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Abstract: We construct a particular flow in the space of 2D Euclidean QFTs on a torus,

which we argue is dual to a class of solutions in 3D Euclidean gravity with conformal boundary

conditions. This new flow comes from a Legendre transform of the kernel which implements

the T T̄ deformation, and is motivated by the need for boundary conditions in Euclidean

gravity to be elliptic, i.e. that they have well-defined propagators for metric fluctuations.

We demonstrate equivalence between our flow equation and variants of the Wheeler de-Witt

equation for a torus universe in the so-called Constant Mean Curvature (CMC) slicing. We

derive a kernel for the flow, and we compute the corresponding ground state energy in the low-

temperature limit. Once deformation parameters are fixed, the existence of the ground state

is independent of the initial data, provided the seed theory is a CFT. The high-temperature

density of states has Cardy-like behavior, rather than the Hagedorn growth characteristic of

T T̄ -deformed theories.
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1 Introduction

The T T̄ deformation [1], [2] defines a flow on the space of two dimensional Euclidean quantum

field theories. This flow, parametrized by µ, defines a differential equation in terms of the

partition function Z that reads

∂µZ =

∫
〈T T̄ (x)〉, (1.1)

where 〈T T̄ 〉 is the expectation value of the so called T T̄ operator. Written covariantly, it

reads

T T̄ (x) = T µνTµν − (T µ
µ )

2. (1.2)

If the theory at the origin of this flow, i.e. the undeformed theory is a conformal field theory,

then there is a holographically dual description of this flow in terms of gravity in AdS3 with

a finite radial cutoff surface, on which Dirichlet boundary conditions are imposed.

If we deform a CFT, the only energy scale in the problem is the one introduced by the

T T̄ deformation and so the T T̄ flow equation is the Callan–Symanzik equation.

An interesting fact about the holographically dual description to this flow is that it co-

incides with the radial development generated by the gravitational constraint equations in

the bulk. In particular, in the limit of large central charge of the undeformed CFT, the

flow equation for the partition function Z[g] can be mapped on to the radial Hamiltonian

constraint equation (for the radial wavefunction ψ(g)) in the bulk [3]. Away from this limit,

the expectation [4], [5] is that the T T̄ flow equation maps to the bulk radial Wheeler-de Witt
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equation (WdW), which is a quantization of the aforementioned constraint. The diffeomor-

phism constraint equations are simply a rewriting of the covariant conservation of the energy

momentum tensor. In other words, 1/c is roughly playing the role of the Planck’s constant

in the bulk. This is the case of interest in the work to follow.

Despite the myriad lessons learned from the case where Dirichlet boundary conditions

are imposed on this cutoff surface [3], these boundary conditions are not elliptic. This lack of

ellipticity prevents one from calculating quantities such as the propagator for metric fluctua-

tions or the one loop determinant in the bulk theory.1 It turns out that conformal boundary

conditions, where the trace of the extrinsic curvature of the cutoff surface and the conformal

part of the metric adapted to it are fixed, are elliptic [7] and would generically allow us to

obtain the aforementioned quantities. We refer the readers to [6] for a more detailed expla-

nation of this property. In this article, we will investigate the flow on the space of quantum

field theories that AdS3 gravity with these boundary conditions is dual to.

Fixing Dirichlet boundary conditions in the bulk maps the on-shell action to the gener-

ating functional logZ[g], which can be exponentiated to obtain the partition function Z[g].

The functional dependence is on the boundary metric, which is the data that the Dirichlet

boundary condition specifies at the cutoff surface. On the torus, this partition function turns

out to depend only on the zero modes of the metric, namely the overall volume of the torus

V and the real and imaginary parts of the modular parameter (τ1, τ2), i.e.

ZT
2

[g] = Z(V, τ1, τ2). (1.3)

In order to change boundary conditions, one needs to perform a canonical transformation

on the phase space of the bulk theory. This canonical transformation induces a certain Laplace

transform of the T T̄ deformed torus partition function, as a function of the volume:

Γ(T, τ1, τ2) =

∫
dV e−V TZ(V, τ1, τ2). (1.4)

The resulting object is a quantum effective action log Γ(T, τ1, τ2) that depends on the trace

mode of the energy momentum tensor, and behaves like the ordinary partition function in

terms of its dependence on the conformal modes of the metric. At the level of the free energy,

it defines a Legendre transformation. The flow equation for Γ(T, τ1, τ2) will be the quantity

of interest in what follows, as will the thermodynamics of the new ensemble.

Organization of the Article

This note is organized as follows. Section 2 reviews the state of the science. In Section 3,

we rewrite the T T̄ flow equation above, changing variables from µ to a volume scale V . In

these variables, the flow equation becomes the Wheeler-DeWitt equation of 3D gravity. To

better demonstrate this correspondence from the gravity side, we study General Relativity in

1The caveat being the situation where the extrinsic curvature is positive or negative definite. In that

case, even with Dirichlet boundary conditions, the differential operator appearing in the kinetic term of the

linearized theory is invertible [6].
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Constant Mean Curvature gauge. Then, in Section 4, we introduce the Legendre transform

between V and its canonically conjugate variable T , related to the trace of the extrinsic

curvature that enters the boundary action. We show that the change in the boundary action

due to the canonical transformation is exactly the right term to implement elliptic boundary

conditions starting from a bulk with Dirichlet boundary conditions. We go on to derive and

discuss the thermodynamics of this new ensemble in the low- and high-temperature regimes.

2 The T
2 partition function of T T̄ deformed CFT2

In this article, we will parameterize the family of T T̄ -deformed solutions by λ, the dimension-

less T T̄ coupling. The seed theory, i.e. the undeformed theory at λ = 0, is a conformal field

theory on the torus with central charge c. The modular parameter of the torus in question is

denoted τ = τ1 + iτ2. The corresponding 2D line element reads:

ds2 = |dx+ τdy|2. (2.1)

where x, y have period 2πR. We would like to switch to units where we measure lengths in

terms of the coupling constant of the T T̄ deformation, µ, that carries dimensions of length

squared. Then, we can introduce the dimensionless version of this coupling:

λ =
µ

R2
, (2.2)

so that R =
√

µ
λ
. The volume of the torus is now given by:

V =

∫
d2x

√
g = 4π2µ

τ2
λ
. (2.3)

In this language, the T T̄ flow equation reads [8]:

∂λZ(λ, τ1, τ2) =

(
τ2
4

(
∂2
τ1

+ ∂2
τ2

)
+

λ

2
∂λ∂τ2 −

1

2τ2
λ∂λ

)
Z(λ, τ1, τ2). (2.4)

This equation is analogous to a diffusion equation, and the partition function Z(λ, τ1, τ2)

admits a representation in terms of an analogue of the heat kernel:

Z(λ, τ1, τ2) =
τ2
πλ

∫

H

d2σ

σ2
2

e
− 1

λσ2
|σ−τ |2

ZCFT (σ1, σ2). (2.5)

Here, ZCFT (σ1, σ2) in the integrand is the initial condition Z(λ = 0, τ1, τ2) = ZCFT (τ1, τ2),

i.e. the flow originates from a CFT. It has been shown that the solutions to this differential

equation are invariant under modular transformations, like the seed CFT [8], [9]. Also note

that the domain of integration is the upper half plane H. This expression appeared in [10],

[11], [12] and [4]. Note that it can also be derived from the prescription of [13], meaning that
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it can be seen as an expression for the path integral of 2d ghost-free massive gravity coupled

to a conformal field theory. ZCFT can then be written as a partition sum

ZCFT =
∑

n

e−τ2En+iτ1Jn , (2.6)

where

En = ∆n + ∆̄n − c

12
, Jn = ∆n − ∆̄n. (2.7)

Here ∆n and ∆̄n are the left and right conformal dimensions of the conformal field theory

and c is its central charge. We can find the T T̄ -deformed partition function by assuming that

a similar form will hold:

Z(λ, τ1, τ2) =
∑

n

e−τ2En(λ)+iτ1Jn . (2.8)

The reason why this form of the deformed partition function is justified (in particular, why the

term involving Jn remains unmodified) is tied to the fact that the T T̄ deformation preserves

translation invariance. Then, (2.4) leads to the following equation for the deformed energy

levels En:
2λEn∂λEn + 4∂λEn + E2

n = J2
n. (2.9)

This equation can be solved to obtain the deformed energy levels, given by:

En(λ) =
−2 +

√
4 + 4λEn + λ2J2

n

λ
. (2.10)

The branch of the square root is selected so that En(λ → 0) = En. Our fellow T T̄ aficionados

should note that this expression lacks the traditional factors of R as in Eq. (1.9) of [3]. In

order to reinstate the R dependence, we take λ 7→ µ
R2 , so we find

En(R) =
2R2

µ

(
−1 +

√
1 +

µ2J2
n

4R4
+

µEn

R2

)
= RẼn. (2.11)

In other words, E is the product of R and what would normally be considered as the deformed

energy levels. In the analysis which follows, we derive expressions in terms of En(R) rather

than Ẽn, to keep expressions simple.

3 Rewriting the flow equation

We can rewrite the flow equation in terms of the volume V = 4π2µ τ2
λ
.

τ22
(
∂2
τ1

+ ∂2
τ2

)
Z(V, τ1, τ2) + V 2

(
1

π2µ
∂V − ∂2

V

)
Z(V, τ1, τ2) = 0. (3.1)

This form of the equation will prove to be useful in making a connection to the Wheeler-de

Witt equation of three dimensional quantum gravity. In particular, if we look at the object:

ψ(V, τ1, τ2) = e
− V

2π2µZ(V, τ1, τ2), (3.2)
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the equation it satisfies:

τ22 (∂
2
τ1

+ ∂2
τ2
)ψ(V, τ1, τ2) + V 2

(
1

4π4µ2
− ∂2

V

)
ψ(V, τ1, τ2) = 0, (3.3)

is identical to the Wheeler-de Witt equation in three dimensions with negative cosmological

constant, in constant mean curvature gauge. We now define

Λ ≡ 1

16π4µ2
. (3.4)

Henceforth, we work interchangeably with Λ and µ in order to keep equations simple and

draw important connections to the literature.

Note that this exercise is the finite-c equivalent of deriving the trace flow equation.

3.1 General Relativity in Constant Mean Curvature gauge

The Arnowitt–Deser–Misner (ADM) Hamiltonian and momentum constraints are [14]

H =
1√
g
gijgkl

(
πikπjl − πijπkl

)
−√

g(R− 2Λ) (3.5)

Hi = −2∇jπ
j
i = 0. (3.6)

At the level of an action, we can implement these constraints with the term

HTot =

∫
dDx

(
N(x)H(x) + ξi(x)Hi(x)

)
= H(N) +Hi(ξ

i). (3.7)

where the spacetime dimension of the bulk is D + 1.

We would like to fix the mean curvature of the hypersurface to be constant. To do that

we start by splitting the conjugate momentum πij into traceless and trace components, and

define the metric gij as a conformal rescaling of a constant-curvature counterpart ḡij via

dilaton φ(x):

πij = σij +
1

D
trπgij , gij = e2φ(x)ḡij . (3.8)

The gauge fixing condition imposes the constancy of T defined as:

T =
2

D

trπ√
g
, ∇iT = 0 (3.9)

Specialising the the case of three dimensional gravity, in this gauge, the Hamiltonian con-

straint becomes:

HCMC = −1

2

√
ḡe2φ

(
T 2 − 4Λ

)
+

√
ḡe−2φσijσij + 2

√
ḡ

[
∆̄φ− 1

2
R̄

]
= 0, (3.10)

where “barred” quantities are defined in terms of ḡij . Integrating, we find:

hCMC =

∫
dDx HCMC = −V 2(T 2 − 4Λ) + τ22 δabp

a
τp

b
τ = 0. (3.11)
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Note that classically, the condition for the existence of solutions is T 2 ≥ 4Λ. We will see how

the quantum theory overcomes this bound.

This Hamiltonian appeared first in [15]. For a review of classical and quantum gravity

in 2+1 dimensions, see [16].

3.2 The spectrum

On the reduced phase space, the dynamics of the theory is finite dimensional. It can be quan-

tized as such, and a quantum mechanical theory is obtained. The wavefunctions of interest

depend on the modular parameters of the torus, as well as the volume. The corresponding

momenta act as derivatives with respect to the conjugate variables:

T̂ψ(V, τ1, τ2) = −∂V ψ(V, τ1, τ2), (3.12)

p̂τaψ(V, τ1, τ2) = −∂τaψ(V, τ1, τ2). (3.13)

With these conventions, the global Hamiltonian constraint equation reads:

ĥCMC ψ(V, τ1, τ2) =
[
τ22 (∂

2
τ1

+ ∂2
τ2
)− V 2

(
∂2
V − 4Λ

)]
ψ(V, τ1, τ2) = 0. (3.14)

Note that the ordering of the V 2T̂ 2 and τ22 δabp̂
ap̂b terms are picked automatically by the

rewriting of the T T̄ flow equation (3.3). The relationship between radially quantized 3d

quantum gravity and the T T̄ deformation of CFTs was first noted in [5], and explained

further in [3], [13]. Such a connection is anticipated in higher dimensional generalizations of

the T T̄ flow as well, see [17–19].2

Also, this equation involves only partial derivatives with respect to global quantities

(V, τ1, τ2). In the bulk, this is a direct consequence of the CMC gauge condition. At large c,

the sphere partition function computed in [20], [17] also depends only on a global quantity,

i.e. the radius of the sphere. At finite c, if we relate the radial wavefunction with the partition

function, then the CMC gauge fixing also leads to an ODE involving derivatives with respect

to the radius only [21]. On the field theory side, this can be seen as a consequence of the

calculation in [10], and it is unclear as to why these two facts lead the same phenomenon.

If we take the following ansatz for the wavefunction:

ψ(V, τ1, τ2) = e−2
√
ΛV

∑

n

e
−τ2En( τ2

√

ΛV
)+iτ1Jn , (3.15)

then we can recover the partition sum discussed in the previous sections,

En =
V

2π2µτ2

(
−1 +

√
1 +

4π2µτ2
V

En +
4π2µ2τ22

V 2
J2
n

)
. (3.16)

This is simply a rewriting of the expressions we had above, recall the identification:

λ = 4π2µ
τ2
V
.

2Note that this quantized flow equation is not an approximation of a functional differential equation, i.e. a

minisuperspace approximation, but rather an exact expression because of the particular choice of gauge.
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3.3 Relationship to Jackiw–Teitelboim gravity

In this section, we will briefly note what happens when one of the cycles of the torus degener-

ates. From the perspective of the wavefunction, this restriction is imposed as the condition:

∂τ1ψJT = 0, ψJT (V, τ2) = ψ(V, τ1 = 0, τ2). (3.17)

The constraint equation now reads:

(
τ22∂

2
τ2

− V 2(∂2
V − 4Λ)

)
ψJT (V, τ2) = 0. (3.18)

Just as the wavefunction in the three dimensional theory can be related to a partition function,

the same is true in the dimensionally reduced case:

ψJT (V, τ2) = e−2
√
ΛV ZJT (V, τ2). (3.19)

This object satisifes an equation identical to the one in appendix B of [22]:

V 2
(
4
√
Λ∂V − ∂2

V

)
ZJT + τ22 ∂

2
τ2
ZJT = 0. (3.20)

Further, if we take the ansatz:

ZJT (V, τ2) =
∑

n

g

(
τ2√
ΛV

)
e
−τ2En( τ2

√

ΛV
)
, g

(
τ2√
ΛV

)
= 1, (3.21)

we find the energy levels obtained in (1.2) of [22]:

E±
n (V, τ2) =

V

2π2µτ2

(
1∓

√
1− τ2

V
En

)
. (3.22)

If the spectrum of the undeformed theory is continuous, we can write the general solution as:

ZJT (V, τ2) =

∫ ∞

0
dE ρ+(E) e−τ2E+(V,τ2) +

∫ ∞

−∞
dE ρ−(E) e−τ2E−(V,τ2). (3.23)

One can find a density of states which accommodates both branches of E , i.e. we can choose

ρ+(E) = sinh
(
2π

√
2CE

)
, ρ−(E) =

{
− sinh

(
2π

√
2CE

)
, 0 < E < 1

8λ

ρ̂(E), E < 0
(3.24)

where C is related to the boundary value of the dilaton, and ρ̂(E) is an arbitrary function.

A more in-depth analysis of this solution is available in [22].
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4 Implementing conformal boundary conditions

For a review on boundary conditions in Euclidean gravity, see [6]. We will be interested in

polarized boundary conditions. These are imposed by specifying a Lagrangian submanifold

in the theory’s phase space. On such a submanifold, the symplectic form Ω vanishes, i.e.

Ω =

∫
dDx

(
δπij ∧ δgij

)
, Ω|L = 0. (4.1)

The Lagrangian submanifold corresponding to the Dirichlet boundary conditions is spec-

ified as follows:

LDirichlet =

{
(gij ;π

ij) : πij(g) =
δS[g]

δgij

}
. (4.2)

In this picture, the conjugate momentum to the metric is the quasilocal stress-energy tensor

of Brown and York. In order to do perturbation theory, we will need to compute the prop-

agator. This exercise involves inverting the second order differential operator appearing in

the kinetic term of the action for fluctuations of the metric to quadratic order. Ellipticity is

the requirement that the space of zero modes of this operator is at most finite dimensional,

and it ensures (among other properties) that the leading-in-momentum component of the ki-

netic operator for metric fluctuations is invertible. Dirichlet boundary conditions generically

run afowl of this requirement. Alternatively, we can use the so-called “conformal” boundary

conditions [7], where we specify the following Lagrangian submanifold:

LConformal =

{
(gij ;π

ij) =
(
ḡij(τa), V ;σij(pa), T

)
: σij(τa) =

δS

δḡij
, V (T ) =

δS

δT

}
, (4.3)

where S = S(T, τ1, τ2). This choice of boundary conditions is elliptic and thus has a well-

defined propagator. In switching from Dirichlet to conformal boundary conditions, we note

the following:
∫

dDx πijδgij =

∫
dDx

(
σij +

1

D
gijtrπ

)
δgij . (4.4)

The trace component in Constant Mean Curvature gauge simplifies to

1

D

∫
dDx

(
trπ gijδgij

)
=

2

D

∫
dDx

(
trπ√
g

)
δ
√
g

CMC
=

∫
dDx TδV, (4.5)

and the tracelessness of σij implies
∫

dDx σijδgij =

∫
dDx (σijδḡij), (4.6)

where ḡij is as defined in (3.8). Then:

Ω =

∫
dDx(δḡij ∧ δσij) + δV ∧ δT = δ

(∫
dDx(σijδḡij) + TδV

)
(4.7)

= δ

(∫
dDx(σijδḡij) + TδV − δ(V T )

)
= δ(paδτa − V δT ) (4.8)
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This is equivalent to a canonical transformation generated by the following shift in the action3:

G = V T. (4.9)

More specifically, we are arguing that

SGHY − SConf = G, SConf =
1

D
SGHY . (4.10)

We will now show this explicitly. In CMC gauge, the standard Gibbons-Hawking-York bound-

ary term in the action takes the form:

SGHY = −2

∫
dDx

√
g trK = − 2

1−D

∫
dDx trπ.

If we now plug in the form of G it becomes clear that

SGHY −G = −2

(
1

1−D
+

1

D

)∫
dDx trπ = − 2

D(1−D)

∫
trπ,

and since

− 2

D(1−D)

∫
trπ = − 2

D

∫
trK =

1

D
SGHY , (4.11)

we thus conclude that the relevant boundary term for the new ensemble is exactly the one

prescribed by conformal boundary conditions, i.e. SConf . Note that the change of boundary

conditions involving a Legendre transformation is much in keeping with the lesson of [24].

We should rewrite our “wavefunction” ψ by making the Laplace transform explicit:

Ψ(T, τ1, τ2) =

∫
dV e−V Tψ(V, τ1, τ2), (4.12)

Γ(T, τ1, τ2) =

∫
dV e−V TZ(V, τ1, τ2) (4.13)

where we define Γ(T, τ1, τ2) to be the partition function for this new ensemble.4 We can

compute the correlation functions of the Weyl mode from taking successive T derivatives of

this object. In this way, it is similar to the dilaton effective action that features in [26].

The Legendre transform of the Hamiltonian constraint yields modified flow equations for

Ψ and Γ:

ĥCMC Ψ(T, τ1, τ2) =

(
− 2T∂T − 2∂TT − (T 2 − 4Λ)∂2

T + τ22
(
∂2
τ1

+ ∂2
τ2

))
Ψ = 0. (4.14)

Similarly, the partition function Γ must satisfy
(
−(4

√
Λ+ T )T∂2

T − 4(2
√
Λ + T )∂T − 2 + τ22 (∂

2
τ1

+ ∂2
τ2
)
)
Γ = 0. (4.15)

The two equations above are the key results presented in this article.

3Note that this canonical transformation is identical to the one used in the symmetry trading map of [23].
4Note that this expression looks very similar to the one appearing in [25], except we only integrate over the

(zero mode of the) Weyl factor of the metric, and as such our Laplace transform is only partial. Our aims are

also different from those of the authors of [25].
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Connection to Schrödinger equation with York curvature time

As should be expected in the context of quantization, there is an ordering ambiguity implicit

in the definition of the constraint equation (4.14). We fix the ambiguity by integrating by

parts within the Laplace transform. This is identical to the prescription of [27, 28]. However,

if one relaxes this ordering, it is possible to rearrange V and T to find an interesting variant:

ĥCMC Ψ(T, τ1, τ2) =
(
− T∂T − (T 2 − 4Λ)∂2

T + τ22 (∂
2
τ1

+ ∂2
τ2
)
)
Ψ = 0. (4.16)

This version of the flow equation has appeared in the literature in a different form, see e.g.

(3.4) in [16] as well as [29]. In the reduced phase space quantization of 3D gravity in a torus

universe, with T parametrizing the York curvature time slice, the analog of the Schrödinger

equation is:
∂Ψ

∂T
=

−1√
T 2 − 4Λ

√
τ22 (∂

2
τ1

+ ∂2
τ2
) Ψ. (4.17)

We refer to this expression as the “York-Schrödinger equation.” Now, note that

(∂2
τ1

+ ∂2
τ2
)τ2 = 0 · τ2.

Since τ2 is an eigenfunction of this linear differential operator with eigenvalue 0, it is an

eigenfunction of the square root of that operator with eigenvalue 0. We can therefore rewrite

the York-Schrödinger equation as follows:

−
√

T 2 − 4Λ ∂T

(√
∂2
τ1

+ ∂2
τ2
Ψ
)

︸ ︷︷ ︸
−
√

T2
−4Λ

τ2
∂TΨ

= τ2(∂
2
τ1
+ ∂2

τ2
)Ψ. (4.18)

Rearranging, we find the same flow in (4.16).

4.1 Kernel for Γ and exact solutions for Ψ

Writing out (4.13) with V in terms of λ allows us to do the Laplace transform explicitly:

Γ =

∫ ∞

0
d

(
τ2√
Λλ

)
e
− τ2

√

Λλ
T τ2
πλ

∫

H

d2σ

σ2
2

e
− 1

λσ2
|σ−τ |2

ZCFT (σ1, σ2) (4.19)

One can perform the λ integral to find:

Γ =

√
Λ

πT 2

∫

H

d2σ

σ2
2

ZCFT (σ1, σ2)(
1−

√
Λ

τ2σ2T
|σ − τ |2

)2 . (4.20)

This kernel can be shown to satisfy the flow in (4.15). A condition on the integrand which

arises as a requirement for the convergence of the λ integral is

T

(
T

4
√
Λ

− 1

)
τ22 <

√
Λ(σ1 − τ1)

2 +
√
Λ

(
σ2 −

(
1− T

2
√
Λ

)
τ2

)2

, (4.21)
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which determines a circle or an annulus in the (σ1, σ2) plane, depending on the magnitudes

and signs of different parameters. To derive the above constraint, one must separately consider√
Λ ≷ 0. When that square root is negative, one should write the Laplace transform over

negative values of λ, to keep V positive. The overall sign of the argument to the exponential

being integrated must be negative, which gives the stated result.

This constraint makes the convergence properties of Γ somewhat subtle, as we have to

redefine the integration over d2σ within only a subregion of the upper half-plane. However,

because the integrand itself solves the differential equation (4.15), we can restrict the domain

of integration however we like and it will not affect the actual flow.

The solutions to the V, τ1, τ2 flow equation for ψ in (3.3) have been studied extensively

in the literature, see [28] for a helpful review. Separation of variables yields a complete set

of solutions in that case. We can find solutions to our Ψ flow equation (4.14) by a similar

method. Set Ψ = α(T )β(τ1)γ(τ2), and divide by Ψ on both sides to find

2 + 4T
α′(T )
α(T )

+ (T 2 − 4Λ)
α′′(T )
α(T )

= τ22

(
β′′(τ1)
β(τ1)

+
γ′′(τ2)
γ(τ2)

)
≡ −P (4.22)

Where P is dimensionless and constant in all parameters. We can rearrange the expression

on the RHS to see further that

β′′(τ1)
β(τ1)

=
P

τ22
− γ′′(τ2)

γ(τ2)
≡ −(2πJ)2 (4.23)

Where J is also constant in all parameters. This gives us 3 separate equations which we can

solve for α, β, and γ. In fact, since the zeroth-order Maass form determines the form of the

τ1 and τ2 dependence in both the T and V flows, our β and γ will take the same form as

in [28]. In particular, modular invariance requires J ∈ Z, and we obtain:

α(T ) = α(1) 2F1

(
1

4
(3− ν),

1

4
(3 + ν);

1

2
;
T 2

4Λ

)
(ν =

√
1− 4P )

+ α(2)
T

2
√
Λ

2F1

(
1

4
(5− ν),

1

4
(5 + ν);

3

2
;
T 2

4Λ

)

β(τ1) = β(1) e
2πiJτ1 + β(2) e

−2πiJτ1 (4.24)

γ(τ2) = γ(1)
√
τ2K 1

2
ν(2π|J |τ2)

In the absence of a specific surface on which the CFT “lives,” it is difficult to impose any

further constraints on the form of this solution. Nevertheless we can comment on its various

properties, for example convergence. The form of α(T ) is simply the appropriate solution

to the hypergeometric differential equation. The defining series for 2F1 around T 2/4Λ = 0

happens to converge only for T 2 < 4Λ, with divergences at equality, but the region T 2 > 4Λ is

nevertheless accessible. This is because 2F1(a, b; c; z) can be written as a linear combination

of 2F1’s with the argument z replaced with one of the other 5 cross-ratios involving z and 1.
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In addition, γ(τ2) is well-behaved for all P even though the order becomes pure imaginary

for P > 1
4 ; this follows from standard properties of the modified Bessel functions.

Regarding α, one should note the difference with the analogous solution to the York-

Schrödinger equation:

αY S(T ) = α(1) cos

(√
P arctanh

(
T√

T 2 − 4Λ

))
+ α(2) sin

(√
P arctanh

(
T√

T 2 − 4Λ

))

(4.25)

The behavior of β and γ is again unaffected. In addition, the apparent singular behavior in

α(T ) at T 2 = 4Λ is a removable discontinuity.

4.2 Ground state existence and asymptotic density of states

We ultimately wish to study the thermodynamics of this new system, specifically the energy

levels. However, a näıve approach will not work, because the energies in the Z(V, τ1, τ2)

ensemble depend nontrivially on τ2 and V . The flow equation for Γ can be solved by separation

of variables just as Ψ can. In analogy with the expressions in (4.24), we find the rather

unenlightening solution:

α(T ) = α(1) 2F1

(
1

2
(3− ν),

1

2
(3 + ν); 2;− T

4
√
Λ

)

+ α(2)G
2 0
2 0

(
− T

4
√
Λ

∣∣∣∣∣
−1

2(1 + ν), −1
2(1− ν)

−1, 0

)
, (4.26)

where ν, β(τ1), and γ(τ2) are the same as for Ψ. To gain some insight into the spectrum, we

might instead consider the discrete version of the Laplace transform:

Γ(T, τ1, τ2) =
∑

n

e−nV TZ(nV, τ1, τ2). (4.27)

Since the left-hand side is independent of V , the Hamilton-Jacobi equations tell us that

∂V Γ = 0 =
∑

n

ne−nV T
(
− T + ∂nV Z(nV, τ1, τ2)

)
,

=⇒ T =

∑
n ne

−nV T∂nV Z(nV, τ1, τ2)∑
n ne

−nV T
. (4.28)

However, inverting the sums to study V is not a tractable approach. Taking a direct ansatz

for the energy levels fails similarly, as it requires solving nonlinear second-order differential

equations. We are thus restricted to studying the thermodynamics of this ensemble in various

limits.

For τ2 ≫ 1 and τ1 = 0, which can be viewed as the low-temperature limit, the Legendre

transform can be performed explicitly. The inverse temperature is given by β = τ2
R

where

R is the radius of the torus. We will nevertheless proceed with our present conventions and
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treat τ2 as the inverse temperature. We will follow a line of reasoning similar to that in [9]

which was aimed at extracting the density of states from Z(λ, τ1, τ2). The leading term in

the low temperature expansion of the partition function is:

Z(τ2, V )|τ2≫1 ∼ e
V

2π2µτ2

(

1∓
√

1+
cτ2
12V

)

.
. (4.29)

We now apply the Hamilton-Jacobi equation, i.e.

0 ≡ ∂ log Γ

∂V
=

∂ logZ

∂V
− T, (4.30)

to find V (T, τ2):

V ±(T, τ2) =
cτ2

24
√
Λ

(
1±

√
1 +

4Λ

T (T − 4
√
Λ)

)
, (4.31)

which is real provided T√
Λ
< 0 or T√

Λ
> 4. Then, by plugging this back into the low temper-

ature limit, we obtain the asymptotic form of Γ:

Γ(T, τ2)|τ2≫1 = e−τ2Eo, (4.32)

where

E
±
o (X ) = − c

12

(
1− 1

2
X
)(

1±
√

1 +
4

X (X − 4)

)
−

√
4

X (X − 4)
. (4.33)

Here, we write the effective ground state energy in terms of the dimensionless quantity

X =
T√
Λ
.

We note that this quantity is real whenever V (T, τ2) is real. Moreover, it does not depend

on τ2, unlike Eo and V . This means that Eo can be properly interpreted as an energy. Note

also that Γ is invariant under modular transformations. To understand this, we restate (4.13),

Γ(T, τ1, τ2) =

∫
dV e−V TZ(V, τ1, τ2),

and note that T, V , and Z(V, τ1, τ2) are all modular invariant.5 Thus we can apply an S

transformation that takes τ2 → 1
τ2

and obtain the high temperature limit of Γ(T, τ2):

Γ

(
T,

1

τ2

) ∣∣∣∣
τ2≫1

= e
Eo
τ2 . (4.34)

5One might reasonably be concerned that the constraint in (4.21) ruins this argument, because Γ can no

longer be written in terms of Z(V, τ1, τ2). In this article, we consider (4.13) to be the definition of Γ. Whether

it converges only under a reduced class of conditions is a question we relegate to future work.
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We can take the inverse Laplace transform of this quantity to obtain the density of states:

ρ(ǫ) =

∫ i∞

−i∞
dτ2 e

τ2ǫ+
Eo
τ2 . (4.35)

Using the saddle point approximation, we see Cardy-like growth at high energies:

ρ(ǫ) ∼ e2
√
Eoǫ. (4.36)

This is the regime that the high temperature expansion can accurately shed light on. Note

that our findings are quite different from the case with Dirichlet boundary conditions, where

one finds Hagedorn behaviour. Also note that Eo ∼ c, so the above result also reflects the

behaviour of the density of states in that limit. This is much akin to what happens in CFTs.

5 Discussion

In this note, we have derived a modification to the flow equation of the T T̄ deformation

which implements conformal boundary conditions in the bulk dual, rather than the Dirichlet

boundary conditions of lore. By rewriting the flow in terms of a characteristic volume scale V ,

we identified it with the Wheeler-DeWitt equation of AdS3 gravity. Then, starting from the

bulk gravitational action with Dirichlet boundary conditions (i.e. with the Gibbons-Hawking-

York boundary term), we change the variational problem to impose conformal boundary

conditions. We show that in Constant Mean Curvature gauge, the term needed to shift

between these pictures can be interpreted as a Legendre transform of the torus path integral.

The resulting system has a ground state whose existence is independent of the CFT data once

the deformation parameters are fixed.

One may reasonably ask why we were interested in this problem in the first place, given

that 3D gravity has no gravitons. In fact, if it can be well-defined, the graviton propagator will

still contribute to any perturbative expansion in GN , but will only enter as e.g. an internal

line in a Feynman diagram. Holographically, the avatar of such an expansion is large-c

perturbation theory, which was the regime of interest here and in [3]. We wonder whether

the lack of a µ-dependent breakdown of the ground state of the Legendre transformed theory

is due to the elliptic nature of the boundary conditions.

We see many paths forward left to explore. Exact results for the full spectrum and den-

sity of states may be within reach, despite the troubling nonlinearities which generically arise

in deriving En(X ) directly. In this vein, one option may be to integrate the kernel in (4.20)

exactly, perhaps by taking advantage of its similarity to the structure of the Feynman propa-

gator. Generalizations of this flow are also immediately available for the many generalizations

of T T̄ . We are particularly interested in applying our procedure to dS holography using the

flow prescribed in [30].

It would also be valuable to construct a string-theoretic analog of the flow in T , in the

spirit of [31, 32]. In those works, a deformation of the worldsheet sigma model implements a

single-trace variant of the T T̄ deformation in the putative 2D boundary CFT of the AdS3-like
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spacetime. For the “holographic” sign of the deformation, their procedure yields spacetimes

with naked singularities. We are curious whether a similar procedure is possible for our

proposed flow, and if so, what the salient features are of the corresponding geometries.

There is one overarching question which we hope to address in future work: where does

the analogy with the BTZ phase space enter in this new picture? The answer is unclear,

given the results presented. However, there are some rough hints of a correspondence worth

mentioning at the level of discussion. In our case, we started by deforming a unitary CFT

without a gravitational anomaly and thus Eo = − c
12 and Jo = 0. However, if we start with

a theory with a gravitational anomaly, and further assume that our expressions remain valid

in this setting, then the expression one obtains for the volume is:

V ±(T, τ2) = −Eoτ2

2
√
Λ


1±

√

1−
(
Jo
Eo

)2
√

1− 4Λ

T (T − 4
√
Λ)


 . (5.1)

In order for this quantity to be real, one must separately consider | Jo
Eo

| ≷ 1, and then identify

the range of T√
Λ

which keeps the argument to the square root nonnegative. This is eerily

reminiscent of the bounds on angular momentum which arise in the BTZ phase space, but

we will curtail our speculative commentary here.
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[1] A. Cavaglià, S. Negro, I. M. Szécsényi, and R. Tateo, “T T̄ -deformed 2D Quantum Field

Theories,” JHEP 10 (2016) 112, arXiv:1608.05534 [hep-th].

[2] F. Smirnov and A. Zamolodchikov, “On space of integrable quantum field theories,”

Nucl. Phys. B 915 (2017) 363–383, arXiv:1608.05499 [hep-th].

[3] L. McGough, M. Mezei, and H. Verlinde, “Moving the CFT into the bulk with TT ,”

JHEP 04 (2018) 010, arXiv:1611.03470 [hep-th].

[4] E. A. Mazenc, V. Shyam, and R. M. Soni, “A T T̄ Deformation for Curved Spacetimes from 3d

Gravity,” arXiv:1912.09179 [hep-th].

[5] L. Freidel, “Reconstructing AdS/CFT,” arXiv:0804.0632 [hep-th].

– 15 –

http://dx.doi.org/10.1007/JHEP10(2016)112
http://arxiv.org/abs/1608.05534
http://dx.doi.org/10.1016/j.nuclphysb.2016.12.014
http://arxiv.org/abs/1608.05499
http://dx.doi.org/10.1007/JHEP04(2018)010
http://arxiv.org/abs/1611.03470
http://arxiv.org/abs/1912.09179
http://arxiv.org/abs/0804.0632


[6] E. Witten, “A Note On Boundary Conditions In Euclidean Gravity,”

arXiv:1805.11559 [hep-th].

[7] M. T. Anderson, “On boundary value problems for Einstein metrics,” arXiv Mathematics

e-prints (Dec., 2006) math/0612647, arXiv:math/0612647 [math.DG].

[8] O. Aharony, S. Datta, A. Giveon, Y. Jiang, and D. Kutasov, “Modular invariance and

uniqueness of TT deformed CFT,” Journal of High Energy Physics 2019 no. 1, (Jan, 2019) .

http://dx.doi.org/10.1007/JHEP01(2019)086.

[9] S. Datta and Y. Jiang, “T T̄ deformed partition functions,” JHEP 08 (2018) 106,

arXiv:1806.07426 [hep-th].

[10] S. Dubovsky, V. Gorbenko, and G. Hernández-Chifflet, “TT partition function from topological

gravity,” JHEP 09 (2018) 158, arXiv:1805.07386 [hep-th].

[11] A. Hashimoto and D. Kutasov, “TT, JT , TJ partition sums from string theory,”

JHEP 02 (2020) 080, arXiv:1907.07221 [hep-th].

[12] N. Callebaut, J. Kruthoff, and H. Verlinde, “TT deformed CFT as a non-critical string,”

JHEP 04 (2020) 084, arXiv:1910.13578 [hep-th].

[13] A. J. Tolley, “TT deformations, massive gravity and non-critical strings,” JHEP 06 (2020) 050,

arXiv:1911.06142 [hep-th].

[14] R. L. Arnowitt, S. Deser, and C. W. Misner, “The Dynamics of general relativity,”

Gen. Rel. Grav. 40 (2008) 1997–2027, arXiv:gr-qc/0405109.

[15] V. Moncrief, “Reduction of the Einstein equations in 2+1 dimensions to a Hamiltonian system

over Teichmüller space,” Journal of Mathematical Physics 30 no. 12, (1989) 2907–2914,

https://doi.org/10.1063/1.528475. https://doi.org/10.1063/1.528475.

[16] S. Carlip, “Lectures on (2+1) dimensional gravity,” J. Korean Phys. Soc. 28 (1995) S447–S467,

arXiv:gr-qc/9503024.

[17] P. Caputa, S. Datta, and V. Shyam, “Sphere partition functions & cut-off AdS,”

JHEP 05 (2019) 112, arXiv:1902.10893 [hep-th].

[18] A. Belin, A. Lewkowycz, and G. Sarosi, “Gravitational path integral from the T 2 deformation,”

JHEP 09 (2020) 156, arXiv:2006.01835 [hep-th].

[19] T. Hartman, J. Kruthoff, E. Shaghoulian, and A. Tajdini, “Holography at finite cutoff with a

T 2 deformation,” JHEP 03 (2019) 004, arXiv:1807.11401 [hep-th].

[20] W. Donnelly and V. Shyam, “Entanglement entropy and TT deformation,”

Phys. Rev. Lett. 121 no. 13, (2018) 131602, arXiv:1806.07444 [hep-th].

[21] W. Donnelly, E. LePage, Y.-Y. Li, A. Pereira, and V. Shyam, “Quantum corrections to finite

radius holography and holographic entanglement entropy,” JHEP 05 (2020) 006,

arXiv:1909.11402 [hep-th].

[22] L. V. Iliesiu, J. Kruthoff, G. J. Turiaci, and H. Verlinde, “JT gravity at finite cutoff,”

arXiv:2004.07242 [hep-th].

[23] T. Budd and T. Koslowski, “Shape Dynamics in 2+1 Dimensions,”

Gen. Rel. Grav. 44 (2012) 1615–1636, arXiv:1107.1287 [gr-qc].

– 16 –

http://arxiv.org/abs/1805.11559
http://arxiv.org/abs/math/0612647
http://dx.doi.org/10.1007/jhep01(2019)086
http://dx.doi.org/10.1007/JHEP01(2019)086
http://dx.doi.org/10.1007/JHEP08(2018)106
http://arxiv.org/abs/1806.07426
http://dx.doi.org/10.1007/JHEP09(2018)158
http://arxiv.org/abs/1805.07386
http://dx.doi.org/10.1007/JHEP02(2020)080
http://arxiv.org/abs/1907.07221
http://dx.doi.org/10.1007/JHEP04(2020)084
http://arxiv.org/abs/1910.13578
http://dx.doi.org/10.1007/JHEP06(2020)050
http://arxiv.org/abs/1911.06142
http://dx.doi.org/10.1007/s10714-008-0661-1
http://arxiv.org/abs/gr-qc/0405109
http://dx.doi.org/10.1063/1.528475
http://arxiv.org/abs/https://doi.org/10.1063/1.528475
https://doi.org/10.1063/1.528475
http://arxiv.org/abs/gr-qc/9503024
http://dx.doi.org/10.1007/JHEP05(2019)112
http://arxiv.org/abs/1902.10893
http://dx.doi.org/10.1007/JHEP09(2020)156
http://arxiv.org/abs/2006.01835
http://dx.doi.org/10.1007/JHEP03(2019)004
http://arxiv.org/abs/1807.11401
http://dx.doi.org/10.1103/PhysRevLett.121.131602
http://arxiv.org/abs/1806.07444
http://dx.doi.org/10.1007/JHEP05(2020)006
http://arxiv.org/abs/1909.11402
http://arxiv.org/abs/2004.07242
http://dx.doi.org/10.1007/s10714-012-1375-y
http://arxiv.org/abs/1107.1287


[24] E. Witten, “Multitrace operators, boundary conditions, and AdS / CFT correspondence,”

arXiv:hep-th/0112258.

[25] W. Cottrell and A. Hashimoto, “Comments on T T̄ double trace deformations and boundary

conditions,” Phys. Lett. B 789 (2019) 251–255, arXiv:1801.09708 [hep-th].

[26] Z. Komargodski and A. Schwimmer, “On Renormalization Group Flows in Four Dimensions,”

JHEP 12 (2011) 099, arXiv:1107.3987 [hep-th].

[27] V. Moncrief, “Reduction of the Einstein equations in (2+1)-dimensions to a Hamiltonian

system over Teichmuller space,” J. Math. Phys. 30 (1989) 2907–2914.

[28] A. Hosoya and K.-i. Nakao, “(2+1)-DIMENSIONAL QUANTUM GRAVITY,”

Prog. Theor. Phys. 84 (1990) 739–748.

[29] J. W. York, “Gravitational Degrees of Freedom and the Initial-Value Problem,”

Phys. Rev. Lett. 26 (Jun, 1971) 1656–1658.

https://link.aps.org/doi/10.1103/PhysRevLett.26.1656.

[30] V. Gorbenko, E. Silverstein, and G. Torroba, “dS/dS and TT ,” JHEP 03 (2019) 085,

arXiv:1811.07965 [hep-th].

[31] S. Chakraborty, A. Giveon, and D. Kutasov, “T T̄ , JT̄ , T J̄ and String Theory,”

J. Phys. A 52 no. 38, (2019) 384003, arXiv:1905.00051 [hep-th].

[32] A. Giveon, N. Itzhaki, and D. Kutasov, “TT and LST,” JHEP 07 (2017) 122,

arXiv:1701.05576 [hep-th].

– 17 –

http://arxiv.org/abs/hep-th/0112258
http://dx.doi.org/10.1016/j.physletb.2018.09.068
http://arxiv.org/abs/1801.09708
http://dx.doi.org/10.1007/JHEP12(2011)099
http://arxiv.org/abs/1107.3987
http://dx.doi.org/10.1063/1.528475
http://dx.doi.org/10.1143/PTP.84.739
http://dx.doi.org/10.1103/PhysRevLett.26.1656
https://link.aps.org/doi/10.1103/PhysRevLett.26.1656
http://dx.doi.org/10.1007/JHEP03(2019)085
http://arxiv.org/abs/1811.07965
http://dx.doi.org/10.1088/1751-8121/ab3710
http://arxiv.org/abs/1905.00051
http://dx.doi.org/10.1007/JHEP07(2017)122
http://arxiv.org/abs/1701.05576

	1 Introduction
	2 The T2 partition function of T deformed CFT2
	3 Rewriting the flow equation
	3.1 General Relativity in Constant Mean Curvature gauge
	3.2 The spectrum
	3.3 Relationship to Jackiw–Teitelboim gravity

	4 Implementing conformal boundary conditions
	4.1 Kernel for  and exact solutions for 
	4.2 Ground state existence and asymptotic density of states

	5 Discussion

