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Abstract—In general, reliable communication via multiple-
input multiple-output (MIMO) orthogonal frequency division
multiplexing (OFDM) requires accurate channel estimation at
the receiver. The existing literature largely focuses on denoising
methods for channel estimation that depend on either (i) channel
analysis in the time-domain with prior channel knowledge or
(ii) supervised learning techniques which require large pre-
labeled datasets for training. To address these limitations, we
present a frequency-domain denoising method based on a re-
inforcement learning framework that does not need a priori
channel knowledge and pre-labeled data. Our methodology
includes a new successive channel denoising process based on
channel curvature computation, for which we obtain a channel
curvature magnitude threshold to identify unreliable channel
estimates. Based on this process, we formulate the denoising
mechanism as a Markov decision process, where we define the
actions through a geometry-based channel estimation update,
and the reward function based on a policy that reduces mean
squared error (MSE). We then resort to Q-learning to update the
channel estimates. Numerical results verify that our denoising
algorithm can successfully mitigate noise in channel estimates.
In particular, our algorithm provides a significant improvement
over the practical least squares (LS) estimation method and
provides performance that approaches that of the ideal linear
minimum mean square error (LMMSE) estimation with perfect
knowledge of channel statistics.

Index Terms—Channel estimation, channel denoising, rein-
forcement learning, MIMO, OFDM

I. INTRODUCTION

Many current wireless technologies employ multiple-input
multiple-output (MIMO) orthogonal frequency division mul-
tiplexing (OFDM) scheme, where multiple antennas and sub-
carriers are utilized to achieve higher data rates. To ensure the
robustness of MIMO OFDM, accurate channel estimation is
key [1]. To obtain the channel estimates, it is logical to have
the transmitter send a known pilot signal in both the spatial
and frequency domains. The most popular channel estimation
criteria based on pilot signals include linear minimum mean
square error (LMMSE) and least squares (LS) [2].

While LMMSE estimation is optimal in terms of minimiz-
ing mean squared error (MSE), it requires prior statistical
knowledge, which is not always available in wireless environ-
ments. LS channel estimation, on the other hand, is a practical
lower complexity alternative that can be applied without
prior knowledge regarding channel statistics. However, these
benefits come with the cost of performance degradation due
to estimation error induced by the noise [2].

To combat the effect of noise in OFDM LS channel
estimation, researchers have proposed various denoising tech-
niques [3]–[5]. These approaches focus on channel impulse re-
sponse (CIR) thresholding [3], significant sample selection [5],
or zero-enforcing on the noise channel subspace [4], and have
proven to be effective in reducing the MSE of LS estimation.
However, all of the prior approaches are channel condition-
oriented and are vulnerable to channel dynamics and mis-
alignment to the pre-estimated channel statistics. Furthermore,
these approaches rely on denoising in the time-domain, which
increases the computational overhead required to perform a
discrete Fourier transform (DFT) per channel realization.

Leveraging machine learning (ML) to re-examine problems
has been at the center of wireless communication research
recently [6]. ML can also be used to denoise LS channel es-
timates, as demonstrated in [7]–[9]. Gaussian process regres-
sion [7] and deep neural networks, called ChannelNet [8] and
ReEsNet [9], have proven their capabilities refining channel
estimation quality substantially. These works primarily focus
on supervised learning techniques, which require training on
generally extensive labeled datasets that are acquired from
the ideal channel estimation process. It is unlikely that such
labeled training data are always available without exhibiting
dependency on noise and spatial and/or temporal channel
dynamics commonly found in many 5G mobile use cases [10].

Overview of methodology and contributions: In this pa-
per, we propose a reinforcement learning (RL)-based channel
denoising method to lower the MSE of LS channel estimation
in MIMO OFDM systems. In doing so, we introduce a new
successive channel denoising process based on the curvature
of channel estimates, and analytically derive the curvature
magnitude threshold to identify unreliable estimates among
subcarriers. We then model the denoising process as the
problem of finding an optimal sequential order on subcarriers
to effectively reduce the MSE of estimation and formulate the
denoising as a Markov decision process (MDP). The actions of
the MDP are defined based on a geometric channel estimation
update, and the reward function captures the noise reduction
obtained through the sequential channel denoising. To solve
the proposed MDP problem, we resort to Q-learning.

Our method eliminates the requirement of genie datasets for
training and provides robustness against variation in channel
statistics. Furthermore, our proposed method obtains com-
putational efficiency enhancements by performing denoising
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in the frequency-domain, eliminating the need for domain
conversion. Our numerical simulations reveal the effectiveness
of our method, suggesting a substantial performance gain over
LS estimation that approaches the performance of the ideal
LMMSE method when perfect channel statistics are available.

II. SYSTEM MODEL

In this section, we begin by formalizing MIMO OFDM
transmission (Sec. II-A). Then, we introduce the conventional
channel estimation methods that we will later use as bench-
marks in our analysis (Sec. II-B).

A. MIMO OFDM Transmission

We consider a MIMO OFDM system with Nt trans-
mit antennas and Nr receive antennas, where each channel
path has L CIR taps. We let h(`)qp be the channel of tap
` ∈ {0, 1, . . . , L − 1} between the transmit antenna p ∈
{0, 1, . . . , Nt−1} and the receive antenna q ∈ {0, 1, . . . , Nr−
1}. We assume the channel is i.i.d. according to a zero-
mean circularly symmetric complex Gaussian with variance
σ2
` , i.e., h(`)qp ∼ CN (0, σ2

` ). The expected total power P of a
channel path is considered to be constant between antennas,
i.e., P = E

[∑L−1
`=0 |h

(`)
qp |2

]
=
∑L−1
`=0 σ

2
` , ∀p, q. We assume

only L and P are known to the receiver. The system employs
K subcarriers and a cyclic prefix of length L− 1.

The frequency-domain input-output relationship for subcar-
rier k ∈ {0, . . . ,K − 1} of an OFDM symbol is given by

y[k] = H[k]x[k] + w[k], (1)

where y[k] = [y0[k], y1[k], . . . , yNr−1[k]]T ∈ CNr and
x[k] = [x0[k], x1[k], . . . , xNt−1[k]]T ∈ CNt are the kth
subcarrier frequency-domain receive and transmit symbol
vectors, respectively. The transmit symbols are assumed to
be unit power, i.e., E[|xp[k]|2] = 1, ∀p. In (1), w[k] =
[w0[k], w1[k], . . . , wNr−1[k]]T ∈ CNr is the noise vector
with entries i.i.d. according to wi[k] ∼ CN (0, σ2

w), ∀i, and
H[k] = [H

(k)
qp ] ∈ CNr×Nt denotes the MIMO channel matrix

of subcarrier k where

H(k)
qp =

L−1∑
`=0

h(`)qp e
−j2π` k

K . (2)

To obtain the equalized symbol vector for subcarrier k,
denoted by x̃[k] = [x̃0[k], x̃1[k], . . . , x̃Nt−1[k]]T ∈ CNt , a
zero-forcing equalizer is applied to each y[k] as

x̃[k] = H[k]H(H[k]H[k]H)−1y[k], (3)

where (·)H refers to the conjugate transpose. In (3), we
assume the case where Nt ≥ Nr.

We consider a frame-based transmission scenario where
each frame consists of a single pilot signal for channel
estimation and D data signals for data transfer. We also
assume the channel to be block-fading, where the channel
is constant over the duration of D + 1 OFDM symbols and
varies across frames. The system aims to estimate the channel
from the pilot signal to correctly detect data symbols within
the same frame.

B. Channel Estimation

We consider two representative channel estimation ap-
proaches: LS and LMMSE.

1) LS: Suppose each transmit antenna sends its pilot sym-
bol vector denoted by x̂p = [x̂p[0], x̂p[1], . . . , x̂p[K − 1]]T ∈
CK at Nt different times to avoid interference. Given the
pilot observation ŷq = [ŷq[0], ŷq[1], . . . , ŷq[K − 1]]T ∈ CK
at the qth receive antenna, the LS channel estimate denoted
by HLS

qp = [Ĥ
(0)
qp , Ĥ

(1)
qp , . . . , Ĥ

(K−1)
qp ]T ∈ CK is obtained as

follows:

HLS
qp = diag(x̂p)−1ŷq = Hqp + diag(x̂p)−1wq, (4)

where Hqp = [H
(0)
qp , H

(1)
qp , . . . ,H

(K−1)
qp ]T ∈ CK and wq =

[wq[0], wq[1], . . . , wq[K − 1]]T ∈ CK are the true channel
vector between the corresponding transmit and receive antenna
and the noise vector at the receiver, respectively [2]. The
expression in (4) can be equivalently written for the kth
subcarrier as

Ĥ(k)
qp =

ŷq[k]

x̂p[k]
= H(k)

qp +
wq[k]

x̂p[k]
, (5)

which contains both the true channel and the noise.
2) LMMSE: Provided the LS estimate in (4), the LMMSE

channel estimate HLMMSE
qp ∈ CK can be succinctly written as

HLMMSE
qp = Rqp

(
Rqp +

σ2
w

E [|xp[k]|2]
IK
)−1

HLS
qp, (6)

where Rqp = E
[
HqpHH

qp

]
∈ CK×K is the correlation matrix

of the channel vector Hqp and IK is the K × K identity
matrix [2]. The implication of (6) is that a priori channel
statistics must be known to compute (6), which are not
always available in practical wireless networks [1], making
this solution unrealistic. This motivates the proposed learning-
based methodology presented the next section.

III. PROPOSED LEARNING-BASED METHODOLOGY

A. Rationale of Approach

With the assumption that L � K – which is valid in
many OFDM systems [2], [3], [5] – the channel H[k] in (1)
will change slowly across subcarriers while the uncorrelated
noise w[k] will vary rapidly. Although it is difficult to obtain
accurate information on the correlation between channels
in the presence of noise, the channel estimation can still
reveal information about the expected behavior of adjacent
subcarriers. We seek to exploit this information to determine
whether our estimates are reliable (i.e., whether the estimation
has been severely corrupted by the noise) and denoise them
if needed. Specifically, we will develop a channel denoising
method in which the estimations from adjacent subcarriers are
jointly used to conduct sequential denoising in subcarriers,
where the initial estimate is obtained via LS estimation.

As the first step, we introduce channel curvature to capture
the degree of noise contamination, and obtain the threshold
on the channel curvature magnitude that differentiates between



reliable and unreliable channel estimates (Sec. III-B). Then,
we introduce a successive subcarrier denoising method and
formulate it as an MDP, for which Q-learning is applied to
find optimal denoising decisions. (Sec. III-C).

B. Channel Curvature and Denoising Threshold

Suppose our system acquires an LS-estimated channel
vector HLS

qp and we want to obtain the relationship between
each Ĥ(k)

qp and its adjacent subcarriers. The first-order gradient
is a natural candidate, as the regression slope can quantify the
relative position of data with respect to the neighboring points.
However, since the regression slope is defined as a sum of
multiple weighted slopes [11], the issue of weight adjustment
arises, making the gradient an ineffective approach for cap-
turing the relationship. On the other hand, the curvature, i.e.,
the second-order gradient, consistently reflects the relationship
between Ĥ(k)

qp and its adjacent channels. This motivates us to
propose the curvature of Ĥ(k)

qp as a measure of its reliability.
From the estimated channel vector HLS

qp, we approximate
the curvature of each Ĥ(k)

qp , denoted by Ĉ(k)
qp , as follows:

Ĉ(k)
qp =

(
Ĥ(k+1)
qp − Ĥ(k)

qp

)
−
(
Ĥ(k)
qp − Ĥ(k−1)

qp

)
= Ĥ(k+1)

qp − 2Ĥ(k)
qp + Ĥ(k−1)

qp . (7)

Note that for the cases of k = 0 and k = K−1, we impose the
circular shift property to have Ĥ(k−1)

qp = Ĥ
(K−1)
qp for k = 0

and Ĥ(k+1)
qp = Ĥ

(0)
qp for k = K − 1.

We next aim to obtain the curvature magnitude threshold C̃
that classifies unreliable channel estimates. To find this thresh-
old, we first obtain the curvature of actual channel between
transmit antenna p and receive antenna q for subcarrier k,
denoted by C(k)

qp , based on the second derivative of (2):

C(k)
qp =

d2H
(k)
qp

dk2
=

L−1∑
`=1

−
(

2π`

K

)2

h(`)qp e
−j2π` k

K . (8)

Since the values of {h(`)qp }L−1`=1 randomly change over every
transmission frame, the value of C(k)

qp is also random and time-
varying. From (8), we derive an upper bound on the expected
magnitude of C(k)

qp in the following theorem:

Theorem 1. For an Nt × Nr MIMO OFDM L-tap channel
with channel power P , the upper bound on the expected
magnitude of C(k)

qp is given by

E
[∣∣C(k)

qp |
]
≤
(

2π

K

)2

ξ(1, 2)

√√√√(P − σ2
0)
L−1∑
`=1

`4 , C̄(σ2
0),(9)

where ξ(x, y) =
√

2x log 2y.

Proof. We first derive a simple upper bound on the expected
magnitude of curvature using (8):

E
[∣∣C(k)

qp

∣∣] = E

[∣∣∣∣ L−1∑
`=1

−
(

2π`

K

)2

h(`)qp e
−j2π` k

K

∣∣∣∣
]

≤ E

[
L−1∑
`=1

∣∣∣∣− (2π`

K

)2

h(`)qp e
−j2π` k

K

∣∣∣∣
]

=
L−1∑
`=1

(
2π`

K

)2

E
[∣∣h(`)qp ∣∣] , (10)

where the inequality holds from the triangle inequality, and the
equality holds with the expectation directly applied to |h(`)qp |.

For a sequence of Gaussian random variables X1, . . . , Xn

where Xi ∼ N (0, σ2), ∀i, the following holds [12]:

E
[

max
i∈{1,...,n}

|Xi|
]
≤
√

2σ2 log 2n , ξ(σ2, n). (11)

Using (11), the expectation of |h(`)qp | in (10) can be upper
bounded as follows:

E
[∣∣h(`)qp ∣∣] = E

[√
(<{h(`)qp })2 + (={h(`)qp })2

]
≤ E

[√
2
(
max

{
|<{h(`)qp }|, |={h(`)qp }|

})2]≤ σ`ξ(1, 2). (12)

The equality is from the definition of complex Gaus-
sian random variable h

(`)
qp = <{h(`)qp } + j={h(`)qp }, where

<{h(`)qp },={h(`)qp } ∼ N (0,
σ2
`

2 ). The last inequality holds from
applying (11), which yields E

[
max

{
|<{h(`)qp }|, |={h(`)qp }|

}]
≤

ξ(σ2
`/2, 2), and by noting that ξ(x2, y) = x · ξ(1, y).

Applying (12) to (10), we get

E
[∣∣C(k)

qp

∣∣] ≤ L−1∑
`=1

(
2π`

K

)2

σ`ξ(1, 2)

≤
(

2π

K

)2

ξ(1, 2)

√√√√L−1∑
`=1

`4 ·
L−1∑
`=1

σ2
`

=

(
2π

K

)2

ξ(1, 2)

√√√√(P − σ2
0)
L−1∑
`=1

`4. (13)

The inequality in the second line is obtained via the Cauchy-
Schwarz inequality of

∑
`2σ` ≤

√∑
(`2)2 ·

√∑
(σ`)2, and

the equality holds since P =
∑L−1
`=0 σ

2
` . �

Remark: Since C̄(σ2
0) in (9) is the maximum magnitude of

subcarrier channel curvature expected from a MIMO OFDM
L-tap channel with channel power P , we want to have C̃ =
C̄(σ2

0). However, obtaining C̄(σ2
0) requires the knowledge on

σ2
0 , which is not the case we can consider. We therefore intro-

duce the term σ̂2
0 = 1

NtNr

∑Nt−1
p=0

∑Nr−1
q=0 |

1
K

∑K−1
k=0 Ĥ

(k)
qp |2

to approximate σ2
0 . We point to the DFT operation in

(2), which in the large K regime gives 1
K

∑K−1
k=0 Ĥ

(k)
qp ≈

E[Ĥ
(k)
qp ] = E[H

(k)
qp ] + E[w

(k)
q ] = h

(0)
qp . If the average of

| 1K
∑K−1
k=0 Ĥ

(k)
qp |2 ≈ |h(0)qp |2 is taken over NtNr channel links,

we obtain σ̂2
0 that approximates σ2

0 . We can now evaluate
C̄(σ̂2

0) to approximate C̄(σ2
0) and set C̃ = C̄(σ̂2

0).
For our denoising, we classify the estimated channel Ĥ(k)

qp

as reliable if its curvature satisfies

|Ĉ(k)
qp | ≤ C̃, (14)

and consider Ĥ(k)
qp as unreliable otherwise.



C. Successive Denoising Formulation and Optimization

1) MDP denoising formulation: We aim to make the best
sequential decisions on which subcarrier to select and denoise.
Suppose we initially observe M channel estimates as an M -
dimensional state S, and take an action a to denoise a single
channel estimate that fails to satisfy (14). Once the action
a is taken, a different set of M channel estimates, denoted
S′, will be observed. We then consider S′ as our new state
and take another action a′ to perform denoising. If we repeat
this observe-and-denoise process until it reaches a terminating
state where there is no subcarrier to denoise, our denoising
problem can be formulated as an MDP [13].

State: Formally, we define the state as a set of channel
estimates:

S(i) =
[
fQ(Ĥ(i)

qp ), fQ(Ĥ(i+1)
qp ), . . . , fQ(Ĥ(i+M−1)

qp )
]
, (15)

where i ∈ {0, 1, . . . ,K − M} indicates a subcarrier index
from which the M -dimensional state is obtained out of K
subcarriers, and fQ(x) is a quantization function given by

fQ(x) = ∆ ·
⌊
<{x}

∆
+

1

2

⌋
+ j

(
∆ ·
⌊
={x}

∆
+

1

2

⌋)
, (16)

with quantization step size ∆. This quantization process
allows us to represent the environment observations with a
finite number of states [14]. Using (15), for an arbitrary value
of i, the quantized channel estimates from the ith to i+M−1th
subcarriers form an M -dimensional state.

Action: The action in our problem is an index indicating
which channel estimate to denoise. From a given state S(i),
a set of possible actions A is formed as follows:

A(i) =
{
a ∈ {0, 1, . . . ,M − 1} : |Ĉ(i+a)

qp | > C̃
}
. (17)

For selecting an action from A, any decision-making strategy
that leads to a policy improvement can be used; a common
choice is ε-greedy [13], which we adopt in this paper.

Once an action a ∈ A(i) is chosen, the next state S′(i) is
observed through the transition function T (S(i), a) defined as

S′(i) = T
(
S(i), a

)
=
[
fQ(Ĥ ′(i)qp ), fQ(Ĥ ′(i+1)

qp ), . . . , fQ(Ĥ ′(i+M−1)qp )
]
, (18)

where we propose to update the channel estimates using the
following criterion for each m ∈ {0, 1, . . . ,M − 1}:

Ĥ ′(i+m)
qp =

Z
(i+m)
qp + C̃

2 ·
Ĥ(i+m)

qp −Z(i+m)
qp

|Ĥ(i+m)
qp −Z(i+m)

qp |
if m = a

Ĥ
(i+m)
qp otherwise

(19)

with Z
(x)
qp = (Ĥ

(x−1)
qp + Ĥ

(x+1)
qp )/2. The reasoning for this

estimation update is as follows. Substituting Ĉ(k)
qp in (14) with

the definition in (7) yields

|Ĥ(k+1)
qp − 2Ĥ(k)

qp + Ĥ(k−1)
qp |2 ≤ C̃2. (20)

Then, the above inequality can be expressed as a circle as
follows:(
<{Ĥ(k)

qp − Z(k)
qp }

)2
+
(
={Ĥ(k)

qp − Z(k)
qp }

)2
≤ C̃2

4
. (21)

Given two channel estimates Ĥ(k−1)
qp and Ĥ(k+1)

qp , Ĥ(k)
qp must

be located within a circle centered at Z(k)
qp with radius C̃/2 to

satisfy (14). The estimation update given by (19) corresponds
to the minimal displacement such that the updated point Ĥ ′(k)qp

is located on the circle described in (21).
Reward: Once S′(i) is observed, the reward is obtained

based on the effectiveness of the action taken in terms of the
problem objective. For minimizing the MSE of our channel
estimation, we use the following expression for the reward:

r(S(i), a)=
1

K

K−1∑
k=0

(∣∣Ĥ(k)
qp − ĥ(0)qp

∣∣2−∣∣Ĥ ′(k)qp − ĥ(0)qp
∣∣2) , (22)

where ĥ
(0)
qp = 1

K

∑K−1
k=0 Ĥ

(k)
qp . This reward function is the

change in variance of channel estimates along subcarriers
upon taking an action. For large K, by the law of large
numbers, (22) can be written as:

E
[∣∣Ĥ(k)

qp − E[Ĥ(k)
qp ]
∣∣2]− E

[∣∣Ĥ ′(k)qp − E[Ĥ(k)
qp ]
∣∣2]

= E
[∣∣Ĥ(k)

qp − h(0)qp
∣∣2]− E

[∣∣Ĥ ′(k)qp − h(0)qp
∣∣2]

= (P + σ2
w − σ2

0)− (P + σ2
w′ − σ2

0) = σ2
w − σ2

w′ , (23)

where σ2
w′ is the remaining noise variance after taking the

action a. In (23), the first equality holds since E[Ĥ(k)] =
E[H(k)]+E[w[k]] = h(0), and the second equality holds from
our assumption on uncorrelated channels and noise. Thus, a
greater reward is attributed to an action that eliminates more
noise. Since the MSE of LS channel estimation is proportional
to the noise variance [3], our reward effectively captures and
reflects the improvement in MSE upon taking the action a.

2) Q-learning-based solution: Considering our MDP-
based denoising, the sequential order in which channel esti-
mates are selected and denoised becomes an important factor,
especially with a low signal-to-noise ratio (SNR) condition
where multiple consecutive subcarriers are likely to be un-
reliable. In the MDP we consider, S′ from any state-action
pair (S, a) is deterministic (i.e., P (S′|S, a) = 1). It is hence
possible to apply a brute force search or SARSA learning [13]
over all combinations of denoising orders, but this will impose
a significant amount of computational overhead.

Instead, to learn the optimal sequential denoising order,
we adopt Q-learning [13], which seeks to learn the quality
of actions while maximizing the cumulative reward. Unlike
supervised learning algorithms, it does not require a training
stage as its learning is executed through exploration and
exploitation steps. Q-learning will find the optimal policy for
any finite MDP (i.e., with finite state and action spaces) [13],
as is the case in our setting.

Using the MDP parameters we established, the state-action
quality Q(S(i), a) of Q-learning is updated using the follow-
ing value iteration [13]:

Q(S(i), a)← Q(S(i), a)

+ α(r(S(i), a) + γ max
a′

Q(S′(i), a′)−Q(S(i), a)), (24)

where α and γ are the learning rate and the discount factor,
respectively. The Bellman update in (24) allows the current



state-action pair to consider its potential future states and
actions. In our context, this update performs successive sub-
carrier denoising leading to the maximum noise reduction.

D. Additional Optimization via Threshold Update

We also introduce a feedback scheme that further adjusts
the threshold C̃ to improve the overall denoising performance.
This allows our algorithm to evaluate the effectiveness of C̃
on current channel estimates and improve its future denoising.
We define the cumulative feedback F to be updated after each
complete procedure of denoising as F ← F+∆F , where ∆F
is the variance of the remaining noise given by

∆F =
1

NtNrK

Nt−1∑
p=0

Nr−1∑
q=0

K−1∑
k=0

∣∣Ĥ(k)
qp

∣∣2−P ≈ E
[∣∣Ĥ(k)

qp

∣∣2]−P. (25)

In the next denoising procedure, the curvature threshold is
updated as follows:

C̃ = C̄(σ̂2
0)−

(2π

K

)2
F. (26)

The scaling term ( 2π
K )2 is from (8), reflecting the impact of

noise on the channel curvature.
The overall denoising algorithm developed in this section

is summarized in Algorithm 1.

Algorithm 1 Learning-based successive denoising algorithm.
for each frame received do

Acquire HLS
qp for all transmitters p and receivers q

Acquire and adjust C̃ using (9) and (26)
for every (q, p) pair do

while |Ĉ(k)
qp | > C̃ for any k do

Select random subcarrier k from {0, . . . ,K −M}
Initialize state S(k)
while A(k) 6= φ do

Select action a from A(k) using ε-greedy
Observe S′(k) using (18) and (19)
Compute reward r(S(i), a) using (22)
Update quality Q(S(k), a) using (24)
Update state S(k)← S′(k)

end while
end while

end for
Compute ∆F using (25)
Update F ← F + ∆F

end for

IV. NUMERICAL RESULTS AND DISCUSSION

We conduct a set of numerical experiments to analyze the
performance of our proposed successive denoising method
under different system settings. We consider a MIMO OFDM
system with parameters Nt = 4, Nr = 4, K = 32, and
D = 25. Unless stated otherwise, channels are generated from
the exponential power delay profile (PDP) with P = 1 and
L = 8. We choose ∆ = 0.2, α = 0.3, ε = 0.5, and γ = 1,
and measure MSE as follows:

MSE =
1

NtNrK

Nt−1∑
p=0

Nr−1∑
q=0

K−1∑
k=0

∣∣Ĥ(k)
qp −H(k)

qp

∣∣2. (27)

We evaluate the learning performance of our method over
a fixed set of channel realizations for different values of

state dimension M and channel length L in Fig. 1. For both
channel lengths used, learning in both cases with M = 8
result in lower MSE but take more iterations to converge. This
is because larger state dimensions generally require longer
training times, but provide better performance by the end
of the process. We next consider channels with various time
correlations and evaluate the performance of our method in
Fig. 2 (for i.i.d. channel generation) and Fig. 3 (for correlated
channels). The correlated channels are generated via Gauss-
Markov process [15] with a correlation factor ρ. As seen in
Fig. 2, denoising over uncorrelated channels converges after
300 frames with a constant learning slope. Fig. 3 reveals that
denoising over correlated channels exhibits a faster conver-
gence (around 150 frames) due to stationarity of the channels.

To verify the robustness of our method against statistical
variations of channels, MSE performance over time with
varying SNR conditions is depicted in Fig. 4. Starting at 0 dB
SNR, the SNR changes to 6 dB and 12 dB after transmitting
200 and 400 frames, respectively. An ideal LMMSE estima-
tion case (i.e., SNR levels are always known) and an imperfect
LMMSE estimation that only has the knowledge of initial
channel statistics are considered. The results demonstrate that
compared to the degraded performance of LMMSE estimation
with inaccurate channel knowledge, our method is able to
keep its consistent performance relative to the ideal LMMSE
estimation regardless of the channel condition.

Fig. 5 depicts the MSE performance of our method over dif-
ferent SNRs. We also include the results from the algorithms
proposed in [3] and [8] for comparison. From ChannelNet [8],
two curves each obtained from two different training datasets
(3 dB and 12 dB SNRs) are included. The results show that
our method achieves an approximate 6 dB performance gain
as compared to the LS estimation. Our method outperforms
the one in [3] especially in the low SNR regime, since
the noise undetected by our proposed threshold becomes
more dominant at high SNRs. Both cases of ChannelNet [8]
achieve lower MSE than our algorithm when SNR conditions
are close to the level on which they were initially trained.
Nevertheless, their performance significantly degrades (e.g.,
see ChannelNet (3dB) evaluated at 12dB SNR) as the testing
condition deviates from that of their training, which is the
drawback of supervised learning methods. Our method, on
the other hand, exhibits a consistent performance over all
the SNRs, suggesting its generalizability. This comes with
the benefit of not relying on any training datasets, as well
as without requiring any knowledge of operating SNR.

Finally, we investigate bit-error rate (BER) performance of
our method in Fig. 6, where QPSK and an LDPC code of
rate R = 1

5 [16] with hard-decision decoding are used for
data modulation and encoding/decoding, respectively. Also,
we used the baseline of [3] since it provides the closest per-
formance to ours as compared to [8]. The BER performance
under perfect channel knowledge (i.e., when H

(k)
qp is known

at the receiver) is included to show the ideal performance.
The results verify that our algorithm achieves performance
comparable to that of LMMSE estimation.
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Fig. 1: MSE of our method vs. number of learning
iterations for different values of state dimension
M and channel length L under fixed channel sets.
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Fig. 2: MSE comparison between our method, LS,
and LMMSE vs. the number of transmitted frames,
where channels are i.i.d. generated.
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Fig. 3: MSE comparison between our method, LS,
and LMMSE vs. transmitted frames for correlated
channels, under different correlation factors.
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imperfect LMMSE and LMMSE vs. the number
of transmitted frames. Starting at 0 dB SNR, the
SNR changes to 6 dB and 12 dB after transmitting
200 and 400 frames, respectively.
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Fig. 5: MSE comparison between our method, LS,
the methods of [3] and [8], and LMMSE vs. SNR.
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Fig. 6: BER comparison between our method, LS,
the method of [3], and LMMSE vs. SNR.

V. CONCLUSION

We considered MIMO OFDM systems and proposed a
novel channel estimation via successive denoising based on
RL. We proposed channel curvature as an effective metric to
quantify channel estimation quality. We derived the magni-
tude threshold of channel curvature to identify the target of
denoising among subcarriers. We then formulated the channel
denoising procedure as an MDP and utilized a Q-learning
approach to optimally decrease the MSE. Through numerical
results we showed that our method achieved a significant
performance gain over the LS estimation and outperforms
existing channel estimation techniques. Our method does not
require a prior knowledge on channel statistics, operating
SNR, and a pre-labeled datasets for training, and hence
dynamically adapts to variations in channel conditions. These
properties make our method practical in wireless systems with
time varying channels where channel statistics are unknown.

ACKNOWLEDGMENT

D. J. Love was supported in part by the National Science
Foundation (NSF) under grants CNS1642982, CCF1816013,
and EEC1941529. C. G. Brinton was supported in part by the
NSF under grants AST2037864. T. Kim was supported in part
by the NSF under grants CNS1955561.

REFERENCES

[1] Y. Liu et al., “Channel estimation for OFDM,” IEEE Commun. Surv.
and Tut., vol. 16, no. 4, pp. 1891–1908, 2014.

[2] M. K. Ozdemir and H. Arslan, “Channel estimation for wireless OFDM
systems,” IEEE Commun. Surv. and Tut., vol. 9, no. 2, pp. 18–48, 2007.

[3] H. Xie et al., “Efficient time domain threshold for sparse channel
estimation in OFDM system,” AEU - Int. Journal of Electronics and
Commun., vol. 68, no. 4, pp. 277–281, 2014.

[4] S. Rosati et al., “OFDM channel estimation based on impulse response
decimation: Analysis and novel algorithms,” IEEE Trans. on Commun.,
vol. 60, no. 7, pp. 1996–2008, 2012.

[5] L. Yang et al., “Novel noise reduction algorithm for LS channel
estimation in OFDM system with frequency selective channels,” in 2010
IEEE Int. Conf. on Commun. Systems, 2010, pp. 478–482.

[6] C. Jiang et al., “Machine learning paradigms for next-generation wire-
less networks,” IEEE Wireless Commun., vol. 24, no. 2, pp. 98–105,
2017.

[7] Y. Yuan et al., “A new channel estimation method based on GPR and
wavelet denosing,” in 2019 3rd Int. Symp. on Autonomous Systems
(ISAS), 2019, pp. 205–209.

[8] M. Soltani et al., “Deep learning-based channel estimation,” IEEE
Commun. Letters, vol. 23, no. 4, pp. 652–655, 2019.

[9] L. Li et al., “Deep residual learning meets OFDM channel estimation,”
IEEE Wireless Comm. Letters, vol. 9, no. 5, pp. 615–618, 2020.

[10] J. Kim et al., “Joint optimization of signal design and resource allocation
in wireless D2D edge computing,” in IEEE INFOCOM 2020 - IEEE
Conf. on Computer Commun., 2020, pp. 2086–2095.

[11] J. F. Kenney and E. S. Keeping, Mathematics of Statistics. Princeton,
NJ, USA: Van Nostrand, 1965.

[12] S. Boucheron et al., Concentration Inequalities: A Nonasymptotic
Theory of Independence. London, U.K.: Oxford Univ. Press, 2013.

[13] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 1998.

[14] P. Sadeghi et al., “Finite-state markov modeling of fading channels
- a survey of principles and applications,” IEEE Signal Processing
Magazine, vol. 25, no. 5, pp. 57–80, 2008.

[15] B. Sklar, Digital Communications: Fundamentals and Applications.
Upper Saddle River, NJ, USA: Prentice-Hall, 2001.

[16] 3GPP, “Multiplexing and channel coding,” 3GPP, TS 38.212, 12 2019,
v16.0.0.


	I Introduction
	II System Model
	II-A MIMO OFDM Transmission
	II-B Channel Estimation
	II-B1 LS
	II-B2 LMMSE


	III Proposed Learning-based Methodology
	III-A Rationale of Approach
	III-B Channel Curvature and Denoising Threshold
	III-C Successive Denoising Formulation and Optimization
	III-C1 MDP denoising formulation
	III-C2 Q-learning-based solution

	III-D Additional Optimization via Threshold Update

	IV Numerical Results and Discussion
	V Conclusion
	References

