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Abstract: Quality-Diversity (QD) is a concept from Neuroevolution with some
intriguing applications to Reinforcement Learning. It facilitates learning a popula-
tion of agents where each member is optimized to simultaneously accumulate high
task-returns and exhibit behavioral diversity compared to other members. In this
paper, we build on a recent kernel-based method for training a QD policy ensem-
ble with Stein variational gradient descent. With kernels based on f -divergence
between the stationary distributions of policies, we convert the problem to that of
efficient estimation of the ratio of these stationary distributions. We then study
various distribution ratio estimators used previously for off-policy evaluation and
imitation and re-purpose them to compute the gradients for policies in an ensem-
ble such that the resultant population is diverse and of high-quality 1.
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1 Introduction

The goal in Reinforcement Learning (RL) is to learn agents that maximize long-term environmental
rewards. Deep RL, which uses deep neural networks as function approximators for the policy and
value-functions, has achieved outstanding results on a wide variety of sequential decision making
problems, with the barometer of success usually being the total returns accumulated by the final
policy. Due to the intrinsic nature of direct reward maximization, seldom is the focus on how
the behavioral characteristics of the trained agent compare with the other possible behaviors in the
solution space. For instance, consider the robotic manipulator arm in Figure 1a and the peg-insertion
task. Though the task description is simple, for a sufficiently flexible arm, there are numerous ways
(positions of the joints and the end-effector) to insert the peg in the hole (Figure 1b). For reasons
argued below, it is beneficial to learn these varied behaviors rather than aiming for the single most
efficient solution dictated by the reward function. Quality-Diversity (QD) algorithms [1, 2] are
prominent in the Neuroevolution literature as a means to generate many diverse behavioral niches,
while ensuring that each niche is populated with individuals of the highest possible quality for that
niche. When applied to RL, QD offers a principled approach for learning policies that are diverse,
yet achieve high returns [3, 4].

Prior works have examined the benefits of uncovering diversity in how the task can be solved [5, 6,
7]. In these, an explicit diversity-maximization objective is incorporated into the RL algorithm to fa-
cilitate the learning of diverse skills. There are several important benefits of training a population of
agents with diverse skills. Firstly, this is an efficient exploration strategy in sparse-reward environ-
ments as the agents can collectively achieve much wider coverage of the state-space, while reducing
the susceptibility of RL to local optimal solutions caused by deceptive rewards [4, 8]. Secondly,
the acquired skills could be leveraged for accelerated learning in downstream tasks, for example, by
composing the skills to solve long-horizon tasks via hierarchical RL [9, 6]. Diversity also helps in
the transfer learning of RL policies across environments that may have discrepancies such as system
dynamics mismatch. Having a repertoire of skills is useful when knowledege transfer is done to a
target environment that has constraints on the set of feasible behaviors [10].

1Code for this paper is available at https://github.com/tgangwani/QDAgents
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Figure 1: (a) MuJoCo model of a 7 DOF arm based on the Sawyer robot, inspired by Chen et al.
[21]; (b) Policies that achieve the peg-insertion task in different ways. These policies are sampled
from a single ensemble trained with the algorithm QD-DualDICE-JS (explained in Section 5).

A policy π is characterized by its occupancy measure ρπ [11], which is the stationary distribution
over the state-action pairs that π encounters when navigating the environment. Given two policies
π, β, the ratio of their stationary distributions ζ = ρπ/ρβ is a well-studied quantity in RL. Estimates
of the distribution ratio are useful for off-policy evaluation [12, 13] (where the goal is to evaluate
the performance of π using fixed data generated from β), policy optimization [14, 15] and off-policy
imitation learning [16]. In this paper, we examine the use of distribution ratio estimators for learning
a diverse policy ensemble with high returns (a QD ensemble). We build on the approach introduced
by Liu et al. [7]. Using Stein variational gradient descent (SVGD) [17] as the inference method, the
authors construct an update rule that includes the policy-gradient on the environmental rewards (for
high quality) and a kernel-induced repulsive force gradient (for high diversity). This kernel-based
algorithm is naturally impacted by the choice of the kernel. We begin with generalizing the Stein
variational policy gradient (SVPG) objective [7] by using as kernels the negative exponents of an
f -divergence between the stationary distributions of two policies, and discuss key properties such as
positive-definiteness of kernels. For kernels based on the Jenson-Shannon and Symmetric Kullback-
Leibler divergences, we show how the complete SVPG gradient can be recast in terms of the ratio of
the stationary distributions (ζ) between policies. Then, to estimate these ratios, and hence the SVPG
gradient, we study three recently proposed distribution ratio estimators for off-policy evaluation and
imitation learning. These are DualDICE [18], ValueDICE [16] and GenDICE [19]. Additionally,
we describe a fourth estimator based on Noise-Constrastive Estimation [20].

We perform experiments on various tasks to get a measure of the effectiveness of our proposed
approach in generating diverse behaviors with high returns. We also evaluate on tasks with deceptive
rewards and those which lack an external reward signal to further illuminate the benefits of QD.

2 Preliminaries

RL Notations. The environment is modeled as an infinite-horizon, discrete-time Markov Decision
Process (MDP), represented by the tuple (S, A, µ0, r, p, γ), where S is the state-space, A is the
action-space, γ ∈ [0, 1) is the discount factor, and µ0 denotes the initial state distribution. Given an
action at sampled from a stochastic policy πθ(at|st), the next state is sampled from the transition
dynamics distribution, st+1 ∼ p(st+1|st, at), and the agent receives a reward r(st, at) determined
by the reward function r : S × A → R. The RL objective is to maximize the expected discounted
sum of rewards, η(π) = (1− γ)Eµ0,p,π

[∑∞
t=0 γ

tr(st, at)
]
.

Distribution Ratio (ζ). The occupancy measure [11], or the stationary discounted state-action visi-
tation distribution of the policy π is defined as ρπ(s, a) = (1− γ)π(a|s)

∑∞
t=0 γ

tP(st=s|π), where
P(st=s|π) is the probability of being in state s at time t, when starting in state s0 ∼ µ0 and us-
ing π thereafter. The stationary distribution 2 affords a convenient rewriting of the expected policy
return as η(π) = Eρπ [r(s, a)], and the gradient is provided by the policy gradient theorem [22] as

2Throughout, stationary discounted distribution is shorthanded with stationary distribution for brevity
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Name of f -divergence Formula Df (P, Q) Generator f(u) with f(1) = 0
Is the kernel

e−Df (P,Q)/T PD?

Jenson-Shannon
∫
x
p(x)
2 log 2p(x)

p(x)+q(x) + q(x)
2 log 2q(x)

p(x)+q(x)dx
u
2 log u− (1+u)

2 log 1+u
2 Yes

Triangular Discrimination
∫
x

(p(x)−q(x))2
p(x)+q(x) dx (u−1)2

u+1 Yes

Squared Hellinger
∫
x
(
√
p(x)−

√
q(x))2dx (

√
u− 1)2 Yes

Total Variation 1
2

∫
x
|p(x)− q(x)|dx 1

2 |u− 1| Yes
Kullback-Leibler

∫
x
p(x) log p(x)

q(x)dx − log u No

Reverse Kullback-Leibler
∫
x
q(x) log q(x)

p(x)dx u log u No

Symmetric Kullback-Leibler
∫
x
p(x) log p(x)

q(x) + q(x) log q(x)
p(x)dx (u− 1) log u No

Table 1: f -divergences and positive-definiteness of the negative exponential kernels.

∇θη(π) = Eρπ
[
∇θ log πθ(a|s)Qπ(s, a)

]
, whereQπ is the state-action value function. For two poli-

cies πi and πj , we denote the ratio of their stationary distributions by ζij(s, a) = ρπi(s, a)/ρπj (s, a).
This ratio is widely applicable for off-policy evaluation as it enables estimating the expected returns
of πi using a fixed dataset D of transitions generated from a different behavioral policy πj , since
η(πi) = E(s,a)∼D[ζij(s, a)r(s, a)], where D is an empirical estimate of ρπj .

3 Methods

3.1 QD objective and its solution based on variational inference

QD when applied to policy search entails learning multiple policies that all accumulate high environ-
mental rewards during an episode, but the agents accomplish this using diversified strategies, such
as navigating dissimilar regions of the state-action space. Formally, policy search with QD could be
defined as learning a distribution over the policy parameters (θ) that maximizes the RL-objective in
expectation, while maintaining a high-entropy (H) in the parameter-space:

max
q

Eθ∼q[η(θ)] +H(q) ; H(q) = Eθ∼q[− log q(θ)] (1)

Solving the objective in Equation 1 analytically yields the following energy-based optimal parameter
distribution: q∗(θ) = exp(η(θ))/Zq∗ , where Zq∗ is the normalization constant. Let p(θ) define a
trainable distribution over the policy parameters that we seek to optimize to be close (w.r.t. the KL-
divergence) to the target distribution q∗. Representing p(θ) with a mixture of delta distributions, the
variational objective is:

min
p
DKL

[
p || exp(η(θ))/Zq∗

]
; p(θ) =

1

n

n∑
i=1

δ(θ = θi)

Here {θi}n1 denotes a policy ensemble with n discrete policies that constitute the p distribution. Stein
variational gradient descent (SVGD; Liu and Wang [17]) provides an efficient solution to obtain an
approximate gradient on the p distribution. Suppose we perturb each policy θi with ∆θi such that
the induced KL between p and q is reduced. The optimal perturbation direction, in the unit ball of a
reproducing kernel Hilbert space associated with a kernel function k, that maximally decreases the
KL is given by [17]:

∆θ = Eθ′∼p
[
∇θ′ log q∗(θ′)k(θ′, θ) +∇θ′k(θ′, θ)

]
Using this result and the energy-based form of the target distribution q∗, SVPG [7] iteratively updates
the policies with the following rule to learn a policy ensemble with QD behavior:

θi ← θi + ε∆θi, ∆θi =
1

n

n∑
j=1

[
∇θjη(πθj )k(θj , θi)︸ ︷︷ ︸

Quality-enforcing

+ ∇θjk(θj , θi)︸ ︷︷ ︸
Diversity-enforcing

]
(2)

3.2 Negative exponents of f -divergences as kernels

The positive definite (PD) kernel function k in Equation 2 is an algorithmic design choice. There
are two considerations. It should be possible to efficiently compute k(θj , θi) for any two policies
(πθj , πθi) as well as its gradient w.r.t. the policy parameters; and the function should be sufficiently
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expressive to capture the complex interactions between policy behaviors. Liu et al. [7] employ a
Gaussian RBF kernel k(θj , θi) = exp(−‖θj − θi‖22/h), with a dynamically adapted bandwidth
h. Gangwani et al. [8] suggest replacing the Euclidean distance in the parameter space with a sta-
tistical distance in the stationary distribution space, and use k(θj , θi) = exp(−DJS(ρπθj , ρπθi )/T ),
whereDJS is the Jenson-Shannon divergence and T is the temperature. DJS is a member of a broader
class of divergences known as Ali-Silvey distances or f -divergences [23]. Given two distributions
with continuous densities p(x) and q(x) over the support X , the f -divergence between them is
defined as:

Df (p || q) =

∫
X
q(x)f(

p(x)

q(x)
)dx

where f : R+ → R is a convex, lower-semicontinuous function such that f (1) = 0. Different choices
for the function f recover the well-known divergences. Although generalizing the kernel function as
kf (θj , θi) = exp(−Df (ρπθj , ρπθi )/T ) may seem like a natural extension, for some f -divergences,
kf (θj , θi) is not PD, and hence not a proper kernel from a theoretical standpoint. For instance, while
kJS is PD, kernels with other divergences commonly used for policy learning (KL, Reverse-KL) are
not. Table 1 provides details on the various divergences that define PD and non-PD kernels after
negative exponentiation. The first four divergences in Table 1 are squared metrics (i.e.

√
Df is

a true metric) and the proof of positive-definiteness of the corresponding kernels kf is provided
in Hein and Bousquet [24]. Inserting kf (θj , θi) in Equation 2, the SVPG gradient becomes:

∆θi =
1

n

n∑
j=1

exp(−Df (ρπθj , ρπθi )︸ ︷︷ ︸
Divergence value

/T )
[
∇θjη(πθj )︸ ︷︷ ︸
Policy gradient

− 1

T
∇θjDf (ρπθj , ρπθi )︸ ︷︷ ︸

Divergence gradient

]
(3)

This provides a general framework to evaluate the SVPG gradient for learning a QD policy ensem-
ble. Depending on the f -divergence and the method for estimating its value and gradient, several
approaches are possible, a few of which we will discuss. We use the shorthand notation ρi for the
stationary distribution of the policy πθi . Then ζij(s, a) = ρi(s, a)/ρj(s, a) is the distribution ratio
for two given policies, and would be the pivotal quantity in the exposition that follows. Next, we
rewrite two kernels (and their gradient w.r.t. the policy parameters) in terms of ζ, before elucidating
several methods to estimate ζ for use in a practical RL algorithm to generate a QD policy ensemble.

The kJS and kKLS kernels. While kJS is a PD kernel, kKLS is not since
√
DKLS is not a metric

as it does not satisfy the triangle inequality. Although positive-definiteness is desirable, non-PD
kernels may yet achieve good performance in practice, as shown in Moreno et al. [25], where SVM
classification with a non-PD kernel leads to better accuracy than provably PD kernels. Both kJS and
kKLS afford the benefit that the divergence value and gradient (in Equation 3) can be evaluated in
terms of the distribution ratio ζij . Using the definitions from Table 1, we express DJS and DKLS as:

DJS(ρi, ρj) =
1

2
Eρi(s,a) log

ζij(s, a)

1 + ζij(s, a)
+

1

2
Eρj(s,a) log

1

1 + ζij(s, a)
+ log 2

DKLS(ρi, ρj) = Eρi(s,a) log ζij(s, a)− Eρj(s,a) log ζij(s, a)

The SVPG gradient involves the gradient of the f -divergence w.r.t. the policy parameters (θ). For
DJS and DKLS, the gradient can be written using ζ as follows:
∇θjDJS = ∇θjEρj −(1/2) log[1 + ζij(s, a)]︸ ︷︷ ︸

r(s,a)

; ∇θjDKLS = ∇θjEρj [−ζij(s, a)− log ζij(s, a)]︸ ︷︷ ︸
r(s,a)

(4)
The proofs for these are included in Appendix A.1. In practice, these gradients could be estimated
using the policy-gradient theorem [22] with the appropriate term as the reward function (marked
as r(s, a) above). It is thus evident that a reasonable estimation of the distribution ratio yields a
good approximation of the SVPG gradient (Equation 3), which could then be applied to the policy
parameters to learn a QD ensemble. We now discuss methods to estimate ζ efficiently from samples.

3.3 Estimating the distribution ratio ζ

We start with Noise-Constrastive Estimation (NCE) [20] which has found wide applicability in rep-
resentation learning, natural language processing and image synthesis, among others. We then exam-
ine three distribution ratio estimators – DualDICE [18] and GenDICE [19] were recently proposed
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for behavior-agnostic off-policy evaluation, and ValueDICE [16] enables imitating expert trajecto-
ries without requiring additional policy rollouts in the environment.

NCE. It provides a method to learn an estimator ρ̃i(s, a;ω) for the stationary distribution of any
policy πi in the ensemble. NCE uses a noise distribution pN (s, a) and frames the following binary
classification objective:

max
ω

Eρi log
ρ̃i(s, a;ω)

ρ̃i(s, a;ω) + pN (s, a)
+ EpN log

pN (s, a)

ρ̃i(s, a;ω) + pN (s, a)

Gutmann and Hyvärinen [20] show that under mild assumption on the noise distribution, ρ̃i(·;ω)
converges to the true density ρi in the limit of infinite amount of samples. They further note that for
practical efficiency, it is desirable to select a noise distribution that is easy to sample from, and that
is not too far from the true unknown data distribution ρi. Consequently, for learning the estimator
for policy i, we use a uniform mixture of stationary distributions of the remaining (n−1) policies in
the ensemble as the constrastive noise, i.e., pN (s, a) = (1/(n− 1))

∑
j 6=i ρj(s, a). The distribution

ratio for a pair of policies can then be computed as ζij(s, a) = ρ̃i(s, a)/ρ̃j(s, a).

DualDICE. Nachum et al. [18] propose a convex optimization problem that gives the distribution
ratio as its optimal solution:

ζij = arg min
x:S×A→R

1

2
E(s,a)∼ρj [x(s, a)2]− E(s,a)∼ρi [x(s, a)] (5)

The expression is then simplified with the following change-of-variables trick. Define a vari-
able ν(s, a) and the operator Bπiν(s, a) = γEs′∼p(·|s,a),a′∼πi(s′)[ν(s′, a′)]. Using x(s, a) =
ν(s, a) − Bπiν(s, a), the second expectation in Equation 5 telescopes and conveniently reduces
into an expectation over the initial states. The transformed objective is:

min
ν:S×A→R

1

2
E(s,a)∼ρj [(ν − B

πiν)(s, a)2]− (1− γ)E s0∼µ0

a0∼πi(s0)
[ν(s0, a0)]

Given an optimal solution ν∗ for this equation, the distribution ratio is recovered with ζij(s, a) =
(ν∗ − Bπiν∗)(s, a). Further, to alleviate the bias in the sample-based Monte-Carlo estimate of the
gradient, Nachum et al. [18] suggest the use of Fenchel conjugates. The final objective is a min-
max saddle-point optimization that directly provides the distribution ratio ζij(s, a). Appendix A.2
includes the details.

ValueDICE. The Donsker-Varadhan representation [26] of the KL-divergence is given by:

DKL(ρi||ρj) = sup
x:S×A→R

E(s,a)∼ρi [x(s, a)]− logE(s,a)∼ρj [e
x(s,a)]

In ValueDICE [16], the authors use the fact that the optimality in the above equation is achieved at
x∗(s, a) = log ζij(s, a) + C, for some constant C ∈ R. The proof is included in Appendix A.3 for
completeness. Therefore, a method to obtain ζij is to first solve for x∗ (written as a minimization):

x∗ = arg min
x:S×A→R

logE(s,a)∼ρj [e
x(s,a)]− E(s,a)∼ρi [x(s, a)]

With the same change-of-variables trick from DualDICE, x(s, a) = ν(s, a)−Bπiν(s, a), the second
expectation over ρi(s, a) is transformed into an expectation over the initial states:

min
ν:S×A→R

logE(s,a)∼ρj [e
ν(s,a)−Bπiν(s,a)]− (1− γ)E s0∼µ0

a0∼πi(s0)
[ν(s0, a0)]

Different from DualDICE, ValueDICE avoids the min-max saddle-point optimization by eschewing
the use of Fenchel conjugates to remove the bias in the sample-based gradient. The log distribution
ratio is calculated (up to a constant shift) from ν∗ as, log ζij(s, a) = ν∗(s, a)− Bπiν∗(s, a).

GenDICE. It is known that the stationary distribution for a policy πi satisfies the following Bellman
flow constraint:

ρi(s
′, a′) = (1− γ)µ0(s′)πi(a

′|s′) + γ

∫
πi(a

′|s′)p(s′|s, a)ρi(s, a)dsda; ∀(s′, a′) ∈ S ×A
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Algorithm 1: Pseudo code for learning a QD ensemble

1 Initialize policy ensemble {πi}n1
2 Initialize networks to estimate ζij . Parameterization depends on the method (Section 3.3)

3 for each iteration do
4 Sample rollouts with πi ∀i
5 Update all ζij estimation networks . Objective depends on the method (Section 3.3)
6 Use ζij to compute the divergence value and divergence gradient . (DJS or DKLS)
7 Update each πi with the corresponding SVPG gradient . (Equation 3)
8 end

This could be re-written using the distribution ratio ζij as:

ρj(s
′, a′)ζij(s

′, a′) = (1− γ)µ0(s′)πi(a
′|s′) + γ

∫
πi(a

′|s′)p(s′|s, a)ζij(s, a)ρj(s, a)dsda︸ ︷︷ ︸
T(πi,ρj)◦ζij

(6)

Zhang et al. [19] parameterize ζθ and suggest to estimate it by minimizing the f -divergence between
the distributions (with support on S×A) on the two sides of Equation 6, namely ρj .ζθ and T(πi,ρj) ◦
ζθ, where the notation T(πi,ρj) denotes the distribution operator on the RHS in Equation 6. The
objective, which further includes a penalty regularizer on ζθ to prevent degenerate solutions, is:

ζij = arg min
θ

Df

(
T(πi,ρj) ◦ ζθ || ρj .ζθ

)
+
λ

2
(Eρj [ζθ]− 1)

2

Similar to DualDICE, Fenchel conjugates are used to obtain unbiased gradient estimates, resulting
in a min-max saddle-point optimization. The final objective, with χ2 as the f -divergence is included
in Appendix A.4.

Overall Algorithm.. We summarize our complete approach for training a QD policy ensemble in
Algorithm 1. In each iteration, we sample transitions in the environment using the policies in the
ensemble and update the networks that facilitate estimation of the distribution ratios ζij . The type
of network(s) and the update rule is determined by the estimator choice. To form the SVPG gradient
(Equation 3), the current value of ζ is used to compute the divergence value and the divergence
gradient. The latter, as shown by Equation 4, is equivalent to the policy gradient with a distinctive
reward function. We use the clipped PPO algorithm [27] for the policy gradient, although other
on-policy and off-policy RL methods are also applicable.

4 Related work

Neuroevolution methods inspired by Quality-Diversity [1] have been proposed to efficiently manage
the exploration-exploitation trade-off in RL. Conti et al. [4] augment evolution strategies [28] such
that the fitness of a particle is computed by a weighted combination of the performance and novelty
components. The novelty is determined based on a chosen behavior characterization (BC) metric. In
MAP-Elites [3], the entire behavior space is divided into a discrete grid, where each grid-dimension
represents a BC. The algorithm then fills each grid cell with the highest quality solution possible for
that cell. Recent methods integrate RL gradients with concepts from evolutionary computation (e.g.
random mutations) to learn diverse exploratory agents [29, 30] or to discover coordination strategies
for multi-agent RL [31].

Diversity Maximization in RL. To aid exploration in sparse-reward tasks, Hong et al. [5] encourage
the current policy to be diverse compared to an archive of past policies, by maximizing a distance
metric in the action space. Expanding on this idea, Doan et al. [32] ensure sufficient diversity in a
population by using operators for attraction and repulsion between agents. Towards learning diverse
skills even in the absence of an external reward signal, maximization of the mutual information
between the latent skill and the state-visitation of the skill-conditioned policy has been proposed [9,
6]. This is achieved by training a neural network to estimate the latent skill posterior, which provides
proxy rewards for the policy. Our work aims to broaden the SVPG algorithm [7] for learning a QD
policy ensemble. We substitute the parameter-space RBF kernel used in their method with negative
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(a) (b) Standard RL (c) QD-NCE-JS (d)
QD-NCE-KLS

(e) QD-
GenDICE-JS

(f) QD-
GenDICE-KLS

Figure 2: 2D Maze navigation task along with trajectories (state-visitations) for several methods.

(a) (b)

Figure 3: (a) Modified Half-Cheetah task that introduces multi-modality due to deceptive rewards;
(b) Contrasting performance of standard RL (no diversity) with QD method in Algorithm 1.

exponents of f -divergences, and employ distribution ratio estimation techniques to approximate the
ensuing gradient on the policy parameters. Gangwani et al. [8] avail SVPG to improve self-imitation
learning. Their procedure bears some resemblance to our NCE-based ratio estimation, though, in
contrast to them, we use a mixture of stationary distributions as the contrastive noise.

5 Experiments

In this section, we train policy ensembles in various environments with continuous state- and action-
space. We evaluate the different distribution ratio estimators and divergence metrics from Section 3.
For ease of exposition, the algorithms are abbreviated as QD-{ratio-estimator}-{divergence}, hence
QD-NCE-JS, for instance, is Algorithm 1 instantiated with exp(−DJS(ρj , ρi)/T ) as the kernel for
SVPG, and NCE as the estimator for ζ. Our goal is to gauge the effectiveness of our approach in pro-
ducing diverse, high-quality behaviors and suitably handling tasks with deceptive rewards. We also
compare the NCE and DICE-based estimators on a quantitative metric correlated with behavioral
diversity. The hyperparameters and implementation details are included in Appendix A.6.

Qualitative Assessment of QD Behavior. We visualize the diversity of the learned skills in two
environments – a robotic manipulator arm [21] and a 2D maze goal navigation task. The robotic
arm models a 7 DOF Sawyer robot and is implemented in MuJoCo. For the peg-insertion task,
we train a QD ensemble of 10 policies using the exponential of the negative Euclidean distance
between the peg and the hole as the per-step reward for RL (the quality measure). Figure 1b shows
some of the policies from a single ensemble trained with QD-DualDICE-JS. We find that while all
the policies insert the peg in the hole, the final positions of the joints (marked with white rings)
and the end-effector are markedly different. The resultant behaviors have dissimilar torque demands
on the various joints, which is advantageous in scenarios such as transfer learning to a robot with
system dynamics discrepancies. Figure 2a depicts a 2D navigation task with the start position (green
ball at center bottom) and the goal location (small grey circle in the center of the maze). The per-step
RL reward is the exponential of the negative Euclidean distance to the goal. We train an ensemble of
10 policies and plot final trajectories from some of them (each policy colored differently). Figure 2b
shows results with the standard RL method, i.e, no diversity enforcement; the trajectories achieve
the best possible cumulative returns but exhibit identical behavior. Figure 2c- 2f plots the paths for
policies learned with the QD algorithm (specific instantiation mentioned in the caption). Though
the cumulative returns now are lower than those with standard RL, the policies are noticeably more
exploratory and cover large portions of the state-space.

Multi-modal Locomotion with Deceptive Rewards. One of the crucial benefits of learning a QD
ensemble is that it potentially avoids the local optimum trap in the policy-search landscape due
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to deceptive rewards – if one policy gets stuck, the explicit diversity enforcement prevents other
policies in the ensemble from the same fate. We evaluate this hypothesis with the Half-Cheetah
locomotion task from OpenAI Gym [33]. We modify the task such that the forward velocity reward
is only given to the agent once the center-of-mass of the bot is beyond a certain threshold distance
(d). Concretely, rt = velx(t)∗1(posx(t) >= d)−0.1∗‖at‖22, where the second term penalizes large
actions and is the default from Gym. Figure 3a is a rendering of the task. This change introduces
multi-modality for policy optimization with a locally optimal solution to stand still at the starting
location to avoid any action penalty. We compare the performance of the QD ensembles with a
baseline standard-RL ensemble. The standard-RL ensemble has the same size as others but the
constituent policies do not have any interactions; they apply independently computed gradients. For
all baseline and QD ensembles, we select the policy with the highest cumulative returns after training
and plot its learning curve in Figure 3b. We observe that the baseline RL (no diversity) latches onto
the deceptive reward of minimizing the action penalty and gets stuck, achieving a cumulative return
close to zero. In contrast, the diversity enforcing mechanism in the QD* ensemble enables at-least
one member to reach the alternative mode where high forward velocity rewards are attained. This is
evident in the final score accumulated by the member selected from each ensemble.

Hist. Variance ↑
Method Walker-2d Hopper

QD-DD-JS 1.36 0.45
QD-VD-JS 1.33 0.50
QD-GD-JS 0.63 0.14

QD-NCE-JS 0.13 0.11
QD-DD-KLS 0.10 0.10
QD-VD-KLS 0.24 0.45
QD-GD-KLS 0.07 0.40

QD-NCE-KLS 0.14 0.28
Gangwani et al. [8] 0.10 0.08

DIAYN [6] 0.22 0.11

Table 2: Diversity metric
(histogram variance) with dif-
ferent estimators. Higher is
better. Mnemonic: DD=DualDICE,
VD=ValueDICE, GD=GenDICE

Quantitative Comparison of the Estimators. While the previous ex-
periment exhibits that the NCE and DICE-based estimators can provide
adequate diversity impetus, it does not provide insights about the com-
parative efficiency of the estimators in generating behavioral diversity
in the trained ensemble. This is because the forward velocity reward is
a quality metric, which is usually not aligned with the measure of di-
versity. For instance, an estimator may produce a policy that makes the
Half-Cheetah run backwards—this is much desired from the diversity
perspective but would perform badly on the quality metric that rewards
forward motion. To evaluate the efficacy of our estimators for produc-
ing diverse behaviors, and also for meaningful comparison with prior
work [6, 8], we define a diversity metric as follows. For two locomo-
tion tasks from Gym (Hopper and Walker-2d), we train policy ensembles without any environmental
rewards. Thus, the gradient from the quality-enforcing component in Equation 2 is absent and the
QD ensemble is trained only to maximize diversity. Post-training, we generate a few trajectories
with all the constituent policies and plot a histogram with the velocity of the center-of-mass of the
bot on the x-axis and the respective counts on the y-axis. We define the diversity metric to be the
variance of this histogram. Intuitively, higher variance in the velocity of the bot is indicative of
stronger behavioral diversity in the trained ensemble. Table 2 evaluates the various estimator on this
diversity metric. We note that DICE-based estimators generally outperform NCE. Our intuition for
this observation is that since NCE is an on-policy estimator (in contrast with the DICE-based estima-
tors, which are off-policy), the availability of limited on-policy data in each iteration of Algorithm 1
has an impact on the efficiency of NCE. Lastly, many of the QD* methods compare favorably to the
prior methods for learning diverse skills without environmental rewards [6, 8].

6 Conclusion and Future Work

In this paper, we study methods to learn diverse and high-return policies. We extend the kernel-based
SVPG algorithm with kernels based on f -divergence between the stationary distributions of policies.
For kernels based on DJS and DKLS, we show that the problem reduces to that of efficient estimation
of the ratio of the stationary distributions between policies. To compute these ratios, and conse-
quently the SVPG gradient, we harness noise-contrastive estimation and several distribution ratio
estimators widely used for off-policy evaluation and imitation learning. Experimental evaluation
with continuous state- and action-space environments demonstrates that the approach is capable of
generating diverse high-quality skills, assists in multi-modal environments with deceptive rewards,
and provides a constructive learning signal when the external rewards are absent. Our algorithmic
framework is general enough to accommodate any distribution ratio estimator. Utilizing future re-
search on these estimators for improving the efficiency of QD training is an interesting direction,
along with investigating which other f -divergences or integral probability metrics (IPMs such as the
Wasserstein distance and the Maximum Mean Discrepancy) between stationary distributions could
be incorporated into the framework.
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