
Generating the Top K Solutions to Weighted CSPs:

A Comparison of Different Approaches

Ang Li

Department of Computer Science

University of Southern California

ali355@usc.edu

Yuling Guan

Department of Physics and Astronomy

University of Southern California

yulinggu@usc.edu

Sven Koenig

Department of Computer Science

University of Southern California

skoenig@usc.edu

Stephan Haas

Department of Physics and Astronomy

University of Southern California

shaas@usc.edu

T. K. Satish Kumar

Departments of Computer Science and Industrial and Systems Engineering

University of Southern California

tkskwork@gmail.com

Abstract—The weighted constraint satisfaction problem
(WCSP) is a general and very useful combinatorial optimization
tool. Despite its importance, the task of generating the top
K solutions to it is understudied. One benefit of generating
the top K solutions is in creating a framework for “human-
in-the-loop AI”. Most real-world problems cannot be modeled
accurately/completely up front and, hence, generating the top K

solutions gives users a chance to exercise preferences that are
not explicitly included in the modeling phase. In this paper, we
first discuss the importance of generating the top K solutions to
WCSPs in various contexts. We then propose various approaches
to do so and empirically compare them. We include approaches
based on quadratization, pseudo-Boolean optimization, constraint
propagation, and integer linear programming. Together, they
cover all major algorithmic ingredients derived from constraint
programming (CP), artificial intelligence (AI), and operations
research (OR).

Index Terms—Weighted CSP; Top K Solutions.

I. INTRODUCTION

The weighted constraint satisfaction problem (WCSP) is

a combinatorial optimization problem and a generalization

of the constraint satisfaction problem (CSP). Each tuple in

a constraint—i.e., an assignment of values to all variables

in that constraint—is associated with a non-negative weight

(sometimes referred to as “cost”). The goal is to find an

assignment of values to all variables from their respective

domains such that the total weight is minimized [1].

More formally, the WCSP is defined by a triplet B =
〈X ,D, C〉, where X = {X1, X2, . . . , XN} is a set of N

variables, D = {D1, D2, . . . , DN} is a set of N domains

with discrete values, and C = {C1, C2, . . . , CM} is a set

of M weighted constraints. Each variable Xi ∈ X can be

assigned a value in its associated domain Di ∈ D. Each

constraint Ci ∈ C is defined over a certain subset of the

variables Si ⊆ X , called the scope of Ci. Ci associates a

non-negative weight with each possible assignment of values

to the variables in Si. (For notational convenience, we use Si

and Ci interchangeably throughout this paper when referring

to the variables participating in a weighted constraint, e.g.,

Xk ∈ Ci ≡ Xk ∈ Si.) The goal is to find an assignment of

values to all variables in X from their respective domains that

minimizes the sum of the weights specified by each weighted

constraint in C [1]. This combinatorial task can equivalently

be characterized by having to compute

argmin
a∈A(X)

∑

Ci∈C

ECi
(a|Ci), (1)

where A(X) represents the set of all |D1|× |D2|× . . .×|DN |
complete assignments to all variables in X . a|Ci represents

the projection of a complete assignment a onto the subset of

variables in Ci. ECi
is a function that maps each a|Ci to its

associated weight in Ci.

The Boolean WCSP is the WCSP in which each domain

Di ∈ D has its cardinality restricted to be 2. Despite this

restriction, the Boolean WCSP is representationally as power-

ful as the WCSP, and it is also NP-hard to solve in general.

The (Boolean) WCSP can be used to model a wide range

of useful combinatorial problems. For example, in artificial

intelligence (AI), it can be used to model user preferences [2]

and combinatorial auctions. In bioinformatics, it can be used

to locate RNA motifs [3]. In statistical physics, the energy

minimization problem on the Potts model is equivalent to that

on its corresponding pairwise Markov random field [4], which

in turn can be modeled as the WCSP. In computer vision,

it can be used for image restoration and panoramic image

stitching [5], [6].

Despite the importance of the WCSP, the problem of

generating the top K solutions to it has not been studied much.

An important benefit of generating the top K solutions is in

creating a framework for “human-in-the-loop AI”. Most real-

world problems cannot be modeled accurately/completely up

front and, hence, generating the top K solutions gives users a

chance to exercise preferences that are not explicitly included

in the modeling phase. It also facilitates knowledge elicitation

since users can choose viable solutions and reject others,

declaring reasons for doing so that can then be incorporated

for further reasoning.

One example domain is in hypothesis selection over knowl-

edge graphs (KGs). A KG is an effective representation of

knowledge. It consists of a collection of knowledge elements,

each of which in turn is extracted from the web or other

sources. Information extractors that use natural language pro-

cessing techniques or other complex algorithms are usually

noisy. That is, the vast number of knowledge elements ex-

tracted from the web may not only be associated with different

confidence values but may also be inconsistent with each other.

Moreover, there might be additional domain knowledge avail-

able in the form of ontological constraints. Many applications

such as question-answering systems that are built on top of

large-scale KGs are required to generate the top K hypotheses,

i.e., coherent subgraphs of a KG that are consistent with the

ontological constraints and that are of high confidence values.

This problem can be reformulated as the problem of generating

the top K solutions to a WCSP [7].

A second related benefit is in quickly adapting to a dynam-

ically changing environment. Suppose a timetabling problem

is formulated and solved as a WCSP. If the top solution to

it becomes unviable due to an unexpected change in one of

the timetabling constraints or preferences, the next best viable

solution can be sought within the available list of top K

solutions before attempting to solve a new WCSP. Therefore,

generating the top K solutions serves as a caching of viable

solutions that can be used to adapt to unforeseen changes in the

environment. Such a framework is also very useful in planning

domains where new information gathered from the real world

at execution time can make certain plans unviable.

A third benefit is in computational physics. At the mi-

croscopic level, a material is composed of particles with

associated spins. The interactions between spins create fer-

romagnetic, anti-ferromagnetic or other interaction potentials

between them similar to those between variables in a WCSP.

However, the macroscopic observables of the material, like

its total magnetization, are not merely properties of a single

spin configuration but are instead properties of all possible

spin configurations summed via the Boltzmann equation of

statistical mechanics [8]. Since the Boltzmann equation in-

volves exponentials, under certain weak assumptions, it can be

approximated well using the top K solutions of the interaction

potentials. Generating the top K solutions of the interaction

potentials can be used to study macroscopic properties such

as magnetic hysteresis [9].

In this paper, we propose various approaches to generate the

top K solutions to WCSPs and empirically compare them. We

include approaches based on quadratization, pseudo-Boolean

optimization, constraint propagation, and integer linear pro-

gramming (ILP). Together, they cover all major algorithmic

ingredients derived from constraint programming (CP), AI,

and operations research (OR).

II. TOP K SOLUTIONS TO WCSPS

The task of generating the top K solutions S1,S2, . . . ,SK

needs a more formal specification since it can be conceived in

many ways. The following are some conceivable methods.

• Method A is to request the solutions S1,S2, . . . ,SK such

that S1 is the top solution, S2 is the second best solution

and differs from S1 in the assignment of values to at least

one of the N variables, S3 is the third best solution and

differs from both S1 and S2 in the assignment of values

to at least one of the N variables, and so forth.

• Method B is to request the solutions S1,S2, . . . ,SK such

that S1 is the top solution, S2 is the second best solution

and differs from S1 in the assignment of values to at

least d of the N variables, S3 is the third best solution

and differs from both S1 and S2 in the assignment of

values to at least d of the N variables, and so forth.

• Method C is to request the solutions S1,S2, . . . ,SK

such that the sum of their respective costs c1, c2, . . . , cK
is minimized and any two distinct Si, Sj differ in the

assignment of values to at least one of the N variables.

• Method D is to request the solutions S1,S2, . . . ,SK

such that the sum of their respective costs c1, c2, . . . , cK
is minimized and any two distinct Si, Sj differ in the

assignment of values to at least d of the N variables.

We first note that Methods A and C are equivalent but

Methods B and D are not equivalent for fixed K.1 Therefore,

in the rest of this paper, we focus on Methods A (≡ C) and

B, with Method B being more general. We omit discussion on

Method D noting that it requires a fixed value of K and is

equivalent to solving a larger WCSP with KN variables.

III. METHODOLOGIES

Methods to generate only the top solution to WCSPs have

been studied in a number of previous works. Many of these

successful methods, applicable to both Boolean and non-

Boolean variables, have been incorporated in Toulbar2 [10],

a state-of-the-art WCSP solver. Finding the top solution to

WCSPs can also be reformulated as the minimum weighted

vertex cover problem [11]–[13]. Moreover, for the special case

of Boolean variables, finding the top solution can also be done

via pseudo-Boolean optimization [14].

Despite the existence of many works for finding the top

solution, the problem of finding the top K solutions to WCSPs

is understudied.2 [7] uses heuristic methods to generate the top

K solutions but does not provide any theoretical guarantees.

Moreover, many methods, such as those based on analyzing

the variable-interaction graphs [16], are known to work specif-

ically for generating the top solution but are not applicable to

generating the top K solutions. This is because generating the

top K solutions involves global constraints even if the original

WCSP does not.

In this section, we provide methodologies to make the top

solution techniques for WCSPs applicable for generating the

top K solutions as well. We first note that in order to generate

1Suppose we have only two Boolean variables X1 and X2 with costs
c(X1 = 0, X2 = 0) = 1, c(X1 = 0, X2 = 1) = 2, c(X1 = 1, X2 = 0) =
2 and c(X1 = 1, X2 = 1) = 4. For K = 2 and d = 2, Methods B and D
produce different results.

2For CSPs, the equivalent problem of generating K solutions is relatively
well studied [15].

the kth solution for 1 ≤ k ≤ K, prohibitive constraints are

added in the kth iteration to prevent the top k − 1 solutions

found thus far. These prohibitive constraints are naturally

global constraints. They can be dealt with in different ways in

different frameworks.

A. Quadratization

A prohibitive constraint is required to enforce a difference

between the kth solution and each of the top k − 1 solutions

found thus far in the values assigned to at least d variables.

Stated directly in the language of weighted constraints, a

prohibitive constraint is a global constraint that involves all

variables. Therefore, its tabular representation is exponential

in N , rendering its explicit encoding for WCSP solvers

completely unviable.

To circumvent this problem, we propose the use of quadra-

tization. In essence, quadratization refers to the idea of de-

composing higher-arity interactions between variables to only

binary interactions between them but at the cost of introducing

auxiliary variables [17]. While quadratization is hard to study

for general functions, quadratization of functions on Boolean

variables has received more attention. Recent progress in this

field suggests that a symmetric function on Boolean variables

can be decomposed to a sum of quadratic functions on the

same Boolean variables plus a logarithmic number of auxiliary

Boolean variables [18].

This theory can be applied to WCSPs with only Boolean

variables. In such cases, the prohibitive global constraints are

in fact symmetric Boolean functions since they only specify

how many variables, as opposed to which variables, should

have differing assignments compared to each of the top k− 1
solutions found thus far. Therefore, these global constraints

can be decomposed to binary weighted constraints easily.

For a WCSP solver such as Toulbar2, the binary weighted

constraints coming from the decomposition of the prohibitive

global constraints have simple tabular representations. They

can be added to the set of original weighted constraints before

invoking the solver in the kth iteration to obtain the kth

solution. For WCSPs that have only unary and binary weighted

constraints, quadratic pseudo-Boolean optimization (QPBO)

solvers can be invoked [14]. Moreover, since the prohibitive

global constraints can also be decomposed to binary con-

straints, they can be added to the objective function in the

kth iteration to obtain the kth solution without compromising

the quadratic form.

B. ILP

Without loss of generality, we first assume that every vari-

able has a unique unary weighted constraint associated with

it. If there are multiple unary weighted constraints associated

with a variable, they can be combined into one; and if there

are no unary weighted constraints associated with a variable,

one with all weights set to zero can be introduced artificially.

Suppose we denote the top `th solution as follows: S` ≡
(X1 = v`X1

, X2 = v`X2
, . . . , XN = v`XN

}.3 Extending on

3For notational convenience, v`
XN

will also be written as v`
{XN}

.

our previous work in [19], the problem of generating the kth

solution, for 1 ≤ k ≤ K, can be formulated as an ILP with

only Boolean variables as follows.

minimize
qC
a
:qC

a
∈q

∑

C∈C

∑

a∈A(S(C))

wC
a q

C
a

s.t. qCa ∈ {0, 1} ∀qCa ∈ q
∑

a∈A(S(C))

qCa = 1 ∀C ∈ C

∑

a∈A(S(C)):a|S(C′)=a′

qCa = qC
′

a′

∀C,C ′ ∈ C : |S(C ′)| = 1 ∧ S(C ′) ⊂ S(C), ∀a′ ∈ A(S(C ′))
∑

C∈C:|S(C)|=1

(1− qC
v`

S(C)
) ≥ d ∀1 ≤ ` ≤ k − 1,

where q = {qCa | C ∈ C ∧ a ∈ A(S(C))}, and wC
a denotes

the weight of assignment a specified by constraint C. The

cardinality of q is
∑

C∈C

∏

X∈S(C) |D(X)|. The first line

represents the minimization of the sum of weights. The second

line represents the ILP constraints that enforce the Boolean

property for all qCa ’s. It consists of
∑

C∈C

∏

X∈S(C) |D(X)| =

O
(

|C|D̂Ĉ
)

ILP constraints, where Ĉ = maxC∈C |S(C)| and

D̂ = maxX∈X |D(X)|. The third line represents the ILP

constraints that enforce a unique assignment of values to

variables in each WCSP constraint. It consists of |C| ILP con-

straints, each of which has |A(S(C))| =
∏

X∈S(C) |D(X)| =

O
(

D̂Ĉ
)

variables. The fourth line represents the ILP con-

straints which enforce that every two assignments in two

WCSP constraints must be consistent on their shared vari-

ables. It consists of O
(

|C| · Ĉ · D̂
)

ILP constraints. Each

of these ILP constraints has O
(

D̂Ĉ−1
)

variables. The last

line represents the prohibitive global constraints that enforce

a difference from each of the top k − 1 solutions found thus

far in the values assigned to at least d variables. It consists of

k − 1 ILP constraints, each of which has N variables.

IV. EXPERIMENTAL RESULTS

We now provide experimental results that compare the

various methods for generating the top K solutions to WCSPs.

All experiments were run on a laptop with a 3.1GHz quad-

core Intel Core i7 processor and 16GB 2133MHz LPDDR3

memory. All running times are measured in seconds. We used

three datasets for the experiments: the UAI dataset, the Ising

model dataset, and the Erdös-Rényi dataset.

The UAI dataset is made available by the University of Cali-

fornia, Irvine via the link: http://sli.ics.uci.edu/∼ihler/uai-data/.

We used 17 available WCSP instances. These instances have

maximum domain size ≤ 10 with only unary and binary

weighted constraints.

The WCSP instances in the Ising model dataset were

generated as follows. We used a 40 × 40 2-dimensional

lattice structure of Ising spin variables. We considered nearest-

neighbor interactions without an external magnetic field. An

Name \ K 1 2 3 4 5 6

29 0.045406 0.099680 0.159102 0.216908 0.272228 0.324488
DSJC125 0.106832 0.217126 0.349660 0.458314 13.261575 37.407089
GEOM30a 3 0.010978 0.023778 0.034906 0.105019 0.196941 0.269005
GEOM30a 4 0.014780 0.031078 0.046270 0.059286 0.157992 0.227041
GEOM30a 5 0.016725 0.034106 0.054135 0.078917 0.096374 0.223302
driverlog01ac 0.097509 0.196127 0.285424 0.374978 0.469777 0.563200
driverlog02ac 876.335637 1777.000926 2523.380823 4066.095331 4951.544352 6052.300541
le450 5a 2 0.298482 0.592172 59.360335 166.525465 210.161505 265.589398
le450 5a 3 0.726636 1.443531 2.160011 408.277814 6252.195417 7797.841997
le450 5a 4 1.050851 2.168919 17.118558 18.248981 8031.845313 53194.151083
myciel5g 3 0.022384 0.047081 0.069788 0.723032 1.478215 2.262733
myciel5g 4 0.031199 0.063706 0.101349 0.132265 1.803422 4.224769
myciel5g 5 0.049457 0.096153 0.151467 0.206150 0.255206 7.421422
queen5 5 3 0.015450 0.030404 0.043798 0.622870 1.108807 1.609571
queen5 5 4 0.020579 0.042416 0.068729 0.090424 1.629419 2.786443
satellite01ac 50.114745 101.713977 153.408043 205.403035 258.982060 313.314846
satellite02ac 211.403276 437.370921 684.208177 958.824607 1207.126499 1487.134897

TABLE I: Gurobi on the UAI dataset with d = 1.

p \ K 1 2 3 4 5 6

0.0 0.638326 0.856472 7.123784 8.919827 16.910342 18.909787
0.1 75.948327 152.059466 236.236200 319.718994 431.744436 526.693602
0.2 88.022129 177.322234 281.253682 386.028938 616.844662 651.965991
0.3 90.149931 231.156042 338.193184 451.910688 605.158208 725.752342
0.4 96.800210 227.634564 339.146524 452.696057 600.612583 721.518038
0.5 91.156919 184.369873 290.984962 395.283319 531.946094 639.167596
0.6 92.009285 226.944586 324.766628 427.980900 599.313912 657.587034
0.7 94.771781 188.455620 297.191212 391.415626 652.865360 646.465575
0.8 93.545905 211.445277 323.273459 435.189458 582.965451 702.248596
0.9 84.854042 161.436855 253.349112 336.670010 465.082251 551.220683
1.0 0.716885 0.948226 12.168897 16.772620 19.766996 42.548012

TABLE II: Gurobi on the Ising model dataset with d = 1.

interaction between two nearest-neighbor spins can either be

ferromagnetic or anti-ferromagnetic. The control parameter p

determined the fraction of anti-ferromagnetic spin interactions.

We varied p from 0 to 1, with step size 0.1. For each of the 11
possible values of p, we averaged our results over 10 instances.

The WCSP instances in the Erdös-Rényi dataset were gen-

erated as follows. We first generated Erdös-Rényi graphs [20]

with 60 nodes each. Each node represents a Boolean variable,

and the probability parameter p determines the presence of

an edge between any two distinct nodes. An edge represents a

binary weighed constraint between the two variables represent-

ing its endpoint nodes. Each weight in a weighted constraint

was randomly chosen to be an integer in the interval [0, 4].
We varied p from 0.1 to 0.9 with step size 0.1.4

In our experiments, we compared the following solvers:

(a) the Gurobi Optimizer [21], using ILP formulations, (b)

Toulbar2 [10], a state-of-the-art WCSP solver, and (c) qp-

boMex [14], a state-of-the-art QPBO solver. To generate the

kth solution for 1 ≤ k ≤ K, prohibitive constraints are added

in the kth iteration to prevent the top k − 1 solutions. These

prohibitive constraints are global constraints. They were en-

coded as linear inequality constraints suitable for Gurobi or as

quadratic symmetric function constraints suitable for Toulbar2

and qpboMex. However, the quadratic symmetric function

constraints are applicable only for Boolean variables [18]. In

addition, qpboMex also allows only for Boolean variables.

In the first subsection, we compare different methods and

observe that Gurobi significantly outperforms other methods.

In the second subsection, we study the scaling behavior of

Gurobi with respect to increasing values of K and d.

p \ K 1 2 3 4 5 6

0.1 0.016447 0.031001 0.046962 0.062126 0.083085 0.103564
0.2 0.644113 1.207603 1.706096 2.155048 2.635259 3.104022
0.3 0.898389 1.613020 2.381056 3.180436 3.974385 4.785877
0.4 22.256275 43.734139 64.237934 81.844331 107.726265 130.647845
0.5 113.138839 217.982236 362.823347 512.906342 639.578730 757.373041
0.6 113.771927 286.496653 418.216053 533.634755 691.852802 817.851893
0.7 204.130670 384.311431 590.988404 781.153543 978.822693 1197.676624
0.8 203.865396 447.951235 726.605473 952.589703 1206.942405 1470.229164
0.9 1058.537818 2250.422945 3190.207245 4220.987575 5415.125955 6747.523805

TABLE III: Gurobi on the Erdös-Rényi dataset with d = 1.

p K = 1

0.1 0.012589
0.2 0.028718
0.3 0.038424
0.4 1.917937
0.5 26.899478
0.6 21.694742
0.7 70.020841
0.8 148.281038
0.9 1168.726508

TABLE IV: Toulbar2 on the Erdös-Rényi dataset with d = 1.

A. Comparison of Different Methods

Table I shows the performance of Gurobi on the UAI dataset

for different values of K with d = 1. The entries indicate the

cumulative time required to generate the top K solutions. On

all these instances, Toulbar2 failed to generate even the top

solution since the problem sizes were deemed to be too large.

qpboMex was applicable to only 1 instance ‘le450 5a 2’. It

took 0.075s for qpboMex to generate the optimal solution for

this case; but it failed to generate other suboptimal solutions.5

Table II shows the performance of Gurobi on the Ising

model dataset for different values of p and K with d = 1.

The entries indicate the cumulative time required to generate

the top K solutions; and a time limit of 300s was given to

each of the K iterations. On these instances, Toulbar2 was

able to generate only the top solution and only when p = 0 or

p = 1. Its average running time on the successful instances for

p = 0 and p = 1 was 0.286s and 0.285s, respectively. In all

other cases, it timed out. The performance of qpboMex was

very similar to that of Toulbar2. It was able to generate only

the top solutions and only when p = 0 or p = 1. Its average

running time on the successful instances for p = 0 and p = 1
was 0.042s and 0.041s, respectively.

Table III shows the performance of Gurobi on the Erdös-

Rényi dataset for different values of p and K with d = 1. The

entries indicate the cumulative time required to generate the

top K solutions; and a time limit of 1200s was given to each

of the K iterations. Toulbar2 was able to generate only the

top solution for each instance, with running times shown in

Table IV. In all other cases, it timed out. qpboMex could only

generate the top solution for one case, i.e., for p = 0.1. It took

0.004s for qpboMex to generate the optimal solution for this

case; but it failed to generate other suboptimal solutions.

From these results, it is easy to conclude that Gurobi is

currently the only viable method among the existing off-the-

shelf solvers for generating the top K solutions to WCSPs

4Without averaging over 10 instances for each possible value of p, we report
on 9 individual instances since they are indicative of the general trends.

5qpboMex returns a specific exit code to indicate that it cannot solve a
problem instance.

Name \ K 1 2 3 4 5 6

29 0.044889 0.093653 0.143490 0.187253 0.234077 0.279256
DSJC125 0.090875 0.183604 0.294834 0.389074 38.485259 73.381663
GEOM30a 3 0.009502 0.020100 0.029540 0.092820 0.157183 0.222529
GEOM30a 4 0.015141 0.029802 0.044493 0.056798 0.128169 0.194509
GEOM30a 5 0.016150 0.033638 0.053905 0.078138 0.094940 0.227355
driverlog01ac 0.103221 0.207878 0.306139 0.403821 0.498249 0.612439
driverlog02ac 867.613675 1907.417619 3108.379250 3704.813593 4463.120142 5483.314061
le450 5a 2 0.297118 0.599144 176.928288 435.679361 543.542576 879.377756
le450 5a 3 0.612869 1.246977 1.869716 Time Out Time Out Time Out
le450 5a 4 1.308174 2.558808 15.769929 16.902670 Time Out Time Out
myciel5g 3 0.022216 0.045431 0.067313 0.992660 2.797885 3.936749
myciel5g 4 0.032702 0.065108 0.103696 0.136518 4.206785 7.676406
myciel5g 5 0.048541 0.097438 0.153795 0.209105 0.254415 5.146981
queen5 5 3 0.015447 0.029199 0.043584 1.860184 4.377596 6.042508
queen5 5 4 0.030955 0.057675 0.085025 0.107589 3.161552 12.332942
satellite01ac 51.777251 101.707292 153.824613 204.074684 256.636463 310.895090
satellite02ac 208.870650 434.627622 655.586530 878.524620 1099.588159 1325.111695

TABLE V: Gurobi on the UAI dataset with d = 2.

Name \ K 1 2 3 4 5 6

29 0.044668 0.097963 0.155840 0.205683 0.255335 0.304775
DSJC125 0.091101 0.182812 0.297171 0.410300 26.060292 141.772509
GEOM30a 3 0.010676 0.022573 0.033179 0.091357 0.144641 0.199868
GEOM30a 4 0.015035 0.029429 0.043880 0.056533 0.159064 0.248232
GEOM30a 5 0.019166 0.042792 0.067256 0.096821 0.116154 0.247865
driverlog01ac 0.106663 0.216099 0.321633 0.412149 0.501990 0.617877
driverlog02ac 868.608740 1891.746099 2970.052148 3927.390976 4882.853929 5987.147603
le450 5a 2 0.301343 0.592013 968.398253 2198.892417 3315.096333 5003.164408
le450 5a 3 0.634132 1.274331 1.910956 Time Out Time Out Time Out
le450 5a 4 1.088893 2.215917 20.257083 21.391217 Time Out Time Out
myciel5g 3 0.022054 0.045229 0.067041 1.571629 2.455481 5.577489
myciel5g 4 0.036597 0.076109 0.124124 0.162250 5.096919 13.061579
myciel5g 5 0.057012 0.112605 0.178010 0.247078 0.294847 8.660527
queen5 5 3 0.015492 0.031395 0.046358 1.696383 7.339393 10.740527
queen5 5 4 0.021755 0.043642 0.069763 0.091862 4.289730 19.510938
satellite01ac 51.002272 99.963361 153.121990 204.057705 256.304444 307.728991
satellite02ac 257.838993 532.110179 806.995655 1083.737633 1359.451652 1621.945288

TABLE VI: Gurobi on the UAI dataset with d = 3.

even with d = 1. This might be in part due to the fact that

matrix manipulations help OR methods reason about global

constraints much more efficiently than other methods.

B. Further Experiments with Gurobi

Because Gurobi seems to be the only viable method for

generating the top K solutions, we were able to conduct

further exclusive experiments with it. In this subsection, we

report on two such kinds of experiments. First, we wanted to

understand how the running time of Gurobi scales with K,

retaining d = 1. Second, we wanted to understand how it

performs for higher values of d.

Figure 1 shows the scaling behavior of Gurobi on some

selected problem instances for increasing values of K and d =
1. For many instances, the scaling is linear, as in UAI 29 and

Erdös-Rényi p = 0.5. This is very encouraging since the added

complexity of generating the top K solutions leads to only a

linear increase in the running time of Gurobi, making it viable

for a human-in-the-loop AI framework. Of course, there are

some interesting exceptions, as in UAI le450 5a 3 and Ising

model p = 0. Here, the problem instances become harder—

not after the first but—after the third or fourth introduction of

prohibitive global constraints.

Tables V,VI&VII show the performance of Gurobi on the

UAI dataset for different values of K with d = 2, d = 3
and d = 4, respectively. The entries indicate the cumulative

time required to generate the top K solutions; and a time

limit of 3600s was given to each of the K iterations. Gurobi’s

ability to solve most of these problem instances is also

very encouraging from the perspective of human-in-the-loop

AI since users can control the desired “difference” between

solutions (hypotheses).

Name \ K 1 2 3 4 5 6

29 0.046694 0.105542 0.164010 0.216135 0.269785 0.322676
DSJC125 0.098438 0.193016 0.307094 0.398736 93.707280 277.215449
GEOM30a 3 0.010637 0.022767 0.033709 0.085857 0.135265 0.187612
GEOM30a 4 0.015244 0.029354 0.044004 0.056564 0.146394 0.213167
GEOM30a 5 0.017284 0.039570 0.061497 0.086970 0.103684 0.207135
driverlog01ac 0.106813 0.213720 0.331723 0.426196 0.522932 0.647410
driverlog02ac 873.423437 1747.764080 2735.096566 3689.474908 4672.599442 5461.077691
le450 5a 2 0.306906 0.606134 2182.485199 5146.494628 Time Out Time Out
le450 5a 3 0.610946 1.278551 1.905660 Time Out Time Out Time Out
le450 5a 4 1.080703 2.196142 18.394387 19.517824 Time Out Time Out
myciel5g 3 0.023438 0.048679 0.072588 3.167216 7.341393 11.570325
myciel5g 4 0.031082 0.066118 0.108446 0.140856 7.670225 17.986415
myciel5g 5 0.056299 0.109280 0.168188 0.223375 0.271757 10.809051
queen5 5 3 0.015610 0.030363 0.044272 3.047800 9.151658 15.738343
queen5 5 4 0.021841 0.044804 0.073067 0.095571 5.327037 26.360986
satellite01ac 50.773345 99.318204 152.345519 202.980463 256.221921 306.026177
satellite02ac 245.764104 519.915170 790.435468 1062.916955 1333.381003 1567.425389

TABLE VII: Gurobi on the UAI dataset with d = 4.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced the problem of generating the

top K solutions to WCSPs. While WCSPs themselves are used

to model a wide range of combinatorial optimization problems,

generating the top K solutions to them is important from the

perspective of “human-in-the-loop AI” and in computational

physics. Despite the significance of generating the top K

solutions, the problem is largely understudied in AI, theoretical

computer science and computational physics. In this paper, we

used various off-the-shelf methods and empirically compared

them on a variety of WCSP instances. We included methods

based on quadratization, pseudo-Boolean optimization, con-

straint propagation, and ILP. Together, they covered all major

algorithmic ingredients derived from CP, AI and OR. We found

that Gurobi alone is viable in producing the top K solutions

to WCSPs using an ILP formulation.

There are many avenues for future work. In terms of tech-

niques, we will develop new methods based on propagating

global constraints that encode symmetric functions. In terms

of applications, we will apply them to various problems in AI

and computational physics.

REFERENCES

[1] S. Bistarelli, U. Montanari, F. Rossi, T. Schiex, G. Verfaillie, and
H. Fargier, “Semiring-based CSPs and valued CSPs: Frameworks, prop-
erties, and comparison,” Constraints, vol. 4, no. 3, pp. 199–240, 1999.

[2] C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, and D. Poole,
“CP-nets: A tool for representing and reasoning with conditional ce-
teris paribus preference statements,” Journal of Artificial Intelligence

Research, vol. 21, pp. 135–191, 2004.

[3] M. Zytnicki, C. Gaspin, and T. Schiex, “DARN! A weighted constraint
solver for RNA motif localization,” Constraints, vol. 13, no. 1, pp. 91–
109, 2008.

[4] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Understanding belief
propagation and its generalizations,” Exploring Artificial Intelligence in

the New Millennium, vol. 8, pp. 236–239, 2003.

[5] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy min-
imization via graph cuts,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 23, no. 11, pp. 1222–1239, 2001.

[6] V. Kolmogorov, “Primal-dual algorithm for convex Markov random
fields,” Microsoft Research, Tech. Rep. MSR-TR-2005-117, 2005.

[7] K. Sun, K. Maddali, S. Salian, and T. K. S. Kumar, “Top K hypotheses
selection on a knowledge graph,” in Proceedings of the Thirty-Second

International FLAIRS Conference, 2019.

[8] M. Kardar, Statistical Physics of Particles. Cambridge University Press,
2007.

[9] S. L. Whittenburg, N. Dao, and C. A. Ross, “Micromagnetic studies
of hysteresis in nickel pillars,” Physica B: Condensed Matter, vol. 306,
no. 1, pp. 44–46, 2001.

