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Abstract

In planning problems, it is often challenging to fully model
the desired specifications. In particular, in human-robot inter-
action, such difficulty may arise due to human’s preferences
that are either private or complex to model. Consequently,
the resulting objective function can only partially capture
the specifications and optimizing that may lead to poor per-
formance with respect to the true specifications. Motivated
by this challenge, we formulate a problem, called diverse
stochastic planning, that aims to generate a set of representa-
tive — small and diverse — behaviors that are near-optimal
with respect to the known objective. In particular, the problem
aims to compute a set of diverse and near-optimal policies for
systems modeled by a Markov decision process. We cast the
problem as a constrained nonlinear optimization for which
we propose a solution relying on the Frank-Wolfe method.
We then prove that the proposed solution converges to a lo-
cal optimum and demonstrate its efficacy in several planning
problems.

Introduction
Solution diversity has value in numerous planning applica-
tions, including collaborative systems, reinforcement learn-
ing, and preference-based planning. In human groups and,
more generally, animal groups, the so-called notion of be-
havioral diversity leads to the group members’ heteroge-
neous behavior. This heterogeneity ensures that the mem-
bers learn complementary skills, thus improving the group’s
overall performance. An agent learning a task in an unknown
environment may benefit from inducing diversity in its deci-
sions to explore the environment more efficiently. In plan-
ning with unknown preferences, one can use diversity to
construct a set of behaviors that are suitable for different
preferences.

Algorithms that use notions of diversity to address one
or more of these applications are known as quality diver-
sity (QD) algorithms. A key component of QD algorithms
is a way to summarize the important properties of different
solutions. This description, known as a behavior character-
ization, is used to define diversity-based metrics. Without
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proper behavior characterization, solutions with trivial dif-
ferences can have high values of diversity as measured by
the resulting metric.

Our work is motivated by planning in settings where, in
addition to a known objective, there exist some unknown
objectives. The unknown objectives may represent a hu-
man user or designer’s preference, which is either private
or complex to model. In these settings, we propose a QD-
based approach to construct a “representative” — small and
diverse — set of near-optimal policies with respect to the
known objective and then present that to the human to select
from according to their unknown objectives. This approach
allows the human to have the ultimate control over the be-
havior, without requiring prior knowledge of the human’s
preferences.

Formally, we consider the multi-objective optimization
problem of returning a set of feasible policies for an infi-
nite horizon Markov decision process (MDP) that is both
near-optimal and diverse. We define the optimality of a set of
policies as the sum of each policy’s expected average reward
in the set. Diversity captures the representativeness of a set
of policies. We characterize the behavior of policies using
their state-action occupancy measures and quantify diversity
by the sum of pairwise divergences between the state-action
occupancy measures of the policies in the set.

Our main contribution is the behavior characterization of
policies using their state-action occupancy measures. This
approach is domain-independent and fully encapsulates the
dynamics of a given policy. We use this characterization to
define the diversity of a set of policies using the pairwise
Jensen-Shannon divergences between the occupancy mea-
sures. We then formulate the objective as a linear combina-
tion of the sum of the policies’ rewards and their diversity
and show this can be viewed as a constrained optimization
problem. Due to the constraints’ linearity, we can efficiently
solve the problem using the Frank-Wolfe algorithm. We also
prove that the algorithm is guaranteed to converge to a local
optimum. Furthermore, in a series of simulations, we evalu-
ate the proposed algorithm’s performance and show its effi-
cacy.

The rest of the paper is organized as follows. Section 2
summarizes the related work. Section 3 provides the re-
quired background and formalizes the main problem. In Sec-



tion 4, we introduce the proposed algorithm and detail its im-
plementation. Section 5 presents a series of results demon-
strating the algorithm’s performance in multiple applica-
tions. Lastly, in Section 6, we state the concluding remarks
and point to future research directions.

Related Work
Research on the development of QD algorithms has occurred
within two different communities. In the field of optimiza-
tion, perspectives on evolution as a process that finds dis-
tinct niches for different species have motivated the use of
diversity. Simultaneously, there has been significant interest
in the use of diversity to provide high-quality solutions for
unknown objectives within the planning community.

In the optimization community, recent interest in QD al-
gorithms has been driven by the success of the Novelty
Search algorithm (Lehman and Stanley 2008). The original
Novelty Search algorithm eschews the use of notions of so-
lution quality entirely; its sole goal is to find a set of solu-
tions that are diverse with respect to some distance measure.
Surprisingly, this approach is able to find solutions with bet-
ter performance on difficult tasks, such as maze navigation,
than algorithms relying on an objective function. This result
has led to considerable interest in the development of new
QD algorithms to address tasks that were previously consid-
ered to be too difficult (Lehman and Stanley 2010, 2011a,b;
Kistemaker and Whiteson 2011; Mouret 2011; Risi, Hughes,
and Stanley 2010; Mouret and Doncieux 2012; Cully and
Mouret 2013; Gomes and Christensen 2013; Gomes, Ur-
bano, and Christensen 2013; Liapis et al. 2013; Martı́nez
et al. 2013; Naredo and Trujillo 2013). For a review, see
(Pugh, Soros, and Stanley 2016).

The type of behavior characterization used in these
works varies and can be domain-dependent. For example,
in navigation problems, diversity can be defined using Eu-
clidean distances between points visited. Another approach,
used by the popular MAP elites algorithm, is to assume
that a domain-dependent behavior characterization is given
(Mouret and Clune 2015). A promising area of research is
the development of new approaches to behavior characteri-
zation (Gaier, Asteroth, and Mouret 2020).

The success of the Novelty Search and MAP elites al-
gorithms has inspired the use of diversity in reinforcement
learning, with the hope that diversity can help avoid poor
local minima. Different methods of behavior characteriza-
tion for policies have been used, including methods based
on sequences of actions (Jackson and Daley 2019), state tra-
jectories (Eysenbach et al. 2018), or diversity through de-
terminants of actions in states (Parker-Holder et al. 2020).
Similarly to our work, (Parker-Holder et al. 2020) considers
an explicit trade-off between the quality and diversity of the
policies. However, our approach differs in that we leverage
knowledge of the system dynamics to characterize policies
in a way that includes information about both the states vis-
ited and the policy actions, and to develop a solution algo-
rithm with guaranteed convergence to a local minimum.

Behavior characterization has also been a key focus of
QD-based work in the planning community. For example,
in an approach similar to MAP elites, Myers and Lee (1999)

and Myers (2006) assume that there is a meta-description
of the planning domain. They then define an approach that
obtains solutions that are diverse with respect to the meta-
description. Another approach to behavior characterization
is through the use of domain landmarks, which are disjunc-
tive sets of propositions that plans must satisfy, such as a set
of states that a plan must transition through before reaching
a goal state (Hoffmann and Nebel 2001). If the set of land-
marks can be computed, a greedy algorithm can be used to
iteratively select landmarks from the set and find a plan that
satisfies the landmark (e.g., reaches a certain state) (Bryce
2014). Behavior characterization based on the plan actions,
as in the RL community, is also a common technique (Co-
man and Munoz-Avila 2011; Nguyen et al. 2012; Katz and
Sohrabi 2020).

The way behavioral characterization and diversity metrics
are incorporated into planning algorithms varies. In some
cases, the problem is formulated as maximizing the diversity
of the set of solutions (Coman and Munoz-Avila 2011), or
as finding a set of solutions that satisfy a diversity threshold
(Nguyen et al. 2012; Srivastava et al. 2007). In other cases,
like our work, there exists both an unknown objective and a
known objective, and the problem is formulated in terms of
a trade-off between the diversity of the solution set and the
optimality of each of the candidate solutions (Coman and
Munoz-Avila 2011; Katz and Sohrabi 2020; Petit and Trapp
2015). Our work is distinct from these approaches because
we develop a new method for behavior characterization and
consider a stochastic setting modeled as an MDP. In addi-
tion, unlike many QD-based planning algorithms, our ap-
proach does not rely on greedy strategies. While greedy al-
gorithms have near-optimality guarantees in some settings,
such as when the problem is submodular (Bach 2013), our
problem is supermodular and in general no such guarantee
exists.
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