Generating the Top K Solutions to Weighted CSPs:
A Comparison of Different Approaches
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Abstract—The weighted constraint satisfaction problem
(WCSP) is a general and very useful combinatorial optimization
tool. Despite its importance, the task of generating the top
K solutions to it is understudied. One benefit of generating
the top K solutions is in creating a framework for ‘“human-
in-the-loop AI”. Most real-world problems cannot be modeled
accurately/completely up front and, hence, generating the top K
solutions gives users a chance to exercise preferences that are
not explicitly included in the modeling phase. In this paper, we
first discuss the importance of generating the top K solutions to
WCSPs in various contexts. We then propose various approaches
to do so and empirically compare them. We include approaches
based on quadratization, pseudo-Boolean optimization, constraint
propagation, and integer linear programming. Together, they
cover all major algorithmic ingredients derived from constraint
programming (CP), artificial intelligence (AI), and operations
research (OR).

Index Terms—Weighted CSP; Top K Solutions.

I. INTRODUCTION

The weighted constraint satisfaction problem (WCSP) is
a combinatorial optimization problem and a generalization
of the constraint satisfaction problem (CSP). Each tuple in
a constraint—i.e., an assignment of values to all variables
in that constraint—is associated with a non-negative weight
(sometimes referred to as “cost”). The goal is to find an
assignment of values to all variables from their respective
domains such that the total weight is minimized [1].

More formally, the WCSP is defined by a triplet B =
(X,D,C), where X = {X;,Xo,...,Xn} is a set of N
variables, D = {D;1,Ds,...,Dxn} is a set of N domains
with discrete values, and C = {C1,Cs,...,Cpy} is a set
of M weighted constraints. Each variable X; € X can be
assigned a value in its associated domain D; € D. Each
constraint C; € C is defined over a certain subset of the
variables S; C X, called the scope of C;. C; associates a
non-negative weight with each possible assignment of values
to the variables in S;. (For notational convenience, we use .S;
and C; interchangeably throughout this paper when referring
to the variables participating in a weighted constraint, e.g.,
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X, € C; = Xi, € S;.) The goal is to find an assignment of
values to all variables in X from their respective domains that
minimizes the sum of the weights specified by each weighted
constraint in C [1]. This combinatorial task can equivalently
be characterized by having to compute

arg min Z Ec,(a|Cy), (1)

a€A(X) Ciec

where A(X) represents the set of all [D;|x |Dg| x...x |Dy]
complete assignments to all variables in X. a|C; represents
the projection of a complete assignment a onto the subset of
variables in C;. E¢, is a function that maps each a|C; to its
associated weight in C;.

The Boolean WCSP is the WCSP in which each domain
D; € D has its cardinality restricted to be 2. Despite this
restriction, the Boolean WCSP is representationally as power-
ful as the WCSP, and it is also NP-hard to solve in general.
The (Boolean) WCSP can be used to model a wide range
of useful combinatorial problems. For example, in artificial
intelligence (Al), it can be used to model user preferences [2]
and combinatorial auctions. In bioinformatics, it can be used
to locate RNA motifs [3]. In statistical physics, the energy
minimization problem on the Potts model is equivalent to that
on its corresponding pairwise Markov random field [4], which
in turn can be modeled as the WCSP. In computer vision,
it can be used for image restoration and panoramic image
stitching [5], [6].

Despite the importance of the WCSP, the problem of
generating the top K solutions to it has not been studied much.
An important benefit of generating the top K solutions is in
creating a framework for “human-in-the-loop AI”. Most real-
world problems cannot be modeled accurately/completely up
front and, hence, generating the top K solutions gives users a
chance to exercise preferences that are not explicitly included
in the modeling phase. It also facilitates knowledge elicitation
since users can choose viable solutions and reject others,
declaring reasons for doing so that can then be incorporated
for further reasoning.



One example domain is in hypothesis selection over knowl-
edge graphs (KGs). A KG is an effective representation of
knowledge. It consists of a collection of knowledge elements,
each of which in turn is extracted from the web or other
sources. Information extractors that use natural language pro-
cessing techniques or other complex algorithms are usually
noisy. That is, the vast number of knowledge elements ex-
tracted from the web may not only be associated with different
confidence values but may also be inconsistent with each other.
Moreover, there might be additional domain knowledge avail-
able in the form of ontological constraints. Many applications
such as question-answering systems that are built on top of
large-scale KGs are required to generate the top K hypotheses,
i.e., coherent subgraphs of a KG that are consistent with the
ontological constraints and that are of high confidence values.
This problem can be reformulated as the problem of generating
the top K solutions to a WCSP [7].

A second related benefit is in quickly adapting to a dynam-
ically changing environment. Suppose a timetabling problem
is formulated and solved as a WCSP. If the top solution to
it becomes unviable due to an unexpected change in one of
the timetabling constraints or preferences, the next best viable
solution can be sought within the available list of top K
solutions before attempting to solve a new WCSP. Therefore,
generating the top K solutions serves as a caching of viable
solutions that can be used to adapt to unforeseen changes in the
environment. Such a framework is also very useful in planning
domains where new information gathered from the real world
at execution time can make certain plans unviable.

A third benefit is in computational physics. At the mi-
croscopic level, a material is composed of particles with
associated spins. The interactions between spins create fer-
romagnetic, anti-ferromagnetic or other interaction potentials
between them similar to those between variables in a WCSP.
However, the macroscopic observables of the material, like
its total magnetization, are not merely properties of a single
spin configuration but are instead properties of all possible
spin configurations summed via the Boltzmann equation of
statistical mechanics [8]. Since the Boltzmann equation in-
volves exponentials, under certain weak assumptions, it can be
approximated well using the top K solutions of the interaction
potentials. Generating the top K solutions of the interaction
potentials can be used to study macroscopic properties such
as magnetic hysteresis [9].

In this paper, we propose various approaches to generate the
top K solutions to WCSPs and empirically compare them. We
include approaches based on quadratization, pseudo-Boolean
optimization, constraint propagation, and integer linear pro-
gramming (ILP). Together, they cover all major algorithmic
ingredients derived from constraint programming (CP), Al,
and operations research (OR).

II. Top K SOLUTIONS TO WCSPs

The task of generating the top K solutions S1,Ss, ..., Sk
needs a more formal specification since it can be conceived in
many ways. The following are some conceivable methods.

o Method A is to request the solutions &1, Sa, . .., Sk such
that &7 is the top solution, Sy is the second best solution
and differs from S; in the assignment of values to at least
one of the N variables, S5 is the third best solution and
differs from both &7 and S, in the assignment of values
to at least one of the N variables, and so forth.

o Method B is to request the solutions &7, 8o, ..., Sk such
that &7 is the top solution, Sy is the second best solution
and differs from S; in the assignment of values to at
least d of the N variables, Sz is the third best solution
and differs from both §; and S, in the assignment of
values to at least d of the N variables, and so forth.

e Method C is to request the solutions S1,Ss,...,S5k
such that the sum of their respective costs c1,ca, ..., Cx
is minimized and any two distinct S;, §; differ in the
assignment of values to at least one of the IV variables.

e Method D is to request the solutions Si,8o,...,SKk
such that the sum of their respective costs ¢y, ca, ..., Cx
is minimized and any two distinct S;, §; differ in the
assignment of values to at least d of the NV variables.

We first note that Methods A and C are equivalent but
Methods B and D are not equivalent for fixed K.' Therefore,
in the rest of this paper, we focus on Methods A (= C) and
B, with Method B being more general. We omit discussion on
Method D noting that it requires a fixed value of K and is
equivalent to solving a larger WCSP with KN variables.

III. METHODOLOGIES

Methods to generate only the top solution to WCSPs have
been studied in a number of previous works. Many of these
successful methods, applicable to both Boolean and non-
Boolean variables, have been incorporated in Toulbar2 [10],
a state-of-the-art WCSP solver. Finding the top solution to
WCSPs can also be reformulated as the minimum weighted
vertex cover problem [11]-[13]. Moreover, for the special case
of Boolean variables, finding the top solution can also be done
via pseudo-Boolean optimization [14].

Despite the existence of many works for finding the top
solution, the problem of finding the top K solutions to WCSPs
is understudied.? [7] uses heuristic methods to generate the top
K solutions but does not provide any theoretical guarantees.
Moreover, many methods, such as those based on analyzing
the variable-interaction graphs [16], are known to work specif-
ically for generating the top solution but are not applicable to
generating the top K solutions. This is because generating the
top K solutions involves global constraints even if the original
WCSP does not.

In this section, we provide methodologies to make the top
solution techniques for WCSPs applicable for generating the
top K solutions as well. We first note that in order to generate

'Suppose we have only two Boolean variables X7 and Xo with costs
(X1 =0,X2=0)=1,¢(X1=0,X0=1)=2,¢(X1 =1,X2=0) =
2 and ¢(X1 =1,X2 =1) =4. For K =2 and d = 2, Methods B and D
produce different results.

2For CSPs, the equivalent problem of generating K solutions is relatively
well studied [15].



the k" solution for 1 < k < K, prohibitive constraints are
added in the k'" iteration to prevent the top k — 1 solutions
found thus far. These prohibitive constraints are naturally
global constraints. They can be dealt with in different ways in
different frameworks.

A. Quadratization

A prohibitive constraint is required to enforce a difference
between the k*" solution and each of the top k — 1 solutions
found thus far in the values assigned to at least d variables.
Stated directly in the language of weighted constraints, a
prohibitive constraint is a global constraint that involves all
variables. Therefore, its tabular representation is exponential
in N, rendering its explicit encoding for WCSP solvers
completely unviable.

To circumvent this problem, we propose the use of quadra-
tization. In essence, quadratization refers to the idea of de-
composing higher-arity interactions between variables to only
binary interactions between them but at the cost of introducing
auxiliary variables [17]. While quadratization is hard to study
for general functions, quadratization of functions on Boolean
variables has received more attention. Recent progress in this
field suggests that a symmetric function on Boolean variables
can be decomposed to a sum of quadratic functions on the
same Boolean variables plus a logarithmic number of auxiliary
Boolean variables [18].

This theory can be applied to WCSPs with only Boolean
variables. In such cases, the prohibitive global constraints are
in fact symmetric Boolean functions since they only specify
how many variables, as opposed to which variables, should
have differing assignments compared to each of the top k — 1
solutions found thus far. Therefore, these global constraints
can be decomposed to binary weighted constraints easily.

For a WCSP solver such as Toulbar2, the binary weighted
constraints coming from the decomposition of the prohibitive
global constraints have simple tabular representations. They
can be added to the set of original weighted constraints before
invoking the solver in the k' iteration to obtain the k'
solution. For WCSPs that have only unary and binary weighted
constraints, quadratic pseudo-Boolean optimization (QPBO)
solvers can be invoked [14]. Moreover, since the prohibitive
global constraints can also be decomposed to binary con-
straints, they can be added to the objective function in the
k" iteration to obtain the k*" solution without compromising
the quadratic form.

B. ILP

Without loss of generality, we first assume that every vari-
able has a unique unary weighted constraint associated with
it. If there are multiple unary weighted constraints associated
with a variable, they can be combined into one; and if there
are no unary weighted constraints associated with a variable,
one with all weights set to zero can be introduced artificially.

Suppose we denote the top ¢ solution as follows: Sy =
(X; = vécl,Xg = v_‘;(Q,...,XN = Uﬁ(w}'3 Extending on

3For notational convenience, U&N will also be written as vf Xy}

our previous work in [19], the problem of generating the k'"
solution, for 1 < k£ < K, can be formulated as an ILP with
only Boolean variables as follows.

m'isnircnize Z Z wgqf
992 €9  Gee ae A(S(C))
c c
st g5 e {0,1} Vg, €gq
> df = 1 vCecC
a€A(S(C))
> G = Ga

acA(S(C)):alS(C")=a’
VC,C" € C:|S(CY)| = 1 AS(C') C S(C),Vd' € A(S(C"))

ooo1-¢% ) = d V1<i<k—1,
cec:|S(C)|=1 5@

where ¢ = {¢¢ | C € CAa € A(S(C))}, and wS denotes
the weight of assignment a specified by constraint C. The
cardinality of g is > ccc[lxeso) [D(X)]. The first line
represents the minimization of the sum of weights. The second
line represents the ILP constraints that enforce the Boolean
property for all ¢g’s. It consists of > ccc [Txeg(oy [D(X)] =
O (\C|ﬁc> ILP constraints, where C' = maxcec |S(C)| and

D = maxxex |D(X)|. The third line represents the ILP
constraints that enforce a unique assignment of values to
variables in each WCSP constraint. It consists of |C| ILP con-

straints, each of which has [A(S(C))| = [[xes(c) [D(X)| =

@ ﬁc) variables. The fourth line represents the ILP con-
straints which enforce that every two assignments in two
WCSP constraints must be consistent on their shared vari-
ables. It consists of O (\C| C- D) ILP constraints. Each

of these ILP constraints has O ( D1
line represents the prohibitive global constraints that enforce
a difference from each of the top k — 1 solutions found thus
far in the values assigned to at least d variables. It consists of
k — 1 ILP constraints, each of which has N variables.

) variables. The last

IV. EXPERIMENTAL RESULTS

We now provide experimental results that compare the
various methods for generating the top K solutions to WCSPs.
All experiments were run on a laptop with a 3.1GHz quad-
core Intel Core i7 processor and 16GB 2133MHz LPDDR3
memory. All running times are measured in seconds. We used
three datasets for the experiments: the UAI dataset, the Ising
model dataset, and the Erdos-Rényi dataset.

The UAI dataset is made available by the University of Cali-
fornia, Irvine via the link: http://sli.ics.uci.edu/~ihler/uai-data/.
We used 17 available WCSP instances. These instances have
maximum domain size < 10 with only unary and binary
weighted constraints.

The WCSP instances in the Ising model dataset were
generated as follows. We used a 40 x 40 2-dimensional
lattice structure of Ising spin variables. We considered nearest-
neighbor interactions without an external magnetic field. An



Name \ K 1 2 3 4 s 6 P\ K 1 2 3 4 5 6
29 0.045406 0.099680 0.159102 0.216908 0.272228 0.324488 0.1 0.016447 0.031001 0.046962 0.062126 0.083085 0.103564
DSICI25 0.106832 0217126 0.349660 0458314 13.261575 37.407089 02 0644113 1207603 1706096 2155048 2.635259 3.104022
GEOM30a3  0.010978 0.023778 0.034906 0.105019 0.196941 0269005 03 0.808380 1613020 2381056 3180436 3974385 4785877
GEOM30a_4 0014780 0.031078 0.046270 0.059286 0.157992 0227041 0.4 22256275 43734139 64.237934  81.844331 107726265  130.647845
GEOM3025 0016725 0034106 0054135 0078917 0096374 0223302 05 113138839 217982236 362.823347 512906342  639.578730 757373041
driverlogdlac  0.097509 0.196127 0.285424 0.374978 0469777 0.563200

iverlog 0.6 113771927 286496653 418216053  533.634755  691.852802  817.851893
driverlog02ac 876335637  1777.000026 2523380823  4066.005331 4951544352 6052300541

07 204130670 384311431  500.988404 781153543  978.822693  1197.676624
16450_5a_2 0298482 0592172 59360335 166525465 210161505 265589398
16450_5a_3 0.726636 1.443531 2160011 408277814  6252.195417  7797.841997 0.8 203.865396 447951235  726.605473 952589703  1206.942405  1470.229164
o450 524 1050851 2168919 17118558 13248081 8031849313 53194151083 0.9 1058537818 2250.422945 3190207245 4220.987575 5415125955  6747.523805
mycielSg_3 0022384 0.047081 0.069788 0.723032 1.478215 2262733
mycielsg_ 4 0.031199 0.063706 0.101349 0.132265 1.803422 4224769 . . .. P . _
myciclse_s 0.049457 0.096153 0.151467 0.206150 0.255206 7421422 TABLE III: Gurobi on the Erdos-Rényi dataset with d = 1.
queens_5_3 0.015450 0.030404 0.043798 0.622870 1108807 1609571
queens_5_4 0.020579 0.042416 0.068729 0.090424 1629419 2786443
satelliOlac  50.114745 101713977 153408043 205403035  258.982060  313.314846 e E——
satellie02ac 211403276 437370021 684208177  958.824607 1207.126499  1487.134897 P K=1
0.1 0.012589
. . 02 0.028718
TABLE I: Gurobi on the UAI dataset with d = 1. 03 0.038424
04 1917937

p\ K 1 2 3 4 5 6
0.0 0.638326  0.856472 7.123784 8919827 16910342  18.909787
0.1 75948327  152.059466 236236200 319.718994  431.744436  526.693602
0.2 88.022129  177.322234  281.253682  386.028938  616.844662  651.965991
03 90.149931  231.156042  338.193184  451.910688  605.158208  725.752342
04 96.800210  227.634564  339.146524  452.696057  600.612583  721.518038
05 91.156919 184369873  290.984962  395.283319  531.946094  639.167596
0.6 92.009285 226944586  324.766628  427.980900 599313912  657.587034
0.7 94771781 188455620  297.191212  391.415626  652.865360  646.465575
0.8 93545905 211445277 323273459  435.189458  582.965451  702.248596
0.9 84.854042  161.436855 253.349112  336.670010 465082251  551.220683
1.0 0.716885 0948226 12168897 16772620 19766996  42.548012

TABLE II: Gurobi on the Ising model dataset with d = 1.

interaction between two nearest-neighbor spins can either be
ferromagnetic or anti-ferromagnetic. The control parameter p
determined the fraction of anti-ferromagnetic spin interactions.
We varied p from 0 to 1, with step size 0.1. For each of the 11
possible values of p, we averaged our results over 10 instances.

The WCSP instances in the Erdos-Rényi dataset were gen-
erated as follows. We first generated Erdos-Rényi graphs [20]
with 60 nodes each. Each node represents a Boolean variable,
and the probability parameter p determines the presence of
an edge between any two distinct nodes. An edge represents a
binary weighed constraint between the two variables represent-
ing its endpoint nodes. Each weight in a weighted constraint
was randomly chosen to be an integer in the interval [0,4].
We varied p from 0.1 to 0.9 with step size 0.1.*

In our experiments, we compared the following solvers:
(a) the Gurobi Optimizer [21], using ILP formulations, (b)
Toulbar2 [10], a state-of-the-art WCSP solver, and (c) qp-
boMex [14], a state-of-the-art QPBO solver. To generate the
k" solution for 1 < k < K, prohibitive constraints are added
in the k" iteration to prevent the top k& — 1 solutions. These
prohibitive constraints are global constraints. They were en-
coded as linear inequality constraints suitable for Gurobi or as
quadratic symmetric function constraints suitable for Toulbar2
and gpboMex. However, the quadratic symmetric function
constraints are applicable only for Boolean variables [18]. In
addition, gpboMex also allows only for Boolean variables.

In the first subsection, we compare different methods and
observe that Gurobi significantly outperforms other methods.
In the second subsection, we study the scaling behavior of
Gurobi with respect to increasing values of K and d.

0.5 26.899478
0.6 21.694742
0.7 70.020841
0.8 148.281038
0.9  1168.726508

TABLE IV: Toulbar2 on the Erdos-Rényi dataset with d = 1.

A. Comparison of Different Methods

Table I shows the performance of Gurobi on the UAI dataset
for different values of K with d = 1. The entries indicate the
cumulative time required to generate the top K solutions. On
all these instances, Toulbar2 failed to generate even the top
solution since the problem sizes were deemed to be too large.
gpboMex was applicable to only 1 instance ‘le450_5a_2’. It
took 0.075s for gpboMex to generate the optimal solution for
this case; but it failed to generate other suboptimal solutions.’

Table II shows the performance of Gurobi on the Ising
model dataset for different values of p and K with d = 1.
The entries indicate the cumulative time required to generate
the top K solutions; and a time limit of 300s was given to
each of the K iterations. On these instances, Toulbar2 was
able to generate only the top solution and only when p = 0 or
p = 1. Its average running time on the successful instances for
p =0 and p =1 was 0.286s and 0.285s, respectively. In all
other cases, it timed out. The performance of qpboMex was
very similar to that of Toulbar2. It was able to generate only
the top solutions and only when p = 0 or p = 1. Its average
running time on the successful instances for p =0 and p =1
was 0.042s and 0.041s, respectively.

Table IIT shows the performance of Gurobi on the Erdos-
Rényi dataset for different values of p and K with d = 1. The
entries indicate the cumulative time required to generate the
top K solutions; and a time limit of 1200s was given to each
of the K iterations. Toulbar2 was able to generate only the
top solution for each instance, with running times shown in
Table IV. In all other cases, it timed out. gpboMex could only
generate the top solution for one case, i.e., for p = 0.1. It took
0.004s for gpboMex to generate the optimal solution for this
case; but it failed to generate other suboptimal solutions.

From these results, it is easy to conclude that Gurobi is
currently the only viable method among the existing off-the-
shelf solvers for generating the top K solutions to WCSPs

#Without averaging over 10 instances for each possible value of p, we report
on 9 individual instances since they are indicative of the general trends.

SgpboMex returns a specific exit code to indicate that it cannot solve a
problem instance.



Name \ K 1 2 3 4 5 6 Name \ K 1 2 3 4 5 6
29 0.044889 0.093653 0.143490 0.187253 0.234077 0.279256 29 0.046694 0.105542 0.164010 0.216135 0.269785 0.322676
DSIC125 0.090875 0.183604 0.294834 0.389074 38.485259 73.381663 DSIC125 0.098438 0.193016 0.307094 0.398736 93.707280 277.215449
GEOM30a_3 0.009502 0.020100 0.029540 0.092820 0.157183 0.222529 GEOM30a_3 0.010637 0.022767 0.033709 0.085857 0.135265 0.187612
GEOM30a_4 0.015141 0.029802 0.044493 0.056798 0.128169 0.194509 GEOM30a_4 0.015244 0.029354 0.044004 0.056564 0.146394 0.213167
GEOM30a_5 0.016150 0.033638 0.053905 0.078138 0.094940 0.227355 GEOM30a_5 0.017284 0.039570 0.061497 0.086970 0.103684 0.207135
driverlogOlac 0.103221 0.207878 0.306139 0.403821 0.498249 0.612439 driverlogOlac 0.106813 0.213720 0.331723 0.426196 0.522932 0.647410
driverlog02ac ~ 867.613675  1907.417619  3108.379250  3704.813593  4463.120142  5483.314061 driverlog02ac ~ 873.423437  1747.764080  2735.096566 ~ 3689.474908  4672.599442  5461.077691
le450_5a_2 0.297118 0.599144 176.928288 435.679361 543.542576 879.377756 le450_5a_2 0.306906 0.606134  2182.485199  5146.494628 Time Out Time Out
1e450_5a_3 0.612869 1.246977 1.869716 Time Out Time Out Time Out 1e450_5a_3 0.610946 1.278551 1.905660 Time Out Time Out Time Out
le450_5a_4 1.308174 2.558808 15.769929 16.902670 Time Out Time Out le450_5a_4 1.080703 2.196142 18.394387 19.517824 Time Out Time Out
myciel5g_3 0.022216 0.045431 0.067313 0.992660 2.797885 3.936749 myciel5g_3 0.023438 0.048679 0.072588 3.167216 7.341393 11.570325
myciel5Sg_4 0.032702 0.065108 0.103696 0.136518 4.206785 7.676406 myciel5g_4 0.031082 0.066118 0.108446 0.140856 7.670225 17.986415
myciel5g_5 0.048541 0.097438 0.153795 0.209105 0.254415 5.146981 myciel5g_5 0.056299 0.109280 0.168188 0.223375 0.271757 10.809051
queen5_5_3 0.015447 0.029199 0.043584 1.860184 4.377596 6.042508 queen5_5_3 0.015610 0.030363 0.044272 3.047800 9.151658 15.738343
queen5_5_4 0.030955 0.057675 0.085025 0.107589 3.161552 12.332942 queen5_5_4 0.021841 0.044804 0.073067 0.095571 5.327037 26.360986
satelliteOlac 51.777251 101.707292 153.824613 204.074684 256.636463 310.895090 satelliteOlac 50.773345 99.318204 152.345519 202.980463 256.221921 306.026177
satellite02ac 208.870650 434.627622 655.586530 878.524620  1099.588159  1325.111695 satellite02ac 245764104 519.915170 790.435468 1062916955  1333.381003  1567.425389

TABLE V: Gurobi on the UAI dataset with d = 2.

Name \ K 1 2 3 4 5 6
29 0.044668 0.097963 0.155840 0.205683 0.255335 0.304775
DSIC125 0.091101 0.182812 0.297171 0.410300 26.060292 141.772509
GEOM30a_3 0.010676 0.022573 0.033179 0.091357 0.144641 0.199868
GEOM30a_4 0.015035 0.029429 0.043880 0.056533 0.159064 0.248232
GEOM30a_5 0.019166 0.042792 0.067256 0.096821 0.116154 0.247865
driverlogOlac 0.106663 0.216099 0.321633 0.412149 0.501990 0.617877
driverlog02ac ~ 868.608740  1891.746099  2970.052148  3927.390976  4882.853929  5987.147603
1e450_5a_2 0.301343 0.592013 968.398253  2198.892417  3315.096333  5003.164408
1e450_5a_3 0.634132 1.274331 1.910956 Time Out Time Out Time Out
1e450_5a_4 1.088893 2.215917 20.257083 21.391217 Time Out Time Out
myciel5g_3 0.022054 0.045229 0.067041 1.571629 2.455481 5.577489
myciel5g_4 0.036597 0.076109 0.124124 0.162250 5.096919 13.061579
mycielSg_5 0.057012 0.112605 0.178010 0.247078 0.294847 8.660527
queen5_5_3 0.015492 0.031395 0.046358 1.696383 7.339393 10.740527
queen5_5_4 0.021755 0.043642 0.069763 0.091862 4.289730 19.510938
satellite0lac 51.002272 99.963361 153.121990 204.057705 256.304444 307.728991
satellite02ac 257.838993 532.110179 806.995655  1083.737633  1359.451652  1621.945288

TABLE VI: Gurobi on the UAI dataset with d = 3.

even with d = 1. This might be in part due to the fact that
matrix manipulations help OR methods reason about global
constraints much more efficiently than other methods.

B. Further Experiments with Gurobi

Because Gurobi seems to be the only viable method for
generating the top K solutions, we were able to conduct
further exclusive experiments with it. In this subsection, we
report on two such kinds of experiments. First, we wanted to
understand how the running time of Gurobi scales with K,
retaining d = 1. Second, we wanted to understand how it
performs for higher values of d.

Figure 1 shows the scaling behavior of Gurobi on some
selected problem instances for increasing values of K and d =
1. For many instances, the scaling is linear, as in UAI 29 and
Erdos-Rényi p = 0.5. This is very encouraging since the added
complexity of generating the top K solutions leads to only a
linear increase in the running time of Gurobi, making it viable
for a human-in-the-loop Al framework. Of course, there are
some interesting exceptions, as in UAI 1e450_5a_3 and Ising
model p = 0. Here, the problem instances become harder—
not after the first but—after the third or fourth introduction of
prohibitive global constraints.

Tables V,VI&VII show the performance of Gurobi on the
UAI dataset for different values of K with d = 2, d = 3
and d = 4, respectively. The entries indicate the cumulative
time required to generate the top K solutions; and a time
limit of 3600s was given to each of the K iterations. Gurobi’s
ability to solve most of these problem instances is also
very encouraging from the perspective of human-in-the-loop
Al since users can control the desired “difference” between
solutions (hypotheses).

TABLE VII: Gurobi on the UAI dataset with d = 4.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced the problem of generating the
top K solutions to WCSPs. While WCSPs themselves are used
to model a wide range of combinatorial optimization problems,
generating the top K solutions to them is important from the
perspective of “human-in-the-loop AI” and in computational
physics. Despite the significance of generating the top K
solutions, the problem is largely understudied in Al, theoretical
computer science and computational physics. In this paper, we
used various off-the-shelf methods and empirically compared
them on a variety of WCSP instances. We included methods
based on quadratization, pseudo-Boolean optimization, con-
straint propagation, and ILP. Together, they covered all major
algorithmic ingredients derived from CP, Al and OR. We found
that Gurobi alone is viable in producing the top K solutions
to WCSPs using an ILP formulation.

There are many avenues for future work. In terms of tech-
niques, we will develop new methods based on propagating
global constraints that encode symmetric functions. In terms
of applications, we will apply them to various problems in Al
and computational physics.
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