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Abstract

Hysteresis is a physical phenomenon reflected inmacro-
scopic observables of materials that are subjected to
external fields. For example, magnetic hysteresis is ob-
served in ferromagnetic metals such as iron, nickel and
cobalt in the presence of a changing external magnetic
field. In this paper, we model hysteresis using com-
binatorial models of microscopic spin interactions, for
which we invoke the top K solution framework for Ising
models and their generalizations, called Weighted Con-
straint Satisfaction Problems (WCSPs). We show that
the WCSP model with a simple “memory effect” can be
used to understand hysteresis combinatorially and from
the perspective of statistical mechanics. In addition
to the nearest neighbor interaction Ising model, the
WCSP framework facilitates accurate simulations of
long-range and k-body interactions between the spins.

Introduction and Motivation

Magnetic hysteresis is a physical phenomenon that oc-
curs in many materials, especially in ferromagnetic met-
als such as iron, nickel and cobalt. It refers to the mag-
netic response of these materials to a changing external
magnetic field that invokes a memory effect. Specifi-
cally, the total magnetization of the material follows
one curve when the external magnetic field steadily in-
creases and follows a different curve when it steadily
decreases. Therefore, for the same value of the exter-
nal magnetic field, the total magnetization of the mate-
rial can have different possible values, depending on the
history of the applied external magnetic field (Whitten-
burg, Dao, and Ross 2001). A typical hysteresis curve
has an offset from the origin, is non-linear, and encloses
a non-zero area between two saturation levels. Hystere-
sis can also occur in other macroscopic observables of
materials that are subjected to external perturbations.
Although hysteresis is a physical phenomenon that

can be characterized via precise measurements in con-
trolled experiments, it is worth studying it theoretically
and from a purely combinatorial perspective. In many
ways, such a study would be similar to the study of
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phase transitions (Gent and Walsh 1994) and heavy-
tailed phenomena (Gomes et al. 2000) in combinatorial
problems. In statistical mechanics, macroscopic observ-
ables are related to the microscopic spin interactions
via the Boltzmann distribution (Kardar 2007). How-
ever, this relationship is not always easy to study an-
alytically. In fact, the difficulty in doing so is one of
the reasons why hysteresis in macroscopic observables
is still largely unexplained using microscopic models.
In this paper, we show that, like phase transitions and
heavy-tailed distributions, hysteresis too is an artifact
of combinatorics, adding to the success of statistical
mechanics. However, in order to show this, we propose
a computational approach in lieu of an analytical ap-
proach and we make the reasonable assumption that
the Boltzmann distribution, by virtue of being a nega-
tive exponential, is mostly concentrated on the lowest
energy state and the first K−1 excited states, for some
small K. To validate our approach, we invoke the top
K solution framework for Weighted Constraint Satis-
faction Problems (WCSPs) (Li et al. 2020) and show
that the WCSP model with a simple “memory effect”
can be used to understand hysteresis combinatorially
and from the perspective of statistical mechanics. In
this context, we also discuss how the memory effect is
related to an effective “temperature” parameter.
While we first apply our methods to understand hys-

teresis in Ising models, compared to the nearest neigh-
bor Ising model, our WCSP framework has the ad-
vantage of efficiently incorporating long-range and k-
body interactions between the spins as well. Compared
to other simulation frameworks, such as Monte Carlo
methods, our WCSP framework has the advantage of
using a principled statistical mechanics perspective. In
addition, our WCSP framework allows us to understand
hysteresis more generally in combinatorial optimization
problems, with or without a connection to physically
occurring phenomena.

Background

The Ising model (Lenz 1920) is a common model used
in statistical mechanics where spins are restricted to



be ±1. For the most part, research using Ising models
has focused on pairwise interactions between nearest
neighbor spins in a lattice structure. The pairwise inter-
actions can be ferromagnetic or anti-ferromagnetic. A
ferromagnetic interaction prefers the interacting spins
to have the same value, while an anti-ferromagnetic in-
teraction prefers the interacting spins to have opposite
values. In an Ising model with periodic boundary condi-
tions (PBCs), a particle on the boundary is considered
as a nearest neighbor of its counterpart on the opposite
boundary in the same dimension. PBCs are commonly
used to emulate the behavior of infinite systems.
A spin configuration ~σ of the Ising model is an assign-

ment of a ±1 spin σi for each particle pi in the lattice.
The energy (Hamiltonian) of the spin configuration is

H(~σ) = −µ0h
∑

pi

σi − Jij

∑

(pi,pj)∈E

σiσj , (1)

where E represents the set of interacting nearest neigh-
bor particles in the lattice structure. Jij > 0 represents
a ferromagnetic interaction; and Jij < 0 represents an
anti-ferromagnetic interaction. h represents the exter-
nal magnetic field, and µ0 is the magnetic permeabil-
ity constant typically set to 1 in computational exper-
iments. The total magnetization of the spin configura-
tion M(~σ) is the number of spins which are set to +1
minus the number of spins which are set to −1.

The basic Ising model can be generalized by includ-
ing more complex spin interactions. Interactions that
are not restricted to nearest neighbor spins are called
long-range interactions. Under various theoretical con-
siderations, the long-range Ising model is typically de-
scribed using the Hamiltonian (Zhang et al. 2008)

H(~σ) =− µ0h
∑

pi

σi − J
∑

(pi,pj)∈E

σiσj

+D
∑

pi,pj

σiσj − 3(σiŷ · r̂ij)(σj ŷ · r̂ij)

r3ij
,

(2)

where Jij = J for all (pi, pj) ∈ E, and D is a dipolar
coupling parameter. While the first term is defined over
all nearest neighbor spins, the second term is a long-
range interaction term defined over all pairs of spins.
Its strength is inversely proportional to the cube of the
distance, rij , between the interacting particles pi and
pj . r̂ij is the unit vector in the direction from pi to
pj . ŷ is the unit vector in the Y direction, assuming
that all spins are ±1 in that direction and the total
magnetization is also measured in the Y direction. In
general, D is relatively small compared to J .

The Ising model can also be generalized to include 3-
spin interactions. In this model, each triplet of nearest
neighbor spins that form a right angle interact via a
3-body term. The Hamiltonian of such a system is

H(~σ) =− µ0h
∑

pi

σi − J
∑

(pi,pj)∈E

σiσj

− J3

∑

(pi,pj ,pk)∈L

σiσjσk,
(3)

where J3 is the 3-spin interaction parameter, and L
contains all triplets (pi, pj , pk) such that (pi, pj) ∈ E,
(pj , pk) ∈ E and (pi, pj) ⊥ (pj , pk).
In statistical mechanics, the Boltzmann distribution

is a probability distribution that specifies the probabil-
ity of a system being in a certain state, i.e., in a spin
configuration ~σ, at a temperature T . The Boltzmann
distribution is

Pβ(~σ) =
e−βH(~σ)

Zβ

, (4)

where H(~σ) is the energy of the spin configuration ~σ,
β is equal to (kBT )

−1 for the Boltzmann constant kB ,
and Zβ is a normalization constant, called the partition
function, given by

Zβ =
∑

~σ

e
−βH(~σ)

. (5)

A macroscopic observable is the expected value of a
function f defined on each possible spin configuration
~σ. It is given by

〈f〉 =
∑

~σ

Pβ(~σ)f(~σ). (6)

For example, in an Ising model where each spin is ±1,
〈M〉 represents the total magnetization of a material
when M(~σ) is defined to be the number of spins set to
+1 minus the number of spins set to −1.1

Methodology

Magnetic hysteresis is observed in the total magnetiza-
tion of a material when we apply an external magnetic
field h according to a three-stage procedure: (Stage 1)
h ∈ [0, hmax), (Stage 2) h ∈ [hmax,−hmax), and (Stage
3) h ∈ [−hmax, hmax], where hmax is chosen to be much
larger than the Ising coupling parameters J , J3 and D.
Many experimental studies have been conducted to

obtain hysteresis curves for different materials, includ-
ing the CoO/Co film (Berger et al. 2000) and Nd-Fe-Al-
B-Si alloys (Hadjipanayis and Gong 1988). There have
also been many attempts to explain hysteresis math-
ematically using microscopic models. However, these
methods use simplifying assumptions and are not very
successful in matching the fundamental characteristic
features of hysteresis curves. They are also unable to
efficiently and effectively reason with long-range inter-
actions and general k-body interactions for k > 2. In
fact, although the Boltzmann distribution can be used
to describe the relationship between the macroscopic
observables and the microscopic spin models, it is not
always easy to study it analytically. When faced with
this analytical difficulty, methods that resort to approx-
imations produce curves that compare poorly to those

1In the remainder of this paper, we simply write M as a
short hand for the total magnetization 〈M〉. We also use m
to represent the average magnetization, i.e., M divided by
the total number of spins.



observed experimentally.2

A Monte Carlo algorithm is also often used as a base-
line method to generate hysteresis curves (Wang et al.
2001). While this method has the benefit of produc-
ing curves that exhibit the fundamental characteris-
tics of hysteresis curves observed experimentally for 2-
dimensional lattices, the contours themselves may not
exactly match those of the experimental curves. The
Monte Carlo algorithm uses the Metropolis-Hastings
importance sampling procedure (Newman and Barkema
1999) in its inner loop and works as follows.
In the beginning, i.e., for h = 0 in Stage 1, a spin

configuration ~σ∗ is generated by choosing each σi to
be ±1 uniformly at random. M(~σ∗) is then reported
as the total magnetization M . Henceforth, each time
h changes, the algorithm starts an inner loop with L
iterations to update ~σ∗ and report the updated M(~σ∗)
as the new value of the total magnetization M . L is
typically chosen to be one-third of the total number of
spins. Iteration t of the inner loop constructs the spin
configuration ~σt, starting from ~σ0 set to ~σ∗ computed
for the previous value of h. ~σt+1 is constructed from ~σt

after the consideration of flipping a randomly chosen
spin σi to obtain ~σ′. If H(~σ′) < H(~σt), the flip is ac-
cepted and ~σt+1 is set to ~σ′. If not, the flip is accepted

with probability e
H(~σt)−H(~σ′)

kBT .
The Monte Carlo algorithm incorporates the general

idea that the repeated process of flipping chosen spins
is equivalent to thermalizing a spin configuration with
an environment of temperature T . It also incorporates
the “memory effect” of hysteresis by simply setting ~σ0

to be ~σ∗ in the inner loop.

The WCSP Top K Solution Framework

In this paper, we propose to study hysteresis by invok-
ing the top K solution framework for WCSPs (Li et al.
2020). The WCSP is defined by a triplet B = 〈X ,D, C〉,
where X = {X1, X2, . . . , XN} is a set of N variables,
D = {D1, D2, . . . , DN} is a set of N domains with dis-
crete values, and C = {C1, C2, . . . , CM} is a set of M
weighted constraints. Each variable Xi ∈ X can be as-
signed a value from its associated domain Di ∈ D. Each
constraint Ci ∈ C is defined over a certain subset of the
variables Si ⊆ X , called the scope of Ci. Ci associates
a non-negative weight with each possible assignment of
values to the variables in Si. A solution S is an assign-
ment of values to all variables in X from their respec-
tive domains. The top K solutions of a WCSP are a
sequence of solutions S1,S2, . . . ,SK such that Sk, for

2The OOMMF (Object-Oriented Micro-Magnetic
Frame) is an open-source software package aimed at devel-
oping portable and extensible public domain programs and
tools for micro-magnetics (https://math.nist.gov/oommf/).
It encapsulates a finite difference method to approximately
solve the Landau-Lifshitz-Gilbert equation but it fails to
match the experimental curves in fundamental character-
istic features such as smoothness and slope (Whittenburg,
Dao, and Ross 2001).

1 ≤ k ≤ K, minimizes the sum of the weights specified
by each weighted constraint in C and differs from each
of S1,S2, . . . ,Sk−1 in the value assigned to at least one
variable.3

First, we note that the Hamiltonians described in
each of Eq. (1), Eq. (2) and Eq. (3) can also be described
using the language of weighted constraints as follows.
We associate a Boolean variable with domain {−1,+1}
for each spin σi. A solution corresponds to a spin config-
uration ~σ. The Hamiltonian terms involving individual
σi’s map to unary weighted constraints; the Hamilto-
nian terms involving σiσj ’s map to binary weighted con-
straints; and the Hamiltonian terms involving σiσjσk’s
map to ternary weighted constraints. Not only is the
WCSP framework powerful enough to represent the
Hamiltonians, but while traditional methods struggle
with long-range and 3-spin interactions, these can also
be very easily incorporated into the WCSP framework.
Second, we note that the lowest energy state maps to

the optimal solution of the WCSP instance derived from
the Hamiltonian. In fact, the lowest K energy states
map to the top K solutions of the WCSP instance. Let
∆ be the set of top K solutions to the WCSP instance.
Using the reasonable assumption that the Boltzmann
distribution, by virtue of being a negative exponential,
is mostly concentrated on the lowest K energy states,
for some small K, the partition function can be approx-
imated as Zβ =

∑
~σ∈∆ e−βH(~σ) and the total magneti-

zation can be approximated asM =
∑

~σ∈∆ Pβ(~σ)M(~σ).
The top K solutions of WCSPs can be generated using
the methods proposed in (Li et al. 2020). Such methods
combine algorithmic techniques borrowed from artificial
intelligence and operations research.
Third, we note that our approach uses a principled

statistical mechanics perspective. It has been long ar-
gued that hysteresis occurs due to a “memory effect”,
i.e., a tendency of the system to remember and main-
tain its previous states in response to changes in the ex-
ternal magnetic field. This memory effect can be easily
encoded in our WCSP framework using unary weighted
constraints, making it significantly simpler than other
methods that use differential equations. Our WCSP
framework also allows us to understand hysteresis more
generally in combinatorial optimization problems, with
or without a connection to physically occurring phe-
nomena.

Experiments and Analyses

In this section, we present our empirical results and
analyses. Numerical experiments were conducted on a
3.6 GHz AMD Ryzen 5 3600 6-core CPU with 16 GB
RAM. The top K solutions of WCSPs were generated
using the Integer Linear Programming (ILP) formula-
tion proposed in (Li et al. 2020). The ILPs were solved
using Gurobi, while all other wrapper algorithms were
implemented in Python 3.6. We used a 40 × 40 2-
dimensional lattice structure with three different kinds

3S1 is referred to as an optimal solution or a top solution.



of spin interactions to generate our problem instances:
nearest neighbor, long-range and 3-spin.
As noted earlier, the various terms of the Hamiltoni-

ans described in each of Eq. (1), Eq. (2) and Eq. (3) can
be converted to weighted constraints. Similarly, simple
unary constraints can be used to encode the memory
effect in our WCSP framework. Suppose ~σ1, ~σ2, . . . , ~σK

are the top K spin configurations for a certain value
of h. For the next value of h, unary constraints can be
added to help the system “remember” these top K spin
configurations. Each σj

i induces a unary constraint on
the WCSP variable Xi corresponding to spin σi. The
unary constraint assigns a cost of 0 for Xi = σj

i and a

cost of Γ e−H(~σj)

Z
for Xi 6= σj

i , where Z =
∑K

j=1 e
−H(~σj).

Therefore, Γ measures the strength of the induced mem-
ory effect, and the other weighting factors are in accor-
dance with the Boltzmann distribution. Later in this
section, we examine the relationship between Γ and an
effective temperature T .

Nearest Neighbor Spin Interactions

We first examine the empirical results on an Ising model
with nearest neighbor ferromagnetic spin interactions.
Fig. 1 shows these results on a 40 × 40 2-dimensional
lattice structure with PBCs for different values of the
memory effect parameter, Γ. Each spin only interacts
with the external magnetic field h and its four nearest
adjacent neighbors with strength J . The Hamiltonian
of the system is as specified in Eq. (1), but with all
Jij set to J . As h begins to dominate J , m approaches
saturation. That is, when h/J is high, m approaches 1,
and when h/J is low, m approaches −1. Higher values
of Γ induce more memory. As Γ increases, the curves
begin to exhibit the characteristic features of hysteresis
curves, and the area enclosed between the Stage 2 and
Stage 3 contours of the hysteresis curves also increases.
Physically, this enclosed area represents the energy re-
quired from the external magnetic field to flip spins, and
as expected, higher values of Γ induce more memory
and thereby increase this required energy. The slopes
of the Stage 2 and Stage 3 contours also decrease with
increasing Γ for the same reason.

Memory Effect and Temperature

As noted earlier, the baseline Monte Carlo algorithm
incorporates a general intuition about the dynamics
of changing h in relationship to the temperature. On
the other hand, our WCSP approach uses a principled
statistical mechanics perspective. While our WCSP ap-
proach uses Γ to induce a memory effect in the system,
the Monte Carlo algorithm incorporates it by setting ~σ0

to be ~σ∗ in its inner loop but subsequently thermalizes
it with temperature T . In this subsection, we examine
whether Γ and T are possibly related to each other.
An inverse relationship is certainly conceivable from a
physical standpoint because particles are more stable at
lower temperatures compared to higher temperatures;

and so, it is harder to flip spins when the temperature
decreases, leading to a larger memory effect.
To unravel a possible relationship between Γ and T ,

we run our WCSP algorithm as well as the Monte Carlo
algorithm on the same 40 × 40 2-dimensional lattice
structure with PBCs. We match values of Γ with those
values of T that yield the same enclosed areas between
the Stage 2 and Stage 3 contours. This is because this
area is the most important comparative feature since it
reflects an energy consideration on the system that mea-
sures the cost of flipping spins. For example, Fig. 2(a) is
generated using the Monte Carlo algorithm with T set
to 0.8J , and its enclosed area matches that of Fig. 1(c).
By using the enclosed area between the Stage 2 and

Stage 3 contours of hysteresis curves as a bridge be-
tween our WCSP algorithm and the Monte Carlo algo-
rithm, we can plot data points indicating the relation-
ship between Γ and T , as shown in Fig. 2(b). We then
fit an allometric power function on these data points
to yield the best-fit curve given by Γ = 6.24 × T−1.04.
Indeed, this inverse relationship is close to what is ex-
pected from physical intuition: At lower temperatures,
the effect of memory is stronger.

Long-Range Spin Interactions

In this subsection, we examine empirical results on an
Ising model with long-range ferromagnetic spin inter-
actions. Fig. 3 shows these results on a 40 × 40 2-
dimensional lattice structure with PBCs for K = 4 and
Γ = 8. Each spin interacts with the external magnetic
field h, each of its four nearest adjacent neighbors with
strength J , and every other spin with strength D/r3,
where r is the distance between the interacting spins.
The Hamiltonian of the system is as specified in Eq. (2).
Fig. 3(a) shows the effect of long-range interactions

on the hysteresis curve when D/J = 0.2 and Γ = 8.
We first note that this curve has all the characteristic
features of a hysteresis curve obtained through physi-
cal experiments. However, compared to the hysteresis
curve in Fig. 1(c) produced by the nearest neighbor
Ising model under the same parameter values, the hys-
teresis curve in Fig. 3(a) is marginally smoother and has
a marginally smaller area enclosed between the Stage 2
and Stage 3 contours. This is because long-range inter-
actions, although weaker than nearest neighbor interac-
tions, reinforce them since they too are ferromagnetic;
and becauseD and J have opposite signs in Eq. (2), this
effectively decreases J and increases h/J . This makes
it easier to flip spins, leading to smoother hysteresis
curves and smaller areas enclosed between the Stage 2
and Stage 3 contours, as explained before via energy
considerations.
The geometry of a hysteresis curve is typically sym-

metric around the Y -axis; and four interesting points in
this geometry are (−Hs,−1), (−Hc, 0), (+Hc, 0) and
(+Hs,+1). Fig. 3(b) shows the behavior of the val-
ues of Hc and Hs as D/J varies for K = 4 and
Γ = 8. With increasing D/J , the value of Hc mostly
stays the same, fluctuating within the narrow range
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