Ecology and Evolution

Melanic pigmentation and light preference within and between two Drosophila species

Open Access

Journal:	Ecology and Evolution
Manuscript ID	Draft
Wiley - Manuscript type:	Original Research
Date Submitted by the Author:	n/a
Complete List of Authors:	Cooley, Arielle; Whitman College, Biology Schmitz, Suzanne; Whitman College Cabrera, Eduardo; Whitman College Cutter, Mitchell; Whitman College Sheffield, Maxwell; Whitman College, Biology Thomas, Gabriella; Whitman College, Biology Lincoln, Calvin; Whitman College, Biology Moore, Virginia; Whitman College, Biology Moore, Alexandra; Whitman College, Biology Lonberg, Nikhil ; Whitman College, Biology Lonberg, Nikhil ; Whitman College Fournier, Eli; Whitman College Posch, Galen; Whitman College Bihrle, Matthew; Whitman College Mayer, Spencer; Whitman College, Biology Wilson, Lauren; Whitman College, Biology Wilson, Lauren; Whitman College, Biology Wilson, Lauren; Whitman College Vincent, Chantalle; Whitman College Wall, Ilona; Whitman College Wall, Ilona; Whitman College Roberts, Stephon; Whitman College Roberts, Stephon; Whitman College
Category:	Behavioral Ecology
Habitat:	Terrestrial
Organism:	Invertebrate
Approach:	Ecological Experiment
Abstract:	Environmental adaptation and species divergence often involve suites of co-evolving traits. Pigmentation in insects presents a variable, adaptive, and well-characterized class of phenotypes for which correlations with multiple other traits have been demonstrated. In Drosophila, the pigmentation genes ebony and tan have pleiotropic effects on flies' response to light, creating the potential for correlated evolution of pigmentation and vision. Here we investigate differences in light

preference within and between two sister species, Drosophila americana and D. novamexicana, which differ in pigmentation in part because of evolution at ebony and tan, and occupy environments that differ in many variables including solar radiation. We hypothesized that lighter pigmentation would be correlated with a greater preference for environmental light, and tested this hypothesis using a habitat choice experiment. In a first set of experiments, using males of D. novamexicana line N14 and D. americana line A00, the light-bodied D. novamexicana was found slightly but significantly more often than D. americana in the light habitat. A second experiment, which included additional lines and females as well as males, failed to find any significant difference between D. novamexicana-N14 and D. americana-A00. Additionally, the other dark line of D. americana (A04) was found in the light habitat more often than the light-bodied D. novamexicana-N14, in contrast to our predictions. However, the lightest line of D. americana, A01, was found substantially and significantly more often in the light habitat than the two darker lines of D. americana, thus providing partial support for our hypothesis. Finally, across all four lines, females were found more often in the light habitat than their more darkly-pigmented male counterparts. Additional replication is needed to corroborate these findings and evaluate conflicting results, with the consistent effect of sex within and between species providing an especially intriguing avenue for further research.

SCHOLARONE[™] Manuscripts

1		
2		
3	1	TITLE
4	2	
5	2	Malania nigmontation and light proforma within and between two Dresenhild species
6	5	Metallic pignelitation and light preference within and between two <i>Drosophila</i> species
7	4	
8	5	
9	6	AUTHORS
10	7	
11	8	*Cooley, Arielle M., ORCID https://orcid.org/0000-0003-3730-0288
12	9	Schmitz, Suzanne
13	10	Cabrera Eduardo I
14	11	Cuttor Mitchall http://creid.org/0000.0002.1578.4026
15	11	Cutter, Whitehen https://orcid.org/0000-0002-1576-4020
16	12	Sheffield, Maxwell <u>https://orcid.org/0000-0001-6124-6344</u>
1/	13	Gingerich, Ian
10	14	Thomas, Gabriella
20	15	Lincoln, Calvin N. M. https://orcid.org/0000-0003-1144-8567
20	16	Moore, Virginia H. https://orcid.org/0000-0002-3958-7481
21	17	Moore, Alexandra E. https://orcid.org/0000-0002-6849-1446
22	18	Davidson Sarah A https://orcid.org/0000-0003-0128-1986
24	19	Lonberg Nikhil
25	20	Echoorg, Nikill
26	20	
27	21	Love, Sophia M. https://orcid.org/0000-0001-7330-9795
28	22	Posch, Galen
29	23	Bihrle, Matthew B.
30	24	Mayer, Spencer D. <u>https://orcid.org/0000-0002-7742-0930</u>
31	25	Om, Kuenzang https://orcid.org/0000-0002-5082-2489
32	26	Wilson, Lauren https://orcid.org/0000-0001-6923-3409
33	27	Doe Casey Q.
34	28	Vincent Chantalle F. https://orgid.org/0000.0002.2706.3320
35	20	Wang Elizabeth B. T. https://oroid.org/0000.0001 5112 4406
36	29	wong, Elizabeth K. T. <u>https://orcid.org/0000-0001-5115-4496</u>
37	30	wall, liona
38	31	Wicks, Jarred
39	32	Roberts, Stephon
40	33	
41	34	Whitman College Biology Department, Walla Walla, WA, USA
4Z 42	35	
45 11	36	*Author for correspondence:
44 45	37	cooleva@whitman edu
46	38	500 527 4088
47	20	Whitman College 245 Power Ave, Welle Welle WA 00262
48	39	Wintinan Conege, 545 Doyer Ave, Walla Walla WA 99502
49	40	
50	41	
51	42	
52	43	
53	44	
54	45	
55	46	
56		
57		
58		
59		
60		

47 ABSTRACT

49 Environmental adaptation and species divergence often involve suites of co-evolving traits.

- 7 50 Pigmentation in insects presents a variable, adaptive, and well-characterized class of phenotypes
- 51 for which correlations with multiple other traits have been demonstrated. In *Drosophila*, the
- 9 52 pigmentation genes *ebony* and *tan* have pleiotropic effects on flies' response to light, creating the
- ¹⁰ 53 potential for correlated evolution of pigmentation and vision. Here we investigate differences in ¹¹ 54 light preference within and between two sister species. *Dresenhile americana* and *D*
- 11 54 light preference within and between two sister species, *Drosophila americana* and *D*. 55 *novamexicana*, which differ in pigmentation in part because of evolution at *ebonv* and
- *novamexicana*, which differ in pigmentation in part because of evolution at *ebony* and *tan*, and occupy environments that differ in many variables including solar radiation. We hypothesized
- 14 56 occupy environments that differ in many variables including solar radiation. We hypothesized
 57 that lighter pigmentation would be correlated with a greater preference for environmental light,
- 16 58 and tested this hypothesis using a habitat choice experiment. In a first set of experiments, using
- ¹⁷ 59 males of *D. novamexicana* line N14 and *D. americana* line A00, the light-bodied *D*.
- 18 60 *novamexicana* was found slightly but significantly more often than *D. americana* in the light
- habitat. A second experiment, which included additional lines and females as well as males,
- 62 failed to find any significant difference between *D. novamexicana*-N14 and *D. americana*-A00.
- $\frac{1}{22}$ 63 Additionally, the other dark line of *D. americana* (A04) was found in the light habitat more often
- than the light-bodied *D. novamexicana*-N14, in contrast to our predictions. However, the lightest line of *D. americana* A01 was found substantially and significantly more often in the light
- line of *D. americana*, A01, was found substantially and significantly more often in the light
 habitat than the two darker lines of *D. americana*, thus providing partial support for our
 - 67 hypothesis. Finally, across all four lines, females were found more often in the light habitat than
 - their more darkly-pigmented male counterparts. Additional replication is needed to corroborate
 - 69 these findings and evaluate conflicting results, with the consistent effect of sex within and70 between species providing an especially intriguing avenue for further research.

7374 KEYWORDS

Drosophila americana; *Drosophila novamexicana*; *tan*; *ebony*; melanin; histamine; pigmentation; vision; behavioral choice experiment; correlated traits; pleiotropy; light preference

INTRODUCTION

Correlations among phenotypic traits are ubiquitous, with profound implications for the evolution of populations (Lande, 1983). Although phenotypic correlations are frequently observed in nature, the underlying causes are potentially numerous and are often unknown (Endler, 1986; Stearns, 1992). Traits can be genetically correlated due to either linkage or pleiotropy, while genetically unassociated traits may evolve in a correlated fashion due to "selective covariance," in which selection tends to act simultaneously on two or more traits (Armbruster and Schwaegerle 1996). Finally, populations and species can diverge from one another in suites of traits due simply to the unique history of mutation, migration, and drift within each group (Armbruster and Schwaegerle 1996).

- One trait that frequently evolves as part of a suite of correlated characters is pigmentation. In the model insect genus *Drosophila*, correlations due to pleiotropy of an underlying gene have been reported for pigmentation and trichome patterns (Gompel and Carroll, 2003), and for pigmentation and vision (True et al., 2005). Selective covariance is also likely to influence patterns of pigment evolution in *Drosophila*: altitudinal and latitudinal gradients in melanic pigmentation have been documented in multiple species, and have been ascribed to selection associated with heat, ultraviolet radiation, and/or humidity (True, 2003; Clusella Trullas et al., 2007; Pool and Aquadro, 2007; Rajpurohit et al., 2008; Telonis-Scott et al., 2011; Rajpurohit and Nedved, 2013). Thus, pigmentation in *Drosophila* is a promising system for investigating both genetic and environmental influences on the evolution of correlated traits.

While most of the documented pigmentation clines in *Drosophila* are altitudinal or latitudinal, a unique longitudinal gradient has been observed in *Drosophila americana*, with very dark brown flies found in the eastern United States and lighter flies found as far west as the Rocky Mountains (Throckmorton, 1982). Sister species D. novamexicana features an evolutionarily derived, lighter and yellower body color, and its geographical distribution in the desert Southwest of the United States makes it appear to be a geographic extension of the pigmentation cline in *D. americana* (Wittkopp et al., 2009). Pigmentation in *D. novamexicana* is also highly variable, but it is always lighter than even the lightest lines of *D. americana* (Davis and Moyle, 2019). In addition to these patterns of variation within and between species (Fig. 1A), female D. *americana* have been shown to be slightly lighter in color compared to males of the same lines despite a lack of difference in color patterning (Wittkopp et al., 2011).

The D. americana - D. novamexicana species pair, part of the dark-bodied virilis group of Drosophila, diverged approximately 0.4 MYA (Caletka and McAllister, 2004; Morales-Hojas et al., 2011). Two QTLs together explain 87% of the pigmentation difference between D. americana line DN12 and D. novamexicana line N14, and ebony and tan have been shown to be the causal genes within these QTLs (Wittkopp et al., 2009; Lamb et al., 2020). The Ebony and Tan enzymes catalyze reverse reactions in the melanin/sclerotin pigment biosynthesis pathway (Fig. 1B), with Ebony promoting the synthesis of yellow sclerotin pigment and Tan promoting the synthesis of brown and black melanin (Wittkopp and Beldade, 2009).

- Pigmentation trends both within and between these two species covary with environmental factors across the United States. The range of the light-bodied D. novamexicana is characterized

1		
2	100	
4	139	by higher temperatures, more solar radiation, and less moisture compared to the range of D .
5	140	americana (Davis and Moyle, 2019). Consistent with its desert environment, D. novamexicana is
6	141	significantly more tolerant of desiccation than <i>D. americana</i> (Davis and Moyle, 2020). Within <i>D</i> .
7	142	<i>americana</i> , the adaptive cline reported by Wittkopp et al. (2011) showed no association between
8	143	pigment variation and altitude, mean temperature, or relative humidity, and a manipulative
9	144	experiment ruled out direct effects of pigmentation on desiccation tolerance. A re-analysis of that
10	145	dataset by Clusella-Trullas and Terblanche (2011), with additional variables, provided support
11	146	for an association between pigmentation, light, and temperature range: the darker D. americana
12	147	populations, found in the eastern United States, tend to be in locations with lower mean solar
14	148	radiation and lower diurnal temperature ranges.
15	149	
16	150	The connection between pigment and environmental light is particularly intriguing, because the
17	151	pigmentation genes <i>ebony</i> and <i>tan</i> both have pleiotropic effects on fly responses to light
18	152	(Takahashi, 2013; Fig. 1B, 1C). The Tan enzyme is produced not only in developing cuticles but
19	153	also in the photoreceptors of the eve, where it processes the inactive compound carcinine (also
20	154	known as N-beta-alanyl histamine) into the neurotransmitter histamine. When a light signal is
21	155	received histamine is released by photoreceptors into the synaptic cleft to propagate the signal.
22	156	from there it is removed to the associated glial cells, where Ebony converts it back to carcinine
23	157	to be returned once more to the photoreceptors (Gavin et al. 2007)
25	157	to be returned once more to the photoreceptors (Gavin et al., 2007).
26	150	In the model species D malanagastar, both abany and tan mutants have abnormal
27	160	electroretinggrams and reduced phototaxis and/or optomotor responses indicative of impaired
28	161	vision (Hotte and Danzer, 1060; Daly et al., 1060; Heisenberg, 1072; Derwar, et al., 2002; Dichardt
29	161	vision (Holla and Benzel, 1909, Fak et al., 1909, Helsenberg, 1972, Bolycz et al., 2002, Kichardt et al. 2002; True et al. 2005; Cheturgedi et al. 2014). The dark colored cherry mytents of D
30	162	et al., 2002; True et al., 2003; Chaturvedi et al., 2014). The dark-colored <i>ebony</i> mutants of D.
31 22	103	<i>metanoguster</i> show reduced mating success relative to whit-type files under regular laboratory
33	164	conditions, but nigher mating success than wild-type flies in dim light (Rendel, 1951; Kyriacou
34	165	et al., 1978; Kyriacou, 1981), suggesting a possible selective advantage for darker-colored files
35	166	in dim environments.
36	16/	
37	168	The same alleles of <i>ebony</i> and <i>tan</i> that confer lighter, yellower coloration in <i>D. novamexicana</i>
38	169	are also found in some though not all light-colored populations of <i>D. americana</i> , indicating that
39	170	the genetic basis for light body color is partially shared within and between species (Wittkopp et
40 41	171	al., 2009; Sramkoski et al., 2020). This suggested to us that the pleiotropic effects of <i>ebony</i> and
42	172	<i>tan</i> on the fly visual system might be similarly shared within and between species. Based on the
43	173	dual roles of <i>ebony</i> and <i>tan</i> on fly pigmentation and response to light, and the correlation
44	174	between high solar radiation and light body color in <i>D. americana</i> and <i>D. novamexicana</i>
45	175	(Clusella-Trullas and Terblanche, 2011; Davis and Moyle, 2019; Table 1), we wondered if
46	176	behavioral differences in light preference might exist within and between species. We
47	177	hypothesized that, if differences exist, lighter-colored flies will tend to prefer more brightly-lit
48	178	environments.
49 50	179	
51	180	We tested for light preference across three levels of biological divergence, each of which
52	181	captures two or more pigment intensity groups:
53	182	(1) between species;
54	183	(2) across three different lines of <i>D</i> . <i>americana</i> ; and
55	184	(3) between females and males of the same lines.
56		
5/ 50		
59		A
		4

- 185 Based on melanic coloration, we predicted higher light preference in (1) D. novamexicana
- 186 compared to *D. americana*; (2) *D. americana* line A01 compared to lines A00 or A04; and (3)
 - 187 females compared to males.188
 - 189 In a first round of tests for light preference, male *D. americana* line A00 and male *D*.
- *novamexicana* line N14 were placed together into cages containing both a light and dark side,
- ¹⁰ 191 with a permeable barrier in between (Fig. 2). In a second round of tests, only one type of fly was
- ¹¹ 192 placed in each cage, and the experiment was expanded to include additional lines as well as
- 12 193 female flies. We counted the number of flies on the light side of each cage over a six-day period, 13 104 and tested for effects of terms and are set the number of flies in the light side of each cage over a six-day period,
- and tested for effects of taxon and sex on the number of flies in the light habitat. Our data
 provide preliminary evidence that pigmentation may be correlated with light seeking behavior in
 the *D. americana-D. novamexicana* species pair.
 - 196 the *D. americana-D. novamexicana* species pair.
 - **METHODS**
- 21 199 *Fly lines*

- 22 200 Drosophila americana lines A04, A00, and A01, and Drosophila novamexicana line N14 were
 23 201 ordered from the Cornell University Drosophila Stock Center (Table 1), and maintained at
- 24 202 Whitman College on Nutri-Fly Instant fly food (Genesee Scientific, San Diego, CA, U.S.A.).
- ²⁵ 203 Flies were maintained at ambient light, on benches adjacent to windows. 27 204
- Within D. americana, A01 is the lightest line that has been documented to date, and it contains a novamexicana-like (functionally "light") allele linked to the tan gene, while the dark A00 line contains functionally "dark" alleles at both ebony and tan (Wittkopp et al., 2009). The dark A04 line is functionally uncharacterized, although it is phenotypically very similar to line A00 (Table 1). Drosophila novamexicana-N14 is the best characterized line of its species (Wittkopp et al., 2009; Cooley et al., 2012), but is actually somewhat dark relative to the range of variation within D. novamexicana (see Davis and Moyle, 2019 for images of lighter lines).
- 36 21237 213 *Experimental overview*
- Mixed-species trials were performed in fall 2017, summer 2018, and spring 2019. For each trial, twenty male flies were placed in each cage: ten on each side, with five D. americana-A00 and five D. novamexicana-N14 on each side (Fig. 2A). This number was selected as being easily countable by eye. The number of flies in the "light" habitat was counted at 12 pm daily, for six days per trial. In 2019, an additional 4 pm data collection time was added to assess the effect of time of day on fly behavior.
- 45 220
- Single-taxon trials were performed in the spring, summer, and fall of 2020, across five separate rounds of data collection. For each trial, ten flies were placed in each cage: five on each side, with each cage containing flies from a single line (Fig. 2A). The number of flies in the "light" habitat was counted at 12 pm daily, for six days per trial. Both males and females were tested in the 2020 experiments, but each cage contained only a single sex. Due to the COVID-19 pandemic, data collection by two of the experimenters was split between work done at Whitman College and work done at the students' homes. In each case, the data were coded as two separate experiments based on their locations.

Cage construction

To provide alternate light environments for the behavioral choice experiments, cages were constructed using small, transparent betta fish tanks with a dark plastic divider (Fig. 2B). All outer sides of half of each cage were covered in two layers of duct tape to create a dark environment. Uniform holes ¹/₄" in diameter were drilled into the dividers, allowing flies to pass between the light and dark sides of the cages. The dividers were locked in place by hot glue, sealing them to the insides of the cages. Clear tape was used on the inside of the lids to prevent flies from escaping through air-holes. Each side of the container had identical plastic caps filled with synthetic fly food to sustain the flies throughout the trial period. Only enough water was added to the synthetic fly food to slightly saturate it, to prevent the buildup of excess condensation in the cages.

Selection of flies for behavioral trials

To ensure that flies used in the behavioral trials were no more than one week old, all adult flies were transferred out of the collecting vials one week prior to each trial. On the day of the trial, the collecting vials – containing flies which had eclosed within the past week – were chilled at 4°C to immobilize the flies. Genital morphology was used to sex the flies, since these species lack both sex combs and sex-specific pigmentation patterns. Flies of a single sex and taxon were sorted in sets of five into empty test tubes. The vials were kept off ice so liveliness could be evaluated once they warmed up. This was to ensure they had not been damaged and could fly and move normally. Flies that appeared old, deformed, or injured were also returned to the main population. Once collected and checked for liveliness, flies were re-immobilized by chilling on ice to facilitate transfer and were then poured into each side of the cage. The lids were secured with clear tape.

Data collection in the behavioral trials

In 2017, fly cages were placed in a darkened room under a greenhouse grow light set on a 12-hour timer. Due to concerns that the artificial light was creating warm temperatures, in all subsequent experiments, fly cages were instead placed on a table about a meter away from a large window, exposing them to natural sunlight.

Each trial was run for six consecutive days. At 12 pm every day, the number and species of flies in the light side of each cage were recorded. In the mixed-species experiments, this was done by looking for the number of dark-bodied flies (D. americana-A00) and light-bodied flies (D. novamexicana-N14) present in the light side of the cage. In 2019, a second observation period at 4 pm was added.

At the end of each trial, cages were placed in a freezer at -20 °C for one hour to immobilize the flies. This allowed us to remove the lid and more thoroughly look for missing or dead flies. The data from cages with dead or missing flies were excluded from analysis. We disposed of the flies and cleaned the cages with ethanol.

Temperature evaluation

In the 2019 experiment, a temperature control study was set up to test for a temperature

- difference between the light and dark sides of the cages. The wire probes of Fluke 52 II dual input digital thermometers (Everett, WA) were placed in both the light and dark sides of two

- empty cages. We recorded the temperature reading of each side of each cage, at noon and 4 pm daily for six days. Statistical analyses To test for differences in fly light preference, a generalized linear model was fitted using the glm() command in RStudio 1.3.1093, "Apricot Nasturtium," within the lme4 package. We assumed a Poisson distribution for the dependent variable, which was the number of flies on the light side of the cage. Independent variables included a fixed effect of taxon; a fixed effect of sex in experiments that included both male and female flies; a fixed effect of time of day for comparisons between 12 pm and 4 pm; a random effect of cage, to account for the repeated measurements made on each cage; and a random effect of experiment to account for the fact that multiple rounds of data collection were performed, at different times and by different groups of experimenters. A paired t-test in R was used to determine whether there was a significant temperature difference between the light and dark sides of the cages. Genotyping At the end of the 2020 experiments, the flies were visually inspected to verify homogeneity of pigmentation within each line. To further confirm that the lines had not interbred over the course of the experiments, one female fly of each line was sequenced at both the *tan* and *ebony* genes. DNA was extracted using the Omega E.Z.N.A. Tissue DNA Kit (Norcross, GA, U.S.A.) and eluted in 50 uL of water. Partial sequence was amplified from the tan gene using primers 5'-CCGATGCCTGTTCCATTAAC-3' and 5'- GGCGGCTTGTATTTACCAAA-3', and from the ebony gene using primers 5'-AGCCCGAGGTGGACATCA-3' and 5'GTATGGGTCCCTCGCAGAA-3', with G-Biosciences Tag DNA Polymerase (St. Louis, MO, U.S.A.). Thirty cycles of PCR were performed with a 54°C annealing temperature and a 30-second extension time. PCR product purity and concentration were estimated from a 1% agarose gel. Samples were sequenced, using both forward and reverse primers, by Eton Biosciences (San Diego, CA, U.S.A.). Manually trimmed sequences were compared to sequences of D. americana and D. novamexicana obtained from GenBank and from Cooley et al. (2012). Alignments were created in Geneious R9.1 (Biomatters, https://www.geneious.com). **RESULTS** Mixed-species male trials show more D. novamexicana than D. americana in the light habitat In all four mixed-species datasets (2017, 2018, 2019-12 pm, and 2019-4 pm), more total D. novamexicana than D. americana were observed on the light sides of the fly cages (Fig. 3). The effect of species was significant (Table 2). This result is consistent with our hypothesis that the light-bodied D. novamexicana, which is found in putatively lighter and brighter habitats in the wild, would show a stronger preference for well-lit environments than the dark-bodied D. americana.

1		
2	222	
4	322	The behavioral difference between species cannot be ascribed to a preference for distinct
5	323	temperature regimes: the mean difference in temperature between the light and dark habitats was
6	324	negligible, at both noon and 4 pm, and not statistically significant (Fig. 4; $t=0.848$, $dt=3$, P =
7	325	0.405). Time of day had a significant effect on total numbers of flies in the light habitat (Table
8	326	2). Flies of both species were found in the light habitat more often at 4 pm than at 12 pm (Fig. 3).
9	327	Thus, time of day affected the total numbers of flies on the light side, but did not alter the
10	328	observed pattern of greater light preference in <i>D. novamexicana</i> compared to <i>D. americana</i> .
12	329	
13	330	Single-taxon trials of males and females show varied effects of taxon and a consistent effect of
14	331	sex
15	332	In the 2020 single-taxon experiments, in contrast to the mixed-species experiments, no
16	333	significant difference was observed between <i>D. americana</i> -A00 and <i>D. novamexicana</i> -N14
17	334	(Table 2). The preference of <i>D. novamexicana</i> for the light habitat was similar to that of the
18	335	dark-bodied A04 and A00 lines of <i>D. americana</i> (Fig. 5), which does not support our hypothesis.
20	336	Within <i>D. americana</i> , the lightest line (A01) was found in the light habitat more often than either
21	337	of the darker lines (A00, A04), as predicted. Thus, comparisons within versus between species
22	338	provide mixed results with respect to our hypothesis.
23	339	
24	340	In the 2020 experiments, a consistent and significant effect of sex was observed (Table 2).
25	341	Across all four lines of flies utilized, females – which have slightly lighter abdominal
26	342	pigmentation than males – were observed more often than males in the light habitat (Fig. 5). This
27	343	pattern is consistent with the hypothesis that lighter-bodied flies will prefer lighter habitats.
20	344	
30	345	Fly line genotyping
31	346	Sequencing results indicated that all fly lines were homozygous for the expected alleles at both
32	347	tan and ebony (Appendix 1, 2). At the tan gene, lines D. americana-A00 and -A01 and D.
33	348	novamexicana-N14 all matched the corresponding sequences found on GenBank. Two SNPs
34 25	349	differentiated the americana allele from the novamexicana allele, in the sequenced region. No
35	350	GenBank sequence was available for line <i>D. americana</i> -A04, but this sequence contained both of
37	351	the americana SNPs. It also had a unique 12-bp deletion, in the sixth intron of the gene
38	352	(Appendix 1). At <i>ebony</i> , a short sequence was obtained, containing a SNP that has been shown to
39	353	differentiate between D. americana and D. novamexicana (Cooley et al., 2012). The three
40	354	americana lines all had the americana allele at this SNP, while D. novamexicana-N14 had the
41	355	novamexicana allele; a second SNP in this region showed the same pattern (Appendix 2).
42	356	
43 44	357	
45	358	DISCUSSION
46	359	
47	360	Correlations between melanin pigmentation and a variety of other phenotypic traits are
48	361	commonly observed, across vertebrates as well as insects (San-Jose and Roulin, 2018). Here we
49	362	investigate whether within-species and between-species melanic pigmentation differences, in the
50 51	363	dark-bodied D. americana and the light-bodied Drosophila novamexicana, are associated with
51 52	364	behavioral differences with respect to light. We conducted two sets of experiments. In the first
53	365	(2017, 2018, and 2019 datasets), male flies of <i>D. americana</i> line A00 and <i>D. novamexicana</i> line
54	366	N14 were placed together in behavioral-choice cages. These experiments revealed a consistent
55	367	and highly significant effect of species, with the lighter-bodied D. novamexicana found slightly
56		
57		
58 50		
60		8
60		

but significantly more often in the "light" habitat compared to D. americana, for data collected at both mid-day and afternoon times. In contrast, a second set of experiments with only a single type of fly per cage (the 2020 datasets) did not reveal any difference between D. americana-A00 and D. novamexicana-N14.

These divergent results are not unexpected, given the small overall difference between species combined with variation across experiments. Variation across experiments is expected to occur by chance alone, as well as due to variables such as subtle differences in methodology, and is best addressed through additional replication of the experiment (Nakagawa and Parker, 2015; Nosek and Errington, 2020). Drosophila novamexicana line N14 is one of the darker lines of this highly variable species - see Davis and Moyle (2019) for quantification of pigment variability in D. americana versus D. novamexicana, and for an image of the abdominal cuticle from a much lighter D. novamexicana individual. Repeating the second set of experiments, using one of the lighter lines of *D. novamexicana*, would create a better opportunity to detect species differences in habitat choice if it is true that light preference and melanic pigmentation are correlated.

Seasonal variation might be expected to influence fly behavior, especially given that seasonality in Drosophila appears to depend on a circadian clock (Stoleru et al., 2007) which in turn is influenced by *ebony* (Newby and Jackson, 1991; Suh and Jackson, 2007). While we cannot exclude the effects of seasonality, we note that both of our sets of experiments included fall, spring, and summer data collection efforts.

Alternatively, it is possible that the divergent results are due to the presence versus absence of interspecies interactions. The 2017, 2018, and 2019 datasets included cages populated with both D. americana and D. novamexicana, while the 2020 datasets featured only one type of fly per cage. Several species of male Drosophila have indeed been shown to demonstrate differential patterns of aggression towards conspecific versus heterospecific males (Gupta et al., 2019). However, this finding was primarily observed when the species involved were distantly related, whereas D. americana and D. novamexicana are sister species thought to have diverged less than 0.5 MYA (Caletka and McAllister, 2004). Additionally, we found that the mixed-species trials produced a greater species difference in habitat choice compared to single-taxon trials. In contrast, Gupta et al. (2019) found that aggressive behavior tended to be lower towards heterospecifics than towards conspecifics, which would if anything tend to promote coexistence rather than spatial segregation of the two species.

In a comparison of courtship and mating behaviors in *D. americana* and *D. novamexicana*, Spieth (1951) found that D. novamexicana males were more active and aggressive in pursuing mating attempts than D. americana males. This could lead to interspecific dynamics impacting the results of the 2017, 2018, and 2019 datasets, although male-male interactions per se were not addressed in that study (Spieth, 1951). Given the relatively small effect of species, and the variation observed across experiments, additional research will be required to determine the robustness and replicability of the species difference documented here.

In our second set of experiments, we explored the effects of intraspecies pigment variation and sex on habitat choice. Pigment variation within D. americana was somewhat correlated with habitat choice: the lightest line (A01) was found significantly more often in the light habitat than

1	
2	
3	
4	
5	
6	
7	
8	
9	
1	С
1	1
1	2
1	3
1	Z
1	5
1	6
1	7
1	8
1	9
2	0
2	1
2	2
2	1
2	2
~	7

the two dark lines (A04 and A00). Line A01 has a functionally D. novamexicana-like ("light") allele at *tan*, but not *ebony*, whereas line A00 has non-*novamexicana*-like ("dark") alleles at both genomic regions (Wittkopp et al., 2009). Given the pleiotropic role of *tan* in recycling histamines in the visual system, it is possible that the A01 "light" allele at the tan locus contributes to that line's apparently greater preference for well-lit habitats. Across D. americana, the genetic basis of pigment variation is complex, and is only incompletely explained by variation at *tan* and D ebony (Sramkoski et al., 2020). Future research on the potential pleiotropic effects of tan and ebony is thus best done on fly lines such as A01 and A00, whose tan and ebony alleles have been functionally characterized (Wittkopp et al., 2009). Because the genetic basis for pigmentation in the dark line A04 is unknown, and *tan* and *ebony* might not be major contributors, we consider predictions regarding line A04 to be less robust than predictions regarding lines A01 or A00. Interestingly, our second set of experiments also revealed a significant effect of sex. Female flies were found in the light habitat more often than males, in D. novamexicana as well as in all three lines of *D. americana*. Within *D. americana*, females have slightly lighter melanin pigmentation than males (Wittkopp et al., 2011). This finding is, therefore, consistent with our hypothesis that lighter-bodied flies will have a correlated preference for lighter habitats. Although many sex-linked behaviors have been reported in Drosophila (Asahina, 2018), sex-specific differences in light preference have not, to our knowledge, been previously demonstrated. Overall, our findings in *D. americana* and *D. novamexicana* suggest that correlations may exist between pigmentation and habitat choice between species, within species, and between the sexes, with trends in each case for lighter pigmentation to be associated with a slightly greater preference for a brightly lit environment. Out of seven comparisons made, four support a positive correlation between light body color and light-habitat preference; two support a negative correlation; and one supports no correlation (Table 3). The observed correlations, if repeatable, could originate from the pleiotropic nature of the pigmentation and vision genes *tan* and *ebony*, or they could reflect independent evolution of the two traits in response to parallel selective pressures. A direct test of the pleiotropy hypothesis would be best achieved by transgenic manipulation. If the two traits are correlated due to pleiotropic effects of *tan* and *ebony*, then reducing the function of *tan* should result in lighter-bodied flies with greater preference for well-lit habitats, while reducing the function of *ebony* should have the opposite effects. To assess the hypothesis of parallel selective pressures, in contrast, field experiments will likely be required. Little work has been done on the behavioral ecology of natural *Drosophila* populations (but see Soto-Yéber et al., 2018), and the light and color environments directly experienced by *D. americana* and *D*. novamexicana in the wild have not yet been quantified. The work presented here is one of few behavioral studies of these two species (but see Spieth, 1951) and the first demonstration to our knowledge of a sex-specific difference in preference for environmental light in Drosophila. Given the variation of our findings for D. novamexicana between our two experimental designs, additional replication will be necessary to evaluate the correlations that we observed between pigmentation and behavior. However, the majority of our comparisons suggest a pattern in which lighter-bodied flies tend to exhibit preference for a more brightly lit environment. Two genes, tan and ebony, together explain most of the color difference

between the dark-bodied D. americana-DN12 and the lighter-bodied D. novamexicana-N14

(Wittkopp et al., 2009; Lamb et al., 2020), and are also required for visual function (Heisenberg,

1972; True et al., 2005; Takahashi, 2013). We propose that the pleiotropic nature of *tan* and

ebony may have shaped evolutionary change in both pigmentation and light preference – potentially within as well as between these two closely related yet intriguingly divergent species.

DATA ACCESSIBILITY

Raw fly behavioral data and cage temperature data are available on Dryad (datadryad.org) at doi [TBA]. DNA sequences are available on GenBank [accession IDs TBA].

COMPETING INTERESTS STATEMENT

The authors declare no competing interests.

AUTHOR CONTRIBUTIONS

This research was performed by undergraduate students enrolled in Biology 338 (Evolution & Development Laboratory) and Biology 490 (Senior Thesis) at Whitman College. AMC taught the courses; conducted final data analyses; performed genotyping assays; and wrote the final version of the manuscript. MC, KO, and MS conceived of the experiment and conducted a pilot study. IG, GT, GP, LW, and SS collected and analyzed data for the 2017 experiment. SS collected and analyzed the data for the 2018 experiment. EJC, CNML, VHM, AEM, SAD, NL, EBF, SPL, MBB, SDM, CQD, CEV, and ERTW collected and analyzed the data for the 2019 experiments and wrote a first version of manuscript. SML, CEV, IW, JW, and SR collected and analyzed data for the 2020 experiments. All authors reviewed the final manuscript.

ACKNOWLEDGEMENTS

We thank Abigail Lamb and Patricia J. Wittkopp for a generous donation of fly lines used in pilot studies; Emily Hamada for assistance in managing the labs; and Patricia J. Wittkopp and two reviewers for helpful comments on the manuscript. SR and IW were supported by Whitman College faculty-student research awards; CEV and SML were supported by Whitman College Abshire awards; AMC was supported by NSF-DEB 1655311 and NSF-DEB 1754075.

APPENDICES

For Review Only

1	
2	
3	
4	
5	
6 7	
/ 8	
9	
10	
11	
12	
13	
14	
15	
16	
1/	
10	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29 30	
31	
32	
33	
34	
35	
36	
37	
38 20	
40	
41	
42	50
43	
44	
45	
46	
47	

Coverage 10 ²	i 20		-					·	·
GQ457353.1 D. novamexicana 15010-1031.14 tan	1 20 CCGATGCCTGTTCCATTAACTTTCA exon6 tan-F2	40	60 TTTTGTAAGTGAATEGGTTAATTTTA	80 TATEATGCCTGCCTGCCTTCCT	100 Sectocetottgeagegate	120 EEGEGTEANATGTTTTACA	140 жаестобалатоселесо ехо	160 AATEEG CEGGAAGAAE ON7	180 Gagteacaett
REV N14_tan-R2				MMMMMMM					
RID N14_tan-F2 RID GQ457346.1 D. americana 15010-0951.01 tan	ccgatgcctgttccattaacttttca tan-F2	NTTTTTGGCGTAAGTATGCGG					MACGTGGAAATGGCACCGJ	AATCCGCCCGGAAGAAC	GAGTCACACTT GAGTCACACTT
REV A01_tan-R2									
RID A01_tan-F2 RID GQ457339.1 D. americana 15010-0951.00 tan	ccgatgcctgttccattaactittca tan-F2	\TTTTTGGCGTAAGTATGCGG: Ⅲ	ТТТТБТААБТБААТСББТТААТТТА ТТТТБТААБТБААТСББТТААТТТА ТТТТБТААБТБААТСББТТААТТТА	TATCATGCCTGCCTGCCTTCCT	CCTGCCTGTTGCAGCGATG	CCGCGTCAAATGTTTTACA CCGCGTCAAATGTTTTACA		MANGER COGANGANC	GAGTCACACTT GAGTCACACTT
REV A00_tan-R2									
FND A00_tan-F2				Min					
REV A04_tan-R2									
PR 101 http://			maxie www.	MWW M	MMMMMM	Minhow	MMMM	MMMMMMM	hmm
	200 2	220 24	ттттбталбт в алтсббтталттта 0 260	zş0	зостосстоттослосолт	320	засете бала те белесе. 340	364	GAGTCACACTT
Coverage 10 GQ457353.1 D. novamexicana 15010-1031.14 tan	200 2 200 2 200 200	220 244 220 244 220 244 220 244 245 245 245 245 245 245 245 245 245	ттттбталотелатсоотталттта 0 250 0 260 осеатсалосаттеорталатор осеатсалосаттеорталатор	280 280 280	300 300 300 64 TECANG GENTACACET	320 320 320 666ACCAGGCCAACGAGCT	340 340 1041056646566 20018	360 360 360 360 360 360 360 360 360) TTGGTARATAI
Feb A04_tan-F2 Coverage 10F 01 GQ457353.1 D. novamexicana 15010-1031.14 tan REV N14_tan-R2	200 2 200 2 14450 THESE CONSTANT AND EXAMPLE AND	220 244 220 244 220 244 240 240 244 240				320 320 50 ACC MODE CANCER AND CONTROL OF CO	340 340 1047	360 TOTEOGRAFICEATOLET)) teggtakatat tar
FNU AUA_tan-F2 10F Coverage 10 GQ457353.1 D. novamexicana 15010-1031.14 tan REV N14_tan-R2 FNU N14_tan-F2 FNU GQ457346.1 D. americana 15010-0951.01 tan	200 2 200 200					320 320 320 320 320 5000 CANGE CANCENTER 5000 CANCENTE	340 340 840 840 840 840 840 840 840 840 840 8		
Coverage 10F ol GQ457353.1 D. novamexicana 15010-1031.14 tan REV N14_tan-R2 PID N14_tan-F2 PID GQ457346.1 D. americana 15010-0951.01 tan REV A01_tan-R2	200 2 200 2 200 200 200						340 340 340 10475 10476 10400000000000000000000000000000000000		
N04_tan-F2 107 gl Coverage 101 gl GQ457353.1 D. novamexicana 15010-1031.14 tan REV N14_tan-R2 FID N14_tan-F2 FID GQ457346.1 D. americana 15010-0951.01 tan REV A01_tan-R2 FID GQ457339.1 D. americana 15010-0951.00 tan	200 2 200 2 200 200 2 200 200 200 200 200 200 200 200 200 200						340 3		
FND AUA_tan-F2 10F Coverage 10F GQ457353.1 D. novamexicana 15010-1031.14 tan REV N14_tan-R2 FND N14_tan-R2 FND GQ457346.1 D. americana 15010-0951.01 tan REV A01_tan-R2 FND GQ457339.1 D. americana 15010-0951.00 tan REV A00_tan-R2	200 2 200 200 200	220 24					340 340 1447 1		
Her Ada_tan-F2 Coverage 10 ol GQ457353.1 D. novamexicana 15010-1031.14 tan REV N14_tan-R2 FID N14_tan-F2 FID QQ457346.1 D. americana 15010-0951.01 tan REV A01_tan-R2 FID A01_tan-F2 FID QQ457339.1 D. americana 15010-0951.00 tan REV A00_tan-F2 FID A00_tan-F2							340 340 340 340 10470000000 1047000000000 1047000000000 1047000000000 10470000000000 10470000000000 104700000000000 1047000000000000 10470000000000000 10470000000000000000 104700000000000000000000000000000000		
Image: Second system Image: Second system Coverage Image: Second system GQ457353.1 D. novamexicana 15010-1031.14 tan REV N14_tan-R2 Image: Second system Image: Second system GQ457346.1 D. americana 15010-0951.01 tan REV A01_tan-R2 Image: Second system Image: Second system REV A01_tan-R2 Image: Second system REV A00_tan-R2 REV A00_tan-R2 REV A04_tan-R2	200 2 200 2 20								

Ecology and Evolution

1 2 3 4 5 6 7 8 9 10 11 12 13	503 504 505 506 507 508 509 510 511	Appendix 1. Alignment of partial sequences from the <i>tan</i> gene. The sequence without a chromatogram was obtained from GenBank; the rest were obtained by PCR and direct sequencing as described in the Methods. Green arrows, PCR primers. Grey arrows, exons. Red boxes enclose <i>novamexicana</i> alleles at divergent sites and light blue boxes enclose <i>americana</i> alleles at the same sites. FWD, sequence obtained using the forward primer as the sequencing primer. REV, sequence obtained using the reverse primer as the sequencing primer. Line N14 is <i>D. novamexicana</i> ; lines A01, A00, and A04 are <i>D. americana</i> .
14		Coverage 4 1 10 20 30 40 50 60 70 72
15 16		MT351025.1 D. novamexicana N14 ebony (e) AGCCCGAGGTGGACATCAAGTCGAAGCTTCTGGAGTTCCCTGGAGTTCTGCGAGGGACCCCATAC
16		
18		REVN14_ebony-R CCCGAGGTGGACATCAAGTCGAAGCT
19 20		and a constant of the second sec
21		
22 23		
24 25		
26		FWD N14_ebony-F TCGAGTTCTGCGAGGGACCCATA
27 28		
29		
30 31		FWD A00_ebony-F
32 33	512	FWD A04_ebony-F
34 35 36 37 38 39 40 41 42	513 514 515 516 517 518	 Appendix 2. Alignment of partial sequences from an exon of the <i>ebony</i> gene. The sequences without chromatograms were obtained from GenBank; the rest were obtained by PCR and direct sequencing as described in the Methods. Green arrows, PCR primers. Red boxes enclose <i>novamexicana</i> alleles at divergent sites and light blue boxes enclose <i>americana</i> alleles at the same sites. FWD, sequence obtained using the forward primer as the sequencing primer. REV, sequence obtained using the reverse primer as the sequencing primer. Line N14 is <i>D. novamexicana</i>; lines A01, A00, and A04 are <i>D. americana</i>.
43		
44 45		14
46		
47		

1		
2		
3	519	
4	520	
5	521	LITERATURE CITED
6	521	
7	522	ACAMPLE K 2018 Car differences in Durantility behavior qualitative and quantitative
8	525	ASAHINA, K. 2018. Sex differences in <i>Drosophila</i> benavior: qualitative and quantitative
9 10	524	dimorphism. Current Opinion in Physiology 6.
10	525	BORYCZ, J., J. A. BORYCZ, M. LOUBANI, AND I. A. MEINERTZHAGEN. 2002. Tan and ebony
12	526	genes regulate a novel pathway for transmitter metabolism at fly photoreceptor terminals.
13	527	Journal of Neuroscience 22: 10549-10557.
14	528	CALETKA, B. C., AND B. F. MCALLISTER. 2004. A genealogical view of chromosomal evolution
15	529	and species delimitation in the Drosophila virilis species subgroup. Molecular
16	530	Phylogenetics and Evolution 33: 664-670.
17	531	CHATURVEDI, R., K. REDDIG, AND H. S. LI. 2014. Long-distance mechanism of neurotransmitter
18	532	recycling mediated by glial network facilitates visual function in <i>Drosophila</i> .
19	533	Proceedings of the National Academy of Sciences: 2812-2817
20	534	CLUSELLA TRULLAS S I H VAN WYK AND I R SPOTU A 2007 Thermal melanism in
21	535	ectotherms Journal of Thermal Riology 32: 235 245
22	535	CUUSELLA TRULLAS S AND LS TERRI ANCHE 2011 Local adaptation for hody color in
23	550	CLUSELLA-TRULLAS, S., AND J. S. TERBLANCHE. 2011. Local adaptation for body color in
24	537	Drosophila americana: commentary on wittkopp et al. Hereally 106: 904-905.
25	538	COOLEY, A. M., L. SHEFNER, W. N. MCLAUGHLIN, E. E. STEWART, AND P. W. WITTKOPP. 2012.
20	539	The ontogeny of color: Developmental origins of pigment divergence in Drosophila
28	540	americana and D. novamexicana. <i>Evolution & Development</i> 14: 317-325.
29	541	DAVIS, J. S., AND L. C. MOYLE. 2019. Desiccation resistance and pigmentation variation reflects
30	542	bioclimatic differences in the Drosophila americana species complex. Bmc Evolutionary
31	543	<i>Biology</i> 19: 1-14.
32	544	DAVIS, J. S., AND L. C. MOYLE. 2020. Constitutive and plastic gene expression variation
33	545	associated with desiccation resistance differences in the <i>Drosophila americana</i> species
34	546	group, Genes 11: 146.
35	547	ENDLER J A 1986 Natural Selection in the Wild Princeton University Press Princeton
36	548	GAVIN B A S F ARRUDA AND P I DOLPH 2007 The role of carcinine in signaling at the
3/	5/10	Drosonhila photorecentor synapse PLoS Ganatics 3: e206
38	550	COMPEL N AND S. P. CARROLL 2002 Constinuations and constraints governing the
<u>79</u>	550	downpel, N., AND S. D. CARROLL. 2003. Officie incentifisms and constraints governing the
40 41	551	Curry, T. C. E. Hours, M. L. Zonski, AND, D. L. Logundon, 2010, A.
42	552	GUPTA, I., S. E. HOWE, M. L. ZORMAN, AND B. L. LOCKWOOD. 2019. Aggression and
43	553	discrimination among closely versus distantly related species of <i>Drosophila</i> . Royal
44	554	Society Open Science 6: 190069.
45	555	HEISENBERG, M. 1972. Comparative behavioral studies on two visual mutants of <i>Drosophila</i> .
46	556	Journal of Comparative Physiology 80: 119-136.
47	557	HOTTA, Y., AND S. BENZER. 1969. Abnormal electroretinograms in visual mutants of
48	558	Drosophila. Nature 222: 354-356.
49	559	KYRIACOU, C. P. 1981. The relationship between locomotor activity and sexual behaviour in
50	560	ebony strains of Drosophila melanogaster. Animal Behavior 29: 462-471.
51	561	KYRIACOU, C. P., B. BURNET, AND K. CONNOLLY, 1978. The behavioural basis of
52 52	562	overdominance in competitive mating success at the <i>ebonv</i> locus of <i>Drosophila</i>
55 54	563	melanogaster Animal Rehavior 26: 1195-1206
55	202	metanogaster, 11mmar Denavior 20, 1195-1200,
56		
57		
58		
59		15

1		
2		
כ ∧	564	LAMB, A. M., Z. WANG, P. SIMMER, H. CHUNG, AND P. J. WITTKOPP. 2020. ebony affects
т 5	565	pigmentation divergence and cuticular hydrocarbons in <i>Drosophila americana</i> and <i>D</i> .
6	566	novamexicana Frontiers in Ecology and Evolution 8.
7	567	LANDE, R., AND S. J. ARNOLD. 1983. The measurement of selection on correlated characters.
8	568	<i>Evolution</i> 37: 1210-1226.
9	569	MORALES-HOJAS, R., M. REIS, C. P. VIEIRA, AND J. VIEIRA. 2011. Resolving the phylogenetic
10	570	relationships and evolutionary history of the Drosophila virilis group using multilocus
11	571	data. Molecular Phylogenetics and Evolution 60: 249-258.
12	572	NAKAGAWA, S., AND T. H. PARKER. 2015. Replicating research in ecology and evolution:
13 17	573	feasibility, incentives, and the cost-benefit conundrum. BMC biology 13: 88.
14	574	NEWBY, L. M., AND F. R. JACKSON, 1991, <i>Drosophila ebony</i> mutants have altered circadian
16	575	activity rhythms but normal eclosion rhythms. <i>Journal of Neurogenetics</i> 7: 85-101.
17	576	NOSEK B A AND T M ERRINGTON 2020 What is replication? <i>PLOS Biology</i> 18: e3000691
18	577	PAK W L I GROSSFIELD AND N V WHITE 1969 Nonphototactic mutants in a study of
19	578	vision of Drosonhila Nature 222: 351-354
20	579	POOL L F AND C F AOUADRO 2007 The genetic basis of adaptive nigmentation variation in
21	580	Drosonhila melanogaster Molecular Ecology 16: 2844-2851
22	581	RAIPUROHIT S AND O NEDVED 2013 Clinal variation in fitness related traits in tronical
25 24	582	drosophilids of the Indian subcontinent. <i>Journal of Thermal Riology</i> 38: 345-354
25	582	PAIDUDOULT S P DARKASU AND S PAADUWAS 2008 Body melanization and its adaptive
26	583	role in thermoregulation and telerance against designating conditions in dresenhilids
27	505	Enternal and the finance against desiceating conditions in drosophilids.
28	383 596	Entomological Research 38: 49-00.
29	580 597	KENDEL, J. M. 1951. Mating of ebony, vestigial, and wild type Drosophila melanogaster in light
30	587	and dark. Evolution 5: 226-230.
31	588	RICHARDT, A., J. RYBAK, K. F. STORTKUHL, I. A. MEINERTZHAGEN, AND B. I. HOVEMANN.
32 22	589	2002. Ebony protein in the <i>Drosophila</i> nervous system: optic neuropile expression in
33	590	glial cells. Journal of Comparative Neurology 452: 93-102.
35	591	SAN-JOSE, L. M., AND A. ROULIN. 2018. Toward understanding the repeated occurrence of
36	592	associations between melanin-based coloration and multiple phenotypes. The American
37	593	Naturalist 192: 111-130.
38	594	SOTO-YEBER, L., J. SOTO-ORTIZ, P. GODOY, AND R. GODOY-HERRERA. 2018. The behavior of
39	595	adult <i>Drosophila</i> in the wild. <i>PLoS ONE</i> 13: e0209917.
40	596	SPIETH, H. T. 1951. Mating behavior and sexual isolation in the <i>Drosophila virilis</i> species group.
41 42	597	<i>Behaviour</i> 3: 105-144.
42	598	SRAMKOSKI, L. L., W. N. MCLAUGHLIN, A. M. COOLEY, D. C. YUAN, A. JOHN, AND P. J.
44	599	WITTKOPP. 2020. Genetic architecture of a body colour cline in <i>Drosophila americana</i> .
45	600	Molecular Ecology 29: 2840-2854.
46	601	STEARNS, S. C. 1992. The Evolution of Life Histories. Oxford University Press, New York.
47	602	STOLERU, D., P. NAWATHEAN, M. D. L. P. FERNÁNDEZ, J. S. MENET, M. F. CERIANI, AND M.
48	603	ROSBASH. 2007. The Drosophila circadian network is a seasonal timer. Cell 129: 207-
49 50	604	219.
50 51	605	SUH, J., AND F. R. JACKSON. 2007. Drosophila ebony activity is required in glia for the
52	606	circadian regulation of locomotor activity. <i>Neuron</i> 55: 435-447.
53	607	TAKAHASHI, A. 2013. Pigmentation and behavior: potential association through pleiotropic genes
54	608	in Drosophila. Genes & Genetic Systems 88: 165-174.
55		· · ·
56		
57		
58		

3	609	TELONIS-SCOTT, M., A. A. HOFFMANN, AND C. M. SGRÒ. 2011. The molecular genetics of clinal
4	610	variation: a case study of ebony and thoracic trident pigmentation in Drosophila
5	611	melanogaster from eastern Australia. <i>Molecular Ecology</i> 20: 2100-2110.
0 7	612	THROCKMORTON, L. H. 1982. The <i>virilis</i> species group. <i>In</i> M. Ashburner, H. L. Carson, AND J.
, 8	613	N. Thompson [eds.]. The Genetics and Biology of <i>Drosophila</i> , vol. 3b. Academic Press.
9	614	New York.
10	615	TRUE I R 2003 Insect melanism: the molecules matter <i>Trends in Ecology & Evolution</i> 18:
11	616	640-647
12	617	TRUE I R S D VEH B T HOVEMANN T KEMME I A MEINERTZHAGEN T N EDWARDS S -
13	618	R LIOU et al 2005 Drosonhila tan encodes a novel hydrolase required in nigmentation
14	619	and vision PLoS Genetics 1: 551-562
15 16	620	WITTKORD P I AND P BEIDADE 2000 Development and evolution of insect nigmentation:
10	621	will IKOPP, F. J., AND F. BELDADE. 2009. Development and evolution of insect pignentation.
18	621	Developmented Biological 20, 65, 71
19	622	Developmental Biology 20: 65-71.
20	623	WITTKOPP, P. J., G. SMITH-WINBERRY, L. L. ARNOLD, E. M. THOMPSON, A. M. COOLEY, D.
21	624	YUAN, Q. SONG, AND B. F. MCALLISTER. 2011. Local adaptation for body color in
22	625	Drosophila americana. <i>Heredity</i> 106: 592-602.
23	626	WITTKOPP, P. J., E. E. STEWART, L. L. ARNOLD, A. H. NEIDERT, B. K. HAERUM, E. M. THOMPSON,
24	627	S. AKHRAS, et al. 2009. Intraspecific polymorphism to interspecific divergence: Genetics
25	628	of pigmentation in Drosophila. Science 326: 540-544.
26	629	
27	630	
28	631	
29	632	FIGURE LEGENDS
31	633	
32	634	Figure 1 . Drosophila americana and D novamericana differ in abdominal nigmentation a trait
33	635	influenced by the pleiotropic genes <i>ehony</i> and <i>tan</i> A Female and male flies of D <i>americana</i>
34	636	(lines $A04$, $A00$, and $A01$) and D novamoricana (line $N14$). Young adult flies of each taxon
35	627	were collected and photographed in 2021 within a single two hour period under constant
36	629	lighting conditions. In each case, the lateral view (loft) and the dereal view (right) show the same
37	(20	inglitting conditions. In each case, the fateral view (left) and the dotsal view (light) show the same
38	639	individual. B. The balance of <i>ebony</i> and <i>tan</i> expression helps determine cuticular pigmentation.
39	640	C. The same genes, <i>ebony</i> and <i>tan</i> , also participate in histamine recycling in the visual system. B
40 41	641	and C are redrawn from Takahashi (2013).
41 // 2	642	
43	643	Figure 2. Behavioral choice trials were conducted using "light" versus "dim" artificial habitats.
44	644	A. Experimental design for mixed-species versus single-taxon experiments. Each cage is divided
45	645	into a light habitat (white background) and a dim habitat (grey background), and is initially
46	646	populated with 5 flies of each taxon per side. Dark brown ovals, D. americana-A00. Light brown
47	647	ovals, <i>D. novamexicana</i> -N14. Drawings not to scale. B. Fly cage with 15 cm ruler for scale. The
48	648	purple dish is filled with instant fly food, and is matched with a corresponding food dish on the
49	649	dark side of the cage.
50	650	
51	651	Figure 3. In mixed-species trials of male flies <i>Drosophila americana</i> line A00 is found less
5∠ 52	652	often in the "light" habitat than <i>D</i> novamericana line N14. The number of successful trials is
55 54	653	shown above each data column A mean value was calculated across the six days of each
55	654	successful trial Bars represent the range bayes represent quertiles, and horizontal lines inside
56	034	successful that. Dats represent the range, boxes represent qualtities, and nonzontal intes inside
57		
58		
59		17

- the boxes mark the median, for each set of mean values. White bars show the results from 12 pm data collection in 2017, 2018, and 2019 combined; D. novamexicana was found in the light significantly more often than D. americana (Z=6.003; P<0.001). The grey and dotted bars show only the 2019 data, collected at 12 pm and 4 pm respectively. Within each collection time, D. novamexicana was found in the light significantly more often than D. americana (12 pm: Z=6.789; P<0.001; 4 pm: Z=8.199; P<0.001), but there was also a significant effect of data collection time with more flies found in the light habitat at 4 pm (Z=2.951; P<0.01). Figure 4. Cage temperature is consistent across habitats. Bars represent the range, boxes represent quartiles, and horizontal lines inside the boxes mark the median. Sample size is shown
- above each data column. Data were collected once per day, for six days, on each of two cages, in 2019. Temperature did not differ significantly between light habitat and dark habitat (paired t-test: t = 0.848, df = 23, P = 0.405).

Figure 5. In single-taxon, single-sex trials, females are consistently found in the "light" habitat more often than males. Taxa are arranged along the X axis from darkest to lightest. Lines A04, A00, and A01 are *D. americana*; line N14 is *D. novamexicana*. The number of successful trials is shown above each data column. Data were collected across five different experiments in 2020, at 12 pm daily. A mean value was calculated across the six days of each successful trial. Bars represent the range, boxes represent quartiles, and horizontal lines inside the boxes mark the median, for each set of mean values. Males were found less often in the light than females (Z=-7.454, P<0.001). Drosophila americana-A04 and -A01 were more often in the light habitat than D. americana-A00 (Z=2.134, P<0.05 and Z=4.452, P<0.001, respectively) while D. novamexicana-N14 did not differ significantly from D. americana-A00 (Z=-0.641, P>0.05).

Ecology and Evolution

Table 1. Origins and phenotypes of fly lines used, from darkest to lightest fly line. Melanic pigmentation in the *D. americana* lines was measured by Wittkopp et al. (2011) on dissected abdominal cuticles of five male and five female flies, and the least-squares mean for each line is reported on a scale from 0 (black) to 255 (white). Decimal coordinates are shown as degrees North, degrees West and are estimated from Google Maps. The annual average daily total solar resource for each location was obtained from the National Solar Radiation Database, nsrdb.nrel.gov, using the Direct Normal Solar Irradiance map (https://www.nrel.gov/gis/assets/images/solar-annual-dni-2018-01.jpg, accessed 17 April 2021).

Species	Line	Full ID	Pigmentation	Collection site	Collection year	Approx. decimal coordinates	Direct Normal Solar Irradiance (kWh/m²/day)	
D. americana	A04	15010- 0951.04	106.3	Keelers Bay, Lake Champlain, VT	1948	44.7, -73.3	<4.0	
D. americana	A00	15010- 0951.00	110.8	Anderson, IN	unknown	40.1, -85.7	4.0-4.4	
D. americana	A01	15010- 0951.01	163.4	Poplar, MT	1947	48.1, -105.2	4.5-4.9	
D. novamexicana	N14	15010- 1031.14	not measured; visibly lighter than A01	Moab, UT	1949	38.6, -109.6	6.5-6.9	

Table 2. Effects of taxon and sex on fly habitat choice. Data were collected from each cage once per day for six days. Taxon and sex were considered fixed effects; experiment and cage were considered random effects; and the response variable (the number of flies in the "light" habitat each day) was assumed to have a Poisson distribution. A positive Z-value indicates a greater number of flies in the 'light' habitat relative to A00 (for effects of taxon); females (for effect of sex); or the 12 pm time point (for effect of time of day). N = the number of successful six-day trials across both sexes and all taxa, with success based on all flies being present and alive at the end of the six days. ns, not significant (P>0.05).

Experiment(s)	Ν	Source of variation	Estimate	Std. error	Z	Р
2017, 2018, 2019 – 12 pm Males only	48	D. novamexicana-N14	0.23777	0.03961	6.003	<0.001
2019, 12 pm vs. 4 pm Males only	29	<i>D. novamexicana</i> -N14 Time of day-4 pm	0.39734 0.10841	0.03741 0.03673	10.622 2.951	<0.001 <0.01
2020 – 12 pm Males and females	372	D. americana-A04 D. americana-A01 D. novamexicana-N14 Sex-Male	0.06392 0.14115 -0.01975 -0.14367	0.02996 0.03171 0.03081 0.01927	2.134 4.452 -0.641 -7.454	<0.05 <0.001 ns <0.001

39 695

Ecology and Evolution

Table 3. Summary of predictions tested. For each comparison, the prediction was considered confirmed if the lighter group was found in the lighter habitat significantly more often than the darker group; rejected if the reverse was true; and inconclusive if no significant difference was observed. a, data from 2017-2019 experiments; b, data from 2020 experiments.

Lighter group	Darker group	Prediction confirmed	Prediction rejected	Inconclusive result	
D. novamexicana-N14	D. americana-A00	(a)	=	(b)	
D. novamexicana-N14	D. americana-A01	-	(b)	=	
D. americana-A01	D. americana-A00	(b)	-	-	
D. americana-A01	D. americana-A04	(b)	-	-	
D. novamexicana-N14	D. americana-A04	-	(b)	-	
Female (x4 lines)	Male (x4 lines)	(b)	-	-	

Figure 1. Drosophila americana and D. novamexicana differ in abdominal pigmentation, a trait influenced by the pleiotropic genes ebony and tan.

Figure 2. Behavioral choice trials were conducted using "light" versus "dim" artificial habitats.

Coverage 10 ^e	1 20	40	éo	80	100	120	140	160 180
GQ457353.1 D. novamexicana 15010-1031.14 tan	20 exon6	40	60	80 ATTETATATEATS DET. DET.	100	120	140 exon	160 180 190 180 180 180 180 180 180 180 180 180 18
N14_tan-R2	Wedderland	www.			hallandarina man la tarta		Muniter and a star	
R0 N14_tan-F2 R0 GQ457346.1 D. americana 15010-0951.01 tan	tan-F2	TTEECSTAASTATECSS		ATTT IATATEATS CETS CETS			TACAACOTOBAAN TERCACCOANT	
NV A01_tan-R2	Wellow Wellow	www.www.			And		www.willhistanto	www.www.www.www.www.ww
HE A01_tan-F2 HE GQ457339.1 D. americana 15010-0951.00 tan	tan-F2	TTEECETAASTATECES						
80 A00_tan-R2	Welet Warman Week				And		www.whitewh	www.www.www.www.www.www.www.www.www.ww
RED A00_tan-F2	hard all an either	a satul a s	2Box OWW	WWWWWWWW	MVMMMMM	anikilininini Anito ana a	Mumul Williams	
Rev A04_tan-R2	WWWW	NINY MY MAN	Martin Martin	WWWWW	Michard Michael	NAN WWWWWW	Manual And Land Land	a had had some and
HD AD4_tan-F2			TTTTGTAATE AATCOUTS	ATTELET	CIECTECTECTET	AGGATCE SEGTEMATETT	TACAACGTGGAAA TSGCAC GAAT	
Couerage 10	200 220	2	40 264	280	зq	320	340	360 380
GQ457353.1 D. novamexicana 15010-1031.14 tan	200 220 втассостовососатанстассато ехоп7		40 260	280	3Q	320	340 exon8	360 380
89/ N14 rap.92	WWWWWWWWW	Jul www.ww	whether	WIM WIMM		Jan Martha	hinded	tan-R2
RE N14_tan-F2	www.	Millio Markad	NAMA ANNA ANNA	Mulminin	Www.hwh.hww	www.whiteway	hathlathranach	with white with with white
ന്ന പ്രൂഷ്ട7346.1 D. americana 15010-0951.01 tan	MAN WWWWWWW		When the start	Jum Lum M	www.www.www.	March Marthan		tan-R2
REV A01_tan-R2	MWWWWWWW	www.www.	NAMA WALAWA	WWWWWW	litwodw.how	www.w.l.	hall all and a second	while when the
R0 GQ457339.1 D. americana 15010-0951.00 tan	STACCOCTOSOCOCOCATABETACCATO	CENATENGTACOTAGET	COCCATEAGORATTCOATACAT	A MAR WAR	TTGEACAGATTEGAGEGE	TACACTTEGACCAGECCAACG	ASCTGATECTEAASTCCASCETET	coconariscariscorrectivitor anaracansecore tan-R2
REV ADO_tan-R2		MMM Avha	NAMA LANDAN	WWWWWW	illandur.hulu	WAN JAN JAN	white hours	with which with a with
FID A00_tan-F2	WWWWWWWWW	Julia willing	while where the	Min Will	www.www.	AN ANA	ARCTERTOCTERATOR	COCUMATISCATECCTITIOSTAAATACAASCOCC
mo A04_tan-F2		WWW.Mv/W	www.haw.haw	MMMMMM	Www.hwh.hutu	WWW.JAW	hallhalland	win win with with with

Appendix 1. Alignment of partial sequences from the tan gene.

Appendix 2. Alignment of partial sequences from an exon of the ebony gene.