
E�cient Algorithms for Least Square Piecewise Polynomial Regression

Daniel Lokshtanov∗ Subhash Suri∗ Jie Xue∗

Abstract

We present approximation and exact algorithms for piecewise regression of univariate and bivariate data

using fixed-degree polynomials. Specifically, given a set S of n data points (x1, y1), . . . , (xn, yn) 2 Rd ⇥ R
where d 2 {1, 2}, the goal is to segment xi’s into some (arbitrary) number of disjoint pieces P1, . . . , Pk, where

each piece Pj is associated with a fixed-degree polynomial fj : Rd ! R, to minimize the total loss function

�k+
P

n

i=1(yi�f(xi))
2
, where � � 0 is a regularization term that penalizes model complexity (number of pieces)

and f :
F

k

j=1 Pj ! R is the piecewise polynomial function defined as f |Pj
= fj . The pieces P1, . . . , Pk are disjoint

intervals of R in the case of univariate data and disjoint axis-aligned rectangles in the case of bivariate data.

Our error approximation allows use of any fixed-degree polynomial, not just linear functions.

Our main results are the following. For univariate data, we present a (1 + ")-approximation algorithm with

time complexity O(
n

"
log

1
"
), assuming that data is presented in sorted order of xi’s. For bivariate data, we

present three results: a sub-exponential exact algorithm with running time n
O(

p
n)
; a polynomial-time constant-

approximation algorithm; and a quasi-polynomial time approximation scheme (QPTAS). The bivariate case is

believed to be NP-hard in the folklore but we could not find a published record in the literature, so in this paper

we also present a hardness proof for completeness.

∗
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1 Introduction

Line, or curve, fitting is a classical problem in statistical regression and data analysis, where the goal is to find a
simple predictive model that best fits an observed data set. For instance, given a set of two-dimensional points
(xi, yi), i = 1, . . . , n, the least-square line fitting problem is to find a linear function f : y = ax+ b minimizing the
cumulative error

P
n

i=1(yi � (axi + b))2. This problem is easily solved in O(n) time because the coe�cients of the
optimal line have a simple closed form solution in terms of input data. In most cases, however, a single line is a poor
fit for the data, and instead the goal is to segment the data into multiple piece, with each piece represented by its
own linear function. This problem of poly-line (or piecewise linear) fitting has been studied widely in computational
geometry, where the goal is either to minimize the total error for a given number of pieces [8, 10], or to minimize
the number of pieces for a given upper bound on the error [8], under a variety of error measures. In a related
but technically di↵erent vein of work on “curve simplification”, the approximation must also form a polygonal
chain—that is, the pieces representing neighboring segments must form a continuous curve, and it is conjectured
that finding a polygonal chain of k pieces with minimum L2 error is NP-hard [8]. In our regression setting, such
continuity is not required.

These best-fit formulations with a “hard-coded” value for the number of pieces k, however, su↵er from the
problem of having to specify k, rather than letting the structure in the data dictate the choice. This can be
circumvented by running the algorithm for multiple values of k, and then stopping with the smallest number
of pieces with an acceptable error. A significant issue, however, is the inherent tradeo↵ between the number of
pieces and the error—the larger number of pieces, the smaller the error—which is recognized as the problem of
“overfitting” in statistics and machine learning. In order to avoid this overfitting problem, regression typically
uses “regularization” and includes a penalty term for the size of the representation (model) in the objective, often
called the “loss” function. By optimizing the loss function, the algorithm automatically balances the two competing
criteria: number of pieces k and approximation error.

In particular, suppose we have a set of data points (xi, yi) 2 Rd⇥R, for i = 1, . . . , n. We call (xi, yi) univariate
data if d = 1 and bivariate if d = 2. We will consider piecewise approximation of these data points using polynomial
functions of any fixed degree g, where linear functions are the special case when the degree is one. Our goal is
to segment xi’s into some (arbitrary) number of disjoint pieces P1, . . . , Pk, each associated with a constant-degree
polynomial function fj , to minimize the total loss function

�k +
nX

i=1

(yi � f(xi))
2
,

where � > 0 is a pre-specified penalty term for regularizing the model complexity (number of pieces) and f :F
k

j=1 Pj ! R is the piecewise polynomial function defined as f |Pj
= fj . The pieces P1, . . . , Pk are disjoint intervals

in R in the case of univariate data and are disjoint axis-aligned rectangles in R2 in the case of bivariate data.
Even for piecewise linear approximation of univariate data, the best bound currently known is ⌦(kn2) [2, 9, 15],

and it is an important open problem to either find a sub-quadratic algorithm or prove a ⌦(n2) lower bound. We
make progress on this problem by presenting a linear-time approximation scheme for this problem.

Theorem 1. There exists a (1 + ")-approximation algorithm for univariate piecewise polynomial regression which

runs in O(n
"
log 1

"
) time (excluding the time for pre-sorting).

For bivariate data, we obtain the following results, including a sub-exponential exact algorithm, a constant-factor
approximation in polynomial time, and a quasi-polynomial approximation scheme (QPTAS).

Theorem 2. There exists an exact algorithm for bivariate piecewise polynomial regression which runs in n
O(

p
n)

time.

Theorem 3. There exists a constant-factor approximation algorithm for bivariate piecewise polynomial regression

which runs in polynomial time.

Theorem 4. There exists a QPTAS for bivariate piecewise polynomial regression.

Finally, while the bivariate case (and hence the case of more than two variables) is believed to be NP-hard in the
folklore, we could not find a published record in the literature, so we also present a hardness proof for completeness.

Theorem 5. Bivariate piecewise regression is NP-hard for all fixed degree polynomials, including piecewise constant

or piecewise linear functions.
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Related work. Curve fitting and piecewise regression related problems have been studied in computational
geometry [6, 8], statistics [16] and machine learning [1, 9] as well as in database theory under the name histogram

approximation [11, 14]. The main focus of research in computational geometry has been to approximate a curve,
or a set of points sampled from a curve, by a fixed-size polygonal chain to minimize some measure of error, such as
L1, L2, L1 error or Hausdor↵ error. For instance, Goodrich [10] presented an O(n log n)-time algorithm to compute
a polyline (or a connected piecewise linear function) in the plane that minimizes the maximum vertical distance from
a set of n points to the polyline, which improves upon the algorithms of [12, 18]. Aronov et al. present an FPTAS
for the polyline fitting problem with the min-sum and least-square error measure, and conjecture that finding a
polygonal chain of k pieces with minimum L2 error is NP-hard [8]. Agarwal et al. [6] consider approximation under
Hausdor↵ and Frechet distances.

Unlike these computational geometric models, in statistics, machine learning and database theory, the piecewise
approximation is typically not required to be “connected”; instead, the goal is to partition the data into a given
number k of pieces, each represented by a simple function. Such an optimal histogram (piecewise approximation)
can be constructed in O(kn2) time using dynamic programming, where k is the number of pieces [11, 14]. A similar
dynamic programming algorithm can also compute an optimal “regularized” piecewise approximation, where k is
the number of pieces in the optimal solution [15]. It is an important open problem to either find a sub-quadratic
algorithm or prove a ⌦(n2) lower bound.

In machine learning, Acharya et al. [2] study a “segmented regression” problem where the goal is to recover
a function f , which is promised to be “nice” (say, piecewise linear with k pieces), and the sampled data from f

has a small random noise. The quality of recovery is measured by the mean squared error. In this model, they
present an algorithm for computing a function with O(k) linear pieces in O(n log n) time [2]. An extension to
multi-dimensional data with similar results is presented in [9]. Our focus is a little di↵erent from these results
because (1) we do not assume a fixed value of k, and (2) we judge the error of our regression against worst-case
input that is not necessarily drawn from a hypothetical k-piece input with small random noise. Thus, these two
lines of research are complementary.

Finally, for bivariate data, Agarwal and Suri [7] considered the problem of computing a piecewise linear surface
with smallest number of pieces whose vertical distance from data points is at most ". They showed that the problem
is NP-hard and gave a polynomial-time O(log n)-approximation algorithm.

Organization. Section 2 introduces some basic notations and concepts used throughout the paper. Our linear-
time approximation scheme for univariate data (Theorem 1) is presented in Section 3. Our algorithms for bivariate
data are presented in Section 4, with the exception that the sub-exponential time exact algorithm (Theorem 2) is
presented in Appendix C. The hardness result for bivariate data (Theorem 5) is presented in Appendix D. Finally,
in Section 5, we conclude the paper and pose some open questions. Also, due to limited space, some proofs and
details are deferred to the appendix.

2 Basic notations and concepts

We begin with basic notation and concepts that are used throughout the paper. For an integer g � 0, we use R[x]g
and R[x, x0]g to denote the family of all univariate and bivariate polynomial functions with degree at most g. A

univariate (resp., bivariate) piecewise polynomial function of degree at most g is a function f :
F

k

j=1 Pj ! R, where
P1, . . . , Pk are disjoint intervals in R1 (disjoint axis-parallel rectangles in R2) and f |Pj

= fj |Pj
for some fj 2 R[x]g

(resp., fj 2 R[x, x0]g), for all j 2 {1, . . . , k}. The intervals (resp., rectangles) P1, . . . , Pk are the pieces of f , and
the number k is the complexity of f , denoted by |f |. The notion of piecewise polynomial functions generalizes to
higher dimensions (multi-variables), where the pieces becomes axis-parallel boxes but in this paper we only study
univariate and bivariate piecewise polynomial functions.

Let � d
g
denote the family of piecewise polynomial functions with d variables and of degree at most g. For a set

of n points S = {(xi, yi) 2 Rd ⇥ R}n
i=1, we define the error of a function f 2 �

d
g
for S as

�S(f) = � · |f |+
nX

i=1

(yi � f(xi))
2
,

where � > 0 is a pre-specified (regularizer) parameter. We assume �S(f) =1 if the domain of f does not cover all
xi’s. For a fixed constant g, the piecewise polynomial regression problem takes S and � as the input, and aims to
find the function f

⇤ 2 �
d
g
that minimizes the error �S(f⇤). By appropriate scaling of the y-values in the input, we
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can assume without loss of generality that � = 1. Therefore, for convenience, we make this assumption throughout
the paper.

3 Algorithm for univariate data

The input to the univariate regression problem is a dataset S = {(xi, yi) 2 R ⇥ R}n
i=1, where x1  · · ·  xn, and

the goal is to find the function f
⇤ 2 �

1
g
minimizing �S(f⇤), for some fixed constant g � 0, where we assume � = 1,

as mentioned earlier. This problem can be solved in O(n2) time with a straightforward dynamic program, and
no subquadratic-time (even approximation) algorithm is known. Our main result in this section is a linear-time
approximation scheme, which for any " > 0 computes in O(n

"
log 1

"
) time a piecewise function f 2 �

1
g
whose error

is at most (1 + ") · opt, assuming that the points in S are pre-sorted by their x-coordinates.
In order to explain the main ideas behind our algorithm, it is helpful to first briefly review the quadratic-time

dynamic programming algorithm. That algorithm performs n iterations, where the ith iteration computes an opti-
mal piecewise regression for the subset of points (x1, y1), . . . , (xi, yi). If the rightmost piece in the optimal solution
for this subproblem covers the points (xj , yj), . . . , (xi, yi), then the solution combines the optimal regression for
(x1, y1), . . . , (xj�1, yj�1) with the best fitting degree g polynomial for (xj , yj), . . . , (xi, yi). By dynamic program-
ming, the former is already computed in the (j�1)th iteration, and the latter can be computed for all subproblems
with an O(n2)-time preprocessing step. There are O(i) candidates for the rightmost piece, and so the ith iteration
takes O(i) time, resulting in an O(n2) time algorithm.

A natural idea for improving the dynamic program’s time complexity is to reduce the number of guesses needed
for the rightmost piece in each iteration: ideally, we would like to find the “best” rightmost piece without trying all
possibilities. This, however, seems quite di�cult if we want the exact optimal solution. Our main idea is to show
that this is possible if we only need a (1 + ") approximation of the minimum error. Our algorithm builds on three
key steps. First, we prove a structural lemma (Lemma 7) showing that there exists an approximate solution f in
which the squared error of each piece (essentially) is bounded by O(1/"), and therefore contributes between 1 and
1 + O(1/") to the final objective �S(f). The second key idea is to show that, for each i 2 [n], there exist a set of
O( 1

"
log 1

"
) “candidate” pieces with right endpoint xi such that a (1 + ")-approximate solution can be found using

only these pieces (Lemma 8). Thus, assuming that these candidate pieces and their best fit degree g polynomials
are known, we only have to make O( 1

"
log 1

"
) guesses in each iteration, which leads to an O(n

"
log 1

"
)-time algorithm.

The final, and third, step is to compute all the candidate pieces e�ciently, which we show can be done using prefix
sum and the standard formula for least-square polynomial regression—the details of this part are presented in
Appendix B.

With this preamble, we are ready to describe our algorithm in detail. For a, b 2 [n] satisfying a  b, we define

f [a, b] = arg min
f2R[x]g

bX

i=a

(yi � f(xi))
2 and �[a, b] = min

f2R[x]g

bX

i=a

(yi � f(xi))
2
.

That is, f [a, b] is the best-fit polynomial in R[x]g for the set of points (xa, ya), . . . , (xb, yb) (in terms of square error)
and �[a, b] is the square error of f [a, b]. We have the following simple observation.

Lemma 6. If a
0  a and b

0 � b, then �[a0, b0] � �[a, b]. Furthermore, for a sequence of numbers a0, a1, . . . , ar where

a� 1  a0 < · · · < ar  b, we have �[a, b] �
P

r

j=1 �[aj�1 + 1, aj ].

Let " be the approximation factor, which we assume is su�ciently small, say 0 < "  1. Let "̃ > 0 be such that
it satisfies (1 + "̃)2 = 1 + ". Then, we have "/3  "̃  " since "  1. For an index i 2 [n], we say i is a left (resp.,
right) break point if xi�1 < xi (resp., xi+1 > xi). For a function f 2 �

1
g
and a piece P of f , the cost of P is defined

as
P

xi2P
(yi � f(xi))2. Thus, the total error �S(f) is simply |f | plus the cost of all the pieces of f .

Lemma 7. There exists a function f 2 �
1
g
such that �S(f)  (1 + "̃) · opt and each piece of f either has cost at

most 2/"̃ or is a singleton point.

Proof. Let f⇤ 2 �
1
g
be an optimal solution, and so �S(f⇤) = opt. Consider a piece of f⇤, say, P ⇤ = [xa, xb] where

a is a left break point and b is a right break point and a, b 2 [n]. Since f
⇤ is optimal, the cost of P ⇤ is �[a, b]. We

replace P ⇤ with r < "̃ · �[a, b]+1 pieces P1, . . . , Pr as follows. We say a pair (a0, a00) of indices with a
0  a

00 is legal if
xa0 = xa00 or �[a0, a00]  2/"̃. Starting with a0 = a�1, we create a sequence a0, a1, a2, . . . of indices, where ai+1 is the
largest right break point in {ai+1, . . . , b} such that (ai+1, ai+1) is legal. The sequence ends at some ar = b, and we
claim that r < "̃ · �[a, b] + 1. We first observe that since ai+1 is the largest right break point for which (ai +1, ai+1)
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is legal, we have �[ai +1, ai+2] > 2/"̃ for all i 2 {0, 1, . . . , r� 2}. Now consider the sum
Pbr/2c�1

i=0 �[a2i +1, a2(i+1)].

Each summand of this sum is greater than 2/"̃. On the other hand, we have �[a, b] �
Pbr/2c�1

i=0 �[a2i +1, a2(i+1)] by
Lemma 6. It directly follows that br/2c < "̃ · �[a, b]/2 and hence r < "̃ · �[a, b] + 1. We define Pi = [xai�1+1, xai

] for
i 2 [r]. We replace P

⇤ of f⇤ with P1, . . . , Pr, and call them the sub-pieces of P ⇤. We do this for all pieces of f⇤,
which gives us our function f 2 �

1
g
, as follows. First, clearly, the domain of f is contained in the domain of f⇤. Next,

for each piece P = [xa, xb] of f , the function f|P is simply the polynomial f [a, b] restricted to P , whose cost is �[a, b].
All that remains is to bound the total error �S(f). Consider a piece P ⇤ = [xa, xb] of f⇤ and its sub-pieces P1, . . . , Pr.
Let c(P ⇤) be the total cost of all the sub-pieces P1, . . . , Pr plus r. By Lemma 6, the total cost of all the sub-pieces
P1, . . . , Pr is at most �[a, b], and since r < "̃ · �[a, b] + 1 and c

⇤(P ⇤) = �[a, b] + 1, we get c(P ⇤)  (1 + "̃) · c⇤(P ⇤).
This inequality holds for each piece of f⇤, and so we get our result that �S(f)  (1 + "̃) · �S(f⇤).

For convenience, we say a function f 2 �
1
g
is S-light if each piece of f is either a singleton point or of cost at

most 2/"̃. Similarly, for a subset S0 ✓ S, we say a function f 2 �
1
g
is S0-light if each piece of f is either a singleton

point or of cost with respect to S
0 (i.e., the sum of only the square error of the points in S

0) at most 2/"̃.
For a right break point b 2 [n] and an integer i � 0, let ai(b) 2 [b] be the smallest left break point such that

�[ai(b), b]  (1 + "̃)i � 1; if such a left break point does not exist, we set ai(b) to be the largest left break point
that is smaller than or equal to b. We define an index set A(b) = {ai(b) : i � 0 and (1 + "̃)i�1 � 1  2/"̃}. We
say an interval I is canonical if I = [xa, xb] for some a, b 2 [n] such that b is a right break point and a 2 A(b). A
function f 2 �

1
g
is canonical if all pieces of f are canonical intervals. The following lemma shows that we can limit

our search to canonical functions.

Lemma 8. There exists a canonical function f 2 �
1
g
such that �S(f)  (1 + ") · opt.

Proof. We claim that for any S-light function f0 2 �
1
g
, there exists a canonical function f 2 �

1
g

with �S(f) 
(1 + "̃) · �S(f0). This claim in combination with Lemma 7 proves the lemma. We prove the claim using induction
on the number r of distinct x-coordinates of the points in S, i.e., distinct elements in {x1, . . . , xn}. If r = 1, then
x1 = · · · = xn and the interval I = [x1, xn] is a singleton point. Furthermore, in this case, 1 is the unique left break
point, hence 1 2 A(n) and I is canonical. Therefore, the claim clearly holds. Assume that the claim holds if the
number of distinct x-coordinates of the points in S is less than r, and consider the case where the number is r.
Let f0 2 �

1
g
be a S-light function, and we want to show that there exists a canonical function f 2 �

1
g
such that

�S(f)  (1 + "̃) · �S(f0). Consider the rightmost piece P of f0. Without loss of generality, we may assume that
P = [xa, xn] for some left break point a 2 [n]. Let c(P ) be the cost of P . We consider two cases, c(P )  2/"̃ and
c(P ) > 2/"̃. If c(P )  2/"̃, we define i as the smallest integer such that (1+ "̃)i � c(P )+ 1. Therefore, (1+ "̃)i�1 
c(P ) + 1  (1 + "̃)i. Since c(P )  2/"̃, we have (1 + "̃)i�1 � 1  2/"̃ and hence ai(n) 2 A(n). By the definition of
ai(n), we have ai(n)  a and �[ai(n), n]  (1+ "̃)i�1, i.e., �[ai(n), n]+1  (1+ "̃)i. Since (1+ "̃)i�1  c(P )+1, we
further deduce that �[ai(n), n] + 1  (1 + "̃) · (c(P ) + 1). Now we define S

0 = {(x1, y1), . . . , (xa�1, ya�1)} ✓ S and
S
00 = {(x1, y1), . . . , (xai(n)�1, yai(n)�1)} ✓ S. Let f 0

0 2 �
1
g
be the function obtained by restricting f0 to the union of

the pieces other than P . Then f
0
0 is both S

0-light and S
00-light. Note that the number of distinct x-coordinates of

the points in S
00 is strictly less than r, as ai(n) is a left break point. Therefore, by our induction hypothesis, there

exists some canonical function f
00 2 �

1
g
with �S00(f 00)  (1 + "̃) · �S00(f0)  (1 + "̃) · �S0(f0), and we can assume

without loss of generality that all pieces of f 00 are contained in the range (�1, xai(n)�1]. We define our function f

as the “combination” of f 00 and f [ai(n), n]. Specifically, the pieces of f consists of all pieces of f 00 and the interval
[xai(n), xn]. On the piece [xai(n), xn], f is the same as f [ai(n), n]. On the other pieces, f is the same as f 00. Clearly,
f 2 �

1
g
, and it is canonical because f

00 is canonical and [xai(n), xn] is a canonical interval. Finally, we have

�S(f) = �S00(f 00) + �[ai(n), n] + 1

 (1 + "̃) · �S0(f0) + (1 + "̃) · (c(P ) + 1)

= (1 + "̃) · �S(f0).

In the case c(P ) > 2/"̃, P must be a singleton point as f0 is S-light. Thus, xa = xn and a is the largest left break
point smaller than or equal to n, which implies a0(n) = a and hence P is canonical. By our induction hypothesis,
there exists some canonical function f

00 2 �
1
g
with �S0(f 00)  (1+"̃)·�S0(f0), where S0 = {(x1, y1), . . . , (xa�1, ya�1)}.

Without loss of generality, we may assume all pieces of f 00 are contained in the range (�1, xa�1]. Similarly to the
above, We define f as the combination of f 00 and f [a, n]. Since �S0(f 00)  (1 + "̃) · �S0(f0) and the cost of P is at
least �[a, n], we have �S(f)  (1 + "̃) · �S(f0).

We can find a canonical function f 2 �
1
g
minimizing �S(f) using dynamic programming, as shown in Algorithm 1.

By Lemma 8, the result is a (1 + ")-approximation of the univariate regression problem.
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Algorithm 1 Approximate-Regression-1D(S)

1: t 0 and opt0  0
2: for t from 1 to n do

3: if t is a right break point then
4: ã argmina2A(t){opta�1 + (�[a, t] + 1)}
5: optt  optã�1 + (�[ã, t] + 1)

6: return optn

The correctness of Algorithm 1 is clear. To analyze its time complexity, we observe that |A(b)| = O( 1
"
log 1

"
) for

all right break points b 2 [n]. Therefore, assuming that we know all the index sets A(b) and all the f [a, b] and �[a, b],
where a 2 A(b), Algorithm 1 can be directly implemented in O(n

"
log 1

"
) time. The details of how to compute all

A(b) and all f [a, b], �[a, b], where a 2 A(b), in O(n
"
log 1

"
) time are presented in Appendix B. The following theorem

states the main result of this section.

Theorem 1. There exists a (1 + ")-approximation algorithm for univariate piecewise polynomial regression which

runs in O(n
"
log 1

"
) time (excluding the time for pre-sorting).

4 Algorithms for bivariate data

In this section, we present our algorithms for piecewise polynomial regression for bivariate data. The input of the
problem is a dataset S = {((xi, x

0
i
), yi) 2 R2 ⇥ R}n

i=1, and our goal is to find a function f
⇤ 2 �

2
g
that minimizes

�S(f⇤) (recall that � = 1 by assumption).
We present three algorithms for this problem. The first is a polynomial time constant factor approximation.

This is the simplest of the three results. The second algorithm computes the exact solution in sub-exponential time
n
O(

p
n), and makes use of the planar separator theorem. The third result is a quasi-polynomial time approxima-

tion scheme, and is technically the most sophisticated of the three algorithms. Due to limited space, the exact
subexponential time algorithm is presented in the appendix, as are proofs of several other technical results.

We begin with a brief overview of the high-level ideas underlying our algorithms. We first observe that a piecewise
function corresponds to an orthogonal partition of the plane (induced by the pieces of the function). Therefore,
the problem of finding the optimal function f

⇤ 2 �
2
g
is (essentially) equivalent to computing an optimal orthogonal

partition of the plane (Lemma 9). Our constant-approximation algorithm (Section 4.1) follows easily from the
observation that there always exists a binary orthogonal partition whose “cost” is a constant factor of the optimal
solution (Lemma 11), and we can compute such a partition in polynomial-time using dynamic programming. To
obtain our subexponential-time algorithm (Appendix C), we observe that an orthogonal partition of the plane forms
a planar graph, and so we can use a divide-and-conquer approach by utilizing balanced separators of this graph.
Finally, our QPTAS (Section 4.2) is more complicated. It is also based on a planar separator theorem, together
with a cutting lemma (Lemma 13) of [3]. The basic idea is to guess a balanced separator of the planar graph of
the cutting and do divide-and-conquer. We then carefully analyze the quality of the solution computed by this
divide-and-conquer process (Lemma 15 and Corollary 16), and show it is indeed a (1 + ")-approximation.

We begin with introducing some notations and concepts. Let � > 0 be a su�ciently small number such
that 3�  |xi � xj | for all i, j 2 [n] with xi 6= xj and 3�  |x0

i
� x

0
j
| for all i, j 2 [n] with x

0
i
6= x

0
j
. Define

X = {xi �� : i 2 [n]} [ {xi +� : i 2 [n]} and X
0 = {x0

i
�� : i 2 [n]} [ {x0

i
+� : i 2 [n]}. We say a rectangle

[x�, x+] ⇥ [x0
�, x

0
+] is regular if x�, x+ 2 X [ {�1,1} and x

0
�, x

0
+ 2 X

0 [ {�1,1}. Let Rreg denote the set
of all regular rectangles. The total number of di↵erent regular rectangles is O(n4), i.e., |Rreg| = O(n4), because
|X| = O(n) and |X 0| = O(n). Note that if R is a regular rectangle, then for any i 2 [n], the point (xi, x

0
i
) is either

contained in the interior of R or outside R. We say a regular rectangle R is nonempty if (xi, x
0
i
) 2 R for some

i 2 [n], and empty otherwise. For a nonempty rectangle R, we define

�R = 1 + min
f2R[x,x0]g

X

(xi,x
0
i
)2R

(yi � f(xi, x
0
i
))2.

Note that �R can be computed in n
O(1) time using the standard approach for least-square polynomial regression. For

a set R of regular rectangles, denote by R• ✓ R the subset of nonempty rectangles, and define �S(R) =
P

R2R•
�R.

A regular region refers to a subset of R2 that is the union of regular rectangles.
An orthogonal partition (OP) ⇧ of a region K ✓ R2 is a set of interior-disjoint (axis-parallel) rectangles whose

union is K (see Figure 1 for an illustration). An OP ⇧ is regular if all rectangles in ⇧ are regular. The following
lemma shows that our problem can be reduced to computing a regular OP ⇧ of the plane which minimizes �S(⇧).
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K

Figure 1: An orthogonal partition (OP) of the region K

Lemma 9. For any f 2 �
2
g
, there exists a regular OP ⇧ of R2

such that |⇧|  5|f | + 1 and �S(⇧)  �S(f).

Conversely, given a regular OP ⇧ of R2
, one can compute in n

O(1)
time a function f 2 �

2
g
such that �S(f) = �S(⇧).

Using the reduction of Lemma 9, we establish our algorithms for piecewise polynomial regression for bivariate
data. Section 4.1 presents a polynomial-time constant-approximation algorithm (Theorem 3), and Section 4.2
presents a QPTAS (Theorem 4). Due to limited space, our sub-exponential exact algorithm (Theorem 2) is deferred
to Appendix C, as it follows easily from Lemma 9 and the planar separator theorem.

4.1 A polynomial-time constant-approximation algorithm

In this section, we present a polynomial-time constant-approximation algorithm for the problem. Let ⇧
⇤ be a

regular OP of R2 that minimizes �S(⇧⇤). In order to describe our algorithm, we need to introduce the notion of
binary OP (and regular binary OP).

R

Figure 2: A binary OP of the rectangle R

Definition 10 (binary OP). Let R be an axis-parallel rectangle. A binary OP of R is an OP defined using the

following recursive rule:

• The trivial partition {R} is a binary OP of R.

• If ` is a horizontal or vertical line that partitions R into two smaller rectangles R1 and R2, and ⇧1 (resp., ⇧2)

are binary OPs of R1 (resp., R2), then ⇧1 [⇧2 is a binary OP of R.

A binary OP is regular if it only consists of regular rectangles.

See Figure 2 for an illustration of binary OP. The basic idea of our approximation algorithm is to, instead of
computing an optimal regular OP, compute an optimal binary regular OP, i.e., a regular binary OP ⇧ of R2 that
minimizes �S(⇧). This task can be solved in polynomial time by a simple dynamic programming algorithm as
follows. Suppose we want to compute an optimal binary regular OP ⇧ of a regular rectangle R. Then ⇧ is either
the trivial partition {R} of R, or there exists a horizontal or vertical line ` separating R into two rectangles R1

and R2, and ⇧ = ⇧1 [⇧2 where ⇧1 (resp., ⇧2) is a regular binary OPs of R1 (resp., R2). In the latter case, the
equation of the line ` must be x = x̃ for some x̃ 2 X or x0 = x̃

0 for some x̃0 2 X
0, because ⇧ has to be a regular OP.

This implies that R1 and R2 are regular rectangles. Furthermore, ⇧1 and ⇧2 must be optimal regular binary OPs
of R1 and R2, respectively, in order to minimize �S(⇧). Therefore, if we already know the optimal regular binary
OPs of all regular rectangles R

0 such that area(R0) < area(R), then an optimal regular binary OPs of R can be
computed in O(n) time. The details of our algorithm is shown in Algorithm 2, which computes an optimal regular
binary OP of R2. Since |Rreg| = O(n4), it is clear that Algorithm 2 runs in polynomial time.

Let ⇧bin be the optimal regular binary OP of R2 computed by Algorithm 2 and ⇧
⇤ be the regular OP of R2 that

minimizes �S(⇧⇤). We shall show that �S(⇧bin) = O(�S(⇧⇤)). To this end, we need the following two lemmas.
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Lemma 11. For any regular OP ⇧ of R2
, there exists a regular binary OP ⇧

0
of R2

such that |⇧ 0| = O(|⇧•|) and
for any R

0 2 ⇧
0
• there exists R 2 ⇧• such that R

0 ✓ R.

Algorithm 2 OptBinPartition(S)

1: N  |Rreg|
2: sort the rectangles in Rreg as R1, . . . , RN such that area(R1)  · · ·  area(RN )
3: for i from 1 to N do

4: ⇧[Ri] {Ri} and opt[Ri] �S(⇧[Ri])
5: suppose Ri = [x�, x+]⇥ [x0

�, x
0
+]

6: for all z 2 X such that x� < z < x+ do

7: R
0
i
 [x�, z]⇥ [x0

�, x
0
+] and R

00
i
 [z, x+]⇥ [x0

�, x
0
+]

8: if opt[Ri] > opt[R0
i
] + opt[R00

i
] then

9: ⇧[Ri] ⇧[R0
i
] [⇧[R00

i
] and opt[Ri] �S(⇧[Ri])

10: for all z0 2 X
0 such that x0

� < z
0
< x

0
+ do

11: R
0
i
 [x�, x+]⇥ [x0

�, z
0] and R

00
i
 [x�, x+]⇥ [z0, x0

+]
12: if opt[Ri] > opt[R0

i
] + opt[R00

i
] then

13: ⇧[Ri] ⇧[R0
i
] [⇧[R00

i
] and opt[Ri] �S(⇧[Ri])

14: return ⇧[R2]

Lemma 12. Let ⇧ and ⇧
0
be two regular OP of R2

. If for any R
0 2 ⇧

0
• there exists R 2 ⇧• such that R

0 ✓ R,

then we have �S(⇧ 0)� �S(⇧)  |⇧ 0
•|� |⇧•|.

By Lemma 11, there exists a regular binary OP ⇧
0 of R2 such that |⇧ 0

•|  O(|⇧⇤
• |) and for any R

0 2 ⇧
0
• there

exists R 2 ⇧
⇤
• such that R0 ✓ R. Then by Lemma 12, we have �S(⇧ 0)/�S(⇧⇤) = 1+(�S(⇧ 0)��S(⇧⇤))/�S(⇧⇤) 

1 + (|⇧ 0
•| � |⇧⇤

• |)/|⇧⇤
• | = |⇧ 0

•|/|⇧⇤
• | = O(1). Because ⇧bin is an optimal regular binary OP of R2, we further

have �S(⇧bin)  �S(⇧ 0)  O(�S(⇧⇤)). We have �S(⇧⇤)  opt by the first statement of Lemma 9, and hence
�S(⇧bin)  O(opt). Using the second statement of Lemma 9, we then compute a function f 2 �

2
g
in O(n · |⇧bin|) =

O(n5) time such that �S(f) = �S(⇧bin)  O(opt).

Theorem 3. There exists a constant-factor approximation algorithm for bivariate piecewise polynomial regression

which runs in polynomial time.

4.2 A quasi-polynomial-time approximation scheme

In this section, we design a quasi-polynomial-time approximation scheme (QPTAS) for the problem, that is, a

(1 + ")-approximation algorithm which runs in n
logO(1)

n time for any fixed " > 0. To this end, we borrow an
idea from the geometric independent set literature [3, 4, 5, 13], which combines the cutting lemma and the planar
separator theorem. We need the following cutting lemma.

Lemma 13. Given a set R of interior-disjoint regular rectangles and a number 1  r  |R|, there exists a regular

OP ⇧ of R2
with |⇧| = O(r) such that each rectangle in ⇧ intersects at most |R|/r rectangles in R.

Proof. This lemma follows directly from a result of [3] (Lemma 3.12). The original statement in Lemma 3.12 of [3]
only claims the existence of a partition ⇧ of R2 satisfying the desired properties. However, by the construction in
[3], if R consists of regular rectangles, then the partition ⇧ is a regular OP.

Using the above cutting lemma and the (weighted) planar separator theorem, we obtain the following corollary.

Corollary 14. Given a set R of interior-disjoint regular rectangles in R2
and a number 1  r  |R|, there exists a

set ⌃ of O(
p
r) interior-disjoint regular rectangles such that each rectangle in ⌃ intersects at most |R|/r rectangles

in R and for any regular region K ✓ R2
, the closure of each connected component U of K\(

S
R2⌃

R) entirely

contains at most
2
3 |R| rectangles in R.

Proof. We shall used the following weighted version of the planar separator theorem. Let G = (V,E) be a planar
graph with m vertices where each vertex has a non-negative weight, and W be the total weight of the vertices. The
weighted planar separator theorem states that one can partition the vertex set V into three parts V1, V2,⌃ such
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that (i) there is no edge between V1 and V2, (ii) |⌃|  O(
p
m), and (iii) the total weight of the vertices in Vi is at

most 2
3W for i 2 {1, 2}.

Let ⇧ be the regular partition of R2 described in Lemma 13 satisfying that |⇧| = O(r) and each rectangle in ⇧

intersects at most |R|/r rectangles in R. Consider the planar graph G⇧ induced by ⇧. We assign each vertex of
G⇧ (i.e., each rectangle in ⇧) a non-negative weight as follows. For each rectangle R 2 R, let m(R) be the number
of rectangles in ⇧ that intersects R. The weight of each rectangle R

0 2 ⇧ is the sum of 1/m(R) for all R 2 R
that intersects R

0. Note that the total weight W is equal to |R| because each rectangle in R contributes exactly
1 to the total weight. Applying the weighted planar separator theorem to the vertex-weighted graph G⇧ , we now
partition ⇧ into three parts V1, V2,⌃ such that (i) there is no edge between V1 and V2 in G⇧ , (ii) |⌃|  O(

p
r),

and (iii) the total weight of the vertices in Vi is at most 2
3 |R| for i 2 {1, 2}. The separator ⌃ is just the desired

set of interior-disjoint regular rectangles described in the corollary. The fact that each rectangle in ⌃ intersects
at most |R|/r rectangles in R follows directly from the property of ⇧. So it su�ces to show that for any regular
region K ✓ R2, (the closure of) each connected component of K\(

S
R2⌃

R) intersects at most 2
3 |R| rectangles in

R. Let U be a connected component of K\(
S

R2⌃
R). The rectangles in ⇧ that are contained in the closure of U

induces a connected subgraph of G⇧ , and hence they either all belong to V1 or all belong to V2 (because there is no
edge between V1 and V2 in G⇧). It follows that the total weight of these rectangles is at most 2

3 |R|, which further
implies that the number of rectangles in R that are (entirely) contained in the closure of U is at most 2

3 |R|.

With the above corollary in hand, we are ready to describe our QPTAS. Roughly speaking, our algorithm
“guesses” the set ⌃ in Corollary 14 for the optimal regular OP R (and some parameter r polynomial in log n and
1/") and then recursively solve the sub-problem in each rectangle in ⌃ and in each connected component of the
complement of

S
R2⌃

R. The nice properties of ⌃ described in Corollary 14 can be used to show (with a careful
analysis) that the final solution we compute is a (1 + ")-approximation of the optimal solution.

Formally, let r = !(1) be an integer parameter to be determined later and c be a su�ciently large constant.
For a regular region K ✓ R2 and an integer m, we denote by optK,m as the minimum �S(⇧) for a regular OP ⇧

of K with |⇧•|  m. We shall design a procedure AppxPartition(S,K,m), which computes a regular OP ⇧ of
the regular region K such that �S(⇧) is “not much larger” than optK,m (note that we do not require |⇧•|  m);
what we mean by “not much larger” will be clear shortly.

Algorithm 3 AppxPartition(S,K,m)

1: ⇧opt  ; and opt 1
2: for all ⇧ ✓ Rreg with |⇧|  r do

3: if the rectangles in ⇧ are interior-disjoint and contained in K then

4: construct an arbitrary regular OP ⇧
0 of K such that ⇧ ✓ ⇧

0

5: if �S(⇧ 0) < opt then ⇧opt  ⇧
0 and opt �S(⇧ 0)

6: if m  r then return ⇧opt

7: for all ⌃ ✓ Rreg with |⌃|  c
p
r do

8: if the rectangles in ⌃ are interior-disjoint then
9: U  Components(K\(

S
R2⌃

R))
10: ⇧R  AppxPartition(S,K \R,m/r) for all R 2 ⌃

11: ⇧U  AppxPartition(S,Closure(U), 3
4m) for all U 2 U

12: ⇧  (
S

R2⌃
⇧R) [ (

S
U2U ⇧U )

13: if �S(⇧) < opt then ⇧opt  ⇧ and opt �S(⇧)

14: return ⇧opt

Algorithm 3 shows how AppxPartition(S,K,m) works step-by-step, and here we provide an intuitive expla-
nation of the algorithm. Let ⇧⇤ be a (unknown) regular OP of K such that |⇧⇤|  m and �S(⇧⇤) = optK,m. We
consider two cases separately: |⇧⇤

• |  r and |⇧⇤
• | > r. The for-loop of Line 2-6 handles the case |⇧⇤

• |  r. We simply
guess the (at most) r rectangles in ⇧

⇤
• . Note that when we correctly guess ⇧⇤

• , i.e., ⇧ = ⇧
⇤
• in Line 2, any regular

OP ⇧
0 of K such that ⇧ ✓ ⇧

0 satisfies �S(⇧ 0) = �S(⇧) = �S(⇧⇤
• ) = �S(⇧⇤), because (xi, x

0
i
) /2 K\(

S
R2⇧

R) for
all i 2 [n]. Therefore, in the case |⇧⇤

• |  r, we already have |⇧opt|  optK,m after the for-loop of Line 2-6. The
remaining case is |⇧⇤

• | > r, which implies m > r. This case is handled in the for-loop of Line 8-15. We guess the set
⌃ described in Corollary 14 with R = ⇧

⇤
• (Line 8 of Algorithm 3), which consists of at most c

p
r interior-disjoint

regular rectangles (recall that c is su�ciently large). Let U be the set of connected components of K\(
S

R2⌃
R).

By Corollary 14, for each R 2 ⌃, the regular region K \ R intersects at most |⇧⇤
• |/r (and hence at most m/r)
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rectangles in R, and for each U 2 U , the closure of U contains at most 2
3 |⇧

⇤
• | rectangles (and hence at most 2

3m) in
R. We then recursively call AppxPartition(S,K\R,m/r) for all R 2 ⌃ and AppxPartition(S,Closure(U), 3

4m)
for all U 2 U ; see Line 11-12 of Algorithm 3. Each recursive call returns us a regular OP of the corresponding
sub-region of K; we set ⇧ to be the union of all the returned regular OPs, which is clearly a regular OP of K
(Line 13 of Algorithm 3). Intuitively, �S(⇧) should be “not much larger” than �S(⇧⇤) if our guess for ⌃ is correct.
More precisely, we have the following observation.

Lemma 15.
P

R2⌃
optK\R,m/r +

P
U2U optClosure(U), 34m

 (1 +O(1/
p
r)) · �S(⇧⇤).

Proof. We first show that there exists a regular OP ⇧ of K satisfying (i) |⇧•| � |⇧⇤
• | = O(|⇧⇤

• |/
p
r), (ii) each

rectangle in ⇧ is either contained in some R 2 ⌃ or interior-disjoint with all R 2 ⌃, (iii) each R 2 ⌃ contains at
most m/r nonempty rectangles in ⇧ and Closure(U) contains at most 3

4m nonempty rectangles in ⇧ for each U 2 U .
Consider the regular OP ⇧

⇤ of K. We further partition each rectangle R
⇤ 2 ⇧

⇤ into smaller (regular) rectangles
as follows. Let m(R⇤) denote the number of rectangles in ⌃ that intersect (the interior of) R⇤. Since the rectangles
in ⌃ are interior-disjoint, the boundaries of these m(R⇤) rectangles cut R⇤ into m(R⇤) + 1 regions (which are not
necessarily rectangles). Now we construct the vertical decomposition the boundaries of these m(R⇤) rectangles
inside R

⇤ as follows (similarly to what we did in the proof of Lemma 9). For each top (resp., bottom) vertex of the
m(R⇤) rectangles, if the vertex is contained in the interior of R⇤, we shoot an upward (resp., downward) vertical
ray from the vertex, which goes upwards (resp., downwards) until hitting the boundary of R⇤ or the boundary of
some other R 2 ⌃. See Figure 3 for an illustration. Including one ray cuts R

⇤ into one more piece, and the total

Figure 3: The vertical decomposition inside R
⇤. The grey rectangles are those in ⌃. The rectangle with bolder

boundary is R⇤.

number of the rays we shoot is at most 4m(R⇤). Therefore, the vertical decomposition induces a regular OP of R⇤

into at most 5m(R⇤) + 1 rectangles. We do this for every rectangle R
⇤ 2 ⇧

⇤. After that, we obtain our desired
regular OP ⇧. Next, we verify that ⇧ satisfies the three conditions. We have |⇧•| 

P
R⇤2⇧⇤

•
(5m(R⇤) + 1) =P

R⇤2⇧⇤
•
5m(R⇤) + |⇧⇤

• | since each rectangle R
⇤ 2 ⇧

⇤
• is partitioned into at most 5m(R⇤) + 1 smaller rectangles in

⇧ (note that the rectangles in ⇧
⇤\⇧⇤

• do not contribute any nonempty rectangle to ⇧). Because |⌃| = O(
p
r) and

each rectangle in ⌃ intersects at most |⇧⇤
• |/r = |⇧⇤

• |/r rectangles in ⇧
⇤
• , we have

P
R⇤2⇧⇤

•
m(R⇤) = O(|⇧⇤

• |/
p
r).

It follows that |⇧•| � |⇧⇤
• | = O(|⇧⇤

• |/
p
r), i.e., ⇧ satisfies condition (i). Conditions (ii) follows directly from our

construction of ⇧. It su�ces to show condition (iii). Let R 2 ⌃ be a rectangle. By our construction of ⇧, inside
each R

⇤ 2 ⇧
⇤ that intersects (the interior of) R, there is exactly one rectangle in ⇧ that is contained in R. Since

R only intersects at most |⇧⇤
• |/r nonempty rectangles in ⇧

⇤ and |⇧⇤
• |  m, R contains at most m/r nonempty

rectangles in ⇧. Let U 2 U be a connected component of K\(
S

R2⌃
R). Denote by ⇧

⇤
• (U) ✓ ⇧

⇤
• be the subset of

rectangles that intersect U . Clearly, the number of nonempty rectangles in ⇧ that are contained in Closure(U) is
at most

P
R⇤2⇧⇤

• (U)(5m(R⇤) + 1) = |⇧⇤
• (U)|+O(|⇧⇤

• |/
p
r). By Corollary 14, Closure(U) entirely contains at most

2
3 |⇧

⇤
• | rectangles in ⇧

⇤
• (U). All the other rectangles in ⇧

⇤
• (U) are partially contained in Closure(U). Note that if a

rectangle is partially contained in Closure(U), then it intersects some R 2 ⌃. Therefore, the number of rectangles
in ⇧

⇤
• (U) that are partially contained in Closure(U) is bounded by O(|⇧⇤

• |/
p
r), because |⌃| = O(

p
r) and each

rectangle in ⌃ intersects at most |⇧⇤
• |/r rectangles in ⇧

⇤
• . It follows that |⇧⇤

• (U)| = 2
3 |⇧

⇤
• |+O(|⇧⇤

• |/
p
r) and the

number of rectangles in ⇧ that are contained in Closure(U) is bounded by 2
3 |⇧

⇤
• |+O(|⇧⇤

• |/
p
r), which is no more

than 3
4m because |⇧⇤

• |  m and we require r = !(1).
Now we are ready to prove the lemma. Let ⇧ be the regular OP of K we constructed above. Condition (ii)

above guarantees that each rectangle in ⇧ is either contained in some R 2 ⌃ or contained in Closure(U) for some
U 2 U . For each R 2 ⌃, let ⇧(R) ✓ ⇧ denote the subset of rectangles contained in R. Similarly, for each U 2 U ,
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let ⇧(U) ✓ ⇧ denote the subset of rectangles contained in Closure(U). Condition (iii) above guarantees that
|⇧(R)•|  m/r for all R 2 ⌃ and |⇧(U)•|  3

4m for all U 2 U . So we have

�S(⇧) =
X

R2⌃

�S(⇧(R)) +
X

R2U2U
�S(⇧(U)) �

X

R2⌃

optK\R,m/r +
X

U2U
optClosure(U), 34m

.

On the other hand, we have �S(⇧)� �S(⇧⇤)  |⇧•|� |⇧⇤
• | = O(|⇧⇤

• |/
p
r) by Lemma 12 and condition (i) above.

Because |⇧⇤
• |  �S(⇧⇤), we further have �S(⇧)  (1 +O(1/

p
r)) · �S(⇧⇤). Combining the two inequalities above

gives us the inequality in the lemma.

Corollary 16. Let ⇧opt be the regular OP of K returned by AppxPartition(S,K,m). Then we have �S(⇧opt) 
(1 +O(1/

p
r))O(logm) · optK,m.

Proof. As before, let ⇧
⇤ be a (unknown) regular OP of K such that |⇧⇤

• |  m and �S(⇧⇤) = optK,m. We

prove that �S(⇧opt)  (1 + O(1/
p
r))log3/4 m · optK,m by induction on m. In the base case where m  r, we

have �S(⇧opt)  �S(⇧⇤) = optK,m after the for-loop of Line 2-6 (as argued before). Now suppose m > r. If
|⇧⇤

• |  r, then we still have �S(⇧opt)  optK,m after the for-loop of Line 2-6 (as argued before). So it su�ces to
consider the case |⇧⇤

• | > r. We show that when we correctly guess the set ⌃ in Line 8, the regular OP ⇧ of K we
construct in Line 13 satisfies �S(⇧)  (1+O(1/

p
r))log3/4 m · optK,m. Let U be the set of connected components of

K\(
S

R2⌃
R), as in Line 10. We have ⇧ = (

S
R2⌃

⇧R)[ (
S

U2U ⇧U ) where ⇧R = AppxPartition(S,K \R,m/r)
and ⇧U = AppxPartition(S,Closure(U), 3

4m). Recall that r = !(1), and hence m/r  3
4m. By our induction

hypothesis and Lemma 15,

�S(⇧) =
X

R2⌃

�S(⇧R) +
X

U2U
�S(⇧U )

 (1 +O(1/
p
r))log3/4 m�1 ·

 
X

R2⌃

optK\R,m/r +
X

U2U
optClosure(U), 34m

!

 (1 +O(1/
p
r))log3/4 m�1 · (1 +O(1/

p
r)) · �S(⇧

⇤)

= (1 +O(1/
p
r))log3/4 m · �S(⇧

⇤),

which completes the proof.

By Corollary 16, if we set r = c
0 · (log2 n/"2) for a su�ciently large constant c0, then for any regular region K

and any m = O(n), the procedure AppxPartition(S,K,m) will return a regular partition ⇧opt of K such that
�S(⇧opt)  (1 + ") · optK,m. To solve our problem, we only need to call AppxPartition(S,R2

, 5n+ 1), which will
return a regular partition ⇧opt of R2 such that �S(⇧opt)  (1+ ") · optR2,5n+1. By the first statement of Lemma 9,
we have optR2,5n+1  opt. Therefore, it su�ces to use the second statement of Lemma 9 to compute a function
f 2 �

2
g
such that �S(f) = �S(⇧opt)  (1 + ") · opt.

Time complexity. If m  r, the procedure AppxPartition(S,K,m) takes n
O(r) = n

O(log2
n/"

2) time. In the
case m > r, there are n

O(
p
r) sets ⌃ to be considered in Line 8. For each ⌃, we have c

p
r recursive calls in

Line 11 and n
O(1) recursive calls in Line 12, and all the other work in the for-loop of Line 8-15 can be done in

n
O(1) time. In addition, Line 1-6 takes n

O(r) time. Therefore, if we use T (m) to denote the running time of
AppxPartition(S,K,m), we have the recurrence

T (m) =

⇢
n
O(

p
r) · T (m/r) + n

O(
p
r) · T

�
3
4m
�
+ n

O(r) if m > r,

n
O(r) if m  r,

which solves to T (m) = n
O(

p
r logm+r). Since our initial call is AppxPartition(S,R2

, 5n + 1), the total running

time of our algorithm is nO(
p
r logn+r) = n

O(log2
n/"

2).

Theorem 4. There exists a QPTAS for bivariate piecewise polynomial regression.
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5 Conclusion and future work

In this paper, we studied the regression problem for univariate and bivariate data using piecewise polynomial
functions. The loss of a k-piece polynomial function is measured as the sum of �k and its square error, where
� � 0 is a pre-specified parameter. For univariate data, we gave a (1 + ")-approximation algorithm that runs in
O(n

"
log 1

"
) time, assuming the data points are pre-sorted. For bivariate data, we presented three di↵erent results, a

sub-exponential time exact algorithm, a polynomial-time constant-approximation algorithm, and a QPTAS. Finally,
for completeness, we also proved that the problem for bivariate data is NP-hard.

Our work suggests several open problems and future research directions. The complexity of solving the problem
exactly for the univariate data remains a challenging open problem. Is there a subqudratic time algorithm, or is there
a (conditional or unconditional) near-quadratic lower bound? For bivariate data, does there exist a PTAS, namely,
a polynomial-time (1 + ")-approximation algorithm for any fixed " > 0? Finally, computing an approximation of
the multi-variable regression problem with more than two variables e�ciently is an interesting problem.
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Appendix

A Missing proofs

A.1 Proof of Lemma 6

Since (y � y
0)2 � 0 for all y, y0 2 R, we have

P
b
0

i=a0(yi � f(xi))2 �
P

b

i=a
(yi � f(xi))2 for all f 2 �

1
g
. Thus,

�[a0, b0] � �[a, b]. To prove the second statement, notice that �[aj�1 + 1, aj ] 
Paj

i=aj�1+1(yi � f [a, b](xi))2 for all
j 2 [r]. Therefore,

�[a, b] =
bX

i=a

(yi � f [a, b](xi))
2 �

rX

j=1

ajX

i=aj�1+1

(yi � f [a, b](xi))
2 �

rX

j=1

�[aj�1 + 1, aj ],

which completes the proof.

A.2 Proof of Lemma 9

To see the first statement, let f 2 �
2
g

and R1, . . . , Rk be the pieces of f , which are disjoint rectangles in R2.
Without loss of generality, we may assume that each Ri is a regular rectangle; indeed, we can replace each Ri

with the smallest regular rectangle R
0
i
containing all points (xi, x

0
i
) 2 Ri and one can easily verify that the new

rectangles R
0
1, . . . , R

0
k
are also disjoint. Furthermore, we may assume that each Ri is nonempty. Consider the

vertical decomposition of R1, . . . , Rk defined as follows. For each top (top-left or top-right) vertex of each rectangle
Ri, we shoot a upward ray from this vertex, which goes towards the infinity until hitting the boundary of some
other rectangle Rj . Similarly, for each bottom (bottom-left or bottom-right) vertex of each rectangle Ri, we shoot a
downward ray from this vertex, which goes towards the infinity until hitting the boundary of some other rectangle
Rj . The boundaries of R1, . . . , Rk and the rays cut the plane into a set ⇧ of rectangles, which are regular since
R1, . . . , Rk are regular rectangles. See Figure 4 for an illustration. Therefore, ⇧ is a regular OP of R2. Furthermore,
R1, . . . , Rk 2 ⇧ by our construction. We claim that |⇧|  5|f | + 1 and �S(⇧)  �S(f). Since each rectangle Ri

has at most four vertices, the total number of rays is at most 4k. Suppose now we insert these rays one by one.
Initially, the boundaries of R1, . . . , Rk cut the plane into k + 1 regions. After we insert a ray, the total number of
regions can increase at most 1. Therefore, at the end, the total number of regions (i.e., the number of rectangles in

⇧) is at most 5k + 1, i.e., 5|f |+ 1. To see �S(⇧)  �S(f), we may assume �S(f) <1, i.e., (xi, x
0
i
) 2

S
k

j=1 Rj for
all i 2 [n]. With this assumption, the only nonempty rectangles in ⇧ are R1, . . . , Rk. Furthermore, by definition,
we have �Rj

 1 +
P

(xi,x
0
i
)2Rj

(yi � f(xi, x
0
i
))2 for all j 2 [k]. It follows that

�S(⇧) =
kX

j=1

�Rj


kX

j=1

0

@1 +
X

(xi,x
0
i
)2Rj

(yi � f(xi, x
0
i
))2

1

A

= |f |+
nX

i=1

(yi � f(xi, x
0
i
))2

= �S(f).

Next, we prove the second statement of the lemma. Let ⇧ be a regular OP of R2. Suppose R1, . . . , Rk 2 ⇧

are the nonempty rectangles in ⇧. Note that R1, . . . , Rk are interior-disjoint. Furthermore, since R1, . . . , Rk are
regular, the points (x1, x

0
1), . . . , (xn, x

0
n
) are contained in their interiors. Therefore, we can pick R

0
j
✓ Rj for j 2 [k]

such that R
0
1, . . . , R

0
k
are disjoint and R

0
j
contains the same subset of {(x1, x

0
1), . . . , (xn, x

0
n
)} as Rj . For j 2 [k],

let fj 2 R[x, x0]g be the polynomial that minimizes
P

(xi,x
0
i
)2R0

j

(yi � fj(xi, x
0
i
))2. We then define f 2 �

2
g
as the

function with pieces R0
1, . . . , R

0
k
such that f|R0

j
= fj for j 2 [k]. Clearly, f can be constructed in n

O(1) time, because

|⇧|  |Rreg| = O(n4). Also, one can easily verify from the construction that �S(f) = �S(⇧).

A.3 Proof of Lemma 11

Let ⇧ be a regular OP of R2. For each R 2 ⇧•, the boundary of R consists of (at most) four segments1, which we
call the boundary segments of R. Denote by I the set of the boundary segments of all rectangles in R 2 ⇧•. We

1
Here we mean “generalized” segments including rays or lines.

13



R1

R2

R3

R4 R5

Figure 4: The vertical decomposition induced by the rectangles R1, . . . , R5

have |I| = O(|⇧•|). Furthermore, since the rectangles in ⇧• are interior disjoint, the segments in I do not cross
each other. A classical result of [17] states that for a set of m non-crossing orthogonal segments in the plane, there
exists a binary OP of R2 with O(m) rectangles such that the interior of each rectangle is disjoint with the segments.
In addition, according to the construction of [17], the binary OP is regular when the given segments are boundary
segments of regular rectangles. Thus, there exists a regular binary OP ⇧

0 of R2 with |⇧ 0| = O(|⇧•|) such that the
interior of R0 does not intersect any segment in I for all R0 2 ⇧

0. It follows that each R
0 2 ⇧

0 is either contained
in some R 2 ⇧• or interior-disjoint with all R 2 ⇧• and, for any R

0 2 ⇧
0
•, the latter case is impossible and we must

have the former case, i.e., there exists R 2 ⇧• such that R0 ✓ R.

A.4 Proof of Lemma 12

Suppose that for any R
0 2 ⇧

0
• there exists R 2 ⇧• such that R

0 ✓ R. For a rectangle R 2 ⇧•, we write
⇧

0
R
= {R0 2 ⇧

0
• : R0 ✓ R}. Clearly, {⇧ 0

R
: R 2 ⇧•} is a partition of ⇧ 0

•. We claim that �S(⇧ 0
R
)� �R  |⇧ 0

R
|�1 for

any R 2 ⇧•. Let f 2 R[x, x0]g be the polynomial such that �R = 1+
P

(xi,x
0
i
)2R

(yi � f(xi, x
0
i
))2. For any R

0 2 ⇧
0
R
,

we have �
0
R
 1 +

P
(xi,x

0
i
)2R0(yi � f(xi, x

0
i
))2. Note that for each (xi, x

0
i
) 2 R, there exists exactly one rectangle

R
0 2 ⇧

0
R
such that (xi, x

0
i
) 2 R

0. Therefore, we have

�S(⇧
0
R
)� �R 

X

R02⇧0
R

0

@1 +
X

(xi,x
0
i
)2R0

(yi � f(xi, x
0
i
))2

1

A� �R

=
X

R02⇧0
R

0

@1 +
X

(xi,x
0
i
)2R0

(yi � f(xi, x
0
i
))2

1

A�

0

@1 +
X

(xi,x
0
i
)2R

(yi � f(xi, x
0
i
))2

1

A

= |⇧ 0
R
|� 1.

Thus, �S(⇧ 0)� �S(⇧) =
P

R2⇧•
�S(⇧ 0

R
)�

P
R2⇧•

�R 
P

R2⇧•
(|⇧ 0

R
|� 1) = |⇧ 0

•|� |⇧•|.

B Implementation details of our algorithm for univariate data

Recall that we want to compute A(b) and all f [a, b], �[a, b] where a 2 A(b) in O(n
"
log 1

"
) time. To this end, we

first do some preprocessing such that given a polynomial f 2 R[x]g and a, b 2 [n] with a  b, we can computeP
b

i=a
(yi � f(xi))2 in O(1) time. For all integers p, q � 0 such that p, q  2g, we compute the prefix sums of the

sequence (xp

1y
q

1, . . . , x
p
n
y
q
n
) of numbers. This can be done in O(n) time since g is a constant. With these prefix sums,

given integers p, q � 0 with p, q  2g and indices a, b 2 [n] with a  b, we can compute
P

b

i=a
x
p

i
y
q

i
in O(1) time,

because
P

b

i=a
x
p

i
y
q

i
=
P

b

i=1 x
p

i
y
q

i
�
P

a�1
i=1 x

p

i
y
q

i
. Now observe that for a polynomial f 2 R[x]g the function (y�f(x))2

is a polynomial of degree at most 2g with variables x and y. So we can write (y � f(x))2 =
P

p+q2g ep,q · xp
y
q

where the coe�cients ep,q can be easily computed in O(1) time given f . It follows that for a, b 2 [n] with a  b,

bX

i=a

(yi � f(xi))
2 =

X

p+q2g

 
ep,q ·

bX

i=a

x
p
y
q

!
.
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Algorithm 4 Compute(S, i) . Computing ai(b), f [ai(b), b], �[ai(b), b]

1: b n and a b

2: while b � 1 do

3: if b is a right break point then
4: while �[a, b]  (1 + "̃)i � 1 do

5: if a is a left break point then
6: ai(b) a

7: associate f [a, b] and �[a, b] with ai(b)

8: a a� 1
9: b b� 1

10: if a > b then a a� 1

Therefore, with the computed prefix sums, we can compute
P

b

i=a
(yi � f(xi))2 for any given a, b 2 [n] with a  b

in O(1) time. It follows that knowing f [a, b], one can compute �[a, b] in O(1) time, because �[a, b] =
P

b

i=a
(yi �

f [a, b](xi))2.
Now we are able to discuss how to compute all A(b) and all f [a, b], �[a, b] where a 2 A(b). Specifically, for a

number i � 0 such that (1 + "̃)i�1 � 1  2/"̃, we want to compute ai(b) and f [ai(b), b], �[ai(b), b] for all right break
points b 2 [n] in O(n) time. We observe that the indices ai(b) satisfy the following monotonicity: for two right
break points b, b

0 2 [n] where b  b
0, we have ai(b)  ai(b0). This allows us to solve the problem using a simple

sliding-window approach shown in Algorithm 4, where Compute(S, i) computes ai(b) and f [ai(b), b], �[ai(b), b] for
all right break points b 2 [n]. It is clear that Algorithm 4 runs in O(n) time as long as in the while loop of
Line 2-12, we can maintain f [a, b] and �[a, b] in O(1) time whenever a or b changes. As discussed above, with our
preprocessing, one can computes �[a, b] in O(1) time given f [a, b]. Therefore, our actual task here is to maintain
f [a, b] in O(1) time. We observe that each change of a and b in the while loop of Line 2-12 is either a  a � 1 or
b  b � 1. To maintain f [a, b], we need the expression for f [a, b] in terms of the points (xa, ya), . . . , (xb, yb). For
a (g + 1)-dimensional vector � = (�0, . . . ,�g), we define poly[�] 2 R[x]g as the polynomial

P
g

j=0 �j · xj . Also, we
define

Xa,b =

0

BBB@

1 xa · · · x
g
a

1 xa+1 · · · x
g

a+1
...

...
. . .

...
1 xb · · · x

g

b

1

CCCA
and ya,b = (ya, . . . , yb)

T
.

It is well known that f [a, b] = poly[�a,b] where �a,b = (XT

a,b
Xa,b)�1(XT

a,b
ya,b). Note thatXT

a,b
Xa,b is a (g+1)⇥(g+1)

matrix and X
T

a,b
ya,b is a (g + 1)-dimensional vector. Furthermore, XT

a,b
Xa,b and X

T

a,b
ya,b can be easily maintained

in O(1) time for the operations a a�1 and b b�1 (simply by modifying each of their entries). With X
T

a,b
Xa,b

and X
T

a,b
ya,b in hand, �a,b and f [a, b] can be directly computed in O(1) time. This allows us to maintain f [a, b] in

O(1) time in the while loop of Line 2-12. As a result, we obtain a linear-time approximation scheme for piecewise
polynomial regression for univariate data, assuming the data points are pre-sorted.

C A sub-exponential time exact algorithm for bivariate data

We present a simple exact algorithm for piecewise polynomial regression for bivariate data, which runs in n
O(

p
n)

time. Our algorithm first computes a regular OP ⇧ of the plane such that �S(⇧)  �S(⇧ 0) for all regular OP ⇧
0

of the plane satisfying |⇧ 0|  5n+1, and then uses the second statement of Lemma 9 to compute a function f 2 �
2
g

such that �S(f) = �S(⇧) in O(n · |⇧|) = O(n2) time. We claim that �S(f) = opt. It is clear that �S(f) � opt. To
see �S(f)  opt, it su�ces to show �S(⇧)  opt. Let f⇤ 2 �

2
g
be the function such that �S(f⇤) = opt. Note that

|f⇤|  n, for otherwise fopt has an “empty” piece which can be removed to make �S(f⇤) smaller. Therefore, by the
first statement of Lemma 9, there exists a regular OP⇧

⇤ of R2 with |⇧⇤|  5n+1 such that �S(⇧⇤) = �S(f⇤) = opt.
By the property of ⇧, we further have �S(⇧)  �S(⇧⇤) = opt. Hence, �S(f) = opt.

Note that a set ⇧ of interior-disjoint rectangles naturally induces a planar graph in which the vertices are the
rectangles in ⇧ and two vertices are connected by an edge if the two corresponding rectangles are neighboring to
each other, i.e., their boundaries intersect at a segment (rather than a single point). The basic idea of our algorithm
is to use the planar separator theorem, which states that one can partition the vertex set of a planar graph with
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m vertices into three parts V1, V2,⌃ such that (i) there is no edge between V1 and V2, (ii) |⌃|  4
p
m, and (iii)

|V1|  2
3m and |V2|  2

3m; the set ⌃ is called a balanced separator.

Algorithm 5 OptPartition(S,K,m)

1: if m  10 then

2: solve the problem by brute-force
3: else

4: RK  {R 2 Rreg : R ✓ K}, ⇧opt  ;, opt 1
5: for all ⌃ ✓ RK with |⌃|  4

p
m do

6: if the rectangles in ⌃ are interior-disjoint then
7: U  Components(K\(

S
R2⌃

R))
8: ⇧U  OptPartition(S,Closure(U), 2

3m) for all U 2 U
9: ⇧  ⌃ [ (

S
U2U ⇧U )

10: if �S(⇧) < opt then ⇧opt  ⇧ and opt �S(⇧)

11: return ⇧opt

Let K ✓ R2 be a regular region. Suppose we want to compute a regular OP ⇧ of K such that �S(⇧)  �S(⇧ 0)
for all regular OP ⇧

0 of K satisfying |⇧ 0|  m. Note that we do not require |⇧|  m. If m = O(1), we solve the
problem in n

O(m) = n
O(1) time by brute-force: enumerating every set ⇧ of at most m regular rectangles, checking if

⇧ is a partition of K, and computing �S(⇧). Otherwise, we solve the problem as follows. Let ⇧⇤ be an (unknown)
optimal regular OP of K with up to m rectangles, that is, |⇧⇤|  m and �S(⇧⇤)  �S(⇧ 0) for all regular OP
⇧

0 of K satisfying |⇧ 0|  m. We guess a balanced separator ⌃ of the planar graph G⇧⇤ induced by ⇧
⇤, which

corresponds to at most 4
p
m (interior-disjoint) regular rectangles in K (for convenience, we use the same notation

⌃ to denote the set of these rectangles). This separator separates the other vertices of G⇧⇤ into two subsets V1 and
V2 of size at most 2

3m such that there is no edge between V1 and V2. Suppose our guess for ⌃ is correct, and consider
the set U of connected components of K\(

S
R2⌃

R). Each component U 2 U contains some rectangles in ⇧
⇤\⌃,

whose corresponding vertices in G⇧⇤ induce a connected subgraph of G⇧⇤ . Therefore, these rectangles either all
belong to V1 or all belong to V2. Because |V1|  2

3m and |V2|  2
3m, the number of the rectangles in ⇧

⇤ contained
in U is at most 2

3m. We recursively compute a regular OP ⇧U for (the closure of) U such that �S(⇧U )  �S(⇧ 0)
for all regular OP ⇧

0 of (the closure of) U satisfying |⇧ 0|  2
3m. Then we set ⇧ = ⌃[ (

S
U2U ⇧U ), which is clearly

a regular OP of K. We claim that, if our guess for ⌃ is correct, then �S(⇧)  �S(⇧⇤), and hence ⇧ satisfies the
desired property. Let ⇧⇤

U
✓ ⇧

⇤ be the subset of rectangles contained in U , for U 2 U . We know that |⇧⇤
U
|  2

3m.
Therefore, by the property of ⇧U , we have �S(⇧U )  �S(⇧⇤

U
). It follows that

�S(⇧) = �S(⌃) +
X

U2U
�S(⇧U )  �S(⌃) +

X

U2U
�S(⇧

⇤
U
) = �S(⇧

⇤).

The entire algorithm is shown in Algorithm 5, where OptPartition(S,K,m) computes a regular OP ⇧ of
the regular region K such that �S(⇧)  �S(⇧ 0) for all regular OP ⇧

0 of K satisfying |⇧ 0|  m. The correctness
of the algorithm follows directly from the discussion above. To solve our problem, we simply call OptParti-

tion(S,R2
, 5n+ 1).

Time complexity. One easily verifies that in all recursive calls of OptPartition(S,K,m), the region K is
always a regular region (recall that a regular region is a subset of R2 that is the union of some regular rectangles)
and hence the complexity of K is bounded by a polynomial in n. Therefore, the size of the set U computed in
Line 7 of Algorithm 5 is also bounded by n

O(1) in all recursive calls. Furthermore, since |Rreg| = O(n4), the
number of all subsets ⌃ ✓ RK with |⌃|  4

p
m considered in Line 5 is n

O(
p
m). It then follows that in a call

OptPartition(S,K,m), the total number of recursive calls made in Line 8 is bounded by n
O(

p
m) and all steps

except the recursive calls can be done in n
O(1) time. So if we use T (m) to denote the time cost for the call

OptPartition(S,K,m), we have the recurrence T (m)  n
O(

p
m) · (T ( 23m) + n

O(1)). Solving this recurrence gives

us T (m) = n
O(

p
m), which implies that the initial call OptPartition(S,R2

, 5n+ 1) takes nO(
p
n) time.

Theorem 2. There exists an exact algorithm for bivariate piecewise polynomial regression which runs in n
O(

p
n)

time.
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D NP-hardness for bivariate data

In this section, we show that the piecewise-polynomial regression problem in Rd for d � 2 is NP-hard. This result
is widely believed in the folklore, but we could not find a published record in the literature. So we give a proof for
completeness.

Our reduction is from the planar rectilinear 3-SAT problem. A planar rectilinear representation of a 3-CNF
boolean formula � represents � using horizontal and vertical segments in the plane in the following way. Each
variable of � is represented as a horizontal segment on the x-axis while each clause is represented a horizontal
segment above the x-axis. Whenever a clause includes a variable, there is a vertical segment connecting two
horizontal segments corresponding to the clause and the variable respectively. The vertical connections can be
negative or positive according to whether the literal is negated or not. All segments are disjoint except that each
vertical segment intersects with the two horizontal segments it connects. See Figure 5 for an illustration of planar
rectilinear representation. In the planar rectilinear 3-SAT problem, the input of a 3-CNF boolean formula � with
its planar rectilinear representation, and the goal is to test if � is satisfiable.

v1 v2 v3

(¬v1 _ v2 _ v3)

(v1 _ ¬v2) (v2 _ v3)

� + +

+ + +�

� = (¬v1 _ v2 _ v3) ^ (v1 _ ¬v2) ^ (v2 _ v3)

Figure 5: The planar rectilinear representation
of � = (¬v1 _ v2 _ v3) ^ (v1 _ ¬v2) ^ (v2 _ v3).

In order to describe our reduction, we introduce an intermediate problem called piecewise polynomial perfect

fitting (PPPF), which is a variant of the piecewise-polynomial regression problem. Let g � 0 be a fixed integer and
R be the family of orthogonal boxes in Rd. In the PPPF problem, we are given a set S = {(xi, yi) 2 Rd ⇥ R}n

i=1

of data points, and our goal is to find a function f 2 �
g

R with minimum number of pieces (i.e., minimum |f |) such
that f perfectly fits S, i.e., yi = f(xi) for all i 2 [n].

Lemma 17. The PPPF problem in Rd
with maximum degree g can be reduced in polynomial time to the piecewise

polynomial regression problem in Rd
with maximum degree g.

Proof. Given a dataset S = {(xi, yi) 2 Rd ⇥ R}n
i=1, we reduce the PPPF problem on S (with maximum degree

g) to an instance hS,�i of piecewise polynomial regression (with maximum degree g). The only thing we have to
determine is the parameter �. Intuitively, we need to let � be su�ciently small so that when evaluating the price of
a function in �

d
g
, the least square error is always more important than the number of pieces. For an axis-parallel box

B in Rd, we use errB to denote the minimum
P

xi2B
(yi�f(xi))2 for a d-variable polynomial function f with degree

at most g. Let B be the set of combinatorially di↵erent boxes in Rd, where two boxes B and B
0 are combinatorially

di↵erent if {x1, . . . ,xn}\B 6= {x1, . . . ,xn}\B0. Then we set � to be a positive number smaller than errB/n for all
B 2 B such that errB > 0. Since |B| = O(n2d), we can compute � in polynomial time. We claim that the optimum
of the PPPF instance hSi is k i↵ the optimum of the piecewise polynomial regression instance hS,�i is �k. Suppose
the optimum of the PPPF instance hSi is k. Then there exists a function f 2 �

g

R with |f | = k which perfectly fits
S. Because of the existence of f , the optimum of the piecewise polynomial regression instance hS,�i is at most �k.

Furthermore, for any k
0
< k disjoint boxes B1, . . . , Bk0 such that {x1, . . . ,xn} ✓

S
k
0

j=1 Bj , we have
P

k
0

j=1 errBj
> 0;

indeed, if
P

k
0

j=1 errBj
= 0, then there exists a function in �

g

R with less than k pieces which perfectly fits S. It follows

that for any k
0
< k disjoint boxes B1, . . . , Bk0 such that {x1, . . . ,xn} ✓

S
k
0

j=1 Bj , we have
P

k
0

j=1 errBj
> �n � �k.

Therefore, �S(f) � �k for any f 2 �
g

R with |f | < k. On the other hand, �S(f) � �k for any f 2 �
g

R with |f | > k.
So the optimum of the piecewise polynomial regression instance hS,�i is �k. This completes the “only if” part
of the claim. To see the “if” part, assume the optimum of the PPPF instance hSi is k

0 6= k. Then the optimum
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of the piecewise polynomial regression instance hS,�i is �k
0 6= �k. This reduces the PPPF problem to piecewise

polynomial regression.

Next, we show how to reduce planar rectilinear 3-SAT to the PPPF problem in R2. For simplicity, we present
the details of the reduction for the PPPF problem with maximum degree g = 0, and it can be easily generalized to
a general g. When g = 0, the functions in �

g

R are piecewise constant functions.
Consider a given 3-CNF boolean formula � and its planar rectilinear representation. Suppose � has n variables

and m clauses. We shall construct a set S = {((xi, x
0
i
), yi) 2 R2⇥R}N

i=1 and determine a number k such that there
exists a function f 2 �

2
0 with |f |  k such that yi = f(xi, x

0
i
) for all i 2 [n] i↵ � is satisfiable. Our set S consists of

two types of points: normal points and obstacle points. We denote by S1 the set of normal points and by S2 the set
of obstacle points. The y-coordinates of all points in S1 are equal to 0, while all points in S2 have nonzero distinct
y-coordinates. Therefore, if a function f 2 �

2
0 perfectly fits S, then each piece of f either covers only points in

S1 or covers a single point in S2. It follows that the optimum (i.e., the minimum number of pieces of a function
f 2 �

2
0 that perfectly fits S) is exactly equal to k1 + |S2|, where k1 is the minimum number of disjoint rectangles

that cover all points in S1 but do not contain (the xx
0-projection images of) any points in S2.

We first determine the x-coordinates and x
0-coordinates of the normal points, i.e., the points in S1. Let

v1, . . . , vn be the n variables of �, c1, . . . , cm be the clauses of �, mi be the number of clauses of � that con-
tains the variable vi for i 2 [n]. Define L+ = {(i, j) : the clause cj contains the literal vi}, L� = {(i, j) :
the clause cj contains the literal ¬vi}, and L = L+[L�. Without loss of generality, we can assume that mi � 2 for
all i 2 [n] (indeed, if a variable is only contained in one clause of �, then we can choose the value of that variable to
satisfy that clause and remove the clause and the variable from � without changing the satisfiability of �). Also, we
may assume that each clause cj has two or three literals (indeed, if a clause only has one literal, then we must choose
the value of the variable corresponding to the literal to make this clause true and hence we can remove the clause
and the variable from � without changing the satisfiability of �). Suppose the planar rectilinear representation of �
is given in the xx

0-plane. In the representation, each variable vi corresponds to a horizontal segment seg(vi) on the
x-axis, which each clause cj corresponds to a horizontal segment seg(cj) above the x-axis. We denote by seg(vi, cj)
the vertical segment that connects the horizontal segments seg(vi) and seg(vj), for (i, j) 2 L.

First, we replace each variable segment seg(vi) with an indented rectangle Di with mi peaks. See the top two
figures in Figure 6 for an illustration of the indented rectangles and peaks. On each vertex of Di and the midpoint
of each edge of Di, we put a normal point. Therefore, we have in total 8mi + 8 normal points on Di. See the
bottom-left figure in Figure 6 for an illustration. For technical reasons, we rotate the indented rectangle Di a little
bit so that the normal points on Di have distinct x- and x

0-coordinates (see the bottom-right figure in Figure 6).
We also use the notation Di to denote the set of the 8mi + 8 normal points on the indented rectangle Di for
convenience. After we replace the variable segments with the indented rectangles, we let the vertical segments
seg(vi, cj) for (i, j) 2 L connect to the peaks of the indented rectangles (each Di has mi peaks which one-to-one
correspond to the mi vertical segments incident to seg(vi)). We denote by pi,j the normal point on the peak of Di

that connects to seg(vi, cj), and denote by p
�
i,j

and p
+
i,j

the left and right adjacent points of pi,j in Di.
Now we consider the clause segments seg(cj) and the vertical segments seg(vi, cj). For a clause cj with three

literals, its left, middle, right variables refer to the variables corresponding to the left, middle, right vertical segments
connecting to the clause segment seg(cj), respectively. If a clause has only two literals, then it only has left and
right variables. For each vertical segment seg(vi, cj), we add two normal points ai,j and bi,j as follows. The point
ai,j is very close to the midpoint of seg(vi, cj): if (i, j) 2 L+, then ai,j is slightly to the right of the midpoint;
if (i, j) 2 L�, then ai,j is slightly to the left of the midpoint. The point bi,j is very close to the connecting
point ei,j of seg(vi, cj) and seg(cj): if (i, j) 2 L+, then bi,j is slightly to the southwest (or bottom-left) of ei,j ; if
(i, j) 2 L�, then bi,j is slightly to the southeast (or bottom-right) of ei,j . In addition, we slightly move the points
bi,j vertically such that the following condition holds: for a clause cj , we have x0(bmid,j) < min{x0(bleft,j), x0(bright,j)}
and x

0(bleft,j) 6= x
0(bright,j), where x

0(·) denotes the x
0-coordinate and vleft, vmid, vright are the left, middle, right

variables of cj , respectively; if cj only has two literals, then we only require x
0(bleft,j) 6= x

0(bright,j). In other words,
for each clause, we require that the b-points of its variables have distinct x0-coordinates and the b-point of its middle
variable is always the lowest. Finally, for each clause cj , we put a normal point sj on the segment seg(cj), whose
x-coordinate is equal to the x-coordinate of bmid,j , where vmid is the mid variable of cj ; if cj only has two literals,
then we put sj on the midpoint of seg(cj). See Figure 7 for an illustration of the locations of the points ai,j , bi,j , cj .
Setting S1 = (

S
n

i=1 Di) [ (
S

(i,j)2L
{ai,j , bi,j}) [ (

S
m

j=1{sj}), we finish the construction of the normal points.
Next, we describe the obstacle points, i.e., the points in S2. As observed before, the minimum number of pieces

of a function f 2 �
2
0 that perfectly fits S is equal to k1+ |S2|, where k1 is the minimum number of disjoint rectangles

that cover all points in S1 but do not contain (the xx0-projection images of) any points in S2. Without any obstacle
points, k1 = 1 because we can cover all points in S1 using a single rectangle. So we want to use the obstacle points
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Peaks

Figure 6: Indented rectangles with three (top-left) and four (top-right) peaks. We put on each vertex and the
midpoint of each edge a normal point (bottom-left). We rotate the indented rectangle a little bit such that the
normal points have distinct coordinates (bottom-right).

to “force” a rectangle to only cover some certain subset of S1 (in order to avoid the obstacle points). To this end,
we first specify which subsets of S1 we allow a rectangle to cover. Recall that pi,j is the normal point on the peak
of Di that connects to seg(vi, cj), and p

�
i,j

and p
+
i,j

are the left and right adjacent points of pi,j in Di. We define a
collection of legal subsets of S1 as follows.
(1) For i 2 [n], each pair of adjacent normal points in Di form a legal subset.
(2) For (i, j) 2 L, {sj , bi,j}, {ai,j , bi,j}, {pi,j , ai,j} are legal subsets.
(3) For (i, j) 2 L+, {pi,j , p+i,j , ai,j} and {p+

i,j
, ai,j} are a legal subset.

(4) For (i, j) 2 L�, {pi,j , p�i,j , ai,j} and {p�
i,j
, ai,j} are a legal subset.

(5) Each single point in S1 forms a legal subset.

Lemma 18. The boolean formula � is satisfiable i↵ S1 can be partitioned into at most 5|L|+ 4n legal subsets.

Proof. To show the “if” part, assume S1 can be partitioned into at most 5|L| + 4n legal subsets. Let P be such
a partition, i.e., P is a collection of at most 5|L| + 4n disjoint legal subsets that cover all points in S1. We want
to construct a satisfying assignment A : {v1, . . . , vn} ! {true, false} of �. Define V as the set consisting of all
vertex points of D1, . . . , Dn and all bi,j for (i, j) 2 L. Similarly, define E as the set consisting of all edge points of
D1, . . . , Dn and all bi,j for (i, j) 2 L. We have |V | = |E| = 5|L| + 4n. Observe that any legal subset can cover at
most one point in V (resp., E). This implies |P| � 5|L| + 4n and hence |P| = 5|L| + 4n Since |P| = |V | (resp.,
|P| = |E|) and P covers all points in V (resp., E), every legal subset in P covers exactly one point in V (resp.,
E). We shall use this property to obtain the assignment A and prove it is a satisfying assignment. Consider a
vertex point ↵ of some Di. Since ↵ 2 V \E, the legal subset in P that contains ↵ must contain another point in
E\V , which can only be one of the two edge points adjacent to ↵ in Di. In other words, in the partition P, every
vertex point is coupled with an adjacent edge point (i.e., they belong to the same legal subset in P). Furthermore,
observe that if a vertex point of Di is coupled with its clockwise (resp., counterclockwise) adjacent edge point, then
every vertex point of Di must be coupled with its clockwise (resp., counterclockwise) adjacent edge point. We now
define our assignment A as follows. For all i 2 [n] such that every vertex point of Di is coupled with its clockwise
(resp., counterclockwise) adjacent edge point, we set A(vi) = true (resp., A(vi) = false). We show A is a satisfying
assignment by contradiction. Assume that A is not satisfying. Without loss of generality, we may assume that c1
is an unsatisfied clause. Since s1 /2 V , the legal subset in P that contains s1 should contain another point in V ,
which must be bi,1 for some i 2 [n] satisfying (i, 1) 2 L. We consider the case where (i, 1) 2 L+, and the other
case (i, 1) 2 L� can be handled in the same way. Because c1 is unsatisfied and (i, 1) 2 L+, we have A(vi) = false.
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seg(cj)
sj

aleft,j amid,j aright,j

bleft,j bmid,j
bright,j

Figure 7: An illustration of the points ai,j , bi,j and cj . The clause cj has a negated literal for its left variable and
positive literals for its middle and right variables.

Therefore, each vertex point of Di is coupled with its counterclockwise adjacent edge point; in particular, pi,1 is
coupled with p

�
i,1. This implies {pi,1, p+i,1, ai,1} /2 P. Also, we have {p+

i,1, ai,1} /2 P (resp., {pi,1, ai,1} /2 P), because
every legal subset in P must contain one point in V (resp., E). Finally, we have {ai,1, bi,1} /2 P, since {s1, bi,1} 2 P
and the legal subsets in P are disjoint. Now all legal subsets that contain the point ai,1 are not in P, contradicting
the fact that P covers all points in S1. As a result, A is a satisfying assignment.

To show the “only if” part, assume � is satisfiable and let A : {v1, . . . , vn} ! {true, false} be a satisfying
assignment of �. We shall partition S1 into 5|L| + 4n legal subsets. For each variable vi such that A(vi) = true,
we construct 4mi + 4 (disjoint) legal subsets as follows. We first group each vertex point in Di with its clockwise

adjacent point in Di (which is an edge point). In this way, we obtain 4mi +4 legal subsets of size 2 which cover all
normal points in Di, where each peak pi,j is contained in the legal subset {pi,j , p+i,j}. We then replace {pi,j , p+i,j}
with the legal subset {pi,j , p+i,j , ai,j} for all j 2 [m] such that (i, j) 2 L+. After this, we obtain 4mi+4 legal subsets
which are disjoint and cover all normal points in Di and all ai,j for j 2 [m] satisfying (i, j) 2 L+. For each variable
vi such that A(vi) = false, we construct 4mi + 4 (disjoint) legal subsets similarly. We first group each vertex point
in Di with its counterclockwise adjacent point in Di, which gives us 4mi+4 legal subsets covering all normal points
in Di where each peak pi,j is contained in the legal subset {pi,j , p�i,j}. Then we replace {pi,j , p�i,j} with the legal

subset {pi,j , p�i,j , ai,j} for all j 2 [m] such that (i, j) 2 L�. After considering all variables v1, . . . , vn, we obtain in
total

P
n

i=1(4mi + 4) = 4|L|+ 4n (disjoint) legal subsets. For convenience, we denote by P1 the collection of these
legal subsets. Then P1 cover all normal points in D1, . . . , Dn and all ai,j for (i, j) 2 L+ such that A(vi) = true
and for (i, j) 2 L� such that A(vi) = false. Next, we construct another collection P2 of |L| (disjoint) legal subsets
that cover all points in S1 that are not covered by P1. First, for each clause cj , pick an index ij 2 [n] such that
(ij , j) 2 L and the literal of vij in cj makes cj true under the assignment A (such an index ij always exists since
A is a satisfying assignment). Observe that the points ai1,1, . . . , aim,m are all covered by P1. We include in P2

the legal subsets {s1, bi1,1}, . . . , {sm, bim,m}. Also, for each (i, j) 2 L\{(i1, 1), . . . , (im,m)}, we include in P2 the
legal subset {bi,j} if ai,j is covered by P1 or the legal subset {ai,j , bi,j} if ai,j is not covered by P1. In this way, we
obtain the collection P2 of |L| legal subsets. Let P = P1 [P2. It is easy to verify that (1) |P| = 5|L|+4n, (2) the
legal subsets in P are disjoint, and (3) the legal subsets in P cover all points in S1. This completes the “only if”
part.

With the above lemma in hand, the last step of our reduction is to use obstacle points to block all “illegal”
subsets such that the pieces of a function f 2 �

2
0 that perfectly fits S can only cover legal subsets (or a single

obstacle point). Let U be the union of the minimum enclosing rectangles of the legal subsets. The locations of the
normal points we pick guarantee the following property of legal subsets.

Fact 19. The minimum enclosing rectangle of a legal subset P only contains the normal points in P . Furthermore,

the minimum enclosing rectangle of any illegal subset of S1 is not contained in U .

Proof. The first statement directly follows from how we locate the normal points. A remarkable case here is the
legal subsets {sj , bi,j} for (i, j) 2 L. Recall that in our construction, x0(bmid,j) < min{x0(bleft,j), x0(bright,j)} and
x
0(bleft,j) 6= x

0(bright,j), where x
0(·) denotes the x

0-coordinate and vleft, vmid, vright are the left, middle, right variables
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of cj , respectively. This property guarantees the minimum enclosing rectangles of {sj , bleft,j}, {sj , bmid,j}, and
{sj , bright,j} only contains the normal points in {sj , bleft,j}, {sj , bmid,j}, and {sj , bright,j}, respectively.

To see the second statement, it su�ces to check for all minimal illegal subsets of S1. Note that in our con-
struction, every minimal illegal subset consists of two points in S1. Thus, the statement follows from a simple
but tedious case-by-case check for every pair of points in S1 that do not form a legal subset. A remarkable case
here is the illegal subsets formed by two normal points in Di for some i 2 [n]. Recall that when we replace each
variable segment seg(vi) with the indented rectangle Di, we rotate Di a little bit such that the normal points in Di

have distinct x- and x
0-coordinates. The purpose of this rotation is just to guarantee that the minimum enclosing

rectangle of any two non-adjacent normal points in Di is not contained in U . (Without the rotation, the minimum
enclosing rectangle of any two edge points in Di with distance 2 is a segment and is contained in U . However, with
the rotation, this is no longer the case.) We omit the tedious details here.

Note that although the number of subsets of S1 is exponential, the number of di↵erent minimum enclosing
rectangles of these subsets is bounded by |S1|4 and these rectangles can be computed e�ciently. For every minimum
enclosing rectangle R that is not contained in U , we include in S2 an obstacle point whose xx0-projection image is in
R\U . Then any rectangle in the xx0-plane that does not contain (the xx0-projection images of) any points in S2 can
only cover a legal subset of S1. Therefore, by Lemma 18, k1  5|L|+4n i↵ � is satisfiable. Finally, let S = S1 [S2.
We know that the optimum of the PPPF instance hSi, which is equal to k1 + |S2|, is at most 5|L|+ 4n+ |S2| i↵ �

is satisfiable. This completes our reduction from planar rectilinear 3-SAT to the PPPF problem with g = 0.
Extending the above reduction for a general constant g turns out to be easy. The normal points in S1 are

constructed in the same way. Let S2 be the set of obstacles constructed above. We replace each obstacle point
a 2 S2 with a set Oa of g(|S1|+ |S2|)+ |S2| new obstacle points whose xx0-projection images are very close to a. We
choose the y-coordinates of the new obstacle points such that (i) the points in each Oa can be perfectly fit using
a bivariate polynomial fa 2 R[x, x0]g and (ii) any g + 2 (normal and new obstacle) points that are not contained
in Oa for any a 2 S2 cannot be perfectly fit using any bivariate polynomial in R[x, x0]g. Let S0

2 be the set of new
obstacles. We claim that the optimum of the PPPF instance hS = S1 [ S

0
2i is at most 5|L| + 4n + |S2| i↵ � is

satisfiable. If � is satisfiable, then we can cover the normal points using k1 = 5|L|+ 4n disjoint pieces which avoid
all (old) obstacle points and hence avoid all (new) obstacle points because of the locations of the new obstacles we
choose. Then we cover the xx

0-projection images of each set Oa using a single piece; this is possible because the
points in each Oa can be perfectly fit using a bivariate polynomial fa 2 R[x, x0]g. In this way, we constructed a
function f 2 �

2
g
with |f | = 5|L|+ 4n+ |S2| that perfectly fits S. Now suppose � is unsatisfiable, and let f 2 �

2
g
be

a function that perfectly fits S. We show that |f | > 5|L| + 4n + |S2|. We call the pieces of f containing at least
one normal point normal pieces. The normal points contained in each normal piece of f must form a legal subset,
for otherwise the piece will contain (the xx

0-projection image) of an old obstacle point a 2 S2 and hence contain
all points in Oa, which is impossible because Oa [ {b} cannot be perfectly fit using any bivariate polynomial in
R[x, x0]g for any normal point b 2 S1. Then there are at least 5|L|+4n+1 normal pieces, because � is unsatisfiable.
Furthermore, each legal piece can cover at most g points in S

0
2 because any subset of S consists of one normal point

and g + 1 obstacle points cannot be perfectly fit using any bivariate polynomial in R[x, x0]g. Now every set Oa has
at least (g + 1)|S2| points that are uncovered by the normal pieces. One easily verifies that these uncovered points
require |S2| additional pieces to cover all of them, because any g + 2 of them that are not contained in Oa for any
a 2 S2 cannot be perfectly fit using any bivariate polynomial in R[x, x0]g. Therefore, |f | > 5|L|+ 4n+ |S2|.

Theorem 5. Bivariate piecewise regression is NP-hard for all fixed degree polynomials, including piecewise constant

or piecewise linear functions.
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