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ABSTRACT: We argue that novel (highly nonclassical) quantum extremal surfaces play
a crucial role in reconstructing the black hole interior even for isolated, single-sided,
non-evaporating black holes (i.e. with no auxiliary reservoir). Specifically, any code
subspace where interior outgoing modes can be excited will have a quantum extremal
surface in its maximally mixed state. We argue that as a result, reconstruction of
interior outgoing modes is always exponentially complex. Our construction provides
evidence in favor of a strong Python’s lunch proposal: that nonminimal quantum ex-
tremal surfaces are the exclusive source of exponential complexity in the holographic
dictionary. We also comment on the relevance of these quantum extremal surfaces to
the geometrization of state dependence in the typicality arguments for firewalls.
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1 Introduction

The recent renaissance in the black hole information frontier, starting with [1, 2], has
unveiled a new understanding of the geometrization of unitarity and computational
complexity of the Hawking radiation. These developments were catalyzed by the discov-
ery [1, 2] and subsequent justification [3, 4] of the existence of novel quantum extremal
surfaces (QESs) [5]: QESs that are nonperturbatively distinct from their classical coun-

terparts.
Recall that a QES is a surface v that extremizes the generalized entropy [5]:
A
Seen|V] = 77— + 5, 1.1
nl] = 5= + (L)

under local deformations of v. Here A is the area of v and S is the entropy of quantum
fields outside of ~.
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Figure 1. A time-symmetric slice of a one-sided Python’s lunch geometry involving two
quantum extremal surfaces 7Yapt, (or the outermost quantum extremal surface) and Ypyige.
The slice asymptotes to the boundary of AdS on the right. Since the quantum minimal
extremal surface is empty, the entire geometry is in the entanglement wedge of the boundary
CFT, but the region behind ~,pt, is encoded in it with exponential complexity. The exponent
of the complexity is given by half of the difference between the generalized entropies of Yhuige

and Yaptz-

The novel QES phenomenon in the semiclassical regime is a consequence of large
entropy gradients that compete with leading variations in the area term. The existence
of such QESs is directly responsible for the turnover in the unitary Page curve [6], which
has since led to new questions about the emergence of the semiclassical description
of gravity and the contribution of nonperturbative effects to the gravitational path
integral (see work starting with [3, 4]). These new nonclassical QESs also show that
the interior of the black hole can be reconstructed from its Hawking radiation after the
Page time [1, 2, 7] and that this reconstruction is exponentially complex when executed
by an outside observer [8]. The existence of novel QESs therefore has the potential to
significantly elucidate upon one of the main challenges in the holographic dictionary:
reconciling how seemingly simple and natural quantities in the bulk, such as local bulk
operators, can be very complicated: in fact, they can be exponentially complicated — in
the number of boundary degrees of freedom (or 1/G ) — in the boundary description.

Concretely, it was proposed in [8] that certain examples of such extraordinary
complexity could be explained by the existence of nonminimal QESs in the geometrical
configuration of a “Python’s lunch”, or bulge, in the bulk spacetime geometry; see Fig. 1
for an example. In tensor network toy models of AdS/CFT, there is strong evidence
that a Python’s lunch geometry implies exponential reconstruction complexity due to
postselection. The conjecture of [8], backed up by a number of examples, was that this



is also true in gravity.

The results in this paper provide significant evidence in favor of a stronger position:
that nonminimal QESs are in fact the source of all exponential complexity in the
holographic dictionary. !

In recent work [9], we gave a very general argument that, in the limit where the
bulk physics can be treated classically, the “no-man’s land” between the outermost
extremal surface and the event horizon is always simply reconstructible. Put differently,
there exists a simple algorithm that converts a state in which the region between the
outermost classical extremal surface and the event horizon is nonempty into a state
in which the classical extremal surface lies on (or limits to) the event horizon. We
therefore concluded that reconstruction in classical bulk spacetimes is indeed easy so
long as the bulk operator is not inside a Python’s lunch.?

To support such a statement in semiclassical gravity, however, we must contend
with the challenge that until now, examples of novel QESs in AdS have been restricted
to black holes coupled to a reservoir. This is needed to make the black hole evaporate:
isolated AdS black holes do not evaporate (unless they are parametrically small) due to
Hawking radiation being reflected back into the black hole. One might therefore won-
der whether these nonclassical surfaces are solely artifacts of coupling the AdS bulk
to an auxiliary system, or alternatively are a very specific consequence of black hole
evaporation, and do not play a role in black hole physics otherwise. Either possibility
would call into question the generality of insights derived about the AdS/CFT dic-
tionary from novel QESs, and in particular would challenge the validity of the strong
Python’s lunch proposal.

In fact, isolated non-evaporating black holes (with no reservoir) prima facie appear
to be an obvious counterexample to our proposal. For black holes that have been
allowed to equilibrate for more than the scrambling time, various arguments — for
instance the transplanckian precursor problem (originally discussed in [10] in general
and in [11] in AdS/CFT in particular), the quantum mechanics of fast scrambling
systems [12, 13] etc. — suggest that the reconstruction of interior outgoing modes should
be exponentially complex. However, non-evaporating black holes formed from collapse
are forbidden [5] from having nontrivial QESs by the Generalized Second Law [14, 15],

'Here we mean exponential in natural bulk geometric quantities. Thus the long-wormhole con-
structions in which the volume of the wormhole is exponentially large in G;,l do not constitute coun-
terexamples to this proposal because the complexity is still linear in the volume of the wormhole.

2To be clear, our results in [9] only show that reconstruction of operators outside a lunch is simple
while reconstructing operators inside it is not. We did not give a quantitative estimate of exactly
how difficult it is to reconstruct operators inside a lunch, which was an important part of the original
conjecture of [8].
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Figure 2. A quantum extremal surface v in the future of the asymptotic boundary in an
isolated black hole is forbidden by the generalized second law. When we have spherical
symmetry, the quantum extremal surface v would lie on a past horizon H~, which by the
generalized second law must generically have positive quantum expansion towards the bound-
ary — in contradiction with the vanishing quantum expansion which would follow from the
quantum extremality of 7. The non-spherically-symmetric argument works analogously [5].

since the entire spacetime lies in the causal future of the asymptotic boundary (see
Fig. 2). The apparent conclusion is that bulk reconstruction can be exponentially
complex if the reconstructed operator is behind the event horizon, even if it is not
behind a quantum extremal surface.

Here we show that this conclusion is too fast. Even though the post-collapse black
hole state itself has no nontrivial QES (and hence no Python’s lunch), we cannot talk
about the complexity of reconstructing interior outgoing modes until we introduce a
code subspace where those modes can be excited. Once we do so, we are forced to con-
sider states (in particular the maximally mixed state within the code subspace) where
outgoing modes are disentangled across the horizon. The primary technical aspect of
this paper will be to show that this disentanglement creates an entropy gradient, which
in turn nucleates a novel QES. The novel QES is the appetizer of a “secret” Python’s
lunch — invisible until you consider reconstructing an interior outgoing mode — that
explains the exponential reconstruction complexity.

We emphasize that this certainly does not constitute an extension of our classical
proof of the strong Python’s lunch conjecture to arbitrary semiclassical spacetimes.
That would be a very difficult task, although see [16] for an attempt in the special case
where the “no-man’s land” in the original spacetime is perturbatively small.



However, our argument does show that a naive objection to our strong Python’s
Lunch proposal on the basis of the absence of nontrivial quantum extremal surfaces
in single-sided non-evaporating black holes (and other similar examples) is unfounded.
More generally the existence and importance of these hidden lunches shows that the
highly nonclassical QESs that have already been observed in evaporating black holes [1,
2] are part of a much broader and more generic phenomenon involving black holes in
semiclassical gravity, and are certainly not just an artifact of coupling to the auxiliary
reservoir.

We now explain our construction, focusing in particular on the role of the maximally
mixed state, and then outline the structure of the paper.

Finding the Hidden Python

Let us briefly review the idea of entanglement wedge reconstruction [17-25] in somewhat
more depth as it is critical for understanding why the maximally mixed state is of
relevance in the computation of the complexity. Bulk reconstruction is most naturally
understood within the framework of quantum error correction [23, 26-28|. Specifically,
the action of a bulk operator is in general only defined for a code subspace of states with
a particular semiclassical bulk geometry. The embedding of this bulk code subspace
within the larger boundary CFT Hilbert space means that there can exist many distinct
CFT operators that ‘reconstruct’ a given bulk operator (i.e. act correctly on states in
the code subspace).

Often we are interested in whether a bulk operator can be reconstructed by a bound-
ary operator that acts only within a particular subregion of the boundary. Roughly
speaking, reconstruction is possible when the bulk operator in question lies within the
entanglement wedge — the region between the minimal QES and the boundary — of that
boundary subregion.

Crucially, however, as emphasized in [27, 28], the reconstructibility of a bulk op-
erator depends on the code subspace for which we want the reconstruction to work.
Explicitly, the bulk operator needs to lie within the entanglement wedge for the maxi-
mally mixed state on that code subspace.® Since the generalized entropy, and hence the
minimal QES, depends on this choice of bulk state through the bulk entropy term, each

3Technically, depending on whether one uses average or worst-case error to define the reconstruction
accuracy, the correct condition is either that the operator lies within the entanglement wedge for the
maximally mixed state, or that it lies within the entanglement wedge for all states (pure or mixed)
within the code subspace. For our purposes (working in a single semiclassical background and studying
states where the naive QES prescription (see [29] for deviations from regime) is valid), these two
definitions are effectively equivalent.



choice of code subspace can give a different entanglement wedge, and hence a different
set of reconstructible bulk operators.

The Python’s Lunch conjecture, which is motivated by tensor network toy models,
works in a very similar way. As we explain in Sec. 2, the conjecture suggests that the
complexity of reconstructing a bulk operator, for a particular choice of code subspace,
depends on whether the operator lies behind a nonminimal quantum extremal surface —
i.e. inside a lunch. In particular, by doing a careful reanalysis of the original arguments
for the conjecture, we show that the relevant question is whether the operator lies
behind a nonmiminal QES for the mazximally mized state on the chosen code subspace.
If it does, the reconstruction complexity is exponential in the “size” of the lunch; i.e.
the difference between the generalized entropies of two quantum extremal surfaces —
the “bulge” surface and the “appetizer”, or outermost, surface. See Fig. 1. Again, we
show that these generalized entropies need to be evaluated in the maximally mixed
state. To complete the section, we extend the Python’s Lunch conjecture to predict
the complexity of reconstruction in the presence of multiple lunches.

In Sec. 3, we construct a code subspace of an arbitrary (non-evaporating) black
hole formed from collapse and not coupled to a reservoir; such black holes are expected
though not proven to approach Kerr-AdS in the late-time adiabatic regime (see [30] for
a review). We thus assume its geometry at the horizon at late times is approximately
Schwarzschild-AdS for simplicity (and we anticipate our results generalize to Kerr-
Neumann). Zooming in on a neighborhood of the event horizon, we build our code
subspace from outgoing Rindler-like wave-packets (i.e. Hawking wave-packets). Our
goal is to demonstrate the existence of novel nonminimal QESs that nucleate for the
maximally mixed state (and the thermal state) within this code subspace.

Because the Rindler modes are disentangled, this mixed state has a larger bulk
entropy gradient than the Hartle-Hawking state under inwards deformations of a bulk
entangling surface near the horizon. Moreover, as we move the surface backwards in
time along the horizon, this entropy gradient is blueshifted, and ends up dominating
over the classical contribution to the generalized entropy variation, i.e. the classical
expansion times 1/4G . The end result is that surfaces slightly behind the horizon and
more than a scrambling time in the past have negative quantum expansion under any
outward deformation. We then invoke a result from [8, 31] (based on the “maximin”
construction [18, 32, 33]) that such surfaces contain a quantum extremal surface in their
exterior. See Fig. 7. This is the “hidden” QES that we set out to find. The associated
Python’s lunch provides a geometrical explanation for the exponential complexity of
decoding the interior modes.

In Sec. 4, we compare the gravity calculations from Sec. 3 with an explicit algo-
rithm for decoding “interior partners” (i.e. the purification of Hawking modes) in a



quantum circuit toy model of a black hole. We find a precise quantitative agreement
between the two. We also explain how this toy model relates to the tensor network
discussion from Sec. 2.

In Sec. 5, we discuss another example of exponential complexity arising in non-
evaporating black holes. This construction, due to Bouland, Fefferman, Vazirani (BFV)
argues that the set of CFT states formed by simple perturbations to the time evolution
of (non-evaporating, isolated) black holes should be pseudorandom — i.e. impossible
to distinguish in subexponential time [34]. We argue that similar secret lunches arise
in this setting and that they explain the exponential complexity. Specifically, while
none of the individual states in the BFV ensemble has a nontrivial QES, the entire
ensemble, viewed as a single density matrix, does have a lunch. This mixed density
matrix plays the role of the maximally mixed state in the code subspace, revealing the
hitherto hidden lunch.

In Sec. 6, we conclude the paper by discussing various potential open questions
and applications of these results. In particular, we discuss the relevance of our technical
results to the firewall typicality arguments.

2 Exponential Complexity from the Python’s Lunch

In Sec. 2.1, we review the Python’s lunch proposal and its grounding in tensor networks
and also explain the importance of the maximally mixed state in determining the
reconstruction complexity. In Sec. 2.2, we introduce a slight generalization of the
original Python’s lunch conjecture that includes multiple bulges: breakfast, lunch, and
dinner.

2.1 Review: the Python’s Lunch

The proposed relation between exponential complexity and nonminimal QESs can be
motivated from the apparent contradiction between prior holographic complexity pro-
posals (such as CV [35, 36] or CA [37]) and the Harlow-Hayden conjecture [38] that
reconstruction of the Hawking radiation is exponentially complex. As applied to the
evaporating black hole, the two prescriptions differ dramatically. The resolution pro-
posed by [8] is that the extant holographic complexity proposals compute the complex-
ity of preparing the state using a tensor network, whereas in Harlow-Hayden observers
are restricted to applying (a) unitary operators to (b) a subsystem of the degrees
of freedom (specifically the Hawking radiation). The Python’s lunch conjecture is a
refinement of the traditional complexity proposals: it gives the unitary circuit com-
plexity of reconstructing operators, using either the global boundary or a subsystem of



it. Crucially, the conjecture takes into account the difficulty of replacing nonunitary
postselection by a unitary circuit.

The intuition for the nonminimal QESs as a fix is derived from tensor networks.
In tensor network toy models of bulk reconstruction (see e.g. [39]), the network from
bulk to boundary must be an (approximate) isometry; typically the individual tensors
have also been taken to be isometries — i.e. unitaries under the addition of ancilla
qubits in the |0) state. In these setups, it is simple to push through to the boundary
via a unitary. The unitary circuit complexity of bulk reconstruction implementing bulk
reconstruction appears to grow linearly with the number of tensors in the networks —
so long as we assume that each individual tensor is itself simple.

This reasoning is not applicable to a tensor network in which there are individual
tensors that implement postselection. Consider a tensor network consisting of a geom-
etry with a ‘bulge’” in the middle as shown in Fig. 3. Starting from the left boundary,
the cross section of the network first contracts to the minimal cut 7,;,, then expands
within the bulge to a maximum at Yy, before contracting again to a locally, but not
globally, minimal cut v,pt,, and finally expanding out to the right boundary. The net-
work also includes ’bulk legs’ on each tensor that represent local bulk quantum fields;
the entire network forms an isometry from these bulk legs to the legs on the left and
right boundary.

The tensor network shown is a toy model of a two-sided wormhole with a Python’s
lunch geometry. The ‘bulk-to-boundary’ isometry described above describes the em-
bedding of the ‘code subspace’ of semiclassical bulk states with the correct wormhole
geometry into the CFT Hilbert space(s). In the special case where i, has zero size
(and we have no left boundary) then the tensor network becomes a toy model of a
one-sided black hole with a Python’s lunch in its interior. It is in fact this latter case
that we will be of most interest to us, but it is helpful to keep the discussion more
general for the moment.

Because the bulge lies to the right of the minimal cut 7, bulk operators within
the bulge lie in the entanglement wedge of the right boundary and should thus be
reconstructible on the right boundary. This is because, for sufficiently generic tensor
networks (which are the most analogous to gravity), the entire map from the minimal
cut, plus bulk legs to its right, to the right boundary will be an approximate isometry,
which we denote by V. Here we assume that the size of the locally minimal cut 7apy, is
larger than the size of the minimal Yyin, plus all of the bulk legs in between the two.*

4By the size of a tensor network cut, we mean the number of legs, with each leg weighted by the
logarithm of its dimension. For explanatory convenience, we will generally assume that all legs (both
in plane legs and bulk legs) have the same dimension, so that all that matters is the number of legs.
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Figure 3. The Python had fish for lunch. The tensor network prepares a boundary state on
left and right CFTs. The fish (triangles) are isometries while the squares involve postselection
on one of the legs and the out-of-plane legs (shown with dots) represent bulk degrees of
freedom. The network in particular generates an (approximate) isometry from the i, cut,
together with the bulk legs to its right, into the right CFT. The bulk legs between i, and
Yaptz are expected to be encoded on the CFT with exponential complexity. The conjectured
exponent is given by half of the difference between the total bond dimensions cut through by
Youlge and Yaptz, plus the bulk legs in between.

Nonetheless, the tensor P describing the ‘constriction’ from the bulge Ypuge (plus
bulk legs between Yhuige and Yaptz) tO Yapt, cannot be an isometry, because the Hilbert
space dimension of the output is much smaller than that of the input. Instead, it is the
adjoint of an isometry PT (namely the opposite-direction right-to-left map) and so can
be rewritten as the combination of a unitary matrix and postselection — i.e. collapsing
the wavefunction onto the component where certain qubits are in the state |0).

Since postselection is an inherently non-unitary process, we cannot use unitary
gates to implement the network tensor by tensor. Instead we need to do something
cleverer. The trick is to use a unitary algorithm known as Grover search, or amplitude
amplification, to search for the part of the wavefunction where the qubits that need to
be postselected are already in the state |0).

Since Grover search is central to the Python’s lunch story, it is worth reviewing
how it works. Suppose we start with an initial (unknown) state |¢)) want to produce
the state

VI[) = VAQ" U10)*" [¢),

where v/A is a normalization constant and U is a unitary. This is of course only possible
if the map V is an (approximate) isometry, which as discussed above requires n > m.
How do we implement VV? The obvious first step is to add n ancilla qubits in the
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Figure 4. An illustration of the Grover-search algorithm. Acting with U takes [t) [0)*"
to a state where the m ancilla qubits have a very small probability of being in the desired
state V[) [0)®™, ie. at an angle 7/2 — 6 with the green axis with § ~ 1/vA ~ 27™/2,
One “back-and-forth” iteration of the algorithm results in reflections shown by the curved
arrows. This sequence of operations moves U |1) [0)®™ closer to the green axis by an angle
20. Therefore to get close to the green axis one needs ~ 2™/2 iterations of this procedure,
hence an exponential complexity.

state |0), and then apply the unitary U. This produces the state

U 0™ = 2=V 0%+ 5 Vs W) bk (20)

K1...km#0

where Vi, 1, = (k1 ... kn| U selects the |k ... k,,) component of U [¢) |0)*".

With the ability to magically postselect onto the |0)*™ component, we would now
be done. Since we are unable to do that, we instead apply a unitary that adds a
phase of (—1) if and only if the m qubits being postselected are all in the state |0).
If we consider the two-dimensional subspace spanned by V [1) [0)*™ and U [¢) [0)*",
for some particular initial state |¢), as shown in Fig. 4, this acts as a reflection in the
horizontal axis [40].

The next step is to undo the application of U, by first applying its adjoint UT, then
applying a phase of (—1) if and only if the n ancilla qubits are not all still in the state
|0), and finally reapplying U. On the two-dimensional subspace (see Fig. 4), it can be
easily checked that this acts as reflection around the axis generated by U |) [0)®".

— 10 —



We have so far done two reflections in axes separated by an angle § ~ 1/ VA.
Combined, these act as a rotation in the two-dimensional space by an angle 2. To
produce the desired final state V [¢) |0)*™ we need to rotate the state by an angle of
7/2; we do so simply by repeating the above procedure approximately A /4 times.’

For typical scrambling unitaries U, we have vA ~ 277/2 5o the total complexity
of the entire Grover search algorithm is

C = 0(C2m/?), (2.2)

where C' is the complexity of implementing the unitary U, which needs to be done
at each step in the iteration. In tensor networks, C' is generically proportional to
the number of tensors in the network. The reconstruction complexity is therefore
exponential in the number of postselected qubits m.

Of course, Grover search is just one particular quantum algorithm, and it is natural
to wonder whether faster algorithms exist. In a black-box setting, Grover search is
known to be optimal. It was assumed in [8] that this is also true for generic unitaries
U, even when the algorithm is allowed to depend on U.

Even if we accept that Grover search is an optimal reconstruction algorithm for
tensor networks, we still need to relate it to actual theories of quantum gravity. The
gravitational analogue of a locally minimal cut in a tensor network is a (quantum)
extremal surface. The natural analogue of the cut that defines the maximal size of the
bulge is also a quantum extremal surface, but it is an extremal surface where, within any
Cauchy slice, there exist local perturbations that can decrease the generalized entropy.

A complete gravitational Python’s Lunch consists therefore of three quantum ex-
tremal surfaces: the minimal QES 7, a nonminimal (but locally minimal) ‘appetizer’
QES 7apt, that forms the other end of the lunch, and a third ‘bulge’ QES ~pyqe that
sits in between the two and has larger generalized entropy than either. See Fig. 1. In
other words, we have

Sgen(Vbulge) > Sgen(’yaptz) > Sgen(Vmin) (23)

Here the generalized entropies Sgen = A/4Gy + S that we are interested in are defined
using the maximally mixed state within our code subspace of interest.

It is worth taking a moment to see why it is the maximally mixed state that plays
this privileged role. Recall that, as shown in [27, 28], whether a given bulk operator

5This will produce the correct state up to an error of size O(1/v/A), which is generally very small
since v/A grows exponentially with the number of qubits being postselected. However there also exist
simple tricks for producing the exact output state desired, which is useful when the number of qubits
being postselected is O(1). See for example Appendix A of [8].

- 11 -



admits a (single) boundary reconstruction is determined by the location of the minimal

QES for the maximally mixed state. This means that the lunch is only reconstructible
if

Sgen(")/aptz) > Sgen(’Ymin) (24>

in the maximally mixed state. We saw exactly the same effect in the tensor network
toy model above: for V to be an isometry, we needed the number of legs in v,p, to be
larger than the number of legs in i, plus all the bulk legs in between, so that the
output dimension was larger than the input one. This condition is exactly (2.4), since
the generalized entropy of a tensor network cut in the maximally mixed bulk state is
equal to the number of legs within the cut plus the number of bulk legs to its right.

When it comes to the question of reconstruction complexity, the tensor network
calculations suggest that what matters is the number of postselected qubits. This is
equal to the number of legs in the bulge cut Ypuge, plus the number of bulk legs be-
tween Ypyge and Yaptz, minus the number of legs in the appetizer cut Yapt,. Again, this
can be naturally rewritten as the difference Sgen(7Vbulge) — Sgen(Vaptz) between general-
ized entropies in the maximally mized bulk state. Assuming that the analogy between
tensor networks and gravity continues to hold, it is therefore the generalized entropy
of nonminimal extremal surfaces in the maximally mixed state that determines the
reconstruction complexity.

Finally, we need to know the gravitational analogue of the size C' of the tensor
network. The most natural prescription is that it should be equal to the volume of the
maximal volume slice [35, 36], bounded by the minimal QES and the appetizer QES, and
potentially restricted to slices containing the bulge QES. An alternative prescription,
which tends to give similar answers in practice, is the action of the Wheeler-de Witt
patch associated to the lunch [37]. Since the complexity depends exponentially on
the number of postselected qubits, but only linearly on C, the exact details of the
prescription for C' will not be very important for us. In all the examples considered in
either [8] and this paper, both the volume and action give the same asymptotic scaling
for C, and agree with the results from toy models.

The formal statement of the Python’s Lunch conjecture for the complexity of de-
coding bulk operators inside a lunch is as follows that the complexity C' of decoding
bulk operators in the lunch is given by

C=0 ((5 exp B(Sgen(vbulge) - Sgen(vaptz)D : (2.5)

Note that generalized entropies are defined in base e in accordance with standard
convention, and so the base of the exponential is different from when we were working

- 12 —



Figure 5. Two types of multiple bulge scenarios are depicted. The salient difference between
them is that in the left (right) figure, the throats get bigger (smaller) as we move towards the
boundary. For simplicity, the lunches shown are one-sided, i.e. v; = @.

with qubits. It is also worth noting that the complexity C' does not depend on the
generalized entropy Sgen(Ymin) of the minimal QES (although of course we need to have
Sgen(Vmin) < Sgen(Vaptz) to ensure that it is actually minimal).

2.2 Multi-Python: breakfast, lunch, and dinner

Suppose we have a sequence of bulges: spacelike separated QESs, oscillating in size.
Specifically, let the minimal QES be labelled =1, the first bulge surface to its right s,
the first appetizer surface 73, the next bulge 74, etc.

The Python’s Lunch conjecture for multiple bulges: the restricted complexity
C of decoding bulk operators just to the right of v, is given by

C=0 <nj;§§ Ci.jexp [%(Sgen('yj) — Sgen(%)D : (2.6)

Here éi,j is the maximal volume of a partial Cauchy slice bounded by ~; and ;.

To understand this result, it is helpful to first consider two special cases: the first
contains two lunches and has Sgen(75) > Sgen(73); the second has Sgen(75) < Sgen(73)-
Again, we will work explicitly with tensor networks toy models and trust that gravity
works analogously.

In the first case, the maps from ~; to 73 and from 73 to 5 are both approximate
isometries. We can therefore implement the entire isometry by simply implementing
one isometry followed by the other. The total circuit complexity is the sum of the
complexities associated to each step, which will generally be dominated by the larger
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of the two. We therefore find that the complexity scales as

0 (exp |  10x(S12) ~ Sin(12): San10) = Sun15)] ).
This is consistent with (2.6).

In the second case, the map from 3 to 75 is no longer an isometry, because there
are more qubits postselected than ancilla qubits added. If n; o< Sgen (i) is the effective
number of qubits associated to each cut ;, then there are ny, — n5 qubits postselected,
but only ny — ng ancilla qubits added. It is helpful to break this map down into two
pieces: an isometry where ns—ng3 ancilla qubits are added, a unitary is applied and then
[ng—n3—0O(1)] qubits are postselected, and an additional postselection of [n3—ns+0O(1)]
qubits. The first step can be implemented unitarily without any knowledge of what
the tensor network looks like to the left of s, with circuit complexity O(2("3)/2),

To go further, we need to take advantage of the fact that the input at 3 is the
output of an isometry from 7, with circuit complexity O(2("2="3)/2), So the entire
isometry V from ~; to 75 can be written as

V) oc (ot T oy ), (2.7)

for a unitary matrix U with circuit complexity O(2(m1772)/2) 4 O(2"27"3)/2) We can
therefore implement V' using Grover search at the cost of implementing the unitary U
(and its inverse) O(2("37"5)/2) times. This gives a final answer for the complexity that
scales as

O(GXP[% maX(Sgen(72) - Sgen(’75)7 Sgen(fﬂ) - Sgen(’%))])'

Again, this is consistent with (2.6).

Having understood these two examples, the general rule is fairly simple to derive.
As long as each locally minimal cut is larger than the one before, each isometry can be
implemented in turn and the dominant contribution comes from the step with largest
complexity. However, when a locally minimal cut is smaller than previous ones, the
only way to implement the additional postselection is to do a Grover search that goes
all the way back to the first smaller locally minimal cut. This additional complexity
therefore multiplies the complexities of all the intermediate steps that are used in that
Grover search. The final answer for the total complexity is therefore exponential in the
largest total net decrease in generalized entropy between any two surfaces when moving
through the network, as claimed in (2.6).
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Figure 6. The late time Cauchy slice ¥ in an isolated black hole formed from collapse. We
construct our code subspace from a Rindler decomposition of the Hawking modes on 3.

3 An Unexpected Python

In this section, we will describe the code subspace H¢oqe associated to the state of the
horizon in a large single-sided non-evaporating AdS black hole (e.g. formed by collapse)
at late times and show that there is a QES in its maximally mixed state. As noted
in the introduction, we consider a subspace of states allowing arbitrary excitations of
outgoing Rindler-like modes (regulated away from the event horizon) straddling the
event horizon in the late time adiabatic regime. In particular, we work on a late time
Cauchy slice > and focus on a code subspace defined by a Rindler decomposition near
the event horizon on ¥; see Fig. 6. The state that we will be interested in is one of
reduced entanglement between Hawking partners compared with the Hartle-Hawking
(HH) state: the interior and exterior Hawking modes on ¥ will together be in a mixed
state. This choice of state in the code subspace defined on ¥ affects the spacetime to
the past of X, generating a large blueshift. It is precisely this effect (both on the state
of the quantum fields and its backreaction on the geometry) that gives rise to the novel,
nonminimal QES that is not present for the equilibrium state. Note that the maximally
mixed state is able to evade the argument against the existence of a nontrivial QES
from Sec. 1 because, unlike its equilibrium counterpart, it has a white hole singularity;
thus the QES is not causally separated from the asymptotic boundary.

Since our purpose here is to illustrate the phenomenon rather than provide a general
proof thereof, we will permit ourselves several simplifying assumptions: we will model
the bulk theory via a free scalar field or a free fermionic field on a black hole background
that at late times approaches a large Schwarzschild-AdS. We expect that the story
is morally unchanged upon adding spin to the black hole or considering other bulk
quantum fields, and we will comment on this in Sec. 6.
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We will therefore take the late time behavior of our spacetime to be well-described
by a portion of Schwarzschild-AdS,;; in Kruskal coordinates:

1 F(r)

2 _ —
I = —om oy

dUdV + r*dQ?, (3.1)

where T is the black hole temperature and F(r) is the emblackening factor:

2
1 r
~ iz + =, (3.2)

F(r)y=1 5
Caas
here /pqs denotes the AdS radius and g is a constant related to the black hole mass.

In the near horizon regime where the metric is given by
ds®* = =2dUdV + (U, V)?dQ* + O(UV), (3.3)
with
r(UV)=rs+2rT UV +0OUV), (3.4)

with 7 the horizon radius and T the black hole temperature. In this regime, the
state of the bulk quantum fields approximately factorizes into infalling and outgoing
modes. The infalling sector admits a simple reconstruction from boundary data via
time-reversed evolution. The outgoing sector is more mysterious: backwards evolution
is of little use due to the blueshift in the outgoing modes and resultant transplanckian
problem. As alluded to above, this blueshift has a critical role to play: below we
demonstrate that in the maximally mixed state of Hcoqe those very same blueshifts
result in a new outermost quantum extremal surface 7,pt,. The existence of this QES —
which is nonminimal — causes the reconstruction of the interior outgoing modes to be
exponentially complex, as discussed in Sec. 2.

3.1 Restricted maximin

Rather than directly solving for the location of the nonminimal QES v,pi,, we will
indirectly prove its existence and approximate its location by finding surfaces where
the quantum expansion [41, 42] has a particular sign.

We begin by defining the quantum expansion. Let ¢ be a smooth codimension-
2 surface homologous to the entire boundary with homology hypersurface H,. The
quantum expansion [41, 42] of the null congruence generated by the outwards-future-
directed null vector field £* normal to ¢ is defined in the following way: pick A to be an
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affine parameter along £ such that o is at A = 0. Now, let oy be the surface A = V(y)
where y denotes the transverse direction. Then

4GN  0Sgen[Hyy ]
h(y) V(y)

where h(y) denotes the determinant of the intrinsic metric on ¢. Similarly, for a null

Oklosy] =

(3.5)

)
V=0

congruence generated by the inwards-future-directed ¢* fired from o (with V' (y) replaced
by U(y) for clarity), we have

AGN  0Sgen[Hoy ]
h(y) OU(y)

The condition that indirectly implies the existence of v,p, is the presence of a

Olo;y] =

(3.6)

U=0

surface o satisfying
Orlo]
¢

0, (3.7)
Ofo] > 0,

(3.8)

IV IA

where by dropping the y label we mean that the condition applies at all points on
0. Since o is the opposite of a “normal” surface, in which the quantum expansion
expands towards the exterior and contracts towards the interior, we call it “quantum
anti-normal”. Using the quantum focusing conjecture [42], it was shown in [8, 31| that
the existence of a quantum anti-normal surface is sufficient to guarantee the existence
of a QES in D[H,|. The crux of this argument is the restricted quantum maximin
prescription [18, 32, 33], in which a QES is found by minimizing S, over all surfaces
on a given Cauchy slice, and then maximizing the minimal S, over all Cauchy slices.
The intuition is roughly that the quantum maximin surface in D[¥] cannot intersect o
because (3.7) and (3.8) ensure that moving away from o lowers the generalized entropys;
a similar argument then shows that o cannot intersect the boundary of D[H,|. The
maximin surface must then lie in the interior of D[H,| and hence is quantum extremal.

Finding a surface satisfying (3.7) in the interior of a stationary black hole is easy;
The expansion ©j vanishes on the horizon and decreases as we move inwards along
spheres. When the future horizon is in the HH state, ©, < 0 for spheres near the
horizon; this follows from the fact that the classical expansion 6, ¢ is negative and
O(GY%;) while the quantum correction is subleading. However, as we establish below,
our choice of mixed state in Hoqe has large von Neumann entropy variations in the
(% direction. Moreover, these get enhanced due to the near-horizon blueshift of the
horizon modes as they evolve backwards, which yields precisely the inequality that we
need.

6The classical expansion can be obtained by substituting 4G NSgen by A in the definition of the
quantum expansion in (3.5) and (3.6).
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Figure 7. A spherically symmetric black hole formed by collapse. Our code subspace Hcode
allows arbitrary excitations of outgoing Hawking wave-packet partners localized to some range
of U. At some point Vj along the horizon, this range can be specified by small dr; and dry
satisfying drq/drp > 1. The part of this region in the black hole interior (referred to by A
in the main text) is depicted by fine dashed lines. If Vj is of order a scrambling time to the
future of the last infalling matter, in the maximally mixed or thermal state of H.oqe there
exists a quantum anti-normal surface ¢ but about a scrambling time in the past of V. The
existence of o then indirectly implies the existence of a quantum extremal surface 7,pt, in the
exterior of o; to leading order in G'n, Yapt, is on the horizon.

3.2 The code subspace

As noted above, we construct the code subspace explicitly for massless free scalars and
also for fermion fields. For simplicity we will focus here on the spherically symmetric
modes close to the horizon. We will discuss the non-spherically symmetric case in Sec.
6. In the HH state, the outgoing Rindler-like modes are in the following state:

oo or 1

QN > e ™ )i InYa (3.9)
w n=0

where |n); and |n): . denote the state of definite Rindler frequency w in the interior
and exterior respectively. Note that the sum goes up to infinity for a scalar and to
1 for a fermion. N, is a normalization factor equal to (1 — exp(—27w))*/? or (1 +
exp(—27w))~Y/2 for the scalar and fermion respectively.
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We can almost specify our code subspace Hcoqe as the span of states of the form
n)5 © |m)g,

out”’
at the horizon. A more physical H.oqe can be constructed from wave-packets that are

However, states of definite Rindler frequency have divergent energies

localized a small neighborhood away from the horizon.

Let us describe these localized wave-packets in more detail. At some V = 1} on
the horizon, we define a range A of U corresponding to spheres between radii r, — dry
and r, — 07y such that 0 < 6r; < dry < rs. More directly, A is given by € < U < ee”
for

(57’1
- 3.10
ot (3.10)

or

L 2
—__2 11
e STV (3.11)

where €V < 1 and L > 1 such that ee?Vy < 1. See Fig. 7 for an illustration.

Modes restricted to A will not have the exact entanglement structure of (3.9).
However, we can construct wave-packets with mean Rindler frequency w which are
localized to A.” By picking evenly spaced w within some range [wy — dw/2, wy + dw/2]
with dw <K wp, we can find approximately h & dwL /27 orthogonal wave-packets within

A. Let [n)* and |n)¢ . denote the state with occupation number of this interior wave-
packets and their outside partners. In the HH state, we have:

h oo or 1
Q) = Q) N, e ) In)ed, (3.12)
Jj=1 n=0
where
ow 27
wj :w0—7—|—jf. (3.13)
Our Heode to which |Q) belongs is:
h —_——
Hcode - ®,;L[‘1unJ ® Hgﬁh (314)
j=1

—_—

where HNj‘;l and HY,, denote the Hilbert spaces of the interior and exterior wave-packets,
respectively.
Since our code subspace is formally infinite dimensional for bosonic modes, it does

not have a true maximally mixed state. We could avoid this problem by restricting

"Such wave-packets have a Rindler frequency variance of order 1/L.
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our code subspace to states with an occupation number n below some arbitrary up-
per bound. Alternatively we could restrict ourselves to fermionic modes, which are
inherently finite dimensional.

However, the easiest and most natural approach is to regulate the infinity by simply
working with a thermal state p, which on this code subspace is:

h oo or 1 oo or 1
o=@ (3 R ) (X i GE) . e
j=1

n=0 n=0

where the in and out wave-packets have both been sufficiently disentangled that one
contains essentially no usable information about its counterpart (note that the differ-
ences between p and |(2) (2| come from the s-wave sector). Essentially, using a thermal
state rather than a maximally mixed state corresponds to using a Bayesian prior when
reconstructing the modes where high occupation numbers for the Rindler-like modes
are assumed to have exponentially suppressed probability.

It may seem worrying that the state p backreacts strongly on the geometry in the
far past due to the near-horizon blueshift, in apparent tension with formulating a code
subspace. The resolution is in the proper choice of bulk slice. The intrinsic geometry
of a “boosted” slice (similar to H in Fig. 7) will be the same to leading order in Gy
among various states of Hcoge. We will in addition make the assumption that the
region behind the horizon has exactly the same geometry in p as in the HH state. This
assumption holds with a particular choice of gravitational dressing where the state p is
prepared from the HH state by the action of random unitaries on the outside Hawking
partners. This will decohere the partner modes and create the state p, but by bulk
locality manifestly preserves the geometry behind the horizon.®

We now proceed to computing the quantum expansion of spheres near the horizon
in the state p.

3.3 The quantum expansion

Since we are restricting to spherically symmetric spacetimes, we only consider the
generalized entropy of the exterior of a sphere at the location (U, V):

AU, V)

Sgen[H(Uv V)] = 4G

4 S[H(U, V], (3.16)

where A denotes the area of the (U, V') sphere and S denotes the von Neumann entropy
of a homology hypersurface H (U, V') outside of the sphere (note that, by contrast with

8We expect that other gravitational dressings also lead to a new quantum extremal surface, but
demonstrating it rigorously requires careful analysis of the backreaction.
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a BH coupled to a reservoir, this is independent of our choice of H(U, V') because the
boundary conditions are reflecting). The corresponding quantum expansions are:

AGy  0Suen|H(U, V)]
AU V) oV ’
AGy  0Suen| H(U, V)]
A(U,V) oU '

Ov(U,V) = (3.17)

Ou(U,V) = (3.18)
In the global (AdS) HH state, the spacetime isometries guarantee stationarity of the
bifurcate horizon:

Ou(U,V =0) =0, (3.19)
Ov(U =0,V) =0. (3.20)

In large AdS black holes formed by collapse and then allowed to equilibrate, (3.20)
holds as stated, while (3.19) survives as the statement that

Ou(U,V) = O(V) (3.21)

in the limit of small V' and fixed U. This is because the classical spacetime and the
reduced state of the bulk quantum fields are the same for the AdS HH state restricted
to V' > 0 and the post-collapse black hole.

Recall that our goal here is not to find a QES explicitly but rather to find a surface
o with negative ©y and positive O, which as noted above is sufficient to guarantee
the existence of a QES between o and the asymptotic boundary .#. We will discuss
the variations of the area and entropy separately. In the near horizon region the area
of spheres is

A(U, V) = Vol(S* H)r™ (1 =2 UV) 4+ o(UV), (3.22)

where Vol(S?7!) = 27%2/T(d/2) is the area of a (d — 1) dimensional unit sphere.
Therefore the classical expansion 6y = A(U, V) 'oyA(U,V) = —2U + o(U). It is
negative in the interior; 8y = —2V + o(V) is likewise negative.

The bulk entropy term S[X(U, V)| is difficult to compute exactly, but under rea-
sonable simplifying assumptions we may approximate it to an accuracy sufficient for
establishing the existence of a quantum anti-normal sphere. The state p tensor factor-
izes across different angular momenta by construction, which by spherical symmetry
have decoupled dynamics. The contribution to the von Neumann entropy from high
angular momentum modes includes a divergent term proportional to A(U, V'), which
is balanced by a renormalization of G in Sgen [43-47]. As noted above, the change
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in the state from €2 to p involves a change in the s-wave sector only, so we may focus
exclusively on the entropy contribution of the s-wave sector.

To find a quantum anti-normal surface, we take a fixed U > 0 (within the range
A) where the Rindler modes were disentangled, and then take the limit of small V.

We first want to to show Oy < 0. Since the classical expansion 6y is already
negative, this is not especially surprising, but we still need to be somewhat careful
in case the bulk entropy gradient dy S is singular in the V' — 0 limit. Indeed, if the
infalling modes were at a different temperature Tj, from the black hole temperature T'
then this is exactly what would happen: the (renormalized) bulk entropy gradient is

1]

oS ~ % l1 — Yﬂ +O(VY), (3.23)
which is clearly singular in the limit of interest. However, because our black hole is
in equilibrium, this issue does not arise and 0y S is well behaved. Essentially this is
because we would have the same bulk state (when restricted to the region of interest)
if we had started with the two-sided HH state (rather than a black hole formed from
collapse) and then disentangled the outgoing wave-packets as usual. The resulting state
is manifestly nonsingular at V' = 0, as is its entropy gradient. It follows that we have

@V(U,V — O) =-2U + ZLGTNS—i = =-2U + O(GN) <0 (324)

for any fixed U > 0 in the limit Gy — 0.

We emphasize that dy.S can still be significantly affected (even at very small V') by
disentangling the outgoing modes, despite the limit necessarily remaining nonsingular,
because the ingoing and outgoing modes are related by the reflecting boundary condi-
tions. An analogous phenomenon was found in [48] where an equilibrating two-sided
black hole coupled to a bath had a nonsingular but nonzero entropy gradient at the
bifurcation surface. Note that by picking U to be in the range A we ensure that 6y is
O(GY%) and negative, upholding Oy < 0 despite any non-zero dyS ~ O(1).

It only remains to show the somewhat more surprising fact that we also have
Op > 0 in the same region. This can be derived in two complementary ways: first, by
a direct computation of the entropy of quantum harmonic oscillators, and second, by
a conformal mapping to Minkowski space. We describe each method in turn.

Direct Computation: In the HH state, the symmetries guarantee that dyS goes
to zero as V' goes to zero. On grounds of dimensional analysis, it is natural to expect
that 0pS = O(V). In appendix A, we study the entropy variations in JT gravity
and explicitly derive this dependence. The intuition behind this term is the mixing
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between the outgoing and infalling modes in the dynamics away from the horizon, e.g.
reflecting asymptotic boundary conditions; this causes some purifications of the near
horizon interior out-movers at V' to miss H(U = 0, V). In the state p, we expect a large
correction to JyS: this is precisely the entropy derivative that notices the change in
the entanglement structure of the out-movers. We can estimate this by comparing the
entanglement structure of p with that of the HH state, i.e. by considering 0y (S?—SHH).
Let us be precise about this. Each Rindler wave-packet with mean frequency w is
a quantum harmonic oscillator at temperature 1/27 with entropy Sy, (w) where for the
free scalar
2w

Sth(W) = 627“"'——1 — lOg(l - 6727“0), (325)
and for the free fermion
2w —27w
Sth(w) = m + 10g(1 +e ) (326)

Hence, compared with the HH state, there is a deficit of approximately 2h.Siy,(wp)
in the amount of entanglement with the exterior region.

Since the entanglement pattern of s-wave Hawking modes across the horizon is local
on a logarithmic U scale, the logarithmic derivative U0y S is approximately constant
across A. Together with the knowledge of the total entanglement deficit this implies
that for U in A:

U%g’%)] = %Sth(wo) +o((UV)"). (3.27)
Mapping to Two Minkowski Spaces: An alternative way to derive (3.27) is via
a conformal transformation inside and outside of the Rindler regions into two copies of
Minkowski space with the corresponding Minkowski null coordinates:

Uy, = logU (3.28)
Uout = — log(—=U). (3.29)

The requisite conformal factor is e™

, and the Minkowski regions are in the thermofield
double state with temperature 1/27. Let Syunk(u) denote the entropy of the union
of the outside Minkowski system with the u;, < w region of the inside Minkowski
system. On scales much larger than 27, the local entanglement structure of the ther-
mal state gives the constant 0, S\ink(u) = —c/6 (where ¢ = 1 for a free scalar and
¢ = 1/2 for a free fermion). To convert this back to the Rindler answer, we need to
also add the contribution coming from the rescaling of the UV cutoff in the univer-
sal divergence ¢/6log(1/e(u)), where e(u) = ege™. The contribution from this term,

¢/60, log(1/e(u)) = ¢/6, precisely cancels the previous contribution, giving 9,5 = 0.
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Figure 8 Two scenarios related by a Weyl transformation are shown. On the left we
have two right-moving Rindler wave-packet partners within some range of Minkowski null
coordinate U, i.e. e < |U| < ee’. On the right we have two separate Minkowski spaces in the
thermofield double state of temperature 1/27w. The dual wave-packets will be right-moving
Minkowski wave-packets of width L.

In the Minkowski picture, the disentangled state p is almost in the same thermofield
double state except that Minkowski wave-packets localized to log e < u;, < L+loge and
log e < uqyy < L+log e are in separate mixed states instead of being entangled with each
other. This changes the constant entropy gradient to 9, Suink = —1/6+ (dw/m)Sin (wo)-
Taking the cutoff rescaling into account, we find

9,9 = ‘%"sth(wo). (3.30)

Changing back to Kruskal coordinates gives (3.27).

For some U in the range A and V' < V), we therefore obtain

4GN5C¢)Sth (wo)
7Vol(S4-1) Urd-1

Ou(U, V) = =2V + + o(V, GNVY). (3.31)
Here the first term comes from the area term, while the second term comes from the
bulk entropy gradient (3.27). Since the first term on the right hand side decreases as
we decrease V', we ought to find ©y > 0 for some Vi < V;. To find the parametrically
largest such Vi, we can take the limit where U is closest to the horizon while still in A,
i.e. U — 0r1/2nTVy. Then, the following condition guarantees Oy > 0:

‘/1 < GNT&uSth (wo)

— 3.32
Vo ™ ré=1ory ( )
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Figure 9. The Penrose diagram of a lunch in a non-evaporating spherically symmetric AdS
black hole formed by the collapse of a thin null shell (shown in grey). The solid orange line is
foliated by spherical apparent horizons. The mixed state of the code subspace of the Hawking
wave-packets results in vapt, and Ypuige quantum extremal surfaces. The lunch region is the
interior of 7aptz, a slice of which is shown in purple. Since ©y = 0 requires small 6y, both
extremal surfaces will be on an apparent horizon to leading order in Gy.

Therefore at (Up, V1), we have a sphere o (see Fig. 7) satisfying conditions (3.7) and
(3.8). Note that V; is approximately a scrambling time to the past of ;.

As previously discussed in Sec. 3.1, the restricted quantum maximin prescription
implies the existence of a quantum extremal surface 7,p, in the outer wedge of p1. The
surface Yapt, 1S a sphere at V' with V/Vj of the same order as V;/V;. For larger V, the
area derivative term is parametrically larger than the entropy derivative. Additionally,
to satisfy ©y = 0, we need U = O(G), or else the area derivative is parametrically
large and cannot be balanced by the entropy derivative.

3.4 The size of the lunch

To characterize the lunch, we also need to find the maximal QES 71,y1ge, Whose existence
follows from the presence of 7,pt, by the maximinimax prescription [8]. Maximinimax
locates Ypuige in the inner wedge of Yapt, but does not narrow down its location further.
To get an idea of the location, let us specialize to the AdS-Vaidya collapsing null shell.
Since entropy derivatives in the state p are small in the V' direction, ©y = 0 can only
happen on spheres that satisfy 0y = o(G%;). On the other hand, since all spheres
satisfy Oy = O(GY;), ©y = 0 requires highly blueshifted bulk entropy density. The
only location which satisfies all of these criteria is inside the Vaidya shock where the
apparent horizon intersects the past of the interior wave-packet (See Fig. 9).

We can now estimate Sgen(Vbulge) — Sgen(Vaptz), the determining factor in the pre-
dicted complexity of reconstructing the code subspace. Here it is useful to compare
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the mixed state p with the vacuum state at the horizon. In both states, the region
outside of vupt, is in the same state and therefore has the same generalized entropy.?
However, compared to the vacuum state, the region outside of Y,y has gained the

entropy associated with the disentangled wave-packets in Heoge. This implies that 1°

Sgen(’Ybulge) - Sgen(fyaptz) ~ 2hSth(wO)- (333>

By the Python’s Lunch conjecture, this predicts a reconstruction complexity exponen-
tial in the size of Hcoqe. An alternative way to derive (3.33) is by integrating (3.31)
across the range A.

In this analysis we have ignored the area difference between v,pt, and ypuee because
its contribution to Sgen(Vbulge) — Sgen(Vaptz) i subleading. To see this, note that 6y of
spheres on the apparent horizon scales linearly with V' while 9y S is constant. Therefore,
if the null shell is sufficiently in the past of Vj, the leading generalized entropy increase
change between v,pt, and Ypuige is due to bulk entropy.

4 Comparison with Toy Models

In this section we argue that the size of the Python’s Lunch is correctly computing the
complexity of decoding the interior modes by explicitly constructing Grover-search-
based recovery protocols for simple scrambling quantum circuits. We then explain how
this circuit connects to the tensor network explanation of the Python’s Lunch geometry
given in Sec. 2.

We model a black hole formed from collapse and allowed to evolve for time t by a
quantum circuit U on n qubits. The starting state is |0), and the circuit has nt two-
local gates applied to randomly chosen qubits. We will assume that the time ¢ is much
greater than the scrambling time logn so that the system has time to fully scramble.
Finally we extract a small number h < n of qubits to be our ‘Hawking quanta’. For
closely related previous constructions, see [8, 38, 49-52].

We want to understand the complexity of reconstructing the interior partners of
these h Hawking quanta for a code space where the Hawking quanta and their partners
can be in an arbitrary state (but everything else is fixed). Equivalently, we want to
find some unitary circuit Vpg,,, acting on the remaining n — h qubits B that describe
the black hole, together with h reference qubits Ry such that

h
Ver,Usm [0) g 10) g, = 19 ), [0) 5 - (4.1)

90f course even though vapt, exists in both states it is only quantum extremal in the state p.
0Note that the fluctuations in the size of the lunch are suppressed compared to the size by 1/ Vh.
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where the h Bell pairs |®) purify the h Hawking quanta, and [t)g) is an arbitrary fixed
state. In other words, Vpp,, extracts a purification of the Hawking modes H out of B
and into Ry. Thanks to monogamy of entanglement, the extracted modes must be the
interior partners of the Hawking modes.

We assume on general thermalization grounds that the reduced density matrix
pu of the h quanta is approximately maximally mixed, or equivalently that a unitary
operator Vpg,, (simple or otherwise) satisfying (4.1) exists. This means that the state
(which is not normalized)

2"2Up 10) g

can be interpreted as an approximate isometry V' from the Hawking quanta H to the
black hole Hilbert space B. In other words

®h ®h
2" 10) g (Ol v U;H’UBH 10) 51 ’q)Jr)H’RH ~ |0) g ‘(I)+>HRH . (4.2)

Here H’ is an additional ancilla system, again consisting of h qubits, that makes it
easier to describe the desired final circuit. (4.2) is almost exactly the result we want,
except that the operator

h
2"10) 2 (Ol e Ub
is not a unitary (or even an isometry) since it contains the projection operator (0|

However, by using Grover search, we can find a unitary circuit Vgg, n that acts the
same way that

2"10) gz (Ol e Ub
does on the specific state Uppy |0) 5. Note that the circuit also acts on the h additional
ancilla qubits that we have labeled H' above. However, at the end of the circuit, these
ancilla qubits are left unentangled with the rest of the system in the state |0). Explicitly,
we define the circuit

2k /4

h
Vangnr = | (1= 19 (@50, ) Upi (1 =210) Olp) U] (43)
Then
h h
Vry i Usi 10) g 190, = 10)510) g 1975, - (4.4)

The argument that the operator Vgg, n has the desired effect is exactly the same as the
one reviewed in Sec. 2. In particular, the number of iterations required is proportional
to VA = 2"

We have therefore found that the complexity of reconstructing interior partners is
equal to the size of the circuit nt times the number of iterations O(2"). This agrees
with our gravity calculations from Sec. 2.
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Figure 10. Quantum circuits demonstrating the existence of a lunch associated with the
reconstruction of outgoing Rindler-like wave-packets. The circuit (a) can be thought of as
time evolution by U on the boundary starting from some initial collapse state, where H
represents the state of the h outside Hawking quanta in our code subspace and B represents
the remaining black hole. One can equivalently view this circuit as a spatial tensor network
representing the interior of the black hole. Then, as shown in (b), the in-plane leg H should
be thought of as an entangled state ]<I>+>®h’ of the Hawking partners. In (c), the maximally
mixed state of the code subspace is represented by the dangling bulk legs which results in a
tensor network python’s lunch.

It also gives an (admittedly somewhat boring) bulk picture of the reconstruction
process: at any given stage in the Grover search extraction process, the bulk state is
simply a superposition of the initial bulk state and the bulk state with the interior
mode successfully extracted. As we repeatedly iterate the process, evolving the bulk
backwards and forwards in time, the superposition simply very slowly rotates around,
with the amplitude for the extracted state gradually increasing.

Let us comment briefly on how the discussion above relates to the more general
arguments for the Python’s Lunch conjecture based on tensor networks that were given
in Sec. 2. The first step is to reinterpret the quantum circuit from Fig. 10(a), as a
tensor network describing a spatial slice through the black hole interior rather than a
description of boundary time evolution. (The close relationship between exterior time
evolution and a spatial slice through the black hole interior is an old story at this point,
see e.g. [35, 36, 53-55].)
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In a prima facie paradoxical turn of events, this quantum circuit does not have
a Python’s Lunch when viewed as a tensor network with all in-plane legs: its cross
section is constant in size. However, as shown in Fig. 10(b), using this as a model
for the Hawking quanta and their interior partners requires a reinterpretation of some
of the legs of the network as maximally entangled bulk states rather than as in-plane
“area” legs. In the maximally mixed state for this bulk code subspace, as in Fig. 10(c),
those bulk legs are effectively cut in two, creating a Python’s lunch with the same size
derived in the gravity calculation. The reconstruction procedure discussed above is
thus simply a reinterpretation of the one from Sec. 2.

5 Unknown shocks, BFV states, and Pseudoran-
domness

Pseudorandomness is a fundamental notion in cryptography; it refers to (compara-
tively) small ensembles of states that are indistinguishable from a completely random
state in polynomial time. This notion of polynomial indistinguishability has recently
been generalized to quantum states [56]. It was argued by Bouland, Fefferman and
Vazirani (BFV) in [34] that an easily prepared set of black hole microstates — specif-
ically black holes formed by collapse together with the application of some randomly
chosen shocks — should form a pseudorandom ensemble. As a consequence, they argue
that any boundary reconstruction of the volume of the black hole interior (for a code
subspace containing all these states) must be exponentially complex.

If the strong Python’s Lunch proposal is true,!! then the exponential complexity
described by BF'V should have a corresponding Python’s lunch as its geometric avatar.

Indeed, an equivalent way to say that the BFV ensemble is pseudorandom is to
say that the thermal ensemble is a “coarse-graining” of the BFV ensemble and so
has the same expectation value for all polynomial complexity observables. But, as
argued in [9, 57-59], the maximum entropy that such a coarse-grained state can have
is given by the generalized entropy of the outermost quantum extremal surface. So,
for example, the pseudorandomness of Hawking radiation in an evaporating black hole
after the Page time [60] follows from the island (the part of the black hole interior in
the entanglement wedge of the radiation) being inside of a Python’s lunch [8]. Again,
it seems that consistency requires the BF'V ensemble to have a Python’s lunch — with
an appetizer surface that lies near the event horizon, so that the coarse-grained state
is a thermal black hole.

Recall that this is the strictly stronger “if and only if” Python’s lunch proposal rather than the
original version of [8].

— 929 —



In this section, we show that, while the individual states in the BFV ensemble
are simply prepared and therefore have no lunch, the entire ensemble, viewed as a
bulk mixed state, does have a “secret” lunch similar to the ones in Sec. 3. This lunch
explains the pseudorandomness and exponential reconstruction complexity found by
[34] and thus provides further evidence for the strong Python’s Lunch conjecture.

Let us begin by briefly reviewing the construction of [34]. We start by preparing
a state that admits a simple boundary description: a quantum quench at some fixed
time. To be precise, consider an initial vacuum state in a holographic CFT and inject
a large amount of energy into the system at t = 0. As more time goes by the system
will thermalize with some large effective temperature T and scramble; in particular, its
complexity compared to the ¢t = 0 state grows linearly with time [36, 53, 61]. The bulk
dual of this state is a large AdS black hole formed from collapse of some initial matter at
t = 0, which features a linearly growing maximal volume slice. The complexity=volume
proposal of [35, 36] accurately reflects this behavior in this system. Suppose now that
we are given such a state at some unknown sub-exponential time after ¢ = 0, and that
we want to determine its complexity. From the bulk point of view, the volume of the
wormhole is a simple observable (even if it cannot be directly measured by a single bulk
observer due to causality constraints). Similarly, on the CFT side, the complexity can
be easily determined by seeing how long the state takes to unscramble when evolving
the system backwards in time.

The pseudorandom set of states constructed by BFV arise when we modify the
evolution of the state by inserting k simple boundary unitaries separated by at least a
scrambling time, each acting on near boundary thermal modes in equilibrium with the
black hole:

|¢> — e—thscrUke—thscr Uk—l . U16_2Htscr

(it =0)). (5.1)

Here H is the boundary Hamiltonian and t,. denotes the scrambling time. A simple
toy model version of this setup, where the black hole is modelled by a large number of
qubits, is shown in Fig. 11.

Even though we define U, (for a = 1,--- | k) through the bulk, we know they are
simple as they act near the boundary. On the gravity side, this can be confirmed
since each U, throws a small amount of energy to the black hole; this has a relatively
minor effect on the linear growth of the maximal volume slice. Clearly, if we know the
pattern of the unitaries applied, we can repeat the previous procedure to determine the
complexity efficiently on the CFT.

What if we do not know the order and choice of applied unitaries? Specifically, say
each U, is chosen at random from 4 possible choices. These can be thought of as the
four possible Pauli operators (including the identity) that can act on a single qubit.
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Figure 11. A circuit representation of the BFV ensemble. Every scrambling time, a simple
unitary acts on h outside Hawking quanta. This is represented by the small box with label j,
representing the choice of the simple unitary U,, drawn from products of h Pauli operators.

After k steps, this results in an ensemble of 4"

possible states. Viewing the circuit as a tensor
network representing the spatial bulk geometry, the maximally mixed state of the ensemble
will be represented by replacing the simple unitaries by two bulk dangling legs, similarly to
Fig. 10(c). This results in multiple python’s lunches predicting a complexity of O(t 2*) for

distinguishing various states of the ensemble.

The result is a branching of 4% possible CFT states. On the CFT side, rewinding with
et does not reveal the complexity as before since the unitaries prevent the system
from unscrambling at ¢ = 0. On the bulk side, the energies generated by each unitary
collide with the initial matter that formed the black hole. The resulting backreaction
forms a white hole.

To unscramble the state, it appears that we need to try acting with all possible
combinations of unitaries until we hit upon the right one and the system unscrambles.
Naively, this would on average take a time of order 4*. By using Grover search, we
can obtain a quadratic speed up to O(2¥), but it is not clear how the process can be
improved any further.

If it is exponentially complex to unscramble the states, it is presumably also ex-
ponentially complex — from a boundary perspective — to distinguish the states, or to
determine the length of time that the system has been evolving for. On the other hand,
in the bulk the states are easily distinguished by looking at the state of the interior.
So it appears that the holographic dictionary relating the two must be exponentially
complex. While in [34] the discussion focused on the complexity of determining the
volume of the interior because of the complexity = volume proposal, we emphasize that
the same arguments apply to other interior observables such as the state of the shocks,
or the state of the initial collapsing matter.

We may now put the strong Python’s lunch conjecture to the test: this exponential
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complexity needs to come from a Python’s lunch in the maximally mixed code subspace
state — namely the mixed state describing the full BF'V ensemble.

Before directly diving into a gravity calculation, it is helpful to look again at the
quantum circuit toy model shown in Fig. 11. For any fixed a, we have a single unitary
quantum circuit, i.e. a tensor network with no lunch. However, if we think of the
choice of unitary a as a bulk leg that is an unknown input to the tensor network, then
suddenly a Python’s lunch appears. The size of the lunch (in qubits) is 2k, which
explains the Grover search decoding time of O(2%) discussed above.

Now let’s turn to the gravity calculation. To stay close to the BF'V toy model, it
is helpful to choose the unitaries U, so that they act on h fermionic Hawking radiation
modes. Choosing the modes to be fermionic allows us to choose the unitaries U, to
genuinely be one of the 4" possible (products of) Pauli operators. We also want to
choose the energy w of the modes to satisfy w < T so that they are actually in a
thermal state as in the toy model.?

As in Sec. 3, acting with a random choice of Pauli U, disentangles the Hawking
modes from their interior partners and thereby nucleates a quantum extremal surface
near the horizon.'® If we act with multiple unitaries U,, each separated by more than
a scrambling time, we actually get a series of multiple lunches, like those discussed in
Sec. 2.2. These can be characterized by a series of bulges 7{,,. and appetizers v,
as shown in Fig. 12. The generalized entropy difference between each bulge and its
corresponding appetizer follows from the analysis of Sec. 3:

Sgen(Vuige) = Sgen (Vapts) = 205 (wo)- (5.2)

On the other hand the difference Sgen(Vp,1ge) — Sgen(Veris) is due to the increase
in the area of the black hole caused by the action of U, ;. This is equal to AE/T
where AF is the increase in the system’s energy caused by U,_;. If the disentangled
modes of p had exact Rindler frequencies then we would have AE = 0 since in that
case the state of the exterior modes would be unchanged by applying U,.'* However,
disentangling wave-packets results in some energy difference which will in turn increase

12If we have wp > T then the unitary U, can be undone by simply using a channel that maps
everything to the ground state (because there is no entanglement with an interior partner that needs
to be preserved). Hence the pseudorandomness argument breaks down.

13We emphasize again that this disentanglement only happens when you look at the mixed state
formed by averaging over the random U,. In each individual element of the ensemble, the entanglement
remains present and there is no QES.

14Here we assume that the fermionic modes have energy wy < T and hence are in approximately
the maximally mixed state, as in the toy model.
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Figure 12. A Wheeler-DeWitt patch in the Penrose diagram of the BFV setup is shown.
The mixed state of the ensemble, where we do not know which U, is applied, results in a state

ot 8 7

quantum extremal surfaces. Other U,’s not shown in this figure give rise to similar quantum

extremal surfaces, e.g. 'ya(lgt_zl) and 'yl()il_g?

where the Hawking partners are in a maximally mixed state. This results in ’ya;

, resulting overall in a series of python’s lunches.

the area of the black hole:

h
(woL)?”

Sgeﬂ<,ygulge) - Sgen(,)/;Lp_ti> ~ (53)

where L = log(dry/dry) from (3.10) and (3.11) [62].' TImportantly, L can be made
arbitrarily large by dialing dr; small. Therefore, from here on we consider a limit
where:

2hSi(wo) ~ Sgen(%?ulge) - Sgenwgptz) > Sgen(%gulge) - Sgen(Vgp_ti)- (5.4)
The complexity of reconstructing the interior is then predicted by (2.6) to be:
C =0 (N*t2") (5.5)

where N is the degree of the boundary gauge group. This complexity is consistent with
the analysis of BFV. Moreover it precisely agrees with the complexity predicted for a
Grover search reconstruction in the toy model of Fig. 11.

5The fluctuations of Sgen(Yige) — Sgen(Vipes) is of order v/h/(woL) which is a more important
effect than the mean [62]. But it can similarly be suppressed compared to the RHS of (5.2) by taking
L to be very large.
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6 Discussion

We have found nontrivial novel QESs that constitute barriers to simple reconstruction
of interior Hawking partners even in pure state black holes (that are necessarily not
coupled to a reservoir). This derivation immediately dismisses the apparent “obvious”
contradictions to our strong Python’s Lunch proposal that nonminimal QESs are the
exclusive source of exponential complexity in the holographic dictionary. We will now
discuss some possible generalizations and implications of this result.

Firewalls in typical states: Possibly the strongest outstanding class of arguments
in favor of firewalls — starting with AMPSS [63] and Marolf-Polchinski [64] — are the
typicality arguments. These involve reconstructions of interior outgoing modes in a code
subspace containing all black hole microstates with smooth horizons, which is generally

A/4GN Tt has been pointed out that the paradox

taken to have dimension of order e
presented by these arguments may be resolved via state dependence; specifically a
state-dependent boundary representation of the interior Hawking partners (see e.g. [49,
63, 64]).

One possibility for the origin of such state dependence in bulk reconstruction (even
when one has access to the entire asymptotic boundary) is that operations on the
interior Hawking modes take you out of the code subspace [1, 27]. That is, if we
would like to reconstruct different states of the outgoing modes, we must increase the
code subspace to include various states of the Hawking partners; now the code subspace

A/4GN - The maximally mixed state of this larger

appears to be of dimension larger than e
code subspace leads to a QES on the horizon (to leading order in Gy ), as described in
Sec. 3.

Importantly, even though this is exactly the same QES that we found in Sec. 3, it
is now the minimal QES, whereas previously it was simply the appetizer to a Python’s
Lunch. Reconstructing the interior outgoing modes without state dependence is there-
fore impossible, rather than simply exponentially complex. This is because, as noted
above, in typicality arguments, the dimension of the original code subspace (without
the interior outgoing modes) is of order e#/4¢~ . Since the additional bulk entropy of
the outgoing Rindler modes increases the generalized entropy of the empty set but not
of the new nontrivial QES, the latter becomes minimal.!® In contrast, in Sec. 3, we

started with a single black hole microstate. Even after disentangling the Hawking pairs,

16Tt is important to clarify the novel contribution that we are making here: the idea that matter
entropy in the interior of a black hole can exceed the Bekenstein-Hawking entropy goes back to the
bag-of-gold geometries considered in [65]; the fact that this could cause the interior of the black hole
to be outside the entanglement wedge was discussed already in [1, 27]. However, until Sec. 3 of this
paper, the actual QES that is responsible for this latter effect had not been identified.
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the empty set therefore still has minimal generalized entropy, and reconstruction is still
possible, albeit exponentially complicated.

Other states in Hcoge: The state p (in (3.15)) is a natural choice for a mixed state in
our Heoge- However, since bulk reconstruction requires a nontrivial code subspace, and
conversely makes sense for any code subspace with more than one state, we expect other
states in Heode to also lead to a nonminimal QES v,p,. Here we will speculate about
the type of states in which this happens. For simplicity, let us consider a particular
pair of Hawking wave-packet partners across the horizon with wy < 7. In the HH
state, the state of these wave-packets is just the Bell state |®*). The generalized
second law implies that any unitary acting on the outside wave-packet cannot lead to
a new quantum extremal surface. Next, let us consider mixed states other than p. For
example, consider the state

5= 5(100) (00] + |11) {11]). (6.1)

It is easy to see that our Sec. 3 analysis goes through similarly for p, the only difference
being that the RHS of (3.27) will have an additional factor of 2 in the denominator
which will not change the conclusion that an appetizer surface exists.

What about a product state, e.g. |00)7 Again, the reduced entanglement across
the horizon would allow us to run the argument of Sec. 3 and find an appetizer. In
addition, the tensor network analysis of Sec. 4 suggests that in such states a Python’s
lunch still exists. We can see this by projecting the dangling legs in Fig. 10(c) to a
product state. They would then act as postselected legs in a Python’s Lunch tensor
network.

These examples suggests that any state in which the mutual information between
the wave-packets is reduced compared to |®T) leads to a Python’s Lunch. It should be
possible to see this directly from analyzing the quantum expansion, which we leave to
future work.

Beyond spherical symmetry: The HKLL reconstruction [66-68] of near horizon
outgoing Rindler wave-packets fails after a scrambling time due to the transplanckian
problem. For s-waves in an Schwarzschild-AdS background, we argued that an appetizer
surface vapt; appears in a mixed state of the corresponding code subspace, explaining
the failure of HKLL. However, since the transplanckian problem also applies to non-
spherically symmetric modes in more general backgrounds like Kerr-AdS, our proposal
necessarily requires new QESs in mixed states of those code subspaces as well. One way
to establish this concretely would be to mirror our spherically symmetric computation
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of the bulk von Neumann entropy in such mixed states and establish the existence of
a quantum anti-normal surface near the horizon.

Here we will briefly discuss an alternative approach to the special case of recon-
structing wave-packets localized both in U and the transverse direction (and that thus
break the spherical symmetry) in the Schwarzschild-AdS background. We sketch out
the direction of a rough plausibility argument directly for the formation of a quantum
extremal surface on the horizon. Similarly to the spherically symmetric case, we expect
that in the relevant maximally mixed state we have O = O(Gy) on the horizon. How-
ever, the ©, analysis is interestingly different. Here the bulk entropy variation along the
¢ direction is only large at some localized portion of the transverse direction. At other
transverse directions on the horizon, ©, = 0 requires §, = o(GY;). It is then necessary
for the existence of a quantum extremal surface on the horizon that at leading order
we have slices with large 6, at some transverse location and 6, = 0 away from it.

For concreteness, let us demonstrate the existence of such a slice on a horizon of a
non-rotating BTZ black hole with metric:

17— —2dUdV + R*(1 — %)ngzﬁz, 62)
(1+ 52y

AdS

where (aqs is the AdS radius and R the black hole radius. Now, the slice V' = f(¢)
with

f(@)=fo(e?+e7?), (6.3)

(where fo > 0 is some constant) satisfies:
0p = 2fo(1 —€™) 6(¢). (6.4)

Note that this surface has a kink at ¢ = 0 (see Fig. 13) and is smooth away from
¢ = 0. Since well-behaved wave-packets need to be smeared in the transverse direction
a bit, we expect that the horizon quantum extremal surface would then need to have a
correspondingly smoothed out kink.

In higher dimensions with a non-spherically symmetric background stationary hori-
zon, e.g. AdS-Kerr, and with a more general non-spherically symmetric bulk entropy
derivative, finding the QES slice V' = f(y") (where y’ denotes the transverse direction)
would be more complicated. The ©, = 0 equation is [69]

; 4C;1N 5Sren
VQf + QX,LVZf + (8V9U|V:const.)f = - - - (65)
V h(y?) U (y") U=0,V=F(y)
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V = constant

Figure 13. In the maximally (or thermally) mixed state of outgoing Rindler-like wave-
packets localized in the transverse direction on the horizon H, we expect that v,pt, would be
a non-trivial cut of the horizon like the drop-shaped surface shown (as opposed to a constant
V slice). This surface is chosen because it has 6y ~ O(1) around the transverse location of
the wave-packets but satisfies 8y = 0 away from it.

where the LHS is a general expression for 6, on a stationary horizon involving V., the
transverse Laplacian and y the twist of constant V slices on the horizon, and the RHS is
the functional derivative of the renormalized entropy in the ¢ direction involving h(y"),
the determinant of the intrinsic metric of the slice. This type of differential equation
was discussed in [69, 70]. Because the marginally trapped surfaces on the horizon are
(strictly) stable classically, it is possible to show that the largest real eigenvalue of L
is both real and positive [71], so the equation can be inverted. However, depending on
the sign of the variation in Sgen, it is possible for f to be either positive or negative.
For our construction to work in this case, f must be constrained to be strictly non-
negative. This is further obfuscated by the fact that f is not differentiable (although
this is not fatal, as much of the theory of elliptic operators can be extended to weakly
differentiable functions). We leave a further investigation of this to future work.
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A  0yS in JT gravity

In this appendix, we will substantiate our earlier assertion in Sec. 3 about the inwards
variation of the entropy in the HH state. To do so, we will compute 9y S[H (U, V)] for
conformal matter in the HH state of a finite temperature JT black hole background,
and show that it is O(V') near the event horizon at V = 0.
We work with Kruskal coordinates, where the metric takes the form:
s = — > __quqv. (A1)
(1+UV)?

We have set the AdS scale to zero and as usual in Kruskal coordinates, the horizons
are at UV = 0 and the “singularity (where the dilaton diverges to —o0) is at UV = 1.
The dilaton profile ¢ = ¢g + ¢ is

1-UV
1+U0V

¢ = 21T, (A.2)

We work with the HH state for the conformal matter in this geometry, which can
be obtained from the Minkowski vacuum via a Weyl rescaling;:

V2
)_1+UV'

QU, Vv (A.3)
Now, consider the von Neumann entropy of a region with AU and AV extents in 2D
Minkowski vacuum [72]

c AU c AV
S at vacuum — 4 lo —— ] +=lo — |, A4
flat 6 g ( 65]65]) 6 g ( /—€Y€¥> (A.4)

where €]’ and €/, are respectively the U and V' cutoff at endpoints 1 and 2 of the interval.
We can compute the von Neumann entropy on a region in the black hole spacetime by
rescaling ¢/ and EYQ in Eq. (A.4) appropriately with the Weyl factor (A.3). There is
a subtlety, however, since the black hole spacetime has reflecting boundary conditions
at UV = —1 and the Minkowski vacuum does not. we can still compute 0y S[H (U, V)]
in the black hole spacetime from the entropy of null lines that extend from some point
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in (U,V) to the UV = —1 line along the U direction in Minkowski and compute
the U derivative. This is because the reflecting boundary conditions convert outgoing
modes to infalling modes in AdS, but the entropy variation on a null (along U) interval
is not affected by this since ingoing modes do not register on it. The null line has
AU = U + 1/V. By incorporating the warped factor into €V of Eq.(A.4), we obtain:

e (usyv | e v
H(U,V)| = 0y log | ———=L | =S Al
WSHWU VI = drglos | —=—7 RI+ UV (4.5)
a+Uv)

In the region near the future horizon, i.e. V' >0 and UV < 1, we have dyS = O(V).
This is always subleading by a factor of Gy compared to (1/4Gy)Jy¢. A consequence
of this is that the only quantum extremal surface in the HH state is the bifurcation
surface.
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