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Abstract

After averaging over fermion couplings, SYK has a collective field description that
sometimes has “wormhole” solutions. We study the fate of these wormholes when the
couplings are fixed. Working mainly in a simple model, we find that the wormhole
saddles persist, but that new saddles also appear elsewhere in the integration space
– “half-wormholes.” The wormhole contributions depend only weakly on the specific
choice of couplings, while the half-wormhole contributions are strongly sensitive. The
half-wormholes are crucial for factorization of decoupled systems with fixed couplings,
but they vanish after averaging, leaving the non-factorizing wormhole behind.
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1 Introduction

1.1 General remarks

Spacetime wormholes have played a significant role in recent progress in understanding the
nonperturbative physics of quantum black holes. Examples include: the eternal traversable
wormhole [1]; the long-time behavior of the spectral form factor [2, 3] and correlation functions
[4]; and the Page curve [5, 6] and squared matrix elements [7] in models of evaporating black
holes.

But wormholes also lead to puzzles, in particular the factorization problem [8]. Imagine two
decoupled boundary systems in the AdS/CFT context, labelled L and R. From the boundary
perspective, if one evaluates a partition function in the combined system the result is just the
product of the results for the two component systems: ZLR = ZLZR. It factorizes. But if the bulk
calculation of ZLR includes a wormhole linking L and R then superficially at least ZLR 6= ZLZR.
It fails to factorize. Some of the phenomena recently explained by wormholes, in particular the
spectral form factor and squared matrix elements, are described by decoupled boundary systems
and so the wormhole explanation give rise to a factorization puzzle.1

The most controlled calculations of these factorizing quantities have been done in systems
like the SYK model [9, 10, 11] and its low-energy limit JT gravity [12, 13, 14, 15, 16, 17, 18] that
are dual to an ensemble of boundary quantum systems [3, 19]. Averaging the L and R systems
over the same ensemble, denoted by 〈·〉, removes the obvious factorization puzzle because 〈ZLZR〉
need not be the same as 〈ZL〉〈ZR〉. And in fact the link between wormholes and ensembles is
an old one, going back to the ideas of Coleman [20] and Giddings-Strominger [21] in the 1980s.
These ideas have recently been recast in the AdS/CFT context, with important extensions, by
Marolf and Maxfield [22].2

We can formulate a version of the factorization puzzle in such ensembles by asking what
happens to the wormholes connecting decoupled systems when we focus on just one element of
the ensemble. This question has been addressed in the Marolf-Maxfield model and in JT gravity
[37, 22, 38, 39]. In this paper we will examine it in the SYK model where instead of averaging
we will choose a fixed set of couplings between the fermions.

At large N , the SYK model can be studied using collective fields called G and Σ. In some
respects, these are similar to the bulk description of a holographic theory. Averaged single replica
quantities like 〈ZL〉 have such a “bulk” description in terms of the collective fields we will refer
to as GLL,ΣLL where these fields describe correlations within the single L system. (We will often
not refer to the Σ fields explicitly, but it should be understood that they accompany each G.)

To compute averaged two-replica quantities like 〈ZLZR〉, one has to introduce a matrix of
these G,Σ variables, where the diagonal entries like GLL and GRR represent correlations within
a given replica, and the off-diagonal GLR represents correlation between the replicas. We will
view this G,Σ action as a proxy for the bulk calculation of 〈ZLR〉 and refer to a saddle point of

1In the introduction we are using ZL, ZR and ZLR in a notation that is hopefully self-explanatory. In the rest
of the paper we will need to use more precise notation, collected in a glossary in appendix A.

2For a sampling of additional recent work on the connection between wormholes and ensembles see also
[23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36].
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the action with nonzero GLR as a wormhole:

GLR 6= 0 ←→ wormhole. (1.1)

Typically, this G,Σ formalism is used to describe the SYK model after averaging over cou-
plings. But it turns out, as we will see, that one can still use these same variables with fixed
couplings.3 The new ingredient is that the action is now a more complicated function that de-
pends on the values of those couplings. So we can now use the collective field formalism to study
the factorization puzzle.4

1.2 Summary of results

We are able to analyze fixed-coupling partition functions in some detail in very simple reductions
of the SYK model where we restrict the time contour to one or two time points. For a single
time point ZL or ZR is described by a finite dimensional integral over N Grassmann variables
whose action involves the random couplings J . Our main findings are as follows:

1. Wormholes persist
The wormhole saddle point found in the collective field description of the ensemble averaged
quantity 〈ZLR〉 continues to exist for fixed couplings, and the dependence on the couplings
is weak. The wormhole is “self-averaging.”

2. Half-wormholes exist
New saddles appear in the computation of ZL and ZLR for fixed couplings, which we
interpret as “half-wormholes.” The contribution of half-wormholes depends sensitively on
the particular choice of couplings – they are “non-self-averaging.” Together with disk and
wormhole saddles, these give an accurate evaluation of ZL or ZLR.

3. Multiple bulk descriptions coexist
Without averaging, there is a choice of collective field (bulk) description for ZLR. One can
use a description that includes GLR, or one can compute ZL and ZR by separate manifestly
factorized computations with no GLR variable. The equivalence between them follows from
an identity

1 =

∫
dGLR δ(GLR − fermion bilinear)ef(GLR)−f(fermion bilinear). (1.2)

This looks like a rather trivial statement. However, after introducing an integral rep-
resentation of the δ function and then approximating the integrals semiclassically, the
equivalence to the manifestly factorized approach is no longer obvious. It implies that
the half-wormhole saddle points in the manifestly factorized approach account for both the
wormhole and half-wormhole saddle points in the approach with GLR. So in the description
including wormholes it is the half-wormholes that restore factorization. After averaging the
half-wormholes disappear, leaving only the non-factorizing wormhole.

We expect, making certain assumptions we find plausible, that this structure also describes
the full SYK model.

3We thank Milind Shyani for a thought-provoking question about this point.
4Collective fields and a Hilbert space factorization problem have been discussed in [40, 41].
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2 SYK with one time point

In this section, we will study the following integral over N Grassmann numbers ψ1, . . . ψN

z =

∫
dNψ exp

{
iq/2

∑
1≤i1<···<iq≤N

Ji1...iqψi1...iq

}
, ψi1...iq ≡ ψi1ψi2 . . . ψiq . (2.1)

The quantity z can be thought of as a version of the SYK partition function where we replace
the time contour by a single instant of time.5 This system is simple enough that we will be able
to analyze it in detail.

As in the SYK model, computations simplify if we consider averages over the J tensor, with
respect to a Gaussian distribution such that

〈Ji1...iq〉 = 0, 〈Ji1...iqJj1...jq〉 =
(q − 1)!

N q−1
δi1j1 . . . δiqjq . (2.2)

We will begin by studying the averaged theory, and then turn to our real interest, which is the
theory with fixed couplings.

2.1 Averaged theory

2.1.1 Computing 〈z2〉

The average of z over the ensemble (2.2) vanishes, 〈z〉 = 0. This means that 〈z2〉 is the simplest
nontrivial averaged quantity. To compute it, one can use a version of the “G,Σ” collective field
formalism that is often used in studies of the SYK model [9, 10]. To derive this, we start by
writing the formula for z2:

z2 = zLzR =

∫
dNψLdNψR exp

{
iq/2

∑
1≤i1<···<i1≤N

Ji1...iq

(
ψLi1...iq + ψRi1...iq

)}
. (2.3)

After averaging over J with a Gaussian distribution satisfying (2.2) and using that the square of
a Grassmann vanishes, this becomes

〈z2〉 =

∫
d2Nψ exp

{
(q − 1)!

N q−1

∑
1≤i1<···<i1≤N

ψLi1ψ
R
i1
. . . ψLiqψ

R
iq

}
(2.4)

=

∫
d2Nψ exp

{
N

q

(
1
N

N∑
i=1

ψLi ψ
R
i

)q}
. (2.5)

5For the most part we take q to be an even number greater than two. The case q = 2 is different and is studied
in appendix B. Aspects of the model with two time points were studied in [42].
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We now introduce the basic G,Σ trick that will be used frequently below.

〈z2〉 =

∫
d2Nψ

∫
R

dG δ
(
G− 1

N

N∑
i=1

ψLi ψ
R
i

)
exp

{
N

q
Gq

}
(2.6)

=

∫
d2Nψ

∫
R

dG

∫
iR

dΣ

2πi/N
exp

{
− Σ

(
NG−

N∑
i=1

ψLi ψ
R
i

)}
exp

{
N

q
Gq

}
(2.7)

=

∫
R

dG

∫
iR

dΣ

2πi/N
exp

{
N

(
log(Σ)− ΣG+

1

q
Gq

)}
. (2.8)

In the second line, the integral over Σ was introduced as an integral representation of the delta
function. In the final line, we integrated out the fermions. In a more general computation, one
would have introduced a matrix of collective fields GLL, GLR, GRR. However, for this simple
model, only the GLR field is necesary, and to reduce clutter we will omit the subscript. The
reader should keep in mind that G is a GLR variable, expressing “wormhole-type” correlation.

How well-defined is this integral? Initially, we define it by integrating Σ over the imaginary
axis and G over the real axis. To get a convergent answer it is important to do the integral over
Σ before the integral over G. The integral over Σ is then of the form

∫
iR dΣΣNe−NΣG ∝ ∂NG δ(G),

and the resulting G integral is

〈z2〉 = N−N
∫

R
dGe

N
q
Gq (−∂G)N δ(G) (2.9)

= N−N(∂G)Ne
N
q
Gq
∣∣∣
G=0

(2.10)

=
N !(N/q)N/q

NN(N/q)!
(assuming N is a multiple of q) (2.11)

≈ √qe−(1− 1
q

)N (for large N). (2.12)

(If N is not a multiple of q, the answer for the integral is zero.) In this way of thinking about
the integral, the G variable is localized to a neighborhood of the origin. This is consistent with
the fact that G is supposed to represent a bilinear of fermions, which can be thought of as
infinitesimal.

However, there is another way of thinking about the integral that breathes a bit more life
into the G variable. Without changing the answer for the integral, we can rotate the contours
by defining

Σ = ie−iφσ, G = eiφg (2.13)

and integrating (first) over real σ and then over real g. When φ = 0, this is the contour we
started with, but when φ = π

q
we end up with

〈z2〉 =

∫
R

dg

∫
R

dσ

2π/N
exp

{
N

(
log(ie−

iπ
q σ)− iσg − 1

q
gq
)}

. (2.14)

In this form the integral is convergent for either order of integration.

Let’s see how to get the large N answer (2.12) from a saddle point approximation to this
integral. The saddle point equations are

1

σ
− ig = 0, −iσ − gq−1 = 0 =⇒ gq = −1. (2.15)
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There are q solutions. The real part of the on-shell action is the same for each of the solutions,
but they contribute with different phases. Including the one-loop determinant, one finds that
the different saddles contribute

1
√
q
e−(1− 1

q
)Ne2πimN/q, m = 0, . . . , q − 1. (2.16)

Which of these are we supposed to include? The correct answer is that we should sum over all of
them. The most general-purpose way to justify this is to show that the Lefschetz antithimbles of
each of the saddle points intersect with the defining contour. We have checked this by numerically
solving the upward flow equations that define the antithimbles. A second way that reduces to
one-dimensional contour integration logic is shown in Appendix C. A third way is to observe that
by summing over these saddle points we reproduce the large N limit of the exact answer (2.12),
and in particular we reproduce the fact that the answer is zero if N is not a multiple of q.

Note that these saddle points have a nonzero value for the variable G, which is fixed by
Σ to be equal to 1

N

∑
i ψ

L
i ψ

R
i . This is a “GLR” variable that expresses correlation between

two decoupled partition functions. So in particular, the saddle points with G 6= 0 represent
correlation between the two replicas, analogous to a wormhole in Euclidean gravity connecting
together separate asymptotic regions. For the moment, such correlation is perfectly reasonable,
because the average over couplings explicitly correlates the two systems.

2.1.2 Computing 〈z4〉

It will also be helpful to understand how to compute 〈z4〉. For fixed couplings,

z4 = zLzRzL′zR′ =

∫
d4Nψ exp

{
iq/2Ji1...iq

(
ψLi1...iq + ψRi1...iq + ψL

′

i1...iq
+ ψR

′

i1...iq

)}
. (2.17)

Averaging over J , we get

〈z4〉 =

∫
d4Nψ exp

{
N

q

(ψai ψbi
N

)q}
. (2.18)

Here and below, lower case a, b are implicitly summed over the distinct unordered pairs:

(a, b) ∈ {(L,R), (L′, R′), (L,L′), (R,R′), (L,R′), (R,L′)}. (2.19)

Eq. (2.18) can be given a collective field representation using antisymmetric matrices Gab and
Σab, representing correlation between the four replicas:

〈z4〉 =

∫
R dGab

∫
iR dΣab

(2πi/N)6

(
ΣLRΣL′R′−ΣLL′ΣRR′+ΣLR′ΣRL′

)N
exp

{
N(−ΣabGab+

1

q
Gq
ab)

}
. (2.20)

Here, the key step of integrating out the fermions was done using the integral∫
dψ1dψ2dψ3dψ4 exp

{ ∑
1≤a<b≤4

mabψ
aψb
}

= Pf(m) = m12m34 −m13m24 +m14m23. (2.21)
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Imitating the steps that led to (2.10), one can write the result in a way that makes it manifest
that the answer only depends on a neighborhood of Gab = 0:

〈z4〉 = N−2N
(
∂GLR∂GL′R′ − ∂GLL′∂GRR′ + ∂GLR′∂GRL′

)N
exp

{
N

q
Gq
ab

}∣∣∣
Gab=0

(2.22)

=
N !

N2N

(
N

q

) 2N
q ∑
n1+n2+n3=N/q, ni≥0

(qn1)!(qn2)!(qn3)!

(n1!)2(n2!)2(n3!)2
. (2.23)

In the final expression, we assumed that N is a multiple of q. Otherwise, the answer would be
zero. When N is large, (and q > 2), this sum is dominated by terms where one of the ni variables
is equal to N/q, and the others vanish. This gives the answer 〈z4〉 ≈ 3〈z2〉2, which is consistent
with Gaussian statistics for the z variable at large N .

Let’s now see how to reproduce this using saddle points. Rotating the contour in (2.20), and
dropping a phase factor that is one if N is a multiple of q, one finds the representation

〈z4〉 =

∫
R

d6σabd
6gab

(2π/N)6
exp

{
N

[
log(σLRσL′R′ − σLL′σRR′ + σLR′σRL′)− iσabgab −

1

q
gqab

]}
. (2.24)

There are 3 × q × q particularly simple solutions to the saddle point equations that represent
“Wick contractions” or “wormhole pairings” between the four systems. Concretely, we choose
one of the patterns of correlation shown here, setting all other gab components to zero:

+ +

L 

L' R'

R

(2.25)

For each of the paired systems, one finds the same q saddle points that appeared in the compu-
tation of 〈z2〉. The three terms in (2.25) then lead to the answer 〈z4〉 ≈ 3〈z2〉.6

2.2 Fixed couplings

We now turn to our main interest – studying such systems with fixed values of the couplings. We
will shortly construct a collective field representation for z2 with fixed couplings. The wormhole

6The integral (2.24) also has saddles where more of the variables are simultaneously nonzero. Among these
are some that give subleading contributions, suppressed by (1/2)(q−2)N/q and (1/3)(q−2)N/q. These apparently
reflect terms in the sum (2.23) where the total of N/q is split evenly between two or all three of the ni variables.
One also finds a class of saddle points with all gab nonzero and with an action that competes with the 3q2 double
wormholes. These saddles would spoil leading-order agreement with (2.23) and therefore must not contribute.
Alternatively, this can be shown using using a generalization of the analysis in appendix C.

If saddles like (2.25) were the only leading contributions to the general moments 〈zk〉 for arbitrary k then z
would be a Gaussian random variable, and the lines would precisely correspond to Wick contractions. At large
N we expect this to be the case (for q > 2) but have not proven it.
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saddles for 〈z2〉 persist, with weak dependence on the specific J couplings. So the large sample-
to-sample fluctuations in z2 must come from other parts of the collective field integral. We will
find that these new contributions are localized at another saddle, which we interpret as a simple
example of “half-wormholes.” The contribution of this saddle has strong dependence on the
specific J matrix, and the sum of the wormhole and the half-wormholes accurately describes z2.

In existing studies of the SYK model, the G,Σ collective fields are introduced after averaging
over the couplings, as in the derivation above. However, nothing stops us from introducing them
in the theory with fixed couplings. To start, one can write7

z2 =

∫
d2Nψ exp

{
iq/2

∑
1≤i1<···<i1≤N

Ji1...iq

(
ψLi1...iq+ψ

R
i1...iq

)}∫
R
dG δ

(
G− 1

N
ψLi ψ

R
i

)
exp

{
N

q

[
Gq−

(
1
N
ψLi ψ

R
i

)q]}
︸ ︷︷ ︸

equals 1

(2.26)
We then represent the delta function as a Σ integral as in (2.7), rotate the contour of G and Σ
as in (2.13) with φ = π

q
, and finally interchange the order of integration so that we integrate over

the σ variable last. It will be convenient to write the answer as

z2 =

∫
R

dσΨ(σ)Φ(σ), (2.27)

where the integrand in the final σ integral has been split into two factors. The first factor is

Ψ(σ) =

∫
R

dg

(2π/N)
exp

{
N
(
− iσg − 1

q
gq
)}

. (2.28)

For the special case q = 2, this function is a Gaussian in σ. For q = 4, 6, . . . there is no simple
closed form expression, but it can be analyzed by saddle point for large N . The function decays
faster than exponentially along the real σ axis, but slower than a Gaussian, see Appendix C.

The second factor is the more interesting one, since it encodes the dependence on the couplings

Φ(σ) =

∫
d2Nψ exp

{
ie−

iπ
q σψLi ψ

R
i + iq/2Ji1...iq

(
ψLi1...iq + ψRi1...iq

)
− N

q

(
1
N
ψLi ψ

R
i

)q}
. (2.29)

This is where the complexity of the fixed-coupling theory is hiding. If we were interested in the
average over couplings, we would at this point integrate over J and observe a nice simplification:
the interacting terms would cancel and we would be left with

〈Φ(σ)〉 =

∫
d2Nψ exp

{
ie−

iπ
q σψLi ψ

R
i

}
= (ie−

iπ
q σ)N . (2.30)

Substituting this into (2.27), one would end up with our old formula for 〈z2〉 in (2.14).

But we are not interested in averaging over the couplings. Instead, we would like to understand
the theory with a complicated Φ(σ) function that results from a fixed set of couplings.

7We could replace Gq − ( 1
N ψ

L
i ψ

R
i )q with f(G)− f( 1

N ψ
L
i ψ

R
i ) for any function f , and the integral over G would

still equal one. We have chosen f so that averaging this integral over the J couplings reproduces (2.8).
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2.2.1 Wormholes persist

A first question to ask is whether Φ(σ) and 〈Φ(σ)〉 are actually different. More precisely, in
what region of the σ plane is Φ(σ) self-averaging? To assess this, one can compare 〈Φ(σ)〉2 and
〈Φ(σ)2〉. If the two are approximately equal for a given value of σ, then Φ(σ) is approximately
self-averaging.8 The basic situation is that for sufficiently large |σ|, the two are equal, but for
small |σ|, they are different. Crucially, the region where Φ(σ) is self-averaging includes the
wormhole saddle points.

To work this out in detail, let’s compute 〈Φ(σ)2〉. After averaging over J , one finds

〈Φ2(σ)〉 =

∫
d4Nψ exp

{
ie−

iπ
q σ(ψLi ψ

R
i + ψL

′

i ψ
R′

i ) +
N

q

[(ψLi ψL′i
N

)q
+
(ψRi ψR′i

N

)q
+
(ψLi ψR′i

N

)q
+
(ψRi ψL′i

N

)q]}
The collective-field representation of this is similar to the one for 〈z4〉, except that we freeze
σLR = σL′R′ = σ and set gLR = gL′R′ = 0. The analog of (2.23) is the exact formula

〈Φ(σ)2〉 =
∑

n1+n2+n3=N
q
, ni≥0

N !

N2q(n2+n3)

(
N

q

)2(n2+n3)
σ2qn1

(qn1)!

(qn2)!(qn3)!

(n2!)2(n3!)2
. (2.31)

This function is easy to plot numerically for reasonably large values of N , and by comparing to
(2.30) one can determine the region in which Φ(σ) is self-averaging.

One can also figure out the answer directly in the large N limit using saddle points of the
collective field description. The analog of (2.24) for this case is

〈Φ2(σ)〉 =

∫
R

d4σABd4gAB
(2π/N)4

exp

{
N

[
log(σ2−σLL′σRR′+σLR′σRL′)− iσABgAB −

1

q
gqAB

]}
. (2.32)

Here, we are using a convention that the A,B index pair is summed over the four values

(A,B) ∈ {(L,L′), (R,R′), (L,R′), (R,L′)}. (2.33)

For any value of σ, this integral always has a trivial saddle point at σAB = gAB = 0. This saddle
point contributes 〈Φ(σ)2〉 ⊃ 〈Φ(σ)〉2. So if this trivial saddle dominates, we can conclude that
Φ(σ) is self-averaging.

First consider the case σ = 0. Then the contribution of the trivial saddle point is zero, and
Φ(σ) is definitely not self-averaging. Instead, the leading contribution to the integral comes from
2 × q × q saddle points corresponding to the second and third patterns of correlation in Figure
(2.25). The factor of two in this counting corresponds to the choice between these two patterns,
and to fix notation we will focus on the third pattern, so that that σLR′ and σRL′ are the nonzero
ones. The factor of q× q corresponds to the independent choices of phase for σLR′ and σRL′ (and
the corresponding gAB variables). It will be helpful to group the saddles into q groups of q each,

such that the product of the phases is σLR′σRL′ = e
2πim
q .

Now, suppose that we deform σ2 away from zero. These saddles will deform to new locations

such that σLR′σRL′ = e
2πim
q s2, with s initially close to one. For a fixed value of s, we can solve

8A more direct approach would be to choose a set of couplings and just plot Φ(σ). This works for q = 2 (see
Figure 2) but for q > 2 it appears to be computationally impractical.
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Figure 1: We plot the complex σ plane. Outside the blue scalloped curve, the trivial saddle point
dominates, and Φ(σ) is self-averaging. The black dots are the locations of the “wormhole” saddle
points. They are in the self-averaging region: wormholes persist.

some of the saddle point equations in order to eliminate the gAB variables in terms of s. For
such a configuration, the action is:9

exp

{
N
[

log(σ2 + e
2πim
q s2)− 2

q − 1

q
s

q
q−1

]}
. (2.34)

When σ = 0, saddles with all values of m contribute equally. However, when σ is nonzero,

the degeneracy is lifted, favoring the saddles where e
2πim
q points in the same direction as σ2. For

example, if σ2 is close to the positive real axis (more precisely, if the phase of σ2 = eiφ|σ|2 satisfies
|φ| ≤ π

q
), then the m = 0 saddles dominate, and the value of s is determined by solving

s

σ2 + s2
= s

1
q−1 (2.35)

and choosing the branch such that s = 1 when σ = 0. For larger values of the phase φ, the
calculation is similar, but the dominant family of saddles are the ones with the value of m so
that 2πm/q is closest to φ.

By solving (2.35), computing the action, and comparing it to the contribution of the trivial
saddle, we can determine in what regions Φ(σ) is self-averaging. If the trivial saddle wins, it is
self-averaging. If the nontrivial saddle just described wins, it is not. We show a plot in Figure 1
for the case of q = 4.

Recall that the “wormhole” saddles of 〈z2〉 are at values of σ on the unit circle.10 This turns
out to be well within the self-averaging region of the σ plane, where the nontrivial saddle point

9To do this one has to choose a branch of the solution for the g variables. We have chosen here the branch
such that there is a saddle point at s = 1 in the case with σ = 0.

10Just looking at the figure, it might be hard to imagine why all four wormhole saddles should be included.
This is explained in appendix C.
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is exponentially subdominant. So in fact the leading correction to self-averaging comes from
perturbative fluctuations of the gAB and σAB fields around the trivial gAB = σAB = saddle point.
One finds

〈Φ(WH saddle)〉 = 1, 〈Φ2(WH saddle)〉 = 1 +
2 · q!
q2

1

N q−2
+ . . . (2.36)

So the self-averaging is not perfect, but it is good if N is large and q > 2. We conclude that the
wormhole saddle points survive intact in the non-averaged theory.

2.2.2 Half-wormholes exist

By themselves, these wormholes cannot be an accurate approximation to z2, because they are
self-averaging while z2 itself is not. In fact, there is another contribution, roughly equal in
magnitude to the wormhole contributions, coming from the non-self-averaging region near the
origin of the σ plane. In the averaged theory, this region contributes very little to the integral,
but for typical fixed values of the couplings, it it important. We will refer to this contribution
as coming from “half-wormholes” for reasons that will be explained below.

Because the Ψ(σ) function rapidly decays away from the origin, one can show that the integral
over the non-self-averaging region can be well approximated by just the contribution at σ = 0.
So the semiclassical approximation for fixed couplings looks like

z2 ≈
(

wormhole saddles with |σ| = 1
)

+
(

“half-wormholes” saddle at σ = 0
)
. (2.37)

The first term is self-averaging and the second term depends strongly on the couplings. The
approximation can be systematically improved by including fluctuations around these saddles.

For a typical realization, the two contributions are of the same order. In a leading approxi-
mation, the half-wormholes contribution is just Φ(0), because the Ψ function acts approximately
as a delta function (see (C.6)). The RMS value of the half-wormholes contribution is then de-
termined by (2.34) with s = 1 and σ = 0, or by the exact formula (2.31). Either way, one
finds √

〈Φ2(0)〉 ∼ 〈z2〉 (2.38)

which is approximately equal to the contribution of the wormhole saddles.

2.2.3 Together, wormholes plus half-wormholes are a good approximation

We now give an independent check of this approximation, using a method we will return to later
in section 3. Denote the RHS of (2.37) by z2. Then define the error in this approximation
by Error = z2 − z2. We want to show that Error is small in the ensemble, so we compute its
moments. First we examine its average:

〈Error〉 = 〈z2〉 − 〈z2〉. (2.39)

Because 〈Φ(0)〉 = 0, the average of the σ = 0 part of z2 vanishes. The average of the |σ| = 1
part of z2 is the expectation value of the self-averaging wormhole saddles, which gives 〈z2〉 in
the semiclassical approximation. So (2.39) vanishes.
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A stronger test is to compute the average of the second moment

〈Error · Error〉 = 〈z2 · z2〉 − 〈z2 · z2〉 − 〈z2 · z2〉+ 〈z2 · z2〉. (2.40)

We can think of the first factor in each of the terms in (2.40) as describing the original system,
and the second factor as describing a second, auxiliary system included to calculate the second
moment. The first term on the RHS of (2.40) is just the fourth moment of z computed in section
2.1.2. The saddle points determining this quantity at large N are pictured in (2.25). Here the
points L,R comprise the original system, the points L′, R′ are the auxiliary system.

To calculate 〈z2 · z2〉 we introduce collective fields gLR, σLR linking the points in the original
system, collective fields gL′R′ , σL′R′ linking the points in the auxiliary system, and collective fields
gAB, σAB linking the original system to the auxiliary system. The first pattern in (2.25) describes
a wormhole in the original system and one in the auxiliary system. The second and third patterns
describe wormholes linking the original to the auxiliary system.

If we just focus on the original system, which is our interest, the first pattern is a wormhole,
but the second and third patterns only contain the remnant of the wormhole connecting to the
auxiliary system, described by the collective fields gLR, σLR assuming the value of that wormhole
saddle. We call such a configuration a “half-wormhole” and illustrate the situation as follows:

+ +

L 

L' R'

R

(2.41)

We now turn to evaluating the other terms in (2.40) semiclassically, starting with z2 · z2. To
understand the variable σ used in (2.37) in terms of the σab variables used to calculate 〈z4〉 we
combine equations (2.24), (2.27),(2.29) and(2.32) to arrive at

〈z4〉 =

∫
dσLRdσL′R′〈Φ2(

√
σLRσL′R′)〉Ψ(σLR)Ψ(σL′R′). (2.42)

We see that σ2 should be identified with σLRσL′R′ . The four terms in z2 · z2 correspond to doing
the collective field integral (2.24) with the σLR and σL′R′ variables fixed at their values in the
wormhole or half-wormhole saddle points (or integrated in a neighborhood of them). Naively
this should not make much difference, since the integral is dominated by the contributions of
these saddle points anyhow, so we tentatively would conclude z2 ·z2 ≈ 〈z4〉. In principle, though,
something could go wrong at this step, because (i) fixing some variables to their saddle point
values could change the saddle point contour analysis for the remaining variables and (ii) there
are wormhole-half-wormhole cross terms in 〈z2 ·z2〉 that do not appear in the saddle point analysis
of 〈z4〉. However, in this simple case we can confirm by comparison to the exact formula (2.31)
that the contour problem does not arise and the cross-terms are small.11, so indeed z2 ·z2 ≈ 〈z4〉.

11The cross-terms can explicitly be seen to be small by plugging in the wormhole and half-wormhole values
for σLR and σL′R′ in (2.42). The smallness of this contribution is intuitive because the cross-terms represent
the correlation between the contributions of the wormhole and the strongly fluctuating half-wormhole. Such
correlations are small compared to the diagonal terms.
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After arguing similarly for the other two terms in (2.40), 〈z2 ·z2〉 and 〈z2 ·z2〉, we conclude that
all four terms are approximately equal in magnitude, so 〈Error2〉 is small. (How small depends
on how many orders in small fluctuations around the saddle points are included in (2.37).) This
ensures that the approximation (2.37) is accurate for any member of the ensemble (a set of J
couplings) that occurs with high probability – a “typical” member. Of course there are highly
atypical members where the error is large.

2.2.4 Multiple descriptions coexist

In the above calculations, we insisted on computing z2 in a formalism with explicit LR collective
fields (again, in this model there is no GLL or GRR, so we left off the subscripts). This made it
logically possible for a wormhole to contribute, and indeed we found that it does.

But of course this is not necessary. Another possibility is to compute z2 by doing two sep-
arate computations of z, with no LR collective fields. So there are two ways of computing z2.
If we carry out both exactly, then they are exactly equal. But in a semiclassical approxima-
tion, the equivalence is approximate and nontrivial. For example, in the leading semiclassical
approximation, the statement of equivalence is

z2 ≈ 〈z2〉+ Φ(0). (2.43)

Writing both sides out in terms of fermions, this is∫
d2Nψ exp

{
iq/2Ji1...iq

(
ψLi1...iq + ψRi1...iq

)}
≈
∫

d2Nψ exp

{
N

q

(
1
N

N∑
i=1

ψLi ψ
R
i

)q}
(2.44)

+

∫
d2Nψ exp

{
iq/2Ji1...iq

(
ψLi1...iq + ψRi1...iq

)
− N

q

(
1
N
ψLi ψ

R
i

)q}
.

As far as we are aware, the most efficient way to derive it is actually the series of steps we followed
above. To recap, the steps are as follows: (i) introduce the G = GLR variable by inserting

1 =

∫
R

dG δ
(
G− 1

N
ψLi ψ

R
i

)
exp

{
N

q

[
Gq −

(
1
N
ψLi ψ

R
i

)q]}
(2.45)

inside the integral on the LHS. (ii) represent the delta function using a Σ variable. (iii) rotate the
contour and approximate the resulting G,Σ integral by saddle points. (iv) further approximate
the wormhole saddle points by their average value.12

At large N , one can compute 〈(LHS−RHS)2〉/〈LHS2〉 = 4
3
q!
q2
N2−q, indicating that the error

is small but not exponentially so. This error can be systematically reduced by undoing step (iv)
above and including further terms in the semiclassical approximation around the wormhole and
half-wormhole saddles.

For some purposes, the LHS may be a simpler description than the RHS. But there are
cases where the RHS can be useful, mainly because the first term (the wormhole) is simple.
For example, if we are interested in the average over the couplings, the final term (the half-
wormholes) contribute zero, so the RHS reduces right away to the wormhole. Second, although
the two terms on the RHS are typically of the same order, there are interesting ways of modifying
the calculation so that the wormhole piece dominates. We will give an example of that next.

12This step could be omitted at the cost of a slightly more complicated approximate equality.
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2.3 Adding a coupling between the replicas

We can shift the balance between self-averaging and non-self-averaging contributions to (2.37)
by considering a generalization where the two replicas are coupled together:

ζ(µ) =

∫
d2Nψ exp

{
µ

N∑
i=1

ψLi ψ
R
i + iq/2

∑
1≤i1<···<i1≤N

Ji1...iq

(
ψLiq ...iq + ψRi1...iq

)}
. (2.46)

Note that when the coupling µ is zero, this is just the square of z:

ζ(0) = z2. (2.47)

One can think of the system with nonzero µ as being somewhat analogous to the Maldacena-Qi
eternal traversable wormhole [1]. One can also think of it as being similar to a “two instant of
time” version of a single copy of SYK.

Either way, one can write a formula for the non-averaged ζ(µ) quantity using the same Ψ
and Φ functions that appear in the computation of z2:

ζ(µ) =

∫
R

dσΨ(σ)Φ(σ − ie
iπ
q µ). (2.48)

We would like to understand what happens to the structure (2.37) when µ is nonzero. It is
particularly easy to do this when µ is small. In that case, one can use first-order perturbation
theory, just evaluating the new integrand (2.48) on the “wormhole” and “half-wormhole” saddle
points. The µ perturbation breaks the degeneracy between the saddles with different phases.
Keeping only the saddles that dominate for positive real µ, one finds (for µ� 1)

ζ(µ) =
(

self-averaging saddle with |σ| = 1
)
eNµ +

(
fluctuating piece from σ = 0

)
eNµ

2

. (2.49)

In this expression, the quantities in parentheses are in the µ = 0 theory, so in particular, the two
pieces are typically of the same order. Once we include the µ perturbation, the self-averaging
saddle point is enhanced relative to the fluctuating piece. So the mechanism by which ζ(µ)
becomes self-averaging is simply that the self-averaging part of the integration space is enhanced
relative to the fluctuating part.13

We avoided labeling the first term in (2.49) as a wormhole because whether we think is as a
“wormhole” or a “disk” depends in this case on whether we think of ζ(µ) as being analogous to
two coupled copies of SYK, or a single SYK theory with two instants of time.

In the next section we will discuss the full SYK model, and to make the transition to that
more complicated case, it is helpful to think of ζ(µ) as being analogous to a single SYK partition
function. Then the two contributions to ζ(µ) in (2.49) are analogous to the disk and half-
wormhole contributions. In a computation of ζ(µ)2 for fixed couplings, we would have (disk)2,
(half-wormhole)2, (disk)× (half-wormhole) and wormhole contributions.

13We expect that a similar mechanism will explain the self-averaging property of the replica wormhole saddle
in the SYK version of that story [6] with fixed fermion couplings. The shared radiation bath serves to couple the
various replicas together.
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3 Extrapolation to regular SYK

In the previous section, we studied the quantity z2 for a fixed set of couplings, using a path
integral over G,Σ collective fields. z2 of course factorizes into a product of the two z’s, but this
is not obvious from the point of view of the semiclassical evaluation (2.37). We found that the
“wormhole” saddle point, which leads to a non-factorized answer for the average 〈z2〉, survives
in the non-averaged theory. Though the wormhole threatens to spoil factorization, it is restored
by an additional contribution from “half-wormholes,” which live in the non-self-averaging region
of the integrand.

Our goal for this section is to address this problem in a more general setting, and to study
how the semiclassical evaluation of the G,Σ integral for a product ZLZR factorizes. We can write
such integrals even without averaging over the couplings, by generalizing the steps in section 2.2.

In fact there are two natural choices for a G,Σ integral description of the product ZLZR;
one representation includes GLR collective fields and does not manifestly factorize, the other
does not include the LR collective fields, and is manifestly equal to the product of G,Σ integral
representations for the individual factors. As a result, we find different semiclassical expressions
for the product ZLZR, evaluated with or without using the LR collective fields. Each expression
includes contributions from half-wormholes, but only one includes wormhole contributions from
the LR collective fields.

The factorization problem is now twofold: first one must understand how to evaluate both the
product ZLZR and the individual factors semiclassically, including both self-averaging and non-
self-averaging contributions. Then one must understand how the wormhole and half-wormhole
contributions in ZLZR conspire to factorize into the product of expressions for the ZL and ZR.

To state this problem more precisely, we introduce a notation which fixes this ambiguity of
the G,Σ integral representation. We define the quantity Z(Z) to be a specific choice of G,Σ
integral representation for its argument Z. Here Z is a placeholder symbol which represents a
partition function-like quantity, such as a partition function or a product of partition functions.
We often suppress the argument when it is unimportant or clear from context. In particular,
we choose to associate Z(Z) with the G,Σ integral for Z with all of the collective field variables
introduced. So, for example, when Z is a product ZLZR of partition functions we have

Z(ZLZR) ≡
∫
DGLLDGRRDGLRDΣLLDΣRRDΣLR e

−I(L,R)
fl . (3.1)

Note that this integral is defined to include an integral over the LR collective fields as well as
LL and RR. Here the action I

(L,R)
fl is the G,Σ action for a fixed choice of couplings, including a

generalization of the function Φ(σ) discussed in the previous section.

This expression should be contrasted with

Z(ZL)Z(ZR) ≡
(∫

DGLLDΣLL e
−I(L)

fl

)(∫
DGRRDΣRR e

−I(R)
fl

)
. (3.2)

The factorization problem in SYK can then be expressed as an equality between these two
integrals,

Z(ZLZR) = Z(ZL)Z(ZR). (3.3)
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These two representations of ZLZR are somewhat trivially related; we can go from the first
expression to the second by integrating out the LR variables along their defining contour. This
essentially undoes the procedure used to introduce the LR variables in the first place. Likewise,
the LR variables can be trivially reintroduced in the second expression. The more interesting
question is to ask how this factorization property can be understood semiclassically. What are
the saddle points in (3.1) and (3.2), and how do they conspire to approximately reproduce (3.3)?

3.1 Proposal

Our proposal is that to evaluate a general Z(Z) = Z with fixed couplings, one has to sum over
configurations that appear as “half” of saddle points in an averaged computation of the square
of this quantity, 〈Z2〉 = 〈Z1Z2〉.14 So, for example, if we were interested in evaluating Z(ZL) for
fixed couplings, we would consider the computation of 〈Z(ZL)1Z(ZL)2〉. And if we were interested
in computing Z(ZLZR), we would consider 〈Z(ZLZR)1Z(ZLZR)2〉. In either case, the G,Σ fields
describing the average of the square, 〈Z1Z2〉, have 11, 22, and 12 components.

We propose that the saddle points contributing to Z with fixed couplings are the 11 (or 22)
components of saddle points for 〈Z1Z2〉. There are two subcases.

1. If we start with a saddle point for 〈Z1Z2〉 with vanishing 12 correlation, it leads to a 11
configuration that is a saddle point of 〈Z〉. Such a configuration is indeed an obvious guess
for a semiclassical evaluation of Z. Although we do not know how general it is that such
saddles survive in the fixed-coupling theory, we have seen in section 2 that even wormhole
saddle points can do so.

2. If we start with a saddle point with nonzero 12 correlation, then the resulting 11 config-
uration will not be a saddle point of 〈Z〉, but it can be a non-self-averaging saddle point
for Z with fixed couplings. These configurations are not such obvious guesses, but they
play a crucial role. We refer to them as half-wormholes, and they generalize the σ = 0
contribution in the model from section 2.

3.2 Consistency check

The proposal described above is motivated by the example from section 2, but we can also sketch
a general plausibility argument for it. As in section 2.2.3, the idea is to define an “Error” as the
difference between our proposed semiclassical answer and the exact answer, and to check that
〈Error2〉 is small.

Let Z be a partition function or product of partition functions in an SYK-like theory, with a
collective field representation

Z = Z(Z) =

∫
Dx e−Ifl(x). (3.4)

14Here and below, we assume Z is real. If Z is complex we should study |Z|2 instead.
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The weight Ifl(x) is the action for a fixed set of random couplings, and the integration variable
x may include G,Σ variables for a single replica, or a matrix of G,Σ variables for multiple
replicas.15

The averaged square of Z, 〈Z2〉 = 〈Z1Z2〉, is also computed by an integral over collective
field variables. In this case, these variables consist of x1 and x2, corresponding to copies of the
variables used in (3.4), as well as variables x12. We use X = (x1, x2, x12) to denote the set of all
of these variables.

〈Z1Z2〉 can be expressed as an integral over X with the appropriate action Iave(X),

〈Z1Z2〉 =

∫
DX e−Iave(X). (3.5)

This integral can be approximated by a sum over saddle points, X = X∗I ≡ (x∗1,I , x
∗
2,I , x

∗
12,I):

〈Z1Z2〉 ≈
∑
I

e−Iave(X
∗
I ). (3.6)

Here and below, we are suppressing one-loop factors, although they can be included.

To implement the proposal above, we now try to approximate Z by a sumZZZ over configurations
which correspond to the saddle points X∗I . More precisely, we sum over the x1 components of
those saddle points:16

ZZZ ≈
∑
I

′
e−Ifl(x=x∗1,I) =

∑
I

′
∫
Dx e−Ifl(x) δ(x− x∗1,I). (3.7)

Now, define Error ≡ Z−ZZZ as the error in this approximation, and study 〈Error2〉 = 〈Error1 Error2〉:

〈Error1 Error2〉 = 〈Z1Z2〉 − 2〈Z1ZZZ2〉+ 〈ZZZ1ZZZ2〉. (3.8)

Using equations (3.4) and (3.7), and simplifying terms using

〈e−Ifl(x1)−Ifl(x2)〉 =

∫
Dx12 e

−Iave(X), (3.9)

which follows from (3.5), the three terms in (3.8) can be written as

〈Z1Z2〉 =

∫
DX e−Iave(X)

〈Z1ZZZ2〉 =
∑
I

′
∫
DX e−Iave(X) δ(x2 − x∗2,I)

〈ZZZ1ZZZ2〉 =
∑
I,J

′
∫
DX e−Iave(X) δ(x1 − x∗1,I)δ(x2 − x∗2,J). (3.10)

15For z2 the analog is e−Ifl(g,σ) = Φ(σ)eN(−igσ− 1
q g

q).
16The prime on the sum means that we sum over distinct x1 components of the saddles. This is important

because there may be multiple saddle points for which the x1 components are the same, but the x2 and/or x12
components are different. For example, the double cone saddle point in SYK has a family of saddle points, labeled
by δt. In this family, the x1 and x2 components are independent of δt.
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The only difference between these expressions is that in some cases, the x1 and x2 variables are
fixed at saddle point values,17 instead of freely integrated over. It therefore seems plausible that
the three terms are approximately equal, and therefore (3.8) is small.

However, this is not a proof, for two reasons. First, as a general fact about multidimensional
integrals, restricting some integration variables to their values at contributing saddle points can
sometimes lead to a bad approximation to an integral, due to the possibility that the con-
tour/thimble analysis for the remaining variables can be affected by fixing some of the variables.
Second, 〈ZZZ1ZZZ2〉 will contain cross-terms in which the x1 and x2 variables are fixed to different
saddle points, and for the argument to work these contributions need to be subleading. In the z2

model we saw explicitly that these issues do not arise. We don’t have a general justification, but
the above argument does show that if indeed the same saddles dominate in all three terms, the
approximation is good (or at least can be made good by including more terms in a systematic
expansion about the saddles).

3.3 Application to factorization

We can apply this proposal to the factorization problem by comparing the semiclassical for-
mulas for Z(ZLZR) and Z(ZL)Z(ZR). The formula for Z(ZLZR) includes contributions from
wormholes connecting ZL and ZR, as well as from half-wormholes which correspond to “half” of
wormhole saddle points in 〈Z(ZLZR)1Z(ZLZR)2〉. The formula for Z(ZL)Z(ZR) includes related
half-wormholes, but no complete wormhole. The equality of the two computations, and there-
fore factorization, implies a nontrivial relationship between the contributions of wormholes and
half-wormholes.

In this section we illustrate this using an example from the SYK model. Our choice of Z for
this example is Y (T ), defined in [2]. Y (T ) can be thought of as a microcanonical version of the
analytically continued partition function Z(β + iT ).

Averages of products of Y (T ) and its complex conjugate receive contributions from the “dou-
ble cone” wormhole saddle point.18 For example, 〈Y (T )Y (T )∗〉 includes a wormhole correlating

Y (T ) and Y (T ), and 〈Y (T )2
(
Y (T )∗

)2〉 includes wormholes which pair each copy of Y (T ) with
a copy of Y (T )∗. The double cone saddle point has a compact zero mode, labeled δt, which
appears as a parameter of the LR fields, but not the LL and RR fields.

The double cone saddle point has an analog in gravity. The geometry is a periodic identifi-
cation of the two-sided eternal black hole, and the zero mode δt corresponds to a relative time
shift between the L and R boundaries.

There are also “disk” contributions to averages of Y (T ), but these contributions decay and
can be ignored for sufficiently long times T . For simplicity, we will restrict our attention to these
timescales. Then we can approximate averages of Y (T ) and Y (T )∗ just using combinations of
double cone wormhole saddle points.19

17In order for the Error to be small, we need to include the integral over fluctuations around the saddle points,
to an order that depends on tolerance. The argument can and should be extended to include such fluctuations,
but the notation is awkward so we avoided it here.

18For sufficiently long times T .
19At very long times there will be additional contributions that compete with the double cone.
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Our proposed semiclassical formula for Z(YL(T )) ≡ Z(YL) includes solely the contribu-
tion of a half-wormhole, corresponding to the 11 component of the double cone solution for
〈Z(YL)1Z(YL)∗2〉. Note that because the 11 (and 22) components of the double cone saddle point
are independent of the zero mode δt, we should not include an integral over δt in the contribution
of the half-wormhole. Multiplying by the complex conjugate, we write the schematic formula

Z(YL)Z(Y ∗R) ⊃ e−I
(L)
fl (Half-wormhole)e−I

(R)
fl (Half-wormhole). (3.11)

The formula for Z(YL(T )YR(T )∗) ≡ Z(YLY
∗
R) is a sum of contributions from the double cone,

including an integral over the zero mode δt, and a pair of half-wormholes, which for reasons
which will be clear in a moment we refer to as “linked half-wormholes”. Schematically,

Z(YLY
∗
R) ⊃ e−I

(LR)
fl (Wormhole) + e−I

(LR)
fl (Linked half-wormholes). (3.12)

For simplicity we do not explicitly write the integral over δt. The LL and RR components of
the pair of half-wormholes in both (3.11) and the linked half-wormholes in (3.12) are identical.
The LR variables for the linked half-wormholes in (3.12) are set to zero.

We represent the approximate equality between these two semiclassical expressions with the
following figure:

+ =x (3.13)

These pictures represent saddle points of the SYK path integral, associated to the sketched bulk
topology by the pattern of correlation. As the wormhole contribution is self-averaging, we have
depicted it with a small red “x” to indicate the small amount of randomness. The half-wormhole
contributions are not self-averaging, so we have depicted them as “half” of a wormhole with a
jagged red boundary to indicate the large amount of randomness. We have included a red line
linking the pair of half-wormholes on the LHS, to remind us that the LR collective fields are
present, but set to zero, distinguishing this contribution from the unlinked pair of half wormholes
on the RHS.20

Perhaps surprisingly, the LHS includes self-averaging and non-self-averaging contributions,
while the RHS includes only non-self-averaging terms. One might have instead expected to find
an identification just between different half-wormhole contributions.

At the level of the G,Σ configurations, such an identification may seem sensible, as the LL
and RR components of the two types of half-wormhole contributions in (3.13) are identical. The
difference is simply that the LR variables are set to zero for the linked half-wormholes on the
LHS, while they were not introduced in the first place on the LHS.

20The situation we describe here is similar to the one arrived at in an analysis of the Marolf-Maxfield and JT
gravity ensembles in [38, 39], so we use similar pictures to illustrate it.
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However, setting the LR variables to zero is very different than not including them in the
integral. To see this, we examine the relationship between the actions I

(LR)
fl and I

(L)
fl , I

(R)
fl ,∫

DGLRDΣLR e
−I(LR)

fl = e−I
(L)
fl e−I

(R)
fl . (3.14)

We see that I
(LR)
fl

∣∣
LR variables→0

6= I
(L)
fl + I

(R)
fl , so that the actions of the two half-wormhole contri-

butions are different. One way to understand this in more detail is as follows. We can represent
the right hand side of (3.14) as an integral over the SYK fermions ψLi (τ) and ψRi (τ ′), generalizing
(2.29). We then insert a factor of one in the integral in the form21

1 ∝
∫
DGLRDΣLR exp

{
− N

2

∫ ∫
ΣLR

(
GLR −

1

N
ψLi ψ

R
i

)
− (−1)q/2

q

(
Gq
LR −

( 1

N
ψLi ψ

R
i

)q)}
.

(3.15)

For simplicity we have suppressed the time arguments τ, τ ′ of the variables in this expression.

If we fix the values of GLR and ΣLR, instead of performing the full integral, this gives an
interaction term for the L and R fermions. In particular, if we set both GLR and ΣLR to zero,
we are left with an interaction like (ψLψR)q. In the case we take ZL and ZR to be z, we can see
this residual interaction appearing in the last term of (2.44).

The lesson is that to see the equality between the two sides of (3.14) we must do the full
integral over the LR variables, rather than set the LR variables to zero. However, if we evaluate
the integral semiclassically, we find a sum over saddle points with fixed LR variables which
approximately factorizes.

In the case that the LL and RR fields implicit in (3.14) are set to half-wormhole values, we
identify the two terms in (3.11) as the contributions of two saddle points in the integral over the
LR fields. This sum over saddle points is what is needed to restore factorization.∫

DGLRDΣLR e
−I(LR)

fl

∣∣∣∣LL and RR fields

→ Half-wormholes

≈ e−I
(LR)
fl (Wormhole) + e−I

(LR)
fl (Linked half-wormholes)

≈ e−I
(L)
fl (Half-wormhole)e−I

(R)
fl (Half-wormhole). (3.16)

To summarize, we can think of this as follows: equation (3.14) tells us that the product of
half-wormhole contributions in (3.12) contains the whole integral over the LR variables. This
integral includes both the wormhole and linked half-wormholes, so the wormhole is contained in
the product of two unlinked half-wormholes.

4 Discussion

In this paper we have studied simple SYK-like models with fixed couplings, where factorization
from the boundary point of view is manifest. In the collective field description we have found

21The coefficient of the GqLR term is chosen so that averaging over the J couplings with the distribution (2.2)
reproduces the conventional averaged G,Σ integral.
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that the wormhole saddle persists, and that new saddle points exist as well – half-wormholes.
The combined contribution of these two types of saddles restores factorization in a semiclassi-
cal description. The half-wormhole contribution depends strongly on the particular choice of
microscopic fermion couplings, while that of the wormholes only depends weakly. This non-self-
averaging contribution of the half-wormhole explains the strong fluctuations present in such
factorizing quantities. After averaging the half-wormholes disappear, leaving only the non-
factorizing wormhole.

The most important question raised by these findings is what, if any, analogs of such contri-
butions exist in standard holographic theories like Super-Yang-Mills. Such structures would have
to reflect details of the microscopic dynamics of these theories. Is the “fuzzball” story relevant
here [43, 44]?

Assuming these structures do play a role, some more specific questions along these lines would
include:

• Is the half-wormhole geometrically half of a wormhole? What is its relation to horizon
dynamics?

• What distinguishes linked half-wormholes from unlinked pairs of half-wormholes?

• What is the analog of Φ(σ) in such a situation? Is it an effective description of some
underlying microscopic dynamics?

• Is the fact that the wormhole and disk are not exactly self-averaging significant? is this
some perturbative hint about the half-wormholes? What would be the bulk analog?

Of course there are many other questions, including:

• How can we confirm the picture presented in section 3 for full SYK? Are there circumstances
where we should expect these arguments to fail?

• Do these ideas apply to tensor models,22 which can be viewed as particular, highly struc-
tured members of an SYK ensemble? Is the sparse SYK model [46] a useful stepping-stone?

• How do these ideas connect to other approaches to the factorization problem?

– Third-quantized “universe field theory” approaches [20, 21, 22] involve a wavefunction
in a Hilbert space describing arbitrarily many copies of the boundary theory. The
effective model presented in [38, 39] connects that description to one close to that
presented here.

– Eberhardt [36] employed the localization of tensionless string worldsheets and a higher
genus version of boundary modular invariance and its connection to bulk geometry
to argue for the equivalence of a wormhole partition function to a factorized one.
Marolf and Maxfield [22] uncovered a “quantum equivalence” due to null vectors
in the third-quantized Hilbert space. Here we employ the equivalence of different
“bulk” descriptions, i.e., different choices of collective field representation, to establish
factorization. Are these ideas at all related?

22For a review, see [45] .

22



• The collective fields G,Σ seem to be the analog of closed string degrees of freedom in the
bulk. Equation (2.9) indicates that the contribution of a highly nonclassical region of their
configuration space – G near 0, Σ on its defining contour – provides an alternate description
of the boundary fermion degrees of freedom. Is there an analog of this in other holographic
systems?
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A Glossary of Z symbols

Z: A partition function or a product of partition functions of a general SYK type system. We
sometimes use ZL to denote a single copy, and ZLZR to denote a product of two copies.
Special cases include the following

z: The partition function of an SYK model with one time point. (First defined here.)

ζ(µ): The partition function of an SYK model with two time points and a coupling of
strength µ between them. ζ(0) = z2. (First defined here.)

Y (T ): A microcanonical version of the analytically continued thermal partition function
Z(β + iT ) of the full SYK model. See [2].

Z(·): The collective field representation that includes all off-diagonal collective fields. So Z(ZL)
includes only LL fields and Z(ZL)Z(ZR) includes only LL and RR fields, but Z(ZLZR)
includes the full matrix of LL, RR and LR fields. (First defined here.)

Z: A general-purpose notation for Z(something).

ZZZ: An approximation to Z(something) consisting of a sum over saddles, including wormholes
and half-wormholes. (First defined here.)

B Properties of z for q = 2

B.1 Overview

In this Appendix we discuss some properties of the single time point model for q = 2. This case
differs from the generic q > 2 case analyzed in section two in several ways:

1. The q = 2 wormhole saddle in z2 is not within the self-averaging region.
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2. The q = 2 half-wormhole saddle is not isolated, as it is for q > 2, but is part of a smooth
manifold which joins onto the wormhole saddle. This is due to an enhanced continuous
symmetry of the collective field action.

3. As a consequence, the fluctuations of z in the J ensemble are much larger than for q > 2,
and grow with N .

4. The model is numerically tractable, and we can illustrate these findings with numerical
results for reasonably large N .

B.2 Calculation of 〈Φ2(σ)〉

We first study the statistical properties of Φ(σ) 2.29 for q = 2. More concretely, we calculate
its second moment 〈Φ2(σ)〉 by introducing collective fields as in 2.32. The gAB integral is now
Gaussian so we can perform it exactly, finding〈

Φ2(σ)
〉

=

∫
R

d4σAB
(2π/N)2

exp

{
N

[
log
(
σ2 + σLR′σRL′ − σLL′σRR′

)
− 1

2
σ2
AB

]}
, (B.1)

in which (A,B) ∈ {(L,L′), (R,R′), (L,R′), (R,L′)}

This can be calculated by saddle point at large N . For |σ| > 1 a saddle point with all σAB = 0
dominates. For |σ| < 1 a manifold of saddle points, a consequence of the enhanced symmetry of
the problem, dominates. This manifold is a circle, described by:

circle 1: σ2 + x2 + y2 = 1, σLR′ = σRL′ = x, σLL′ = −σRR′ = y
circle 2: σ2 − x2 − y2 = −1, σLR′ = −σRL′ = x, σLL′ = σRR′ = y.

(B.2)

Integrating over the collective coordinate we obtain:

〈
Φ(σ)2

〉
≈


√

πN
2

[
eN(σ2−1) + (−1)NeN(−σ2−1)

]
|σ| < 1

σ4

σ4−1
e2N log σ |σ| > 1

region shrinks as N →∞ |σ| ≈ 1

(B.3)

The factor of
√
N is the inverse coupling constant familiar from collective coordinate calculations.

Unfortunately neither saddle point approximation gives an accurate answer for 〈Φ(1)2〉, which
is the value relevant for determining whether the wormhole saddle at σ = 1 is self-averaging.
However, we can use the exact answer 2.31, which simplifies for q = 2 thanks to the identity∑

n1+n2=m

(2n1)!(2n2)!

(n1!)2(n2!)2
= 4m. (B.4)

Using this, one finds

〈Φ(σ)2〉 =
N !

NN

N/2∑
n1=0

(Nσ)2n1

(2n1)!
, (q = 2). (B.5)

For large N and σ = 1, the sum is dominated by values of n1 within O(
√
N) of the maximal

value N/2. Using Stirling’s approximation and approximating the sum as an integral, we find
〈Φ(1)2〉 =

√
2πN/4 + O(1). Note that this is much larger than 〈Φ(1)〉2 = 1. This implies that

Φ(σ) at the wormhole saddle σ = 1 is not self-averaging (Φ(σ) becomes self-averaging only for
|σ| � 1).
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B.3 Numerics for the non-averaged system

For q = 2 numerics for Φ(σ) are tractable for a fixed set of Jij and reasonably large N . We
evaluate

Φ(σ) =

∫
d2Nψ exp

{
σψLi ψ

R
i + iJij

(
ψLij + ψRij

)
− N

2

(
1

N
ψLi ψ

R
i

)2
}

(B.6)

by introducing a collective field and writing

Φ(σ) =

√
N√
2π

∫ ∞
−∞

dsφ(σ + is)e−
N
2
s2 . (B.7)

Here φ(σ + is) is the efficiently computable quantity (a Pfaffian):

φ(σ) =

∫
d2Nψ eσ

∑
i ψ

L
i ψ

R
i +iJij(ψLij+ψRij). (B.8)

In figure 2, we plot the z2 integrand, given by Φ(σ)Ψ(σ) =
√

N
2π

Φ(σ)e−
N
2
σ2

, for several

different random samples of the couplings Jij, and for N = 40. We see clearly that the entire
region in which the integrand is large is non-self-averaging. This is unlike the case with q > 2,
where there would be two competitive regions, one self-averaging and the other not. Note also
that the values in this region for the six samples illustrated are typically substantially smaller
than the RMS value. In fact rare Jij choices make a large contribution to the RMS value. We
will see further evidence for this in the computation of higher moments.
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Figure 2: We plot six different samples of the integrand for z2, namely Φ(σ)Ψ(σ). Solid lines with
different colors denote different samples. The black dashed line is the exact RMS value of the integrand
using (2.31), and the red dashed line is the exact averaged value, using (2.30). Here N = 40, q = 2.
The wormhole saddle for 〈z2〉 is at a value σ = 1, which is not within the self-averaging region.

B.4 〈zk〉 for arbitrary k

The Gaussian nature of the q = 2 problem enlarges the symmetry of the collective field rep-
resentation of 〈zk〉. For q > 2 this problem has a discrete Sk permutation symmetry among
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the k time points. For q = 2 this is enhanced to an O(k) continuous symmetry, where O(k) is
the orthogonal group. After integrating out the Gaussian gab fields we can write the result as a
matrix integral over the independent components of a real antisymmetric k × k matrix σab

〈zk〉 =

(
N

2π

)k(k−1)/4 ∫ ∞
−∞

dσabPf(σ)N exp (
N

4
Tr σ2). (B.9)

Here the integral is over the independent components a < b. This integral has a manifest O(k)
symmetry, where σ → OσOT . This can be used to bring σ to block diagonal form with blocks(

0 λi
−λi 0

)
, λi > 0. (B.10)

So the integral can be reduced to an integral over the O(k)-invariant eigenvalues λi, with an
appropriate measure, times the volume of the O(k) divided by the volume of the subgroup that
leaves the block-diagonal form invariant. Explicitly,∏

1≤a<b≤k

∫ ∞
−∞

dσab = vol

(
O(k)

SO(2)k/2Sk/2

) ∏
1≤i≤k/2

∫ ∞
0

dλi
∏

1≤i<j≤k/2

(λ2
i − λ2

j)
2. (B.11)

With the normalizations that were used in evaluating the measure, we have

vol(SO(2)) = 2π, vol(O(k)) =
k∏

m=1

2πm/2

Γ(m/2)
(B.12)

and of course vol(Sk/2) = (k/2)!.

Now, the integral we want is (assuming N is even and k is even)

〈zk〉 =

(
N

2π

)k(k−1)/4

vol

(
O(k)

SO(2)k/2Sk/2

) k/2∏
i=1

∫ ∞
0

dλi

 ∏
1≤i<j≤k/2

(λ2
i − λ2

j)
2

 eN∑k/2
i=1(log(λi)− 1

2
λ2i ).

(B.13)

For N � k, the eigenvalues will all be close to the saddle point value λ = 1 of the potential in
the last factor. So expand around this point, writing λi = 1 + xi. Then we have

〈zk〉 ≈
(
N

2π

)k(k−1)/4

vol

(
O(k)

SO(2)k/2Sk/2

) k/2∏
i=1

∫ ∞
−∞

dxi

 ∏
1≤i<j≤k/2

4(xi − xj)2

 eN∑k/2
i=1(− 1

2
−x2i )

=

(
N

2π

)k(k−1)/4

vol

(
O(k)

SO(2)k/2Sk/2

)
4k(k−2)/8

( π
N

)k2/8 vol(U(1)k/2Sk/2)

vol U(k/2)
e−kN/4. (B.14)

In going to the second line, we interpreted the integral over xi as the integral over the eigenvalues
of an ordinary k/2×k/2 Hermitian matrix integral with a quadratic potential. This integral can
be done easily in terms of the matrix elements, and going from the eigenvalues to the matrix
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elements introduced some group volume factors as in the discussion above. (We are using a
normalization where the volume of U(1) is 2π.) The expression can be simplified, and we find23

〈zk〉
〈z2〉k/2

=
1

2k/2

(
N

π

)k(k−2)/8
vol O(k)

vol U(k/2)
=

(
N

2

)k(k−2)/8 k/2∏
m=1

√
π

Γ(m− 1
2
)

(k � N). (B.15)

Let’s try to understand (B.15) better. For k � N the first factor, Nk(k−2)/8, dominates. The
moments are very large, and grow rapidly with k. This indicates a very broad distribution for z
with long tails.24 Such a broad distribution is consistent with the above numerical results which
indicate that rare configurations of couplings play an important role in q = 2. For k = 4 this
large result is in sharp contrast to the Gaussian value of 3 found from the discrete saddle points
for q > 2.

As we already have seen in the computation of 〈Φ(σ)2〉 above such positive powers of N
come from the collective coordinate integral over the saddle point manifold. For general k the
saddle point manifold corresponds to the orbit of a single wormhole pairing saddle under the
action of O(k). This space is just the quotient O(k)/G where G is the subgroup of O(k) that
leaves the wormhole saddle fixed. The wormhole saddle matrix is of the form (B.10) with all λi
equal to the saddle point value λs = 1. Call this matrix λsΩ. Invariance of the saddle means
OTΩO = Ω. So O must be a symplectic matrix as well. The intersection of O(k) with Sp(2k)
is just U(k/2).25 So the manifold of saddles is O(k)/U(k/2). The dimension of this space is
k(k − 1)/2− (k/2)2 = k(k − 2)/4. We get a factor of N1/2 for every collective coordinate giving
an expected factor of Nk(k−2)/8, which agrees with (B.15).

The first factor in (B.15) controls its behavior when k is fixed (but � 1) and N → ∞. But
when k increases the second factor becomes important. Using Stirling’s formula for k � 1 we
find (B.15) behaves like

〈zk〉
〈z2〉k/2

∼ (
N

k
)k

2/8 (B.16)

Equations (B.15) and (B.16) are only valid for k � N but we can see qualitatively that when k
becomes a finite (if small) fraction of N the behavior of the moments changes.

We can understand the origin of this scale by looking at the balance of terms in the matrix
integral (B.13). Putting everything in the exponential we see that the “potential” terms are of
order Nk and the Vandermonde term is of order k2. When k � N the effect of the Vandermonde
is small and the eigenvalues sit at the saddle point of the potential. This describes the wormhole
saddle. But when k ∼ N the Vandemonde is important and the eigenvalues are pushed away
from the wormhole saddle.

Let’s now try to understand the behavior in the opposite limit k � N . It turns out to be
more useful to return to the original SYK variables using the defining equation (2.3), generalized

23Related formulas in the Hermitian case and their connection to the Riemann ζ function are discussed in [47].
24The leading Nk(k−2)/8 dependence describes the moments of a log normal distribution with variance ∼ logN .
25This is referred to as the “2 out of 3 property” and follows from the embedding of Ck/2 in Rk using Ω as a

complex structure. See for example [48].
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to arbitrary k. We can integrate out the fermions immediately to get an expression of the form

〈zk〉 =

(
N

2π

)N(N−1)/4 ∫
dJab Pf(J)k exp (

N

4
trJ2) . (B.17)

This is a matrix integral of the same type as (B.9) and can be analyzed the same way.26 Note
that here J is an antisymmetric N × N matrix whose size is fixed at N but the power of its
Pfaffian varies with k. We rewrite (B.17) in terms of the eigenvalues of J , which we denote
µi, i = 1 . . . N/2. The analog of (B.13) is

〈zk〉 =

(
N

2π

)N(N−1)/4 ∏
1≤a<b≤N

∫ ∞
−∞
dJab Pf(J)ke−

N
2

∑
1≤a<b≤N J2

ab (B.18)

=

(
N

2π

)N(N−1)/4

vol

(
O(N)

SO(2)N/2SN/2

)N/2∏
i=1

∫ ∞
0

dµi

 ∏
1≤i<j≤N/2

(µ2
i − µ2

j)
2

 e∑N/2
i=1 (k log(µi)−N2 µ

2
i )

(B.19)

Extremizing the potential in the last factor of (B.19) we find a saddle point at µs =
√
k/N .

Fluctuations in µi are small if N � 1 so as before we expand µi = µs + xi. But now the number
of eigenvalues is N , independent of k, and the coefficient of x2

i is N , k independent as well. So
the integral over the eigenvalue fluctuations does not contribute any nontrivial k dependence,
apart from an overall scaling. Evaluating the potential (and the Vandermonde scaling) at µs we
find the result

〈zk〉
〈z2〉k/2

≈ 1

2
N+k

4

vol O(N)

vol U(N/2)

(
k

N

)Nk
4
(
k

π

)N(N−2)
8

(k � N � 1). (B.20)

The moments again grow rapidly with k indicating a long tail in the z distribution for the
largest z values. Again we see a change in behavior when k ∼ N (although here N must be a
small fraction of k to remain in the domain of validity of (B.20)). The last factor is again due
to the collective coordinate integral but here is a subleading effect.

The change of behavior from (B.16) when k � N is due to the localization of J to very
special matrices. The high power of the Pfaffian selects matrices that maximize it subject to the
J Gaussian weight. The eigenvalues µi are all equal and very large, ( k

N
)
1
2 . This is highly atypical

from the point of view of the original Gaussian ensemble for J , where the typical size of one Jab
is of order ( 1

N
)
1
2 , and has Gaussian fluctuations.

We can compare these results to the q > 2 case. For q > 2 the leading corrections to the
saddle point analysis are of order 1/N q−2 and at this order there are of order k2 terms. So we
estimate that the leading order corrections are of order k2/N (q−2). This predicts a change in
behavior at k ∼ N (q−2)/2. In the case examined here, q = 2, this corresponds to the fact that
even the low order moments are not Gaussian (which is the behavior we expect for q > 2) due
to the presence of the zero mode.

26This equivalence is a version of Brezin-Hikami duality [49], is closely related to the color-flavor transformation
[50], and also appears in the low dimensional open-closed string correspondence [51, 52].
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As we just saw, the k ∼ N scale indicates the dominance of certain highly atypical J configu-
rations. We expect something similar for q > 2 at large enough k. Rare J ’s which maximize z will
be strongly favored. We do not know if this occurs at the k ∼ N (q−2)/2 scale or at parametrically
larger values of k.

More generally, we expect the breakdown in the wormhole picture of the moments for arbi-
trarily high moments to be an indication of this focus on highly atypical “Hamiltonians” in the
SYK ensemble. The description of the higher moments is simpler in terms of the fixed (order N)
“boundary” variables ψi, Ji1...iq .

C More on the Ψ function

In this appendix we will give some details on the Ψ function for large N . We will focus on the
case q = 4. The definition is

Ψ(σ) =

∫ ∞
−∞

dg

2π/N
eN(−iσg− 1

4
g4). (C.1)

The saddle point equations have three solutions, and depending on the phase of σ, the integral
may receive contributions from one or two of these saddle points. The analysis of this is similar
to the one for the Airy function, and in the complex σ plane, one finds the following behavior
for large N (up to one-loop prefactors that we will omit in this appendix):

only one
term

only one
term

(C.2)

The Stokes rays are at angle e
3πi
8 and reflections across the real and imaginary axes. Note

e
2πi
3 = −1

2
+
√

3
4

i (C.3)

so the function is decaying and oscillating along the real axis.

This behavior can be used to give a simple explanation for why all q (in this case four)
saddles contribute to 〈z2〉, as an alternative to the higher-dimensional Lefscehtz thimble method.
Consider the integral

〈z2〉 =

∫ ∞
−∞

dσσ2NΨ(σ). (C.4)
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By inserting the semiclassical approximation (C.2), we write this as

〈z2〉 ∼
∫ ∞

0

dσσ2N exp
(
Ne

2πi
3 3

4
σ

4
3

)
+

∫ ∞
0

dσσ2N exp
(
Ne

−2πi
3 3

4
σ

4
3

)
+

∫ 0

−∞
dσσ2N exp

(
Ne

2πi
3 3

4
(−σ)

4
3

)
+

∫ 0

−∞
dσσ2N exp

(
Ne

−2πi
3 3

4
(−σ)

4
3

)
(C.5)

These four integrals can now be deformed to steepest-descent contours passing through each of
the four saddle points for 〈z2〉. For example, the first one deforms to a steepest descent contour

along the ray re
iπ
4 , passing through a saddle at the point where this ray intersects the unit circle.

One can use a similar strategy in the theory with fixed couplings, after replacing σ2N by
Φ(σ). In figure 3, we plot the log of the averaged integrand, and the log of the RMS integrand

along the ray, σ = e
iπ
4 r. The boundary of the self-averaging region is clearly visible at r ≈ .56.

Note that in the theory with fixed couplings, the region at r = 0 contributes approximately the
same as the wormhole saddle at r = 1. An apparent problem is that the semiclassical expansion
of Ψ breaks down near the origin σ = 0. However, we can analyze integrals that are peaked in
this region using the property ∫ ∞

−∞
dσΨ(σ) = 1. (C.6)

(This is easy to prove using (C.1) and interchanging the order of integration.) Because Ψ(σ) is
rapidly decaying, the important contribution to (C.6) comes from within a small distance N−3/4

of σ = 0, so Ψ(σ) acts as an approximate delta function. Alternatively, note that although
σ = 0 is a singular point in the semiclassical expansion if g has already been integrated out, if we
restore the g variable then there is no problem. Then using the smoothness of Φ(σ) near σ = 0
(which can be determined from the relation 〈(Φ(σ)−Φ(σ′))2〉 = 〈Φ2(σ) + Φ2(σ′)− 2Φ2(

√
σσ′)〉),

we see that the region near σ = 0 in the integral for z2 (without averaging) can be interpreted
as the contribution of a genuine saddle point in the full g, σ space. This is the half-wormhole
saddle.

Figure 3: The solid blue curve is the logarithm of the RMS value of the integrand along the ray
σ = re

iπ
4 , namely 1

N
log(Φrms(e

iπ
4 r)2)− 3

4
r

4
3 . The dashed red curve is the logarithm of the averaged

value of this integrand, namely 1
N

log(Φmean(e
iπ
4 r)2)− 3

4
r

4
3 . The wormhole saddle point is at r = 1,

and the half-wormhole is at r = 0. For the plot we took N = 100 and q = 4. (We don’t know how
to make a plot with samples for q > 2 because Φ(σ) seems to be intractable.)
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