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1 Introduction

In this chapter describes a highly computationally efficient solver for equations of
the form

3
Ka—':=$u(x,t)+h(u,x,z), xeQ.1>0, (1)

with initial data u(x, 0) = ug(x). Here Zis an elliptic operator acting on a fixed
domain £2 and % is lower order, possibly nonlinear terms. We take « to be real or
imaginary, allowing for parabolic and Schrédinger type equations. We desire the
benefits that can be gained from an implicit solver, such as L-stability and stiff
accuracy, which means that the computational bottleneck will be the solution of a
sequence of elliptic equations set on £2. In situations where the elliptic equation to
be solved is the same in each time-step, it is highly advantageous to use a direct (as
opposed to iterative) solver. In a direct solver, an approximate solution operator to
the elliptic equation is built once. The cost to build it is typically higher than the cost
required for a single elliptic solve using an iterative method such as multigrid, but
the upside is that after it has been built, each subsequent solve is very fast. In this
chapter, we argue that a particularly efficient direct solver to use in this context is a
method obtained by combining a multidomain spectral collocation discretization (a
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so-called “patching method”, see e.g. Ch.5.13 in [3]) with a nested dissection type
solver. It has recently been demonstrated [1, 7, 12] that this combined scheme, which
we refer to as a “Hierarchial Poincaré—Steklov (HPS)” solver, can be used with very
high local discretization orders (up to p = 20 or higher) without jeopardizing either
speed or stability, as compared to lower order methods.

In this chapter, we investigate the stability and accuracy that is obtained when
combining high-order time-stepping schemes with the HPS method for solving
elliptic equations. We restrict attention to relatively simple geometries (mostly
rectangles). The method can without substantial difficulty be generalized to domains
that can naturally be expressed as a union of rectangles, possibly mapped via
curvilinear smooth parameter maps.

A longer version of this chapter with additional details is available at [2]. Also
note that the conclusions are deferred to Part II of this paper (same issue).

2 The Hierarchical Poincaré—Steklov Method

In this section, we describe a computationally efficient and highly accurate tech-
nique for solving an elliptic PDE of the form

[Au](x) = g(x), x e,
u(x) = f(x), xerl,

2

where 2 is a domain with boundary I", and where A is a variable coefficient elliptic
differential operator

[Au](x) = —c11(x)[0ful(x) — 2c12(x)[3102u](x) — c2a(x)[B3u](x)
+ c1 () [91u](x) + c2(x)[D2u](x) + c(x) u(x)

with smooth coefficients. In the present context, (2) represents an elliptic solve
that is required in an implicit time-descretization technique of a parabolic PDE,
as discussed in Sect. 1. For simplicity, let us temporarily suppose that the domain £2
is rectangular; the extension to more general domains is discussed in Remark 1.

Our ambition here is merely to provide a high level description of the method;
for implementation details, we refer to [1, 2, 7-9, 12, 13].

2.1 Discretization

We split the domain £2 into n| X ny boxes, each of size 4 x h. Then on each box, we
place a p x p tensor product grid of Chebyshev nodes, as shown in Fig. 1. We use
collocation to discretize the PDE (2). With {x ,~}1N= | denoting the collocation points,
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Fig. 1 The domain 2 is split into n; x ny squares, each of size & x h. In the figure, n; = 3 and
ny = 2. Then on each box, a p x p tensor product grid of Chebyshev nodes is placed, shown for
p = 7. At red nodes, the PDE (2) is enforced via collocation of the spectral differentiation matrix.
At the blue nodes, we enforce continuity of the normal fluxes. Observe that the corner nodes (gray)
are excluded from consideration

the vector U that represents our approximation to the solution u of (2) is given simply
by u(i) ~ u(x;). We then discretize (2) as follows:

1. For each collocation node that is internal to a box (red nodes in Fig. 1), we
enforce (2) by directly collocating the spectral differential operator supported
on the box, as described in, e.g., Trefethen [15].

2. For each collocation node on an edge between two boxes (blue nodes in Fig. 1),
we enforce that the normal fluxes across the edge be continuous. For instance,
for a node x; on a vertical line, we enforce that du/dx; is continuous across the
edge by equating the values for du/dx; obtained by spectral differentiation of
the boxes to the left and to the right of the edge. For an edge node that lies on
the external boundary I”, simply evaluate the normal derivative at the node, as
obtained by spectral differentiation in the box that holds the node.

3. All corner nodes (gray in Fig. 1) are dropped from consideration. For an elliptic
operator of the form (2) with c¢jp = 0, it turns out that these values do not
contribute to any of the spectral derivatives on the interior nodes, which means
that the method without corner nodes is mathematically equivalent to the method
with corner nodes, see [5, Sec. 2.1] for details. When ¢ # 0, one must in order
to drop the corner nodes include an extrapolation operator when evaluating the
terms involving the spectral representation of the mixed derivative 9%u/dx1dxs.
This may lead to a slight drop in the order of convergence, but the difference is
hardly noticeable in practice, and the exclusion of corner nodes greatly simplifies
the implementation of the method.

Since we exclude the corner nodes from consideration, the total number of nodes
in the grid equals N = (p — 2)(pnina +ny +ny) ~ p?ny ny. The discretization
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procedure described then results in an N x N matrix A. For a node i, the value of
A(i, :)u depends on what type of node i is:

[Au](x;) for any interior (red) node,
A(, :)u = { 0 for any edge node (blue) not on I’
du/dn for any edge node (blue) on I.

This matrix A can be used to solve BVPs with a variety of different boundary
conditions, including Dirichlet, Neumann, Robin, and periodic [12].

In many situations, a simple uniform mesh of the type shown in Fig.1 is
not optimal, since the regularity in the solution may vary greatly, due to corner
singularities, localized loads, etc. The HPS method can easily be adapted to handle
local refinement. The essential difficulty that arises is that when boxes of different
sizes are joined, the collocation nodes along the joint boundary will not align. It is
demonstrated in [1, 5] that this difficulty can stably and efficiently be handled by
incorporating local interpolation operators.

2.2 A Hierarchical Direct Solver

A key observation in previous work on the HPS method is that the sparse linear
system that results from the discretization technique described in Sect.2.1 is
particularly well suited for direct solvers, such as the well-known multifrontal
solvers that compute an LU-factorization of a sparse matrix. The key is to minimize
fill-in by using a so called nested dissection ordering [4, 6]. Such direct solvers
are very powerful in a situation where a sequence of linear systems with the
same coefficient matrix needs to be solved, since each solve is very fast once
the coefficient matrix has been factorized. This is precisely the environment
under consideration here. The particular advantage of combining the multidomain
spectral collocation discretization described in Sect. 2.1 is that the time required for
factorizing the matrix is independent of the local discretization order. As we will
see in the numerical experiments, this enables us to attain both very high accuracy,
and very high computational efficiency.

Remark 1 (General Domains) For simplicity we restrict attention to rectangular
domains in this chapter. The extension to domains that can be mapped to a union
of rectangles via smooth coordinate maps is relatively straight-forward, since the
method can handle variable coefficient operators [12, Sec. 6.4]. Some care must be
exercised since singularities may arise at intersections of parameter maps, which
may require local refinement to maintain high accuracy.

The direct solver described exactly mimics the classical nested dissection
method, and has the same asymptotic complexity of O (N 13y for the “build” (or
“factorization”) stage, and then O(N log N) cost for solving a system once the
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coefficient matrix has been factorized. Storage requirements are also O (N log N).
A more precise analysis of the complexity that takes into account the dependence
on the order p of the local discretization shows [1] that Tyyjlg ~ N p4 + N13 and
Teolve ~ N p> + Nlog N.

3 Time-Stepping Methods

For high-order time-stepping of (1), we use the so called Explicit, Singly Diagonally
Implicit Runge—Kutta (ESDIRK) methods. These methods have a Butcher diagram
with a constant diagonal y and are of the form

0 0

2y |y Y

c3 as,| as 14

Cs—1 |As—1,1 Gg—12 ds—13 - VY

1 by by b3 S 4
by by b3 s b1y

ESDIRK methods offer the advantages of stiff accuracy and L-stability. They are
particularly attractive when used in conjunction with direct solvers since the elliptic
solve required in each stage involves the same coefficient matrix (I — hy %), where
h is the time-step.

In general we split the right hand side of (1) into a stiff part, FI!, that will
be treated implicitly using ESDIRK methods, and a part, FI?1, that will be treated
explicitly (with a Butcher table denoted ¢, A, and b). Precisely we will use the
Additive Runge—Kutta (ARK) methods by Carpenter and Kennedy [11], of order 3,
4 and 5.

We may choose to formulate the Runge—Kutta method in terms of either solving
for slopes or solving for stage solutions. We denote these the k; formulation and the
u; formulation, respectively. When solving for slopes the stage computation is

s s
k! =F[”(tn+c,-At,u"+At2a,-,-k;!+m2&,-jz;!), i=1,...,5, 3
j=1 j=1

s s
1;’=F[Zl(tn+c,~At,u"+AzZa,~,k;+A12&,~,1’;), i=1,...,5s. (4
j=1 j=1

Note that the explicit nature of (4) is encoded in the fact that the elements on the
diagonal and above in A are zero. Once the slopes have been computed the solution
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at the next time-step is assembled as
N N
+1 _ , .
u" _u"+Asz,k7+At2b,Zf;. 5)
j=1 j=1

If the method is instead formulated in terms of solving for the stage solutions the
implicit solves take the form

S
wl =+ Ay (a P+ e A ) + i FP @+ e an, ),
j=1

and the explicit update for u"*! is given by

N
W = ALY by (FM @ + e Ar ) + FPU, + ¢ A ).
j=1

The two formulations are algebraically equivalent but offer different advantages.
For example, when working with the slopes we do not observe (see experiments
presented in the second part of this paper) any order reduction due to time-dependent
boundary conditions (see e.g. the analysis by Rosales et al. [14]). On the other hand
and as discussed in some detail below, in solving for the slopes the HPS framework
requires an additional step to enforce continuity.

We note that it is generally preferred to solve for the slopes when implementing
implicit Runge—Kutta methods, particularly when solving very stiff problems where
the influence of roundoff (or solver tolerance) errors can be magnified by the
Lipschitz constant when solving for the stages directly.

Remark 2 The HPS method for elliptic solves was previously used in [10], which
considered a linear hyperbolic equation

9
a—l;tzfu(x,t), xeQ,t>0,

where .Zis a skew-Hermitian operator. The evolution of the numerical solution can

be performed by approximating the propagator exp(t.%) : L?>(£2) — L?*(£2) viaa
rational approximation

M

exp(r%) ~ Z by (1L~ 0fm)_1~

m=—M

If application of (1. — a,,) ™! to the current solution can be reduced to the solution
of an elliptic-type PDE it is straightforward to apply the HPS scheme to each term
in the approximation. A drawback with this approach is that multiple operators must
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be formed and it is also slightly more convenient to time step non-linear equations
using the Runge—Kutta methods we use here.

There are two modifications to the HPS algorithm that are necessitated by the use
of ARK time integrators, we discuss these in the next two subsections.

3.1 Neumann Data Correction in the Slope Formulation

In the HPS algorithm the PDE is enforced on interior nodes and continuity of the
normal derivative is enforced on the leaf boundary. Now, due to the structure of the
update formula (5), if at some time u” has an error component in the null space of
the operator that is used to solve for a slope k;, then this will remain throughout the
solution process. Although this does not affect the stability of the method it may
result in loss of relative accuracy as the solution evolves. As a concrete example
consider the heat equation

Ur = Uxx, X € [07 2]7t > Oa (6)

with the initial data u(x, 0) = 1 — |x — 1|, and with homogenous Dirichlet boundary
conditions. We discretize this on two leaves which we denote by « and 8.

Now in the k; formulation, we solve several PDEs for the k; values and update
the solution as

N
+1 _
u”" —u”—I—AthJ-k;?.
j=1

Here, even though the individual slopes have continuous derivatives the kink in u"
will be propagated to u”"*!. In this particular example we would end up with the
incorrect steady state solution u(x,¢) =1 — |[x — 1|.

Fortunately, this can easily be mitigated by adding a consistent penalization of
the jump in the derivative of the solution during the merging of two leaves (for
details see Section 4 in [1]). That is, if we denote the jump by [[-]] we replace the
condition 0 = [[Tk + h* 1] where Tk is the derivative from the homogenous part
and h¥ is the derivative for the particular solution (of the slope) by the condition
[[Tk+ Rk — At~ 1h"]]1 = 0. In comparison to [1] we get the slightly modified merge
formula

.
kis = (T§5 - T3ﬁ,3) (Tg,zkil —T5 ki1 + h’;ﬁ - hg’a — ——(hy" - hg’ﬂ))’

1
At
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along with the modified equation for the fluxes of the particular solution on the
parent box

vi|_[|T5. O Ti3 o T\ _Te | TP Ki 1
[Vz] = [ 0 ng + [1-2/.‘{3 (53— T53) [ TS5, [ T3] ki +
hllm)[ Ttlx,3 o Tﬂ -1 h/S he 1 huﬂ h“sﬂ
hed | T -|-2/373 (T55—T33)  (hy — NS — 5T s ))-

Due to space we must refer to [1] for a detailed discussion of these equations.
Briefly, 1% and h¥# above denote the spectral derivative on each child’s boundary
for the particular solution to the PDE for k; and are already present in [1]. However,
h*® and h*-#, which denote the spectral derivative of u” on the boundary from each
child box, are new additions.

The above initial data is of course extreme but we note that the problem persists
for any non-polynomial initial data with the size of the (stationary) error depending
on resolution of the simulation. We further note that the described penalization
removes this problem without affecting the accuracy or performance of the overall
algorithm.

Remark 3 Although for linear constant coefficient PDE it may be possible to project
the initial data in a way so that interior affine functions do not cause the difficulty
above, for greater generality, we have chosen to enforce the extra penalization
throughout the time evolution.

Remark 4 When utilizing the u; formulation in a purely implicit problem we do not
encounter the difficulty described above. This is because we enforce continuity of
the derivative in u} when solving

s—1 s—1
I — Aty Dulf =u" + Atf(Zasju’}) + At Zasjg(x, th +cj At),
=1

j=1

followed by the update 1!

—
=Ug.

3.2 Enforcing Continuity in the Explicit Stage

The second modification is to the first explicit stage in the k; formulation. Solving a
problem with no forcing this stage is simply

k] = Auy).
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When, for example, .Zis the Laplacian, we must evaluate it on all nodes on the
interior of the physical domain. This includes the nodes on the boundary between
two leafs where the spectral approximation to the Laplacian can be different if
we use values from different leaves. The seemingly obvious choice, replacing
the Laplacian on the leaf boundary by the average, leads to instability. However,
stability can be restored if we enforce k{ = Zu,) on the interior of each leaf
and continuity of the derivative across each leaf boundary. Algorithmically, this is
straightforward as these are the same conditions that are enforced in the regular
HPS algorithm, except in this case we simply have an identity equation for k1 on the
interior nodes instead of a full PDE.

Although it is convenient to enforce continuity of the derivative using the regular
HPS algorithm it can be done in a more efficient fashion by forming a separate
system of equations involving only data on the leaf boundary nodes. In a single
dimension on a discretization with n leafs this reduces the work associated with
enforcing continuity of the derivative across leaf boundary nodes from solving n x
(p — 1) — 1 equations for n x (p — 1) — 1 unknowns to solving a tridiagonal system
of equations n — 1 equations for n — 1 unknowns.

In two dimensions the system is slightly different, but if we have n x n leafs with
p x p Chebyshev nodes on each leaf then eliminating the explicit equations for the
interior nodes reduces the system to (p —2) x 2n independent tridiagonal systems of
n — 1 equations with n — 1 unknowns for a total of (p —2) x 2n x (n — 1) equations
with (p — 2) x 2n x (n — 1) unknowns.

When the u; formulation is used for a fully implicit problem the intermediate
stage values still requires us to evaluate Zi", but this quantity only enters through
the body load in the intermediate stage PDEs. The explicit first stage in this
formulation is simply u = u". Furthermore, while we must calculate

N
Wt =y 4 Atf(Zasju’}),

J=l1

this is equivalent to u since b; = ay; and we simply take u'tl = uy.

When both explicit and implicit terms are present, we proceed differently. Now,
the values of u7 look almost identical to the implicit case and we still avoid the
problem of an explicit “solve” in u’, but we also have

s
un+1 =u" + At ij(F[l](l‘n + CjAf, M;l) + F[2](tn + CjAt, ul;))
=1

The ESDIRK method has the property that b; = ay;, but for the explicit Runge—
Kutta method we have b; # ay;. When the explicit operator F (2] does not contain
partial derivatives we need not enforce continuity of the derivative and can simply
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reformulate the method as

s
"t = uy + At Z(asj - &sj)F[Z](tn +c;At, u?)
j=1

4 Boundary Conditions

The above description for Runge—Kutta methods does not address how to impose
boundary conditions for a system of ODEs resulting from a discretization of a PDE.
In particular, the different formulations incorporate boundary conditions in slightly
different ways.

In this work we consider Dirichlet, Neumann, and periodic boundary conditions.
For periodic boundary conditions the intermediate stage boundary conditions are
enforced to be periodic for both formulations. As the k; stage values are approxi-
mations to the time derivative of u, the imposed Dirichlet boundary conditions for
x € I''are k' = u,(x, t, + ¢; At). When solving for u; one may attempt to enforce
boundary conditions using u#; = u(x, t 4+ c; At), x € I'. However, as demonstrated
in part two of this series and discussed in detail in [14], this results in order reduction
for time dependent boundary conditions.

In the HPS algorithm, Neumann or Robin boundary conditions are mapped to
Dirichlet boundary conditions using the linear Dirichlet to Neumann operator as
discussed for example in [1].
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