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Model Order Reduction for Water Quality Dynamics
Shen Wang†, Ahmad F. Taha†,∗, Ankush Chakrabarty‡, Lina Sela♠, and Ahmed Abokifa�

Abstract—A state-space representation of water quality dy-
namics describing disinfectant (e.g., chlorine) transport dynam-
ics in drinking water distribution networks has been recently
proposed. Such representation is a byproduct of space- and
time-discretization of the PDE modeling transport dynamics.
This results in a large state-space dimension even for small
networks with tens of nodes. Although such a state-space model
provides a model-driven approach to predict water quality
dynamics, incorporating it into model-based control algorithms
or state estimators for large networks is challenging and at
times intractable. To that end, this paper investigates model
order reduction (MOR) methods for water quality dynamics.
The presented investigation focuses on reducing state-dimension
by orders of magnitude, the stability of the MOR methods, and
the application of these methods to model predictive control.

Index Terms—Water distribution network, water quality
model, state-space representation, model order reduction, model
predictive control.

I. INTRODUCTION AND PAPER CONTRIBUTIONS

W ater quality models can be expressed in the form of a
state-space representation [1] representing the numeri-

cal solution of the PDEs describing the spatiotemporal evolution
of disinfectant concentration (e.g., chlorine) in various network
elements in drinking water distribution networks (WDN). Un-
fortunately, even for small-to-midsize networks, the dimension
(or order) of the state-space models can reach 104 or 106, due
to ensuring high fidelity in model predictions.

This is due to discretization methods used for solving the
partial differential equations (PDE) that describe the chlorine
transport in pipes. Very high resolution in discretization yields
improved accuracy in the control-oriented model but results
in high state-space dimension, leading to heavy computational
burden during simulation and difficulty for use in controller
design [2]. This implies that high-accuracy models, though
effective for predicting system dynamics, are not amenable
to controller or estimator design for large-scale networks—
especially in the presence of state or input constraints. To that
end, model order reduction (MOR) is necessary to derive a
compact model for fast simulation and efficient synthesis of
controllers and state estimators.
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A full-order model is referred to as an exact or near-exact
model to describe water quality dynamics and usually is high
in dimension. The motivation of MOR is to reduce the full-
order model to a reduced-order model that has a much smaller
number of states or order without significantly decreasing model
accuracy while maintaining input-output relationships and re-
taining certain properties of the system such as controllability
and observability. To this end, the high-dimensional state vector
from the full-order model is projected onto a lower-dimensional
subspace within which the model accuracy and certain proper-
ties are not significantly compromised. The MOR method has
been widely applied in computational fluid dynamics [3]–[5],
and other fields such as computational electromagnetics, as well
as in micro- and nano-electro-mechanical systems design [6].
However, reduced-order models have never been explored for
modeling water quality dynamics—a gap that is filled in this
paper.

A. Literature review of MOR algorithms
Various MOR algorithms have been developed in the rich

literature of dynamic systems. The majority of these algorithms
can be divided into two categories: singular value decom-
position (SVD) based methods [3], [5], [7]–[10] and Krylov
subspace methods or moment matching based methods [11]–
[15]. There are also some studies combining SVD and Krylov
methods [16]. In general, methods based on Krylov subspaces
do not preserve important properties of the original system such
as stability and passivity [4]. Hence, we are interested in SVD-
based methods in which several methods can guarantee stability
or controller designed related properties. Moreover, SVD-based
approaches can be further divided into subcategories, for exam-
ple, the methods using Hankel operators concepts [7], [8], the
balanced realization theory [3], [9], [17], and proper orthogonal
decomposition (POD) based methods [3], [5], [10], [18], [19].
This paper focuses on seeking proper SVD-based model reduc-
tion methods for the water quality dynamics represented linear
discrete-time systems with a state-space presentation.

Moore [9] proposes the balanced truncation (BT) method
which considers or balances controllability and observability
Gramians. Unfortunately, the BT method becomes computa-
tionally intractable for large-scale systems (e.g., 104 states
or more). The POD method proposed by Sirovich [10] is
tractable, but not as accurate as of the BT. To compute balancing
transformations for high-order systems, Willcox [5] proposes a
technique that combines the POD and concepts from balanced
realization theory. However, when the number of outputs of a
system is large, this method is intractable, and it has the risk
of truncating states that are poorly observable yet very strongly
controllable. As a result, the balanced POD (BPOD) [3] is pro-
posed to address the same issues, and it combines the advantages
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of BT and POD methods successfully. That is, BPOD balances
both controllability and observability and is tractable for a large-
scale system, which results in the computational cost similar to
POD and the accuracy similar to BT.

In the water systems research community, the reduced models
are applied in simplifying networks in the context of hydraulics
and the techniques adopted are different from the ones afore-
mentioned in dynamic systems. That is, the reduced model
achieves a high-fidelity representation for the complete network
hydraulic, but greatly simplifies the computation. For example,
a skeletonization method [20] removes nodes from a linearized
network model through Gauss elimination, and reduces the
network model while preserving the nonlinear characteristics
of the original network model. Salomons [21] obtain a reduced
model by the genetic algorithm. To meet the computational
efficiency requirements of real-time hydraulic state estimation,
Preis et al. [22] introduce a reduced model using a water
system-aggregation technique. A methodology and application
of a conjunctive hydraulic and water quality model for water
distribution systems aggregation are presented in study [23]. In
contrast, this paper focuses on a different research problem that
reduces the order of water quality dynamics model, which has
not been studied in the literature.

B. Paper contributions

The major objective of the paper is to investigate the
performance of water quality MOR algorithms, address their
theoretical limitations, assess their computational performance,
and evaluate their potential when applied within a model-based
predictive control framework. The below list outlines in detail
the contributions of the paper.

1) We present the first attempt to identify reduced-order
models for water quality simulation with theoretical anal-
ysis: our case studies show that the reduced-order model
produces nearly identical water quality simulations in com-
parison with the full-order models. The MOR algorithms
are tested for different scales of networks in sense of
accuracy, low computational burden, robustness to initial
conditions, and potential to be obtained as a stable reduced-
order model.

2) Classic MOR algorithms cannot ensure the stability of a
reduced-order model, despite the stability of the underlying
water quality dynamics. Thus, we propose two methods
that guarantee that the reduced-order model is stable. The
first method performs a stabilization process based on the
standard MOR procedure while trying to maintain accu-
racy, and the second method simply adjusts a parameter in
the standard MOR (i.e., BPOD) procedure. Moreover, the
parameter adjustment has a clear physical interpretation for
water quality dynamics, which is the largest travel time-
step from booster stations to sensors.

3) The obtained stable reduced-order models are then utilized
as predictive models in MPC for a WDN. Our case study
shows that the application of MPC to the reduced-order
model produces similar control effects compared with the
application of MPC to the full-order model, while the
computational burden is significantly reduced.

(a) (b)

Fig. 1. (a) exemplar topology of a WDN (multi-input and multi-output
system with two boosters (inputs) and one sensor (output) to inject and detect
chlorine), and P23 is split into three segments according to L-W scheme for
illustration purpose; (b) demand profiles for all junctions during 24 hours.

The rest of the paper is organized as follows. Section II briefly
describes control-oriented water quality modeling, then presents
the full-order model in state-space form. The principle of MOR
for the specific water quality modeling is given at the begin-
ning of Section III, followed by the fundamental procedures
of various MOR methods and the corresponding discussions
in Section IV. Section V presents two methods to obtain a
stable reduced-order model by adjusting the standard MOR
procedures. Section VI presents case studies that corroborate
our proposed approach. Limitations of our methods and future
research directions are given in Section VII.
Paper’s Notation. Boldface characters represent matrices and
vectors: a is a scalar, a is a vector, and A is a matrix. Matrix
I denotes an identity matrix, whereas 0m×n denotes a zero
matrix with size m-by-n. The notation R denotes the set of real
numbers, and the notations Rn and Rm×n denote a column
vector with n elements and an m-by-n matrix in R. For any
vector x ∈ Rn, x> is its transpose. For any two matricesA and
B with same number of columns, the notation {A,B} denotes
[A> B>]>. The norm of A is ‖A‖2. The i-th singular value
ofA is denoted by σi; a vector σ(A) stands for all the singular
values of A; the k-largest singular values of A is denoted by
vectorσ↓k(A). The i-th eigenvalue ofA is denoted by λi;σ(A)
stands for all the eigenvalues ofA; the k-largest eigenvalues of
A is expressed by vector λ↓k(A).

II. STATE-SPACE WATER QUALITY MODEL

In this section, we present the necessary background for the
state-space model of water quality dynamics.

A. Water quality dynamics

We model WDN by a directed graph G = (N ,L). The setN
defines the nodes and is partitioned as N = J ∪ T ∪R where
J , T , and R are collection of junctions, tanks, and reservoirs.
Let L ⊆ N × N be the set of links, and define the partition
L = P ∪M∪V , where P ,M, and V represent the collection
of pipes, pumps, and valves.

An example of a WDN graph is shown in Fig. 1a, and a
disinfectant (such as chlorine) is added into the network with
a proper mass and concentration by booster stations installed
at the reservoir source R1 and the junction J4 to disinfect the
WDN. Each junction in a WDN is a type of node that connects
two links. They may consume water, that is, they have water
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demands. During a specific period, demands from all junctions
form a demand profile (see Fig. 1b) which is assumed as a
priori for water quality simulations in water research. Moreover,
all components are designed to meet a certain threshold of
water quantity and quality. For example, the pump PM12 is
designed to maintain the water pressure for all users (junctions).
The concentration sensors are installed at specific junctions
for measurement purposes (see the sensor installed at J3 in
Fig. 1a), in this way the water system operators can obtain the
concentrations around the network.

In the end, the water quality model can be used to represent
the movement of all chemical and/or microbial species (con-
taminant, disinfectants, DBPs, metals, etc.) within a WDN as
they traverse various components of the network. Specifically,
the single-species interaction and dynamics of chlorine are
considered in our paper, and it can be expressed using a
state-space model. We first introduce the concepts and the
corresponding methods that form the state-space model next.

In a WDN, the pipe model is represented by chlorine
transport in differential pipe lengths by advection in addition
to its decay due to reactions. Mathematically, for any pipe,
the 1-D advection-reaction equation is given by a PDE. Al-
though the PDE has no closed-form solution, the Lax-Wendroff
scheme [24] can be adopted to discretize and solve it numer-
ically. For example, pipe P23 in Fig. 1a is split into three
segments for illustrative purpose according to the scheme. In
practice, the number of segments for a pipe (denoted by sL) is
decided by the flow velocity and the length of that pipe. After the
discretization for all pipes, we define a vector cP(t) to collect all
segments in all pipes at time t. Similarly, the concentrations in
pumps and valves at time t are denoted by cM(t) and cV(t). The
cL(t) , {cP(t), cM(t), cV(t)} is a defined vector collecting all
concentrations from links (i.e., pipes, pumps, and valves). For
all nodes, we define cN(t) = {cJ(t), cR(t), cT(t)} to collects
the concentration from all junctions, reservoirs, and tanks.

B. State-space representation
In general, the number of junctions, reservoirs, tanks, pipes,

pumps, and valves is denoted by nJ, nR, nTK, nP, nM, and
nV. Hence, the number of states in nodes and links are nN =
nJ + nR + nTK and nL = nP × sL + nM + nV. Therefore,
cN(t) ∈ RnN and cL(t) ∈ RnL .

Summarily, a water quality state-vector x defining the con-
centrations of the disinfectant (chlorine) in the network at time t
is denoted as x(t) , {cN(t), cL(t)} ∈ Rnx and nx = nN +nL.
After applying the principle of conservation of mass, we can
rewrite all component models (i.e., water quality model) using
a discrete-time state-space model of the form

x(k + 1) = A(k)x(k) +B(k)u(k) (1a)
y(k) = C(k)x(k) +D(k)u(k), (1b)

where x(k) ∈ Rnx is the state vector, the vectors u(k) ∈ Rnu

and y(k) ∈ Rny are the system inputs and outputs (i.e.,
nu booster stations and ny concentration sensors), and A(k),
B(k),C(k), andD(k) are time-varying system matrices. Note
that state matrix A(k) stands for the pure system dynamic
(without any boosters); the element in input matrix B(k) rep-
resents locations of booster stations and corresponding injected

flow rates that are both assumed as known; output matrixC(k)
indicates where the sensors are installed; feed-forward matrix
D(k) describes the relationship or path directly from inputs to
outputs, for example, some booster stations are equipped with a
built-in concentration sensor (i.e., both the booster station and
the sensor are at the same location) to calculate the injection of
chlorine accurately.

Note that these system matrices are usually updated from
half hour to several hours according to the changing demands in
demand profiles (e.g., demand changes every 2 hours in Fig. 1b).
That is, during a specific period in the demand profile (demands
at all junctions do not change), the system matrices remain
the same, and the discrete-time linear time-varying (DT-LTV)
system (1) degenerates into a discrete-time linear time-invariant
(DT-LTI) system, that is

x(k + 1) = Ax(k) +Bu(k) (2a)
y(k) = Cx(k) +Du(k). (2b)

Let us denote a generic nx-th order DT-LTI system (2) as
the tuple (A,B,C,D) for brevity. In this way, the DT-LTV
system (1) comprises different tuples (DT-LTI systems). For
example, DT-LTV models for 24 hours of the WDN in Fig. 1a
can be represented by 12 different DT-LTI systems since the
demand changes each two hours.

It is worthwhile to note that (i) the water quality model (1)
is available in our recent published work [1], and the model is
stable; (ii) after testing, each pipe is required to be split into
at least 100 segments on average to guarantee the accuracy
of discretizing PDEs. That is, the order nx can easily reach
104 level for a mid-sized network with hundreds of pipes; (iii)
all system matrices in this model are sparse, and the sparsity
rate could be from 99% to 99.999% or higher. Moreover, the
challenging MOR problem for a DT-LTV system is equivalent
to solving multiple relatively easy MOR problems for DT-LTI
systems, and the detail is presented next.

III. MODEL ORDER REDUCTION

This section provides an overview of MOR principles for DT-
LTI systems. For each specific MOR method, the corresponding
procedure is summarized.

A. Principle of MOR for DT-LTI system

The objective of MOR is to find a reduced-order model of
order nr � nx, given by

xr(k + 1) = Arxr(k) +Bru(k) (3a)
ŷ(k) = Crxr(k) +Dru(k), (3b)

where the new state vector xr ∈ Rnr ; the system input and
output vectors u and ŷ retain the same dimension. From a sim-
ulation perspective, the estimated output ŷ(k) from the reduced-
order model is compared to the output from the full-order
system y(k) to test the performance of the MOR algorithms.

The general idea of the aforementioned reduction process is
to find an invertible transformation matrix T that maps state
x into another space state z. Specifically, x = Tz, where the
reduced-order model state z ∈ Rnx and transformation matrix
T ∈ Rnx×nx . Moreover, matrix T is constructed based on
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some specific principles so that the elements in z are ordered
according to their importance; more on that in Section III-B.
After substituting x = Tz into (2), we obtain

z(k + 1) = Azz(k) +Bzu(k) (4a)
yz(k) = Czz(k) +Dzu(k), (4b)

where system matrices Az = T−1AT , Bz = T−1B, Cz =
CT , and Dz = D.

However, the order of transformed system (Az,Bz,Cz,Dz)
is still nx. To obtain the reduced-order model (3), only the first
nr important elements in z are kept and denoted by xr. That is,
x can be replaced by Trxr while the system properties remain
the same, where Tr ∈ Rnx×nr is the first nr columns of T .
Finally, Equation (4) turns into reduced-order model (3) where

Ar = SrATr,Br = SrB,Cr = CTr,Dr = D. (5)

Note that Sr in (5) is neither the inverse or pseudo inverse of
Tr, it is simply the first nr row of T−1.

In short, MOR is achieved by defining a certain subspace
within the original space and transforming the system dynam-
ics. A question that remains unanswered is which reduced-
order models are most beneficial for achieving our goal: to
reduce the difficulty of designing control/estimation algorithms
such as Kalman filter, model predictive control (MPC), or
linear–quadratic regulator (LQR) for water quality regulation.
Since these control algorithms are related to the concepts of
controllability and observability, one could argue that furthering
our understanding of the controllable and observable subspaces
could prove most useful for controller design.

Controllability describes the ability of an external input u
to drive system state x(k) from any initial state x(0) to any
other final state x(kf ) in a finite time interval [0, kf ] [25]. A
quantitative metric for controllability in a DT-LTI system is the
controllability Gramian defined as

WC =
∑∞
m=0A

mBB>(A>)m, (6)

which is the solution of Lyapunov equationWC−AWCA
> =

BB>. Similarly, observability describes the ability of recon-
structing the initial unknown state x(0) in finite kf steps from
the knowledge of output y(k) [25]. The corresponding metric
for observability is the observability Gramian defined as

WO =
∑∞
m=0(A>)mC>CAm, (7)

and it is the solution of Lyapunov equationWO−A>WOA =
C>C.

The physical meaning of MOR in terms of using control-
lable and observable subspaces are that the uncontrollable (not
affected by the input u) and unobservable (does not affect the
output y) parts of the system without significantly affecting
input-output relations are discarded. The methods considering
controllability or observability Gramian are also referred to as
Gramian based MOR, and when both Gramians are considered
in a method, it is then named as cross-Gramian based MOR [4],
[26]. Next, we present several specific MOR algorithms that
consider the Gramians which are suitable for water quality
application.

B. Description of common MOR algorithms

Herein, we describe three reduced-order modeling algo-
rithms: balanced truncation (BT), proper orthogonal decompo-
sition (POD), and balanced POD (BPOD).

1) Balanced Truncation: Balanced trunction computes a
specific T that transforms the coordinate system x into a
new coordinate system z (see (4)) in which the controllability
and observability Gramians (denoted WCz and WOz , respec-
tively) are diagonal and identical [9]. We denote this particular
Gramian by Σz . Mathematically, Σz = WCz = WOz , which
implies that Σ2

z = WOzWCz , where

WCz =
∑∞
m=0A

m
z BzB

>
z (A>z )m = T−1WCT

−1>,

and WOz = T>WOT .
Note that WC and WO are the Gramians of the full-order

model (2) before transformation. Hence,

Σ2
z = WOzWCz = T−1WOWCT ⇔WOWCT = TΣ2

z,

which indicates the transformation T can be obtained by
finding the eigenvector matrix ofWOWC (also known as cross
Gramian matrixWX [27]), and the Σ2

z is just the corresponding
diagonal eigenvalue matrix. The finalTr can be obtained simply
by selecting the first nr columns of T .

Furthermore, the diagonal element σi, i = 1, . . . , nx in Σz

measuring controllability and observability simultaneously are
the Hankel singular values (HSVs) [28] of WX . Each single
HSV σi =

√
λi provides a measure of “energy” for each state

in a system. The model order reduction procedure provided by
BT can also be viewed as retaining the nr−largest HSVs (i.e.,
σ↓nr

(WX)) or eigenvalues (i.e., λ↓nr
(WX)) with higher energy

and discarding the least important ones with lower energy. The
nr can be either specified as a fixed number directly or solved by
specified energy level defined by energy =

∑nr

j=1 σj/
∑nx

i=1 σi.
The simplified procedure of BT approach is summarized as
Procedure 1.

Procedure 1: Classical BT
1 Form cross Gramian matrix WX =WOWC after solving

two Lyapunov equations
2 Find the eigenvector matrix T of WX

3 Specify nr as needed or obtain nr via setting an energy level
4 Extract Tr from the first nr columns of T
5 Extract Sr from the first nr rows of T−1

6 Obtain reduced-order model (3) by (5)

This BT method considers and balances the controllability
and observability simultaneously with high accuracy. Besides
that, it preserves stability, which is a necessary property for the
reduced-order system. However, it requires the computation of
WO and WC or equally solving two Lyapunov equations and
eigenvalue decomposition that are intractable for a large-scale
network.

2) Proper Orthogonal Decomposition: The POD algo-
rithm [10], [18], which is also known as principal component
analysis or the Karhunen-Loève expansion, focuses on seeking
a transformation Tr such that a set of given data x(t) ∈ Rnx ,
with time t ∈ [0,m] is projected into the subspace of fixed
dimension nr as xr = Trx ∈ Rnr while minimizing the total
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error
∑m−1
t=0 ‖x(t) − xr(t)‖2. To solve this problem, the data

is assembled into an nx ×m matrix

Xm =
[
x(0) x(1) . . . x(m− 1)

]
, (8)

which is called snapshot. Define matrix WCm as XmX
>
m ∈

Rnx×nx . Matrix WCm is controlability Gramian-like matrix
containing the first m items when calculating WC , and it
is an approximation of WC . We refer to WCm as the m-
step controllability Gramian. The optimal transformation Tr
in POD method can be obtained by eigenvalue decomposition
WCmTr = TrΛ. Each eigenvector or the column vector in Tr
is named as POD mode [3], and the eigenvalues of WCm are
the diagonal elements of Λ.

Note that a snapshot is given by (8) which, ifA is sparse, can
be easily obtained even with nx ≥ 106 since the computational
task involves sparse matrix multiplication. However, finding the
eigenvectors of an nx × nx matrix WCm is still challenging.
Sirovich [10] solves this problem by defining W̃Cm = X>mXm

which is in Rm×m instead of Rnx×nx with m � nx. The
matrix form of eigenvector and eigenvalue of this new W̃Cm

are denoted asU and Λ. That is, thenx×nx eigenvalue problem
is solved thorough constructing an m×m eigenvalue problem.
Finally, the transformation matrices Tr and Sr can be obtained,
and the detail is in Procedure 2. Note that when nx � m, the
above step is not necessary, and computing WCm directly is
easier and preferred.

Procedure 2: Classical POD
1 Construct snapshot Xm using (8)
2 Perform eigenvalue decomposition for W̃Cm =X>mXm by

finding U and Λ via W̃CmU = UΛ
3 Specify nr as needed or obtain nr via setting an energy level
4 Extract transformation Tr from the first nr column of
XmUΛ−

1
2

5 Extract transformation Sr from the first nr rows of
Λ−

1
2UX>m

6 Obtain reduced-order model (3) by (5)

Since the eigenvalues of AB are the same as those of
BA (see [29, Theorem 1.3.22]), i.e., λ(AB) = λ(BA),
the W̃Cm shares the same eigenvalues with m-step control-
lability Gramian WCm. That is, POD, not as the BT method
that exploits the controllability Gramian (summations of in-
finity items), uses only the first m items of the controllabil-
ity Gramian. This makes POD tractable for even large-scale
systems but less accurate compared to BT. Thus, POD only
considers controllability Gramian and selects the nr modes
with high-energy states (i.e.,λ↓nr

(WCm)), and discards the low-
energy states.

3) Balanced Proper Orthogonal Decomposition: BPOD
aims to combine the advantages of BT and POD together, that
is, to obtain an approximation to BT that is computationally
tractable for large-scale systems [3]. Different from the snapshot
Xm (8) defined in POD method, BPOD defines Xm as

Xm =
[
x1(0) . . . x1(m−1) . . . xnu

(0) . . . xnu
(m−1)

]
, (9)

where the xi(m) is the impulse response (when ui(k) = δ(k)
is an impulse signal). That is, xi(m) = Ambi and bi is the i-th
column of B.

Moreover, BPOD denotes Ym as the snapshot of the dual
system of system (A,B,C,D) or equally (2). That is, Ym is
the snapshot of system (A>,C>,B>,D>) with system state
denoted as z, and Ym can be expressed as

Ym =
[
z1(0) . . . z1(m−1) . . . zny (0) . . . zny (m−1)

]
, (10)

where the zi(m) is the impulse response, that is, zi(m) =
(A>)

m
c>i and c>i is the i-th column of C>.

Then, the balancing modes are computed by forming the
singular value decomposition of the block Hankel matrix Hm:

Hm = Y >mXm = UΣV > =
[
Ur 0

] [Σr 0
0 0

] [
V >r
0

]
, (11)

where the diagonal element in Σr ∈ Rnr×nr collects the
largest nr singular values of Hm, and Ur and V >r are the
correpsonding left- and right-singular vectors. Hence, the final
transformation matrices are Tr = XmVrΣ

− 1
2

r and Sr =

Σ
− 1

2
r U>r Y

>
m ; see Procedure 3 for details.

Procedure 3: Classical BPOD
1 Form snapshots Xm (9) and Ym (10) of BPOD
2 Perform singular value decomposition of
Hm = Y >mXm (11), and obtain Ur , Σr , Vr

3 Specify nr as needed or obtain nr via setting an energy level

4 Calculate Tr =XmVrΣ
− 1

2
r and Sr = Σ

− 1
2

r U>r Y
>
m

5 Obtain reduced-order model (3) by (5)

From the above procedures, it is clear that BPOD considers
both controllability and observability Gramians like BT method,
successfully avoids solving the two Lyapunov equations, form-
ing cross Gramian matrix WX , and finding the eigenvalues
of WX to form a traceable algorithm simply by adopting the
concept of the snapshot.

IV. THOERETICAL COMPARISONS OF MOR ALGORITHMS
FOR WATER QUALITY DYNAMICS

The advantages and disadvantages from the aspects of
tractability for large-scale systems, relative accuracy, and sta-
bility preserving properties are summarized in this section. Sub-
sequently, we present a comparison of these MOR algorithms
to determine which properties of these algorithms fit best for
our application— the water quality model.

First, the complexity of solving Lyapunov equations [31],
eigenvalue decomposition [32], and SVD [33] are roughly
estimated by O(n3) for an n × n matrix. Although all BT,
POD, and BPOD procedures include at least one of the above
time-consuming computation, the matrix size appeared in these
procedures and the number of executions of the procedures are
different; see Tab. I. For example, BT solves two Lyapunov
equations (nx × nx) and performs eigenvalue decomposition
for WX once, that is, it performs algorithm with O(m3) three
times; POD performs eigenvalue decomposition for W̃Cm,
the complexity is roughly O(m3); BPOD performs truncated
SVD (rank nr; see (11)) for Hm, the complexity is roughly
O(m2nynunr). Due to m � nx, it is clear that BT is the
slowest algorithm. The computational load of POD and BPOD
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Tab. I
COMPARISONS AMONG THREE CLASSICAL MOR METHODS.

Matrix
involved Dimension

Decomposi-
tion method†

Mode
retained

Complexity
(Computational load)

Tractability for
large-scale systems

Relative
accuracy�

Stability∗

preserving
BT WX Rnx×nx ED λ↓nr

(WX) O(n3
x) (High) No High Yes

POD‡ W̃Cm Rm×m ED λ↓nr
(W̃Cm) O(m3) (Low) Yes Low No

BPOD Hm Rmny×mnu SVD σ↓nr
(Hm) O(m2nynunr) (Low) Yes Medium Depends♠

†Eigenvalue decomposition (ED); singular value decomposition (SVD); ‡use W̃Cm when m� nx, otherwise, use WCm instead.
�Under the same number of modes; ∗asymptotically stable;♠Rowley [3] conjectures that BPOD can preserve stability via theoretical analysis

while other studies [6], [30] denied this assertion based on test results.

algorithms depends on the value ofm and nynunr. When these
values are of the same order of magnitude, the complexity of
POD and BPOD are similar and also tractable for large-scale
systems; see Tab. I for the final computational load.

Second, a useful property of the BT method is that the error
bounds provided are close to the lower bound achieved by
any reduced-order model, and the upper bound of the error is
guaranteed less than 2

∑nx

i=nr+1 σi, where σi is the i-th HSV of
WX in Section III-B1 [3]. Furthermore, BT considersWX that
balances controllability and observability. Hence, the relative
error in terms of preserving input-output relations of the BT
method is theoretically the best among these three methods.
As for POD, it only takes advantage of m-step controllability
GramianWCm, and has the risk of discarding the states that are
highly observable but less controllable. This defect leads to the
inaccuracy of POD or even the failure to reduce system order.

In fact, BPOD provides a good approximation of BT since
they retain the same states/modes when performing MOR. The
corresponding nr-largest eigenvalues (singular values) of all
modes/states retained from three procedures are summarized
in Tab. I. That is, the states retained are those with λ↓nr

(WX)
(σ↓nr

(Hm)) for BT (BPOD). Suppose λi (σi) is the i-th element
of λ↓nr

(WX) (σ↓nr
(Hm)), and λi u σ2

i always holds true
when m is large enough. This implies that BPOD, like BT,
uses the same information (i.e., cross GramiansWX ) to obtain
the transformation Tr to reduce system order. The difference
lies in the way each algorithm deals with such information.
For example, BT requires an eigenvalue decomposition ofWX

while BPOD involves singular value decomposition to Hm

embedded in WX . From this perspective, the transformation
T obtained from the BPOD method is the balanced one that
simultaneously diagonalizes WC and WO. Hence, BPOD has
the same ability (when m is large enough) ensure the accuracy
as BT does.

The BT method guarantees stability theoretically after
MOR [9], while POD fails [4], [34] due to the projection it
uses. As for the BPOD method, different studies report various
results. Rowley [3] claims that the stability-preserving from
BPOD is guaranteed for linear systems when snapshots are
large enough. However, there is no guideline to find what is
the proper size of snapshots. We suspect that this might be
why the results from several studies [6], [30] do not support
the stability-preserving property of BPOD. In other words,
stability-preserving of BPOD depends on the parameter (i.e.,
length of snapshots) set. We would present an approach to find

the proper parameter that ensures stability in Section V.
In short, POD and/or BPOD methods are still preferred since

they are tractable for a large-scale system, even if their stability-
preserving properties are not sufficient for water quality dynam-
ics MOR. Toward that goal, the stability-preserving model order
reduction approaches for water quality modeling are explored
and proposed next.

V. STABILIZING MOR ALGORITHMS

In this section, the brief literature of stability-preserving
MOR is presented first followed by proposing two methods
suitable for the stable and discrete-time system.

The approaches developing stability-preserving reduced-
order model involve a priori frameworks [35]–[39], and a
posteriori frameworks [40]–[43]. A priori stability-preserving
framework can be difficult to implement, and/or requires the
solution of PDEs or special system structure. For example,
the Galerkin projection (i.e. a congruence transform) needs
sign-definite matrices in the full-order system. Conversely, a
posteriori methods minimally modify the reduced-order system
matrix so that the accuracy is not significantly changed. The
more detailed literature can be found in [41]. Herein, we discuss
stability-preservation with both these frameworks.

In short, we propose a novel posteriori method to stabilize
the reduced-order model after performing the POD or BPOD
procedure. Comparing to existing methods such as [42], the
proposed posteriori method adjusts the final transformation
Ar directly instead of optimizing/adjusting the projection Ur
slightly while fixing the projection V >r in (11). Furthermore,
published studies focus more on continuous systems while the
proposed one is for discrete systems and uses a special trick to
relax the non-convex optimization problem.

Moreover, a priori stabilization is proposed specifically for
the BPOD procedure. To the best of our knowledge, this is
the first priori stabilization method for BPOD. Comparing to
existing studies such as [35] focusing on finding a special and
complex projection for POD, the proposed method is simple
and intuitive since it only requires modifying a parameter in
BPOD.

A. A posteriori stabilization for POD-based approach

After performing the POD procedure, the stability of the
reduced-order model can not be guaranteed. That is, Ar is
unstable. As for the stability-preserving from BPOD, it depends
on the length of snapshots m. When m is not proper, Ar from
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BPOD tends to be unstable. The motivation behind this posterior
method is to adjust Ar by ∆Ar such that the adjusted system
is stable while ensuring that the norm ‖∆Ar‖2 is as small as
possible to maintain the accuracy of the full-order system.

From Lyapunov stability conditions [44], we know that a DT-
LTI system (A,B,C,D) is stable when there exist a positive
definite matrix P such that A>PA − P is negative definite.
Thus, in our case the stabilization problem can be expressed as
an optimization problem below.

min
P ,∆Ar,α

α (12a)

subject to P � 0, α > 0 (12b)
‖∆Ar‖2 ≤ α (12c)

(Ar + ∆Ar)
>P (Ar + ∆Ar)− P ≺ 0, (12d)

where P , ∆Ar in Rnr×nr and α ∈ R are the optimization
variables. However, this problem (12) is nonconvex. We can
take the following steps to tranform it into an semidefinite
programming (SDP) that is convex.

Since P � 0 is invertible, let P = PP−1P , and taking
Schur complements, we have

(12d)⇔ (Ar + ∆Ar)
>PP−1P (Ar + ∆Ar)− P ≺ 0

⇔
[

−P (PAr + ∆Y )>

PAr + ∆Y −P

]
� 0, (13)

where ∆Y = P∆Ar. Furthermore, the Cauchy-Schwarz
inequality yields

‖∆Y ‖2 = ‖P∆Ar‖2 ≤ ‖P ‖2‖∆Ar‖2.
Invoking (12c) yields ‖∆Y ‖2 ≤ α‖P ‖2. Taking Schur com-
plements yields

(12c)⇔ ‖∆Y ‖2 ≤ αy ⇔
[
I ∗

∆Y α2
yI

]
� 0,

where αy = α‖P ‖2. However, the α2
y is still nonlinear and can

be relaxed as [
I ∗

∆Y αyI

]
� 0, αy > 0 . (14)

Finally, a convex SDP stabilizing the reduced-order model is
formed as

min
P ,∆Y ,αy

αy (15a)

subject to P � 0, (13), (14). (15b)

Note that the dimension of optimization variables such as P
and ∆Y depends on the size ofAr in reduced-order model (3)
instead of the size of A in full-order model (2). This indicates
the formulation (15) can be applied to solve the stabilization
problem even for a large-scale system, provided that nr is not
large after reduction procedures.

B. A priori stabilization for BPOD approach

The a priori stabilization method introduced in this section
is different from the posterior one since it directly modifies
the length of snapshots m in the standard BPOD Procedure 3
while generating a stable reduced-order model. Ideally, when
parameter m is set as ∞, the procedure then has all system
information as the cross-Gramian does in the BT method, and
consequently BPOD reaches its best performance. However,

Fig. 2. Chlorine travel paths from the input location (booster station) to
different output locations (Sensors 1 and 2).

parameter m cannot be too large (or equal to infinity) due to
the prohibitive computational cost. Hence, selecting a lower
bound for m denoted by m is important. To the best of our
knowledge, this is the first time attempt to produce such a value
or condition that ensures the stability of a DT system using
BPOD method. In particular, we propose two methods to find
m. The first method is generated from insights from transport
dynamics in water networks. The second method is via a control
theoretic approach. In the case studies section, we compare the
performance of these two methods.

1) First method: The minimum number of steps m is the
equivalent time-step for a chlorine parcel traveling from its
input location to the furthest output location. Mathematically,
it can be expressed as

m =

⌈
Ttravel

∆t

⌉
=

⌈∑ Lij
vij∆t

⌉
, ij ∈ Lpath, (16)

where ∆t is determined by the L-W scheme stability condition;
the total travel time is denoted by Ttravel; Lpath represents
the links in the travel path, and the corresponding length and
velocity of each pipe ij in that path are Lij and vij .

To illustrate the application of this method, we use the
network comprised of two output sensors and one booster
station controller; see Fig. 2. After a chlorine parcel with a
certain mass and concentration is injected at the booster station,
it travels to the sensors with various velocities in different links.
Note that both the mass and concentration of the chlorine parcel
reduce gradually due to consumption by the nodes and decay of
chlorine concentration. Furthermore, parcels (the rectangle in
Fig. 2) with different masses and concentrations (the areas and
colors of the rectangles) arrive at the sensors at various times.
The number of parcels depends on the number of paths from
an input location (booster) to output one (sensor). For example,
there are three paths in Fig. 2 and the furthest location from the
input is Sensor 2, there are three travel times (three paths) for
it from the booster, and the longest travel time should be used
when calculating (16).

2) Second method: From a control theory perspective, the
lower bound m can also be estimated by the settling time of
water quality dynamic model (2). The settling time Ts of a
dynamic system can be roughly computed by its dominant pole
p which is equal to the eigenvalue of matrix A with the largest
magnitude. In particular, Ts can be computed as

Ts =
−4∆t

ln|p|
,

7



where ∆t is the sampling time of DT-LTI system (2); the
dominant pole p located within a unit disk indicates that ln|p|
is always negative. Consequently, the lower bound of m is

m =

⌈
Ts
∆t

⌉
=

⌈
−4

ln|p|

⌉
. (17)

Note that the equivalent travel time-step in (16) has a physical
meaning for water quality dynamics which can be computed
easily. Meanwhile, the second method is estimated by the empir-
ical formula (17). Section VI-B2 investigates the performance
of these two methods.

Finally, the overall procedure of general, stability-preserving
MOR procedure is summarized in Algorithm 1. In this algo-
rithm, we use BPOD but roughly the same approach can be
applied to POD.

Algorithm 1: Stability-Preserving BPOD (SBPOD).
Input: Full-order model (A,B,C,D) (2) and control input

u(k)
Output: Stable reduced-order model (Ar,Br,Cr,Dr) (3),

outputs y(k) and ŷ(k)
1 if a posterior stabilization method then
2 Standard BPOD approach given in Procedure 3
3 Solve a convex SDP problem (15) to stabilize the

reduced-order model (Ar,Br,Cr,Dr)
4 end if
5 if a priori stabilization method then
6 Obtain parameter m via (16) or (17), and set length of

snapshot as m = m
7 Execute BPOD procedure to obtain reduced-order

models (Ar,Br,Cr,Dr) (3)
8 end if
9 Generate y(k) and ŷ(k) from the full- and reduced-order

models

VI. CASE STUDIES

We present three examples (three-node, Net1, and Net3
networks [45]) to illustrate the performance of three different
MOR methods in terms of accuracy, computational load/time,
and stability-preserving properties. Then, we test the two sta-
bilization methods proposed in Section V. Lastly, we showcase
the application of MOR algorithms when MPC is used to control
water quality dynamics for the full-order and reduced-order
systems. All codes, parameters and tested networks simulated
via EPANET Matlab Toolkit [46] are available on Github [47].
The testing environment is a Win 10 Precision 7920 Tower with
Inter(R) Xeon(R) Gold 5218 CPU @2.3GHz and 64G memory.

A. Network settings, practical conditions, and validation

1) Settings: The basic information of the tested networks
are in Tab. II. The three-node network in Fig. 3a is a self-
designed network for illustrative purpose that includes one
junction J2, one pipe P23, one pump PM12, one tank TK3, and
one reservoir R1. A booster station and a chlorine concentration
sensor are installed at J2 and TK3, which indicates it is a single-
input single-output (SISO) system (nu = ny = 1). The pipe
P23 connecting J2 and TK3 is split into sL = 150 segments
according to L-W scheme in Fig. 1a. Hence the dimension of
the full-order system nx = 154 (nN = nJ + nR + nTK = 3,

Tab. II
BASIC INFORMATION OF THREE TESTED NETWORKS.

Networks # of com-
ponents∗

Full order
nx

Booster station
locations (nu)

Sensors
location (ny)

three-node
network

{1,1,1,
1,1,0} 154 J2

(1)
TK3
(1)

Net1 {9,1,1,
12,1,0} 1,293 J10

(1)
J22, J23

(2)

Net3 {92,2,3,
117,2,0} 29,374 J237, J247

(2)
J255, J241
J249 (3)

∗Number of each component in WDN: {nJ, nR, nTK, nP, nM, nV}.

Fig. 3. Three tested networks: (a) three-node network; (b) Net1 network; (c)
Net3 network (zoomed-in part is the controlled area).

and nL = nP × sL + nM = 151). The dimensions and other
parameters of the other networks are listed in Tab. II.

2) Non-zero initial conditions: In a water quality sim-
ulation, initial chlorine concentrations are typically non-zero
(i.e., x(0) 6= 0). With that in mind, some MOR algorithms
are designed with zero initial conditions. To tailor the MOR
algorithms for water quality dynamics with non-zero initial
conditions, we adopt the method from [48] as follows. Suppose
we have a full-order model (A,B,C,D) withxo = x(0) 6= 0,
let x̃ = x− xo, then

x̃(k + 1) = Ãx̃(k) + B̃ũ(k) (18a)

ỹ(k) = C̃x̃(k) + D̃ũ(k), (18b)

where Ã = A, B̃ =
[
B Axo

]
, C̃ = C, D̃ =

[
D Cxo

]
,

and ũ =

[
u
1

]
. That is, the non-zero initial condition is viewed

as an input for the new augmented full-order model (18) with
x̃o = 0 such that the introduced MOR algorithms can be applied
directly without any modification.

3) Validation: To quantify the performance of MOR meth-
ods such as accuracy, the comparisons of step responses for the
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(a) (b)

(c)

Fig. 4. Step responses (with amplitude of 50) of full-/reduced- order models for the three-node network under: (a) zero-initial conditions; (b) non-zero initial
conditions. (c) The step response errors between full-/reduced- order models under zero-initial conditions as nr increases from 30 to 120.

full-order model (2) and reduced-order model (3) are necessary.
This is customary in MOR studies. The core idea of the designed
experiments is applying the same input signal u(k) to both
the full- and reduced-order systems and then comparing output
differences (i.e., step response errors between y(k) and ŷ(k)).
To quantify the accuracy of the MOR algorithms, we use the
root-mean-square error (RMSE) defined as

RMSE =

√√√√ 1

m

m∑
k=1

||y(k)− ŷ(k)||22

to quantify the error between full-order model output y(k) and
reduced-order model ŷ(k) of a time horizon of m time-steps.

B. Accuracy and stability of MOR methods

1) The three-node network: The accuracy of MOR methods
of the three-node network under zero initial conditions (i.e.,
xo = 0) is presented in Fig. 4a(left). The input is a step signal
with amplitude of 50, that is, we inject 50 mg chlorine per
sampling time (∆t = 20 seconds) at J2 in Fig. 3a. The blue
line is the step response of the full-order model (2) (nx = 154),
and the dotted lines are the step responses of the reduced-order
models (3) obtained from BT, POD, and SBPOD (nr = 30,
118, and 28). The data is generated from Procedures 1, 2, 3, and
Algorithm 1. Fig. 4a(right) depicts the magnified step responses
when time is limited in [36000, 40000] seconds. It can be seen
that (i) the reduced-order models from BT, POD, and SBPOD
(nr = 30, 118, and 28) successfully maintain the input-output
relationship with smaller orders (nr < nx = 154), and (ii) at
the end of the test ([36000, 40000] sec), POD starts to show vast
error while the results of BT and BPOD are still close to the
full-order system.

The accuracy test under non-zero initial conditions (i.e.,xo 6=
0) is also evaluated for the three-node network. All settings
including the input signal remain the same except that the initial
chlorine concentrations at R1, J2, and TK3 are 1.0 mg/L, 0.5
mg/L, and 0.3 mg/L; the initial chlorine concentration in PM12
and P23 are 0.75 mg/L, and 0.3 mg/L. The corresponding results
are shown in Fig. 4b. Note that the output of POD is not shown

due to it producing unreasonable results with huge RMSE =
23.51. This is because the augmented system (18) views non-
zero initial conditions as inputs. In this way, the input matrix
of (18) B̃ includes two parts: the actual chlorine injectionB and
virtual inputs from the initial conditionAxo. If the majority of
elements in vectorAxo are non-zeros, then this system has too
many inputs making the POD hard to capture the input-output
relationship. With that in mind, the non-zero initial conditions
are not problematic for BT and BPOD since matrices WX or
Hm have the term CB that cancels such effect. It indicates
POD is unsuitable for water quality dynamics with non-zero
initial conditions.

To further test the accuracy of all MOR methods (i.e.,
classical BT, POD, and BPOD and proposed SPOD) and the
impact of parameter nr, we show the norm of step response
errors (denoted by ‖Error‖2 = ‖y − ŷ‖2) between full-
order model (2) and reduced-order models (3) under zero-initial
conditions in Fig. 4c. As nr increases from 30 to 120, the step
response errors of all MOR methods decrease. We note the
following. First, the amplitude of step response is in 100 level
(see Fig. 4c) while the error is in 10−5 or lower level for BT
and SBPOD. This indicates that the error is tiny—it can be
neglected and hence the reduced models are accurate. Second,
POD does not perform well even nr reaches to 120 (nx = 154).
This is due to POD only considering the controllability Gramian
in Section IV. Third, classical BPOD (with m = m = 160)
performs worse than SBPOD (m = 400 > m = 160);
this indicates classical BPOD can not ensure the stability or
accuracy and is not suitable for water quality dynamics. The
value of parameter m = 160 for this simple network can be
obtained easily by Equation (16), that is, it equals the time-step
from J2 to TK3. We show details of how to find m or m using
a more complex Net1 network in the next section. All these test
results corroborate the analyses performed in Section IV and
Tab. I.

Furthermore, the RMSEs of all MOR methods (classical BT
and POD, proposed SBPOD) for the three-node network under
zero or non-zero initial conditions are shown in Tab. III. The
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Tab. III
ACCURACY WITH (I) STEP SIGNAL AS INPUTS, AND (II) NON-ZERO (ZERO) INITIAL CONDITIONS AND CORRESPONDING COMPUTATIONAL TIME (IN

SECOND) AMONG THREE CLASSICAL MOR METHODS FOR THREE TESTED NETWORKS.

RMSEs when applying step signals
with xo = 0 (xo 6= 0)

Computational time
(in second)

three-node network Net1 Net3 three-node network Net1 Net3

BT 1.75× 10−6

(1.71× 10−4)
1.63× 10−6

(6.7× 10−3)
NA∗

(NA∗) 0.245 17.2 Intractable∗

POD 1.87× 10−2

(23.51)
9.24× 10−5

(1.0× 1030)
7.16× 10−5

(0.49) 0.219 6.4 245.8

SBPOD 1.54× 10−4

(4.2× 10−3)
6.9× 10−4

(6.5× 10−4)
4.30× 10−6

(2.70× 10−3)
0.241 6.6 150.4

∗NA is “Not Applicable” as BT fails to produce the reduced-order model after 12 hours of simulation.

classical BPOD cannot ensure stability under either zero or non-
zero initial conditions (see the further test in Section VI-B2
for more details and discussions). Hence, the corresponding
RMSEs are not included in the table. Based on these small
RMSEs, we conclude that MOR methods perform well under
zero initial conditions while BT and SBPOD perform the best
under the realistic non-zero initial conditions of water quality
dynamics.

2) Net1 network: The accuracy tests of classical BT,
classical POD, and SBPOD methods for the Net1 network
under zero/non-zero initial conditions are performed. Instead
of presenting all overlapped lines in figures, we adopt RMSEs
in Tab. III to compare accuracy among all MOR methods. The
full order of Net1 is nx = 1293, and BT and SBPOD reduce
the order to nr = 113 and nr = 117 under non-zero initial
conditions. Note that POD fails to provide accurate reduced-
order models from the corresponding RMSEs shown in Tab. III.
For zero initial conditions, MOR methods (i.e., classical BT and
POD and SBPOD) successfully reduce the system orders, and
nr of BT, POD, and SBPOD are 145, 270, and 115. From these
small RMSEs in Tab. III, it is evident that the reduced-order
systems are accurate.

Next, we show how parameter m is obtained for Net1, and
test the performance of BPOD (with anm less thanm), SBPOD
with the posterior stabilization method (same m with BPOD),
and SBPOD with the priori stabilization method (m larger than
the m).
Computing lower bounds for m. The first step in generating
stability-preserving reduced-order models is to compute the
lower bound for m for the SBPOD method. When the length
of snapshots m of BPOD is large enough for water quality dy-
namics, BPOD can preserve stability; otherwise, it cannot. This
is the stability-preserving condition for BPOD as introduced in
Section V-B. The two approaches to finding m are tested for
the Net1 network.

The first method given in (16) is used to obtain the proper
m which requires computing the travel time of the last chlorine
parcel injected at the booster J10 to the furthest sensor J23.
The first (second) sensor installed at J22 (J23) receives two
(three) step responses from the booster installed at J10, and
the corresponding time to reach the peak is marked in the third
column of Fig. 5a. The peak time of the last step response at J22
(J23) is t2 = 16550 (t3 = 45360), and the arrival or travel time

of the last chlorine parcel (step response) is slightly less than
the peak time. That is, 16000 for J22 and 39750 for J23 (we do
not mark it in Fig. 5). Hence, parameter m can be obtained by
the longest time 39750 divided by the sampling time ∆t = 15
seconds. That is, parameterm is set to 2650 via the first method.

We also choose Equation (17), that is the second method, to
obtain the proper m which requires computing the dominant
pole p. For Net1, p = 0.9967±0.0563i, and Ts = −4/ln|p| =
2350.9 resulting in m = 2351 for the second method.

Although parameter m obtained by two methods are differ-
ent, both are reasonable. After testing, we notice that when
m ∈ [2351, 2650], the reduced-order model for Net1 via BPOD
shows instability as an oscillation tail is observed at the end of
the step response; see the first column of figures in Fig. 5a.
Computing and simulating reduced-order models. After
finding the appropriate lower bounds for m, Algorithm 1 is
implemented to compute a stable reduced-order model for
Net1. The step responses of the posterior stabilization method
(stabilizing unstable reduced-order model from classical BPOD
via solving an SDP (15)) are shown in the second column
of Fig. 5a. Comparing with the unstable step responses from
classical BPOD with m = 2650 (i.e., the first column of
Fig. 5a), the yielding responses after posterior stabilization
are not oscillatory but are unfortunately inaccurate. The step
responses of the priori method (m is set to 4000 that is larger
than 2650 found by stability-preserving condition) are shown
in the third column of Fig. 5a. Compared with results of the
posterior stabilization method, the responses are stable and the
method results in accurate estimation of the step response (see
the zoom-in areas).

3) Net3 network: We present the results for a larger network,
namely Net3 shown in Fig. 3c, under zero (xo = 0 mg/L)
or non-zero initial chlorine concentrations (xo = 0.5 mg/L).
Two booster locations (J237 and J247) in Fig. 3c inject chlorine
with a rate of 50 mg and 40 mg per sampling time (∆t =
0.25 second), that are two step signals with amplitudes of 50
and 40. Fig. 5b presents step responses of full-order model and
reduced-model from SBPOD with non-zero initial conditions
at three sensors (J255, J241, and J249). The full order of Net3
is nx = 29347, and the reduced-order nr from SBPOD is 453.
Note that the intractable BT method fails to produce a reduced-
order model after 12 hours of simulation; thus, the results of BT
are not included in Fig. 5b. Furthermore, POD method is not
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(a)

(b)

Fig. 5. (a) step responses from BPOD and SBPOD with two stabilization methods for Net1 under non-zero initial conditions; (b) step responses from
different output locations of reduced-order models via BPOD methods for Net3 under on-zero initial chlorine concentrations.

suitable for non-zero initial condition case, and its results are
not shown in Fig. 5b either. For zero initial condition case, both
POD and SBPOD reduce system order successfully, and the
reduced-orders nr are 689 and 491. Instead of presenting step
response figures, we showcase the RMSEs of MOR methods
in Tab. III.

C. Computational time

Tab. III presents the computational time for computing the
reduced-order models for the three algorithms for different net-
works. We note that the computational time of classical BPOD
and SBPOD are nearly identical (seeing that the computation
of m requires little to no time), and only results of SBPOD
are shown for simplicity. The full-order nx and the length of
snapshotsm for the three-node network are set as 154 and 1000
when testing computational time. For Net1, they are 1293 and
7500; for Net3, these values are 29374 and 14000.

From Tab. III, it can be seen that BT is intractable when nx
is large since it fails to give a reduced-order model for Net3
after running the algorithm for 12 hours. The computational
time for SBPOD is less than the one by POD for Net3 which
interestingly contradicts the theoretical complexity from Tab. I.
This happens because we implement a technique to avoid
matrix-matrix multiplication by exploiting the structure of the
block Hankel matrix in (11). Consequently, this results in a
reduction of the computational time of the SBPOD method. The
Github codes [47] also include a detailed description of how the
problem structure is exploited to reduce the computational time.
The details are omitted in this paper for brevity.

D. SBPOD-Based MPC vs. Full-Order MPC

One of the main objectives of investigating MOR algorithms
for water quality dynamics, besides the ability to perform
forward state-simulations more efficiently, is to showcase the
algorithms’ performance in the context of real-time feedback

control (i.e., controlling chlorine concentrations x(k) through
the installed booster station controllers u(k)) or state observa-
tion and estimation (i.e., estimating the states x(k) via noisy
sensor measurements y(k)). To that end, the objective of this
section is to test the applicability of the presented SBPOD-
generated, reduced-order model within a model predictive con-
trol (MPC) framework that regulates chlorine concentrations
through controlling dosages of injected chlorine at the booster
stations. We specifically focus on SBPOD herein as it produces
the best performance (in terms of accuracy under different
initial conditions, computational time, and stability-preserving)
among the other tested methods.

The motivation for using the reduced-order model is as
follows: the regulation of chlorine concentrations with strict
state constraints (e.g., as the ones mandated by the US EPA)
in a water network can be posed as a constrained MPC
optimization—as we have shown in our recent work [1]. We
have also showcased that the control routine for the full-order
system becomes computationally intractable when considering
MPC with state- and input-constraints and a large control
horizon (e.g., 30 minutes) even for a mid-size network (e.g,
Net1). To solve this issue, we have relaxed the strict constraints
and converted the intractable constrained MPC into an uncon-
strained and tractable one. However, this leads to another issue.
That is, the unconstrained MPC cannot guarantee the state and
input bounds, which is one of the limitations of our previous
work [1]. In this paper, we investigate the following research
question in this section:

Can the water system operator utilize the SBPOD-
generated, reduced-order model with constrained
MPC to determine the desired dosages of injected
chlorine? How would such an application compare
to using a similar control routine for the full-order
model? Would utilizing the reduced-order model
result in a significant increase in the operation cost
of controlling chlorine concentrations? How does
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Fig. 6. The comparisons of (a) control actions and (b) subsequent chlorine
concentrations solved by the full- and reduced-order model (i.e., SBPOD) for
the constrained MPC problems.

that impact the controlled chlorine consecrations?
To answer these questions, we use the Net1 network as an

illustration. Similar performance is exhibited for other net-
works. Note that we set a small control horizon parameter,
that is 5 minutes, for Net1 to make optimization problems
with full-order models tractable so that the control performance
of full-/reduced- order models based constrained MPC can be
tested and compared. First, the full-order models are computed
for a time horizon of 24 hours. This is then followed by
computing the SBPOD-generated reduced-order models via the
priori stabilization method. Second, the optimal control signals
of chlorine dosages for both the full- and reduced-order models
are computed via the constrained MPC from study [1]. The
reference signal for the MPC algorithm to track is set as 1.5
mg/L. That is, the goal of the controller is to maintain the
chlorine concentration at around 1.5 mg/L at J22 and J23 (the
sensor nodes in Net1) by controlling the injected mass rate of
chlorineu(k) at J10 (the only control node in Net1). Finally, the
control signals are then applied to the water quality simulation in
the Net1 network. For brevity, we do not reproduce the details
here; the interested reader can examine the provided Github
codes for the parameters and settings [47].

To assess the performance of the SBPOD-based chlorine
dosage constrained model predictive controller, in comparison
with the similar MPC that utilizes the more computationally
expensive full-order one, we test for three metrics: the compu-
tational time of solving optimization problems, the difference in
the cost function of running the controllers (i.e., the operational
cost of running the controller), and the evolution of the chlorine
concentration. The three metrics are assessed for the two
approaches: (i) the SBPOD-based constrained MPC and (ii) the
standard constrained MPC for the full-order model. Fig. 6a and
Fig. 6b show the injected mass rate u(t) and the corresponding
chlorine concentrations at J22 and J23 for (i) and (ii) for the
entire time horizon for both the reduced- and full-order models.
The RMSEs for control input u and output y between the
full-order model and reduced-order one are 5.95 × 10−2 and
3.63 × 10−6. The computational time of solving constrained
MPC problems with full- and reduced-order models are 50.7
seconds and 31.7 seconds. Both operational costs from these
two different controller are 4.49× 105.

By examining the results, we observe that the reduced-order
model produces nearly identical performance (in terms of chlo-
rine concentration dynamics and the optimal chlorine dosages)

when compared with the full-order one, while incurring smaller
computational time. We note here that solving constrained
MPC with full-order models for Net3, a larger network than
Net1, is computationally intractable. After a running time of
12 hours, solutions are not obtained since this optimization
problem has at least nx = 29374 optimization variables and
millions of constraints. However, with the reduced-order model,
the constrained optimization problem only has nr = 453
optimization variables and at around ten thousand constraints
making it computationally tractable. In short, the number of
optimization variables and constraints of constrained MPC with
reduced-order models is small regardless of the size of the
network/full-order model since parameter nr is usually within
a thousand after MOR. The reduced-order model enables water
system operators to use constrained MPC that guarantees the
input and output bounds while remaining tractable for larger
networks.

VII. WHAT SHOULD THE OPERATOR USE? CONCLUSIONS
AND FUTURE WORK

The presented research in this paper explores the potential
of model order reduction for water quality dynamics in drink-
ing water networks. The presented stability-preserving BPOD
(SBPOD) algorithm is more usable than its counterparts due
to its accuracy, low computational burden, tolerance to initial
conditions, and stability-insuring property. Compared with the
classical BT method, SBPOD is computationally tractable while
yielding accurate estimates of output measurements of chlorine
concentrations. Furthermore, compared to POD or BPOD,
SBPOD handles a variety of initial conditions while ensuring
stability and accuracy of estimated outputs from the reduced-
order models. Finally, we demonstrate that when using the
proposed SBPOD within an MPC framework to control chlorine
concentrations, the water system operator can use the SBPOD-
generated reduced-order model instead of the full-order one
without incurring any significant losses in the operational cost
of controlling the network, while saving orders of magnitude
in computational time. This makes control algorithms such as
MPC amenable to real-time implementation—as a result of
utilizing the reduced-order models. In short, and through the
comprehensive testing and theoretical discussions, the water
system operator can utilize the SBPOD to perform accurate
simulations and constrained, feedback control for water quality
dynamics.

Future research directions includes investigating model order
reduction algorithms for water quality dynamics that involve
multi-species interactions, in comparison with models of fo-
cusing on single-species ones. A state-space model for water
quality dynamics in a multi-species framework would likely
yield a nonlinear state-space description that then necessitate
designing MOR algorithms for nonlinear dynamics. To that
end, future work will focus on (i) thorough modeling of multi-
species reaction dynamics and (ii) reducing such dynamics to
lower order models.
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