calibration and can be rather uncertain. Our results indicate that
the entropy-conserving scheme is the preferred choice for modeling nonthermal energy components, a
conclusion that is equally relevant for Eulerian and moving-mesh fluid dynamics codes.

Keywords: Hydrodynamical simulations; Galaxy evolution; Stellar feedback; Interstellar dynamics;

Cosmic rays; Shocks

1. INTRODUCTION

Stellar feedback plays a critical role in shaping proper-
ties of simulated galaxies on all relevant scales, from the
overall stellar mass and star formation rate to metallic-
ity, galaxy morphology, and chemical abundances in the
circumgalactic (CGM) and intergalactic medium (IGM)
(e.g., Governato et al. 2010; Brook et al. 2012; Stinson
et al. 2013; Hopkins et al. 2013, 2014; Agertz et al. 2013;
Agertz & Kravtsov 2015, 2016, see also Naab & Ostriker
2017 and Vogelsberger et al. 2020 for recent reviews).
Modeling feedback processes in numerical simulations
of galaxy formation has been the focus of extensive the-
oretical efforts.

* vadim.semenov@cfa.harvard.edu
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Over the past decades a number of different meth-
ods were developed to model stellar feedback, ranging
from the direct injection of energy and momentum to
the interstellar medium (ISM) when the physical scales
of this injection can be resolved (e.g., Hopkins et al.
2011, 2012, 2017; Agertz et al. 2013; Marinacci et al.
2019; Smith et al. 2020; Jeffreson et al. 2021), to effective
models of the ISM and outflow driving when the multi-
phase ISM structure cannot be sufficiently resolved (e.g.,
Yepes et al. 1997; Springel & Hernquist 2003; Braun &
Schmidt 2012; Vogelsberger et al. 2013; Springel et al.
2018).

One important class of feedback implementations is
based on explicit modeling of a nonthermal energy com-
ponent sourced by young stars in addition to gas thermal
energy (e.g., Springel 2000; Teyssier et al. 2013; Agertz
et al. 2013; Benincasa et al. 2016). Common examples
of such nonthermal components are cosmic rays (e.g.,
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Jubelgas et al. 2008; Uhlig et al. 2012; Booth et al. 2013;
Salem & Bryan 2014; Salem et al. 2014; Pakmor et al.
2016; Ruszkowski et al. 2017; Wiener et al. 2017; Chan
et al. 2019; Buck et al. 2020) and small-scale ISM tur-
bulence (e.g., Braun et al. 2014; Schmidt et al. 2014;
Semenov et al. 2016, 2021; Kretschmer & Teyssier 2020;
Kretschmer et al. 2021). Such models differ by their
sink, source, and extra transport terms (such as cosmic
ray transport or turbulent diffusion). Without these
terms, the behavior of the nonthermal energy is anal-
ogous to the thermal energy and consists of advection
with gas density and the “PdV” work done during gas
compression or expansion.

Implementation-wise, nonthermal energies can be
modeled using the methods developed for modeling the
thermal energy of the gas. Such methods were intro-
duced to follow gas temperature in highly supersonic
flows typical for galaxy formation simulations' where
the modeling of thermal energy requires special atten-
tion. Indeed, when the flow is subsonic or only mod-
erately supersonic, the thermal energy can be derived
as the difference between the total and kinetic energy,
€th = €tot — €kin, Which are readily available in conser-
vative methods that follow the gas mass, momentum,
and total energy. However, when the flow is highly su-
personic, the difference ey — exin becomes small and
comparable to the truncation errors of eyo; and ey, re-
quiring a more accurate method for modeling eyy,.

Two such methods for modeling thermal energy have
been introduced in the early days of hydrodynamic
galaxy formation simulations. In the “dual-energy” for-
malism proposed by Bryan et al. (1995), thermal energy
is modeled as a separate variable in addition to total
energy, with the PdV source term being computed ex-
plicitly. The second method, proposed by Ryu et al.
(1993), models the gas entropy as a separate variable,
which then can be used to compute temperature or ther-
mal energy. The key advantage of the latter method is
that gas entropy obeys a conservative equation, at least
outside of shocks and in regions of the flow where dis-
sipative processes are negligible. The entropy equation
can thus be solved accurately without explicit source
terms that can introduce significant errors.

Both these methods involve several parameters in-
cluding the criteria that are used to decide whether ey,

L For example, the motion of the cold ISM due to galactic
rotation and translational velocity (¢s ~ 1-3 km s_l, v~
100-300 km s~1), accretion of cold gaseous streams at high red-
shifts, and other motions of T' ~ 104 K gas in the IGM (cs ~
10kms™!, v ~ few 100 km s~!) are flows with extremely high

Mach numbers, v/cs > 30.

should be taken from the explicitly modeled variable or
synchronized with the total energy as ety = €40t — €kin
(Bryan et al. 1995; Ryu et al. 1993; Springel 2010;
Teyssier 2015). In most idealized problems, both meth-
ods and different synchronization criteria work compa-
rably well, and their differences tend do be small even in
more realistic problems (e.g., Costa et al. 2020). How-
ever, in some cases, these choices can have significant
effects. For example, Villasenor et al. (2020) showed
that the formation of shock-heated gaseous halos in the
IGM can be strongly delayed by the choice of the criteria
used to synchronize thermal and total energies.

The choice of the method for modeling of nonthermal
components may have an even more significant impact.
Indeed, the special treatment of thermal energy is re-
quired only in the extreme regime of highly supersonic
flows, which are typically limited to a small fraction of
the problem volume and where thermal pressure is by
definition negligible. In contrast, nonthermal energies
must be followed separately from the total energy in the
entire simulation domain. Therefore, the choice of the
method can impact results via the dynamical effect of
nonthermal pressure and via its effect on other phys-
ical processes—such as star formation, radiative cool-
ing, chemistry, etc.—which are sometimes coupled to
the nonthermal energy.

In this paper, we explore the impact of different
choices in modeling nonthermal energy on the evolution
of gas using a series of idealized tests and more realis-
tic simulations of an isolated L, galaxy. The paper is
organized as follows. In Section 2, we review the meth-
ods of Bryan et al. (1995) and Ryu et al. (1993) and
provide additional details about our implementation of
these methods in the ART galaxy formation code. We
also outline a simple method that can be used to im-
plement the injection of nonthermal energy on shocks
(Section 2.3). In Section 3, we compare the two meth-
ods in shock tube and hydrodynamic Zel’dovich pancake
tests and show that the energy-based method results in
the spurious generation of nonthermal energy on shocks
while the entropy-conserving method can enforce the in-
tended adiabatic behavior. Then, in Section 4, we fur-
ther compare the methods in simulations of an isolated
L, galaxy and show that the choice of the method can
significantly impact galaxy properties. In Section 5, we
discuss our results and propose a novel method for mod-
eling unresolved turbulent energy by capturing numeri-
cal dissipation with the entropy-conserving scheme. We
summarize our conclusions in Section 6.
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2. IMPLEMENTATION OF THERMAL AND
NONTHERMAL ENERGIES

To explore the impact of specific choices made in
modeling nonthermal energy components, we use ide-
alized tests and more realistic simulations of an iso-
lated galaxy performed with the adaptive mesh refine-
ment (AMR) hydrodynamics and N-body code ART
(Kravtsov 1999; Kravtsov et al. 2002; Rudd et al. 2008;
Gnedin & Kravtsov 2011). The hydrodynamic fluxes in
the ART code are handled by a second-order Godunov-
type method (Colella & Glaz 1985) with a piecewise lin-
ear reconstruction of states at the cell interfaces (van
Leer 1979) and a monotonized central slope limiter
based on Colella (1985).

Here we summarize our implementation of different
methods for solving the set of advection equations with
PdV-work source terms for the thermal and nonthermal
energy components. The key assumption is that the
adiabatic evolution of these components can be mod-
eled separately from any non-adiabatic processes, which
can be added via source terms. Thus, during a hydrody-
namics step and before the source terms are applied, the
internal energies of the thermal and nonthermal compo-
nents evolve adiabatically:

Oein

;;} + V- (ethu) = —FPuV -u, (1)
Oey

;tt LV (entt) = — PV - u. (2)

Here and throughout the paper, e, and e, denote en-
ergies per unit volume, and V = (9/0z,0/0y,d/9z) is
the gradient operator. For clarity, we consider a single
nonthermal energy component, ey, but all of the re-
sults and conclusions can be trivially generalized for an
arbitrary number of such energy components.? In our
calculations we assume an ideal gas equation of state for
each of the components: P; = (v; —1)e; with ¢ € [th, nt].

The above set of equations is coupled with gas dynam-
ics via the total pressure P = P;, + Pys. In addition, as
thermal and nonthermal energies contribute to the gas
total energy, €iot, a suitable method should be adopted
to ensure that eyo = e€yin +etn +€nt, where ey = pu2/27
when such synchronisation is appropriate.

The choice of the synchronization method is dic-
tated by the expected behavior of nonthermal energies
across shocks. Indeed, in shocked regions, the difference

2 For multiple nonthermal components, ent,i, €ach component 4
obeys Equation (2) and its individual equation of state (Pu¢,; =
(Ynt,i — 1)ent,i, in our implementation); the total pressure of gas
becomes P = Py, + ZZ Pyt,i, and ent in the expression for egot
and Equation (3) is replaced by >, ent,s-

etot — €xin contains the adiabatic change of e, and ey
and the kinetic energy converted into thermal energy by
the shock. In the absence of a subgrid model for non-
thermal energy generation within shocks, the conserva-
tive choice is to assume that all non-adiabatic energy
increase across shocks is thermalized,

2

€th = €tot — 7 — €nt, (3)

while the energies of the nonthermal components change
adiabatically.

In general, nonthermal energies can be generated
within shocks, e.g., via cosmic ray acceleration and tur-
bulence driving, which can be taken into account in
the partitioning of eyot — €xin between ey, and ey (Sec-
tion 2.3). It is also worth noting that the shock struc-
ture and jump conditions are generally expected to be
modified by kinetic non-MHD effects and propagation of
cosmic rays across the shock (e.g., Voelk et al. 1984; Hag-
gerty & Caprioli 2020; Bret 2020; Hin Navin Tsung et al.
2020). These modifications are uncertain and depend
on the details and physical parameters of shocks, which
generally are not possible to model self-consistently in
cosmological simulations. Thus, the effects of such mod-
ifications need to be modeled phenomenologically as a
part of the CR shock injection model.

In the remainder of this section, we outline two meth-
ods implemented in the ART code for solving Equa-
tions (1)—(2) and our choices of synchronization crite-
ria that determine when ey, is reset using Equation (3).
These methods were originally developed for modeling
thermal energy in highly supersonic flows by Bryan et al.
(1995) and Ryu et al. (1993), and in this paper we ex-
plore their behavior in the context of modeling nonther-
mal energies. In principle, different energy components
can be treated using different methods, however, we opt
for a consistent treatment of all components using the
same method.

2.1. Energy-based scheme

In the “dual energy” formulation proposed by Bryan
et al. (1995), Equations (1)—(2) are solved in their orig-
inal form: the energies ey, and ey are advected using
conservative mass fluxes, and the PdV work is added as
a source term, making the scheme non-conservative.

In Godunov-type methods, these source terms can be
computed relatively accurately and efficiently because
the time-averaged velocity of gas at a given interface is
computed during the solution of the Riemann problem
across cell interfaces and can be used for an accurate
estimate of V - u.

This method of advancing ey, and ey is used in re-
gions where the flow is highly supersonic and the values
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of ey, from ey can become smaller than the truncation
error of the scheme, meaning highly inaccurate. In re-
gions of modest Mach number, ey, is synchronized with
etor using Equation (3). Specifically, the energies are
synchronized in cells with

€tot €kin (4)

> M1,
€tot

with the value of 171 = 1072 suggested by Bryan et al.
(1995). This condition is equivalent to the Mach number
threshold of M < \/2(77fl —1)/(y(y—1)) ~ 40.> Ad-

ditionally, Bryan et al. (1995) applies a second criterion
based on the Mach numbers of adjacent cells:

€tot,j — C€kin,j
! ! > 12, (5)
max(etot,jfla €tot,j» etot7j+1)

where j denotes the cell to which the criterion is applied
and j £+ 1 its immediate neighbors. We use the value of
n2 = 0.1 as in the original scheme of Bryan et al. (1995),
which corresponds to M < 4 and makes this a signifi-
cantly more conservative criterion than Equation (4).

Overall, these two criteria are used to select the
method by which ey, is evolved—i.e., either by updating
its value from ey (Equation (3)), or by solving Equa-
tion (1) independently of eior. We choose to always fol-
low eyt using Equation (2). For smaller 7, and 79, ey
is evolved synchronously with eyt in a larger fraction
of the simulated volume, which in the limiting case of
m = 12 = 0 corresponds to not using the dual energy
formulation at all.

Note that our implementation slightly differs from the
original scheme of Bryan et al. (1995), in which the first
criterion is only used to identify the cells in which ther-
mal pressure is computed using explicitly advected ey,
while only the second criterion is used to decide whether
to synchronize e}, and ego;. This is done to limit the dy-
namical effect of explicitly advected ety on the solution.
However, given that the first criterion selects only the
gas with ey, < e, the modeling of ey, in such gas
should have negligible effect on the dynamics of the gas.
We thus opt to use the first criterion to synchronize ey,
with ey and always compute pressures from explicitly
advected ey, and ept.

2.2. Entropy-conserving scheme

Ryu et al. (1993) proposed an alternative method,

where a modified entropy, pS; = P;/pYi~!, is followed

3 In the absence of nonthermal energy components, this relation
follows from etot = eyin + €gn and eyin = pu?/2 = M?pc2/2 =
M?2~(y—1)esn /2. In presence of nonthermal components, M and

~ correspond to effective values.

as a separate variable instead of energy. The equations
for pS; can be derived by combining Equations (1)—(2)
with the continuity equation,

dp B
L4V (o) =0, (6)
which gives
9pS
L4V - (pSu) =0, (7)
9pSy
% £V - (pSucu) = 0. ®)

These equations are in the conservative form and thus
can be solved with a numerical scheme that conserves
pSin and pSye to machine precision.? Given that the
gas density can also be conserved to machine precision,
this means that we can get accurate estimates of the
entropy of the thermal and nonthermal energy compo-
nents, Sin and Sy, using pS and p and computing the
entropy fluxes, Spu, consistently with the mass fluxes,
pu. Specifically, to compute the advection flux of en-
tropy across a given cell interface, we interpolate the
value of S; = P;/p" (which can be thought of as a
proxy for entropy per unit mass) at the upwind side of
the interface using the same reconstruction scheme as for
all other variables, and multiply it by the average mass
flux from the solution of the Riemann problem (Springel
2010).°

The criteria for synchronizing S; with the total energy
of the gas, ey, also differ qualitatively from those in the
energy-based method. Indeed, thermal entropy can be
generated in shocks and Equation (7) therefore becomes
invalid in regions with strong shocks, meaning that e
must be used instead. Thus, apart from the threshold on
the Mach number of the flow, additional criteria must be
used to identify shocked regions. For example, Ryu et al.
(1993) check if the flow is locally converging (V -u < 0)
and the pressure jump across the cell is larger than a
chosen threshold value.

An alternative method to identify shocked regions was
proposed by Springel (2010, Section 3.5). This method
is based on the idea that in Godunov-type methods the
production of entropy is taken care of by the shock(s)

4 In fact, as was pointed out by Ryu et al. (1993), one can con-
struct an arbitrary number of conservative quantities of the form
PYpl=7* with a € (—00,00). This can be easily checked by
expanding the conservation equation for such a quantity and us-
ing Equations (1), (2), and (6). The entropy conservation form

corresponds to a = 1.

5 We also tried using the “raw” value of S; from the upwind cell
without reconstruction but found that using reconstructed values
of S; better preserves sharp contact discontinuities in different

pressure components.
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present in the Riemann solution for the hydrodynamic
fluxes across cell interfaces. For weak shocks, the dis-
sipated energy is strongly subdominant to the adia-
batic increase of internal energy, and therefore one can
identify the regions with strong production of entropy
by defining a threshold in the Mach number of such
“Riemann shocks.” Springel (2010) suggests the value
MR, erit = 1.1, so that ey is used in the regions where
Mg > Mg crit on at least one of the cell’s interfaces. Al-
though the relation between the shocks in the Riemann
solutions and the physical shocks in the simulated flow is
not direct, the total entropy generated by the real shock
accumulates from the increments produced by the “Rie-
mann shocks” on the interfaces resolving the real shock,
which warrants the above criterion.

In our experiments, we find that the Mg i threshold
alone cannot prevent spurious heating in regions with
strong velocity gradients. Such gradients can be inter-
preted by the Riemann solver as a discontinuity produc-
ing a sufficiently strong shock with a Mach number that
can satisfy the above criterion. To filter out such cases,
we require that the velocity of the shock(s) in the Rie-
mann solution must be sufficiently large compared to
the local flow velocity. In addition, to avoid injection of
entropy in poorly resolved highly supersonic flows, we
also require that the right-hand side of Equation (3) is
not strongly subdominant to e, which is analogous to
the criteria used by Ryu et al. (1993) and Bryan et al.
(1995).

Based on extensive experiments we find that the fol-
lowing set of criteria work well to identify shock regions:

max(Mg) > 1.1, (9)
|3R,max|/|vcell| > 0.1, (10)
(etot — Ekin — €nt)/€tot > 10_37 (11)

where max(Mg) is the maximal Mach number of the
“Riemann shocks” at the interfaces of a given cell,
|sR,max| is the corresponding shock velocity, and |veen| is
the gas velocity in the cell. When all of the above criteria
are satisfied, the thermal energy is synchronized with to-
tal energy according to Equation (3), meaning that ther-
mal entropy is injected into the cell in the amount cor-
responding to the energy dissipated by the shock. Oth-
erwise, the evolution of thermal energy is followed using
the entropy conservation Equation (7). To enforce adia-
batic behavior of nonthermal energy components, their
evolution is always followed by Equation ().

As was pointed out by Springel (2010), one significant
disadvantage of such a scheme is that it forfeits strict
conservation of energy. In structure and galaxy forma-
tion simulations, however, the total energy is usually not
conserved anyway owing to radiative cooling, radiative

or feedback heating, star formation, etc. All of these
processes are uncertain and modeled approximately. At
the same time, as we show below, in the idealized tests,
the entropy-conserving scheme performs either compa-
rably or better than the energy-based scheme. If the
strict conservation of energy is nevertheless desirable,
one may use the energy-based scheme for thermal en-
ergy, computing ey, from ey when possible, and the
entropy-conserving scheme for all nonthermal compo-
nents.

2.3. Generation of nonthermal energies in shocks

Synchronizing ey, with ego; according to Equation (3)
implies that all kinetic energy dissipated by shocks is
thermalized. However, the synchronization procedure
can easily be modified to account for nonthermal energy
generation on shocks, such as cosmic ray acceleration or
driving of small-scale turbulence when these components
are modeled as e,;. Indeed, if the adiabatic evolution
of ey, and ey can be enforced during a hydrodynamic
step, then at the end of the step the difference egjss =
€tot — €kin — €th — €nt in each cell will correspond to
the total energy dissipated by shocks during the step.
Therefore, to convert a fraction ¢ of this energy into a
nonthermal component, one only needs to add (eqiss to
ent and the remaining (1 — {)eqiss to ey, For ¢ = 0, this
scheme is equivalent to using Equation (3).

As we demonstrate in Section 3.2, this scheme works
remarkably well when the adiabatic index of the injected
energy is the same as that of the thermal energy, and
it produces reasonable results when the adiabatic in-
dices are different (e.g., for cosmic rays with v, = 4/3).
At the same time, this scheme is trivial to implement
within the entropy-conserving scheme as it requires only
a minor modification of the energy synchronization al-
gorithm, while a number of previous implementations
of energy injection on shocks required on-the-fly shock-
finding algorithms. Note that if { depends on the prop-
erties of the shock, as is generally the case for cosmic
rays, the shock-finding algorithm is still needed to mea-
sure these properties for physical shocks. For example,
one may try to estimate the local properties of the shock
by considering several adjacent cells or using more com-
plex algorithms (e.g., Ryu et al. 2003; Pfrommer et al.
2006; Skillman et al. 2008; Schaal & Springel 2015).
However, the energy partitioning scheme can still be
used to inject the corresponding nonthermal energy.

3. IDEALIZED TESTS
3.1. Shock tube test with adiabatic nonthermal energy

Figure 1 shows the results of a shock tube test with
an additional nonthermal fluid representing cosmic rays
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Figure 1. Shock tube test with an extra nonther-

mal energy representing cosmic rays (ynt = 4/3) using the
energy-based (left column) and entropy-conserving (right
column) schemes for modeling thermal energy and cos-
mic rays. The initial conditions are taken from Pfrom-
mer et al. (2017): (p,u, P, Pat) = (1,0,17.172,34.344)
and (0.125,0,0.05,0.05) for the left and right initial states,
respectively. Thick lines show the analytic solution from
Pfrommer et al. (2017, Appendix C2), with orange lines
showing the solution for density, velocity, and total pressure,
and red and blue lines showing the solution for thermal and
cosmic ray components, respectively. The results are com-
pared at ¢t = 0.25. As the bottom panel shows, the energy-
based scheme leads to a spurious production of nonthermal
entropy at the shock, while the entropy-conserving scheme
ensures nonthermal entropy conservation across the shock.

(CRs) with vy = 4/3 (Pfrommer et al. 2006, 2017).
The setup is analogous to the classic Sod (1978) test
and has the same structure of the solution except that
pressure consists of two components with different adia-

batic indices, meaning that the effective v can vary from
region to region. As the figure shows, both energy-based
and entropy-conserving methods reproduce the analytic
solution for density, velocity and total pressure, which
demonstrates that the fluxes of mass, momentum, and
total energy are computed correctly in both schemes.

The difference between the methods appears in the
solution for CR entropy and pressure as highlighted in
the inset panels in the bottom row. In the energy-based
scheme, CR entropy is spuriously produced at the shock,
leading to a ~20% excess of the post-shock CR pres-
sure. The post-shock thermal pressure becomes under-
estimated by the same (absolute) amount because in the
post-shock region ey, is computed from ey and ec, us-
ing Equation (3). In contrast, the entropy-conserving
scheme does not suffer from such errors: CR entropy is
exactly conserved across the shock, resulting in correct
CR and thermal pressures in the post-shock region.

The spurious production of nonthermal entropy in the
energy-based scheme stems from the fact that inviscid
Equations (1) and (2) are formally invalid at shocks be-
cause of divergent gradients. In a numerical solution,
however, shocks are smeared over several cells via nu-
merical diffusivity and all gradients are finite. As the
gas flows through such shocked regions, the PdV source
term computed from the local pressure and velocity gra-
dients mixes the adiabatic compression with a fraction
of the energy dissipated by the shock, leading to a non-
adiabatic behavior. In the absence of nonthermal ener-
gies, this effect does not introduce severe errors because,
in the post-shock region, the solution for the advected
etn 18 usually disregarded and ey, is reset from the differ-
ence ey — €kin- In contrast, if nonthermal energies are
present, only the sum ey, + ey can be set to ey — €xin
while the individual values of ey}, and e,; become affected
by the entropy error.

The ~ 20% error in the above test may seem small
and unlikely to be important in real applications, e.g.,
galaxy formation simulations, due to much more uncer-
tain source terms such as those involved in star forma-
tion and feedback modeling. However, we find that the
error strongly increases for more compressible shocks
and larger adiabatic indices of the nonthermal com-
ponent. Indeed, as the entropy error originates from
the PdV source term (PyV -u = Py Ou/0x for a 1-
dimensional problem), its magnitude relative to ey in-
creases with ~y,, because Py, = (Yt — 1)en;. The mag-
nitude of the PdV term also increases with the com-
pression ratio of the shock (rs = p1/pg, where “0” and
“1” denote pre- and post-shock regions, respectively) be-
cause the magnitude of the velocity gradient increases
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Figure 2. Dependence of the nonthermal entropy error

produced by the energy-based scheme in the post-shock re-
gion on the compression ratio of the shock, rs = p1/po, for
different values of the adiabatic index of the nonthermal com-
ponent: vnte = 4/3 (blue squares) and vne = 5/3 (green cir-
cles). The entropy error increases monotonically with rs un-
til ASyt/Snt becomes ~ 1, at which point the error diverges.
For a larger vn¢, this divergence occurs at a smaller rs. For
this test, the nonthermal energy is dynamically decoupled
from the hydrodynamics by making its initial value arbitrary
small and removing its contribution from the total pressure.
The color intensity corresponds to different ways of varying
rs. Lighter colors correspond to variations of y¢i,, keeping the
shock Mach number high so that 7 ~ (v + 1)/(ytn — 1),
with 4 spanning a range from yn = 5 (leftmost points)
to vtn = 1.16 and 1.36 (rightmost points for vyt = 4/3 and
Yt = 5/3, respectively). Darker colors show the variation
of the shock Mach number at fixed vn = 5/3 (from left to
right, M ~ 1.3, 1.5, 1.9, 3.0, 9.0), with the vertical gray line
showing the high-Mach number limit of r = 4.

with rg, and the errors are amplified by stronger com-
pression.

Figure 2 shows the nonthermal entropy error in the
post-shock region as a function of the compression ra-
tio g for vy, = 4/3 (blue points) and v, = 5/3 (green
points). To exclude the dynamical effect of the error on
the solution we set the initial value of e, to an arbitrary
small value (< 107! of ey, in the post-shock region)
and rerun the shock tube test with varying the shock
Mach number (i.e., varying the initial pressure jump)
and adiabatic indices 7y, and 7,,. Dark colors show
the variation of the Mach number at fiducial v, = 5/3,
which leads to variation of the compression ratio with
the limiting value of ry = (yh +1)/(vn — 1) = 4 (shown
with the vertical gray line). To explore variations of r;
beyond this limiting value, we also rerun the tests with
different ~,. Such a variation is relevant for practical
applications, e.g., in galaxy formation simulations, be-

entropy-conserving
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Figure 3. Results of the entropy-conserving scheme in
the regime where the energy-based scheme is highly unsta-
ble. The initial conditions are the same as in Figure 1, but
the adiabatic indices of the thermal and nonthermal compo-
nents are set to vn = 1.1 and ¢ = 5/3 to make the shock
highly compressible, with a compression ratio of rs ~ 13.2.
Such rs is significantly higher than the value at which the
entropy error of the energy-based scheme diverges (rs ~ 6.5
for ynt = 5/3, see Figure 2). The entropy-conserving scheme
still performs well.

cause 1y > 4 can be achieved due to strong radiative
cooling, even if v, is formally fixed at 5/3.

The figure shows that while the entropy errors of the
Yt = 4/3 component on strong shocks with ry ~ 4 are
~ 20%, the errors of the 7,, = 5/3 component increase
by a factor of 4. Thus, the spurious production of non-
thermal entropy becomes more problematic for model-
ing components such as small-scale ISM turbulence with
v = 5/3 (e.g., Robertson & Goldreich 2012; Schmidt

et al. 2014). Moreover, the error quickly increases as the
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shock becomes more compressive, and this increase satu-
rates only when the post-shock e,y becomes comparable
to the total energy dissipated by the shock, independent
of the pre-shock value of ey. As the figure shows, for
larger 7y, this divergence of errors occurs at smaller r:
rs ~ 14 and 6.5 for v,y = 4/3 and 5/3, respectively.
As we will show in Section 4, such errors can signifi-
cantly change the behavior of nonthermal components
in galaxy formation simulations.

In the entropy-conserving scheme, the nonthermal en-
tropy conservation equation is followed in the entire sim-
ulation domain. Figure 3 demonstrates that this scheme
can produce an adequate solution even for strongly com-
pressive shocks for which the energy-based scheme is
highly unstable.

3.2. Shock tube test with sourcing of nonthermal
energy by the shock

The shock tube test in the previous section assumes
that all energy dissipated by the shock is thermalized,
so that nonthermal energy behaves adiabatically. In
this section, we switch to the case where nonthermal
energy is also sourced by the shock as described in Sec-
tion 2.3. This method requires an accurate modeling
of the adiabatic compression of both e, and ey. The
shock-generated entropy errors discussed in the previ-
ous section prevent the application of this method with
the energy-based scheme; therefore, we only present the
results for the entropy-conserving scheme.

Figure 4 shows the results of the test where 20% of
the energy dissipated by the shock is converted into
the nonthermal component, which is tracked separately
and is shown with green lines. Different columns show
the results for different values of the adiabatic index of
the nonthermal component, namely, v, = 4/3 and 5/3.
As this figure shows, for v, = 4/3 the method under-
produces nonthermal pressure and entropy in the post-
shock region by a small amount, while for v, = 5/3 the
method works remarkably well.

Qualitatively, this difference can be attributed to the
effect that the injection of e, changes the compressibil-
ity of the shock and to the fact that a shock is resolved
by several cells, each dissipating shock energy. When 7,
is smaller (larger) than 1, = 5/3, converting a fraction
of dissipated energy to ey results in a lower (higher) ef-
fective adiabatic index of gas in the post-shock region,
making the shock more (less) compressible. The total
change in the injected e, accumulates across the re-
gion over which the shock is numerically smeared and
thus the effective adiabatic index also changes cell-by-
cell gradually changing gas compressibility. As the left
column in Figure 4 shows, the total change of ey does

Yot = 4/3 ot = 5/3

1 I— AR:II‘ 1 1 1

1.0 analytic ] T
QL
05F ol 1
L]

0.0 f ; f f I ;
3 or r i
0 — —

100 f f f f } }
10 K—— . x §

A, —
1 F— total 4 _

thermal E L

—— nonthermal

0.1 T — injected : i :
E 10 5' F 3
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Figure 4. The shock tube test with 20% of dissi-

pated energy injected in the nonthermal component using
the entropy-conserving scheme and the energy partitioning
method outlined in Section 2.3. The initial conditions are
the same as in Figure 1. The left and right columns show
the results for different adiabatic indices of the nonthermal
component: yne = 4/3 and 5/3, respectively. The nonther-
mal energy injected at the shock is tracked separately and
shown with green color in the bottom two panels. The ana-
lytic solution for all quantities is computed following Pfrom-
mer et al. (2017, Appendix C2) and is shown with the thick
lines. When 7y differs from 4, = 5/3, the injected energy
in the post-shock region is underestimated by ~ 20%, while
for ynt = yn = 5/3 the result is in perfect agreement with
the analytical solution.

not add up correctly and results in smaller than expected
injected ey for ey = 4/3 < vn. We also checked that
Ynt > Vth leads to an overestimate of the injected ey.
In contrast, when v, = 7w, the effective adiabatic
index stays constant and therefore the injection of 7y
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does not affect the compressibility of the gas. As the
right column in the figure shows, our injection scheme
works well in this case.

3.3. Zel’dovich pancake test

The formation of a Zel’dovich pancake is a stringent
test for an implementation of thermal and nonthermal
energies because it involves both a purely adiabatic stage
with extremely supersonic gas motion and the formation
of strong shocks after the crossing time.

The solution for density, p(z), and velocity, u(x), of a
sine perturbation evolving from an initial redshift z; to
some later redshift z can be expressed in a parametric
form (Zel’dovich 1970):

14 2 sin(kq)

x(q,2) = ¢ 112 & (12)
(0,2) = po |1 — 2% cos(kq) - (13)
pP\q,2) = pPo 112 q )
1+ z. sin(k
u(q, z) = —Hy (k) (14)

Vi+z ok

where ¢ is the Lagrangian coordinate, pg is the average
density, kK = 27/X is the wavenumber of the initial per-
turbation, and the amplitude of the wave is described
by the redshift of wave crossing, z..

For ease of comparisons, we choose parameters sim-
ilar to Bryan et al. (1995), Trac & Pen (2004), and
Springel (2010): A = 64h~! Mpc and 2. = 1, and
initialize the test at z; = 100. We add a nonther-
mal energy component with v, = 5/3 and initialize
esh and ey so that their initial entropies are constant
with values corresponding to the average temperatures
of T} = (ump/k)Sipg_l = 30 K and 70 K for thermal
and nonthermal components, respectively (where pmy,
is the average particle mass in units of the proton mass).

Both entropy components are expected to be con-
served until the formation of the shocks at the wave
crossing, and the solution for temperatures is therefore

(114—:)3 p(z;Z)r_l, (15)

T(q,2) =T

Figure 5 shows the results of the Zel’dovich test be-
fore (z = 2) and after (z = 0) the formation of shocks.
Both energy-based and entropy-conserving schemes pro-
duce good results for gas density and velocity: during
the adiabatic stage, ey, and ey are negligible and thus
their treatment does not affect the solution, while the
agreement after the wave crossing indicates that both
methods capture the formation of physical shocks at
z=2z. =1

In contrast, the solutions for the thermal and nonther-
mal components are quite different. As the lower left
panel shows, before the crossing redshift, the energy-
based scheme conserves nonthermal entropy to sub-
percent level, while the thermal entropy suffers from
strong numerical heating at the very center of the wave.
The entropy-conserving scheme, in contrast, ensures en-
tropy conservation for both components until the shock
forms. After shock formation, both schemes produce
similar results for thermal entropy, while the solution
for nonthermal entropy in the energy-based scheme suf-
fers from strong spurious heating at the shocks. The
error has the same origin as the errors discussed in
Section 3.1 and is completely absent in the entropy-
conserving scheme.

The differences in thermal energy evolution before
crossing illustrate the effects of the criteria selected to
synchronize e, and en; with egoy — exin. Large value of
thermal energy in the center in the energy-based scheme
occurs because thermal energy is reset there from ey,
while ey}, is still smaller than ey, by orders of mag-
nitude. The truncation error of the scheme (typically
~1073-1072 etot) thus propagates into eg, as it is reset
via ey, = €tot — €kin — €nt, leading to orders of mag-
nitude increase in the temperature at the wave center.
This resetting in the center occurs because the criterion
(etot — €kin)/€tot > 1 can be satisfied near the center of
the wave, where u ~ 0 even though the flow is highly
supersonic in the adjacent cells. Accounting for neigh-
boring cells in the criterion (Equation (5)) or setting the
threshold 7 to a larger value does not prevent this issue,
but only delays its onset because the error in eiot — €xin
accumulates with time.

The entropy-conserving scheme adopts additional cri-
teria based on the Mach number and velocity of the
shocks in the Riemann solution (Equations (9) and (10))
that filter out such cases, ensuring entropy conservation
until the wave crossing. In addition, given that during
the adiabatic stage the conservation of entropy is en-
forced instead of eyo, the errors in eyt — €xin do not
accumulate.

4. ISOLATED GALAXY SIMULATIONS

To test different methods for modeling nonthermal en-
ergies in a more realistic environment, we use simula-
tions of an isolated ~L, galaxy. Specifically, for the
tests presented below, we use a snapshot from our fidu-
cial simulation explored in Semenov et al. (2017, 2018,
2019) as the initial conditions. Below, we briefly de-
scribe the aspects of this simulation that are most rel-
evant to the current study and refer the reader to our
previous papers for more details.
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Figure 5. Hydrodynamic Zel’dovich pancake test with 70% of internal energy in the nonthermal form with yne = vn = 5/3.
The results are shown before and after the wave crossing (left and right sets of panels, respectively) and for the energy-based
and entropy-conserving methods (left and right columns in each set). The connected points show simulation results while the
thick lines show the analytic solution: orange lines show gas density, velocity, and total temperature, while red and blue lines
show thermal and nonthermal components. Note that the analytic solution is valid only outside the shocked regions. Thin red
lines in the top panels show the grid refinement level, with the 0-th level corresponding to 32 cells per box size. The bottom
panels in the left set show the relative entropy error, while in the right set, they show the absolute value of entropy normalized
to the initial total entropy. The energy-based scheme conserves nonthermal entropy relatively well during the adiabatic stage
(with a relative error of < 1%). After the wave crossing, however, the nonthermal entropy suffers from strong numerical heating
at the shocks. The entropy-conserving scheme, in contrast, conserves nonthermal entropy throughout the duration of the run,
with the nonthermal “temperature” increasing only due to adiabatic compression.

One of the key ingredients of these simulations is the
dynamic model for unresolved turbulence, which is im-
plemented as a nonthermal energy. Our implementation
(Semenov et al. 2016) is based on the “shear-improved”
model of Schmidt et al. (2014). In this model, the tur-
bulent energy on unresolved scales, etyub, is modeled as
a nonthermal energy component with an adiabatic index
of v = 5/3, with source and sink terms that describe the
turbulent cascade from the resolved velocity fluctuations
and dissipation of turbulence on the local cell-crossing
time. Apart from these source and sink terms, the sub-

grid turbulent energy is equivalent to ey as introduced
and tested in Sections 2 and 3.

The initial conditions for our isolated galaxy simu-
lations are taken from the AGORA code comparison
project (Kim et al. 2014). The AMR grid cells are
adaptively refined when the gas mass in a cell exceeds
~ 8300 Mg until the minimal cell size of A = 40 pc is
reached. Radiative cooling and heating of gas are mod-
eled using the Gnedin & Hollon (2012) model, assuming
constant metallicity at the solar value and a constant ra-
diation background with the Hy photodissociation rate
in the Lyman—Werner bands of 10710 s=1 (Stecher &
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Gas density (left), velocity dispersion of subgrid turbulence (center) and the error of the subgrid turbulence

entropy (right) in an isolated disk galaxy simulation after ~ 300 Myr of evolution. The subgrid turbulence is modeled using
the entropy-conserved scheme. In this test, subgrid turbulence is initialized such that its entropy is initially constant, and then
the galaxy simulation is evolved with all the source and sink terms of the subgrid turbulence model turned off, except for the
PdV term. The right panel illustrates the long-term conservation of the entropy of subgrid turbulence, which remains constant
to machine precision (~ 107° for a single-precision floating point variable) after ~ 300 Myr of evolution.

Williams 1967). We also adopt a model for dense gas
shielding, which is calibrated against radiative transfer
simulations of the ISM (the “L1a” model from Safranek-
Shrader et al. 2017).

Local star formation is parametrized via the star for-
mation efficiency per freefall time, p, = egp/tg, with
a fixed value of eg = 1%. Star-forming gas is defined
by using a threshold either in density (Section 4.1) or
in the local virial parameter (Section 4.2), where the
latter is computed from the local turbulent velocity,

Oturb = v/ 2€turb/p, by using the definition from Bertoldi
& McKee (1992):

2 —1)2
Soi R ~0.35 (Otot/10 km s™7) . (16)
3GM (n/100 cm—3)(A/40 pc)?

avir =

Stellar feedback is implemented by injecting radial
momentum and thermal energy in the amounts cali-
brated against high-resolution simulations of SN rem-
nants evolution in a nonuniform medium (Martizzi et al.
2015), with the momentum boosted by a factor of 5
to account for the effects of SN clustering (e.g., Gentry
et al. 2017, 2018) and cosmic rays (Diesing & Caprioli
2018). To approximate the effects of pre-SN feedback,
we start the injection of momentum from the moment
of star particle formation and continue the injection at
a constant rate for 40 Myr. The injection rate is set by
the total number of SNe occurring for a given star par-
ticle, which we compute assuming the Chabrier (2003)
IMF. We also account for stellar mass loss by using the
Leitner & Kravtsov (2011) model.

4.1. Adiabatic subgrid turbulence energy

We start by demonstrating that, in a realistic ISM
with a wide variation of density and temperature, our
implementation of the entropy-conserving scheme en-
sures a long-term conservation of nonthermal entropy.
To this end, we initialize the subgrid turbulent energy
such that its entropy is constant and turn off all its
source and sink terms. As such a model for turbu-
lence is not realistic, we use a star formation thresh-
old not in ayi but in density, defining all gas with
n > ng = 100 cm™2 as star-forming. We select this
threshold value because, for our simulated galaxy, it re-
sults in roughly the same amount of star-forming gas as
the fiducial oy, threshold (Semenov et al. 2018). For
this test, we also modified the original star formation
and refinement algorithms such that the nonthermal en-
tropy of gas in a cell is conserved when a star particle is
formed or the cell is refined or derefined.

Figure 6 shows the maps of gas density, subgrid tur-
bulent velocity, and entropy error after 300 Myr of evo-
lution. In the absence of source and sink terms, the
nonthermal entropy maintains its initial value to ma-
chine precision, ~ 1079 for the single-precision floating
point used in this test.

We do not show the results for the energy-based
scheme because there the entropy errors discussed in
Section 3.1 quickly accumulate resulting in a steady in-
crease of turbulent pressure that eventually stabilizes
the disk. In a simulation with a more realistic processes,
such runaway heating does not occur because the cooling
term in the equation for the nonthermal energy leads to
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Figure 7. Results of the isolated galaxy simulation with the full subgrid turbulence model and star formation prescription
coupled with the predicted turbulent velocities. The columns show the mid-plane slices of density, n, and subgrid turbulent
velocity, oturb, and the surface density of SFR, 3., computed using particles younger than 30 Myr. Different rows show
simulations where thermal energy and subgrid turbulence are modeled by using either the energy-based or entropy-conserving
scheme. To guide the eye, black contours in the n and . maps show n = 10 cm ™3 density isocontours. The 3, maps show
the most apparent difference between the two schemes: the SFR in the run with the energy-based scheme is more clumpy and

strongly suppressed near the galaxy center.

efficient dissipation of erroneously generated turbulent
energy. Therefore, in the next subsection, we compare
the schemes with all the sink and source terms activated.

4.2. Full subgrid turbulence model

As a more realistic test, we rerun our galaxy simu-
lation including all source and sink terms in the sub-
grid turbulence model. We also use a star forma-
tion threshold based on the subgrid virial parameter,
Oyir < Quirgs = 10, which was our fiducial choice in
Semenov et al. (2017, 2018, 2019).

Figure 7 compares the maps of gas density, sub-
grid turbulent velocity, oguh, and SFR surface den-
sity in simulations with the energy-based and entropy-
conserving schemes. Although the overall distributions
of n and oy, are quite similar, the figure reveals inter-
esting differences. With the entropy-conserving scheme,
the overall density structure becomes more flocculent,
especially near the disk center. The difference in the 3,
map is even more striking: while with the energy-based

scheme the 3, distribution is rather clumpy and has a
strong deficiency in the central ~ 1 kpc, in the simula-
tion with the entropy-conserving scheme, 3, is smoother
and is not suppressed near the center.

To make the comparison more quantitative and ex-
plain these differences, Figure 8 shows joint distributions
of gas in the n—oyoy plane colored according to the galac-
tocentric radius of the cells and with the thick dotted
line showing the star formation threshold.

In the warm and diffuse part of the ISM with n <
10 cm 3, the overall shapes of these distributions are
similar. In most of such gas, oot is dominated by the
sound speed, ¢s ~ 4-20 km s™!, which sets the lower
envelope of the distribution at n < 10 cm ™2, reminiscent
of the shape of the n—T diagram at such densities. We
checked that the distributions of oy alone are also
quite similar at n < 10 cm™2 in both schemes.

In contrast, there are two interesting differences in
the cold and dense ISM, n > 10 cm ™3, where subgrid
turbulence dominates over thermal energy. First, the
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Figure 8. Joint distribution of gas density and total sub-
grid velocity dispersion, which includes both subgrid turbu-
lence and thermal sound speed, oot = /02, + 2. The
contours show 68%, 95%, and 99% of the gas mass and
the color indicates the average galactocentric radius of cells
within a pixel. The thick dotted line shows the star forma-
tion threshold, avir,st = 10, while the thin lines show the
values of aviy = 1 and 100 for reference. To reduce noise,
the distributions are averaged over 7 snapshots spaced 20
Myr apart. Switching to the entropy-conserving scheme re-
duces oot & Orurb in dense gas (n > 10 cm %) by a factor
of ~1.5 and completely removes the horizontal feature at
Orarb > 30km st and n > 100 cm™2 that corresponds to
the central region of the disk.

turbulent velocities in the main part of the distribu-
tion decrease by a factor of ~1.5 when the entropy-
conserving scheme is used. Second, with the energy-
based scheme, the gas near the disk center mani-
fests itself as a prominent feature with n > 100 cm™3
and oyup ~ 30-50 km s~!, while with the entropy-
conserving scheme, this feature disappears, and ogub
in the central region becomes a continuation of the rest
of the distribution.

The source of these differences is the production of
ewurb 10 radiative shocks via the mechanism described in
Section 3.1. The average distribution of cold gas in the
n—oiot plane is set by the competition between turbu-
lence production and its decay on the local cell-crossing
time. While both simulations include physical produc-
tion terms—adiabatic compression and sourcing by fluc-
tuating velocities—the numerical heating discussed in
Section 3.1 also contributes to production of ey, when
the energy-based scheme is used. The fact that in most
of the cold ISM the increase of oy, is only moderate in-
dicates that this heating mechanism does not dominate
over the physical production terms. The only excep-
tion is the disk center, where switching to the entropy-
conserving scheme leads to a decrease of oy, by a fac-
tor of ~3, which corresponds to a decrease of ey, by
an order of magnitude.

Even though in the context of our subgrid turbu-
lence model the excess of ey in the disk center is
purely numerical, it may reflect a physical enhancement
of turbulence production in that region due to strong
shear. Such an enhancement may not be captured by
the adopted turbulence production term in the model,
but it does appear as an enhancement of numerical dis-
sipation of kinetic energy that is partially converted to
eturd (see Section 5.2 for further discussion). Therefore,
here we solely present the difference between the two
schemes of modeling nonthermal energies and leave the
detailed investigation of the behavior in the disk center
to a future study.

The decrease of oty in the cold and dense gas leads
to significant changes in the SFR distribution. For ex-
ample, as oy drops near the disk center, gas can cross
the star formation threshold more easily in the run with
the entropy-conserving scheme in striking contrast with
the strongly suppressed SFR in the central ~ 1 kpc in
the run with the energy-based scheme (recall the right
panels in Figure 7). At larger galactocentric radii, dis-
tribution of star-forming regions also becomes different.
As Figure 8 shows, when the entropy-conserving scheme
is used, a larger fraction of gas from the main part of
the distribution (i.e., excluding the feature correspond-
ing to the disk center) reaches low virial parameters,
ovir < ayirgt = 10, and the typical densities of such
star-forming gas become lower.

Figure 9 quantifies the effects of the turbulent energy
scheme on the SFR, total mass of star-forming gas, M,
and its average density, ngr, at R > 1 kpc. These three
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Figure 9. The effect of thermal and nonthermal energy
modeling on the star formation in the average disk, i.e., at
R > 1 kpc. The panels show the total star formation rate,
mass of star-forming gas, and its average density. When the
entropy-conserving scheme is used, a lower oty in dense gas
(see Figure 8) results in a larger amount of star-forming gas
but also in a lower average density of such gas. These trends
partially cancel out, leading to only a moderate increase in
the SFR.

quantities are related via

M*:/ﬂ*dvz/ﬂdV:
sf tﬂ

(17)

= eg M, < 1 > Mnd:d

= Eff IMlsf X € Mg Thgr
sf

ty
where eg = 1% and the average density of star-forming
gas is defined from (1/tg) ;' = \/37/(32G umyn), as-

suming p = 1 and (...)sr denoting mass-weighted aver-
ages over star-forming regions.

As the figure shows, the effect of the scheme on these
quantities is quite significant, at the level of ~ 10%—-30%.
In the entropy-conserving scheme, ng; is smaller and Mgt
is larger, which is consistent with the change of the PDF
in Figure 8. These changes partially cancel in the total
SFR, as larger mass of star-forming gas is partly offset
by the lower density and longer free-fall time of star-
forming regions. The total SFR in the run with the
entropy-conserving scheme thus increases only moder-
ately.

The direction of these trends is consistent with the
model for the origin of global gas depletion times, Tgep =
M,/ M,, and SFR from continuous and rapid gas cy-
cling between actively star-forming and diffuse, non-
star-forming states in the ISM (Semenov et al. 2017).
In this model, the global depletion time is the sum of
the times that gas spends in each of these states, which
can be written as Tgep = Netngt + 7 /€, where N is the
total number of cycles required for gas depletion, ¢ is
the average residence time of gas in the non-star-forming
state, and 7g/eg is the average depletion time of the
star-forming gas. Switching to the entropy-conserving
scheme reduces the production of ey, making it eas-
ier for gas to cross the ayi o afurb /m threshold, which
leads to shorter t,¢r and longer 7¢. These trends coun-
teract in the expression for 7qep, but they add up in
the expression for the star-forming gas mass fraction:
fot = (Tﬂ?/Eff)/Tdep = (egNetnst/ma + 1)1, As a result,
the increase of M, = Mgy/Tgep is smaller than the in-
crease of My = fyMy as M, stays roughly constant
over the considered time interval.

5. DISCUSSION
5.1. Implications for galaxy formation simulations

The results presented in the previous sections show
that the choice of the method to model thermal and
nonthermal energy components matters. In particular,
the energy-based scheme can lead to a spurious gen-
eration of both thermal and nonthermal energy com-
ponents. This was apparent in the Zel’dovich pancake
collapse test, which showed significant spurious temper-
ature increase at the center of the pancake right before
crossing. Similarly, Villasenor et al. (2020) showed that
the mean IGM temperature in their simulations is sen-
sitive to how thermal energy of the gas is modeled and
to the parameters of the dual energy scheme (see their
Section 3.4 and Figures 5 and 6).

This difference arose because shock heating of gas in
collapsed regions of virialized halos could be reduced or
suppressed by the condition for synchronizing thermal
energy followed independently with the value computed
from the total energy. The results of Villasenor et al.
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(2020) indicate that these issues can be corrected by
the proper choice of thermal energy synchronization pa-
rameters, meaning that both energy- and entropy-based
schemes can accurately and robustly model thermal en-
ergy. However, our results show that the choice of such
scheme for any nonthermal component(s), such as sub-
grid turbulence or cosmic rays, does make a difference.
This is because nonthermal components are necessarily
evolved separately from the total energy in the entire
simulation domain, while such treatment of the thermal
energy alone is only needed in a limited volume corre-
sponding to highly-supersonic flows.

Many modern fluid dynamics codes employ different
schemes to separately model the coherent bulk motion
of the fluid and small-scale motions (Trac & Pen 2004;
Springel 2010; Duffell & MacFadyen 2011, 2015; Hopkins
2015; Duffell 2016). Such “moving mesh” approaches al-
leviate the inaccuracy of the thermal energy calculation
from the total energy by absorbing a significant fraction
of kinetic energy into the motion of the mesh. However,
our results are equally relevant for these approaches be-
cause they indicate that the entropy-conserving scheme
is the preferred choice for modeling the energies of non-
thermal components. Indeed, for the energy-based for-
mulation, the errors in the nonthermal entropy origi-
nate from the nonadiabatic part of the explicit PdV
source term inside numerically smeared shocks which
occur both in Eulerian and moving-mesh fluid dynamics
schemes.

How much the choice of the scheme matters depends
on the problem at hand. In the relatively dense parts
of the ISM, where cooling is efficient, the spurious gen-
eration of energy near shocks may be inconsequential
as it is dissipated efficiently. On the other hand, as we
showed in the previous section, this choice may result
in non-negligible changes in the star formation rate of a
galaxy, the structure of the ISM, and in particular qual-
itatively different star formation in the central regions
of the simulated galaxy.

Regardless of numerical issues, a strong argument for
the entropy-based scheme for nonthermal energy com-
ponents can be made in models that include the injec-
tion or dissipation of energy in shocks. For example,
both turbulence and cosmic ray energy can be gener-
ated at shock fronts and, as we discussed in Section 2.3,
such generation can be handled with ease in the entropy-
conserving scheme.

This approach can be especially advantageous for
sourcing nonthermal energies on radiative shocks. The
existing methods based on on-the-fly shock finding al-
gorithms estimate dissipated energy by measuring the
pressure jump across the shock. This can be inaccurate

when the pressure in the post-shock region is subject to
significant radiative losses. This issue can be alleviated
in the proposed method because the energy dissipated
by shocks at all cell interfaces can be converted to non-
thermal components before radiative losses occur. We
leave a more detailed investigation of this issue and a
comparison of different methods to future study.

Finally, the entropy-conserving scheme can provide
another significant advantage for modeling subgrid tur-
bulence because the resolved turbulent energy dissipated
by numerical viscosity can be captured into the subgrid
turbulent energy implicitly, as we outline in the next
section. This allows one to avoid explicit modeling via
source terms that require calibration and can be rather
uncertain.

5.2. Sourcing subgrid turbulence via capturing kinetic
energy dissipated by numerical viscosity

Explicit modeling of unresolved turbulence in galaxy
formation simulations can significantly improve the
modeling of processes that depend on the small-scale
turbulent structure of the ISM, such as star formation,
mixing and transport of metals, and the effect of gas
clumping on cooling and chemical reaction rates. Such
subgrid models of turbulence require a prescription for
the energy transfer from the resolved flow to unresolved
scales.

For example, in the Large Eddy Simulation (LES) ap-
proach adopted in Section 4.2 (see Garnier et al. 2009
and Sagaut 2006 for reviews), such source terms are
modeled using explicit closure relations, which can be
calibrated against direct high-resolution simulations of
turbulence (e.g., Schmidt & Federrath 2011). These clo-
sures are the major source of uncertainty in modeling
subgrid turbulence, especially when the onset of the tur-
bulent cascade is not sufficiently resolved or the local
flow is significantly different from the direct simulations
used to calibrate the closures.

On the other hand, the strict enforcement of entropy
conservation opens up a new, more generic way for mod-
eling the energy cascade to unresolved scales via track-
ing the local dissipation of the resolved kinetic energy.
Indeed, as our results show, this scheme can be used
to accurately follow adiabatic evolution of thermal and
nonthermal energies during each hydrodynamics step.
In regions where thermal energy can be computed reli-
ably via the difference of the total and kinetic energies,
€tot — €kin, the change of this energy during a single
step can be compared to the the adiabatically evolving
sum ety + egurb modeled separately using the entropy-
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conserving scheme.® The difference between the two es-
timates will then correspond to the total kinetic energy
dissipated by numerical viscosity in each cell during the
step.

In most galaxy simulations, this dissipated energy is
converted directly into heat and then quickly radiates
away. In the real ISM, however, the energy is transferred
to turbulent motions on small scales and decays on a
longer timescale, close to the local eddy-turnover time.
The above method can be used to capture this energy
and to convert it into heat on a physically-motivated
time scale, e.g., turbulent cell-crossing time with an
order-of-unity pre-factor that can be calibrated in di-
rect simulations of turbulence as in LES simulations.

Even though the dissipation of kinetic energy in this
method is purely numerical and happens on the scale of
a few computational cells, empirical evidence suggests
that the rate of dissipation is correct. Indeed, turbulent
box simulations carried out with different codes gener-
ally find turbulent spectra consistent with theoretical ex-
pectations, suggesting that the rate of the energy trans-
fer on resolved scales is modeled correctly (e.g., Kritsuk
et al. 2011). Given that in developed turbulence, this
energy transfer rate is equal to the dissipation rate on
the viscous scale, the rate of numerical dissipation must
also be equal to the physical dissipation rate.

One additional issue that needs to be considered in
such an approach is that not all kinetic energy dissipated
by numerical viscosity should source the subgrid turbu-
lence. For example, numerical viscosity can dissipate en-
ergy in laminar shearing flows, but no turbulence should
be generated in this case. In the context of the LES ap-
proach, this motivates usage of the “shear-improved”
versions of the schemes, in which the bulk flow of the
gas is factored out from the source terms of subgrid tur-
bulence (Lévéque et al. 2007; Schmidt et al. 2014). Con-
versely, a fraction of the energy dissipated by resolved
shocks can drive turbulent motions in the post-shock re-
gion instead of being fully thermalized. These examples
show that an approach described above should include
a model for how the dissipated energy is apportioned
between thermal and subgrid turbulence energy based
on the local flow properties, such as the shear-improved
approach and the scheme outlined in Section 2.3.

The idea of unresolved turbulence sourcing by numer-
ical dissipation is a part of a more general assumption
upon which the concept of the Implicit Large Eddy Sim-
ulations (ILES) is based (see, e.g., Grinstein et al. 2007

6 Note that in the presence of cooling, the dissipation of energy

can be accounted for in such a comparison during a single step.

for a review): as long as a hydrodynamics solver satis-
fies the basic physical properties of the equations of hy-
drodynamics, such as conservation of mass, momentum,
and energy, as well as causality and positivity, the effect
of truncation errors at the resolution scale is equivalent
to the net effect of unresolved scales. In this context, the
approach outlined above captures the energy transfer to
unresolved scales for the explicitly modeled subgrid tur-
bulence without explicit and uncertain terms and closure
relations. Instead, the energy transfer is implicitly han-
dled by the hydrodynamic solver. The subgrid turbulent
energy can then be used to model star-formation, metal
diffusion, and gas clumping factor in exactly the same
way as in the LES simulations.

6. SUMMARY AND CONCLUSIONS

We have investigated the accuracy of energy-based
and entropy-conservative schemes in modeling nonther-
mal energy components. These schemes were initially
introduced for modeling thermal energies of highly su-
personic flows where ey, is strongly subdominant to the
total and kinetic energies and therefore cannot be ac-
curately computed as the difference between the two.
The energy-based scheme numerically solves the explicit
equation for the energy density evolution, which cannot
be written in conservative form. The entropy-conserving
scheme, on the other hand, uses a conservative equation
for modified entropy and can thus conserve the entropy
of an energy component to machine precision.

We have examined the performance of the schemes in
following the subgrid turbulence and cosmic ray energy
in the standard shock tube and Zel’dovich pancake tests
and simulations of a realistic isolated L, galaxy. Our
results can be summarized as follows.

1. The energy-based scheme results in a spurious gen-
eration of nonthermal energy on shocks in the
shock tube and Zel’dovich pancake tests, while the
entropy-conserving method evolves the energy adi-
abatically to machine precision (see Figures 1, 3,
and 5).

2. The magnitude of the nonthermal entropy error
in the post-shock region increases with the adia-
batic index of the nonthermal component and with
the compression ratio of the shock (see Figure 2).
The latter is particularly relevant for the cold ISM
where shocks can be strongly compressible due to
efficient radiative cooling.

3. In simulations of an isolated L, galaxy with
a turbulence-based star formation prescription,
switching between the energy-based and entropy-
conserved schemes result in a qualitative change of
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morphology, in particular, large qualitative differ-
ence of star formation in the center of the galaxy
(Figure 7), and ~ 20-30% change of the star for-
mation rate away from the center (Figure 9).

4. We outline and test a simple, physical method
for the injection of nonthermal energy on shocks.
This method can be used in conjunction with the
entropy-conserving scheme and can simplify the
implementation of, e.g., injection of cosmic rays
and driving of subgrid turbulence by shocks (see
Section 2.3 and Figure 4).

Finally, we discuss how the entropy-conserving scheme
can provide a straightforward way to capture the kinetic
energy dissipated by numerical viscosity into the sub-
grid turbulent energy implicitly, without explicit source
terms that require calibration and can be rather uncer-
tain. It will be interesting to investigate the performance
of such an approach using idealized simulations of tur-
bulence and realistic galaxy formation simulations.

Although both methods have been shown to perform
well in modeling the evolution of thermal energy, our
results indicate that the entropy-conserving scheme is
a preferred choice for modeling nonthermal energy com-

ponents. This conclusion is equally relevant for Eulerian
and moving-mesh fluid dynamics codes.
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