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Abstract

Transfer learning eases the burden of training a
well-performed model from scratch, especially
when training data is scarce and computation
power is limited. In deep learning, a typical strat-
egy for transfer learning is to freeze the early lay-
ers of a pre-trained model and fine-tune the rest
of its layers on the target domain. Previous work
focuses on the accuracy of the transferred model
but neglects the transfer of adversarial robustness.
In this work, we first show that transfer learning
improves the accuracy on the target domain but
degrades the inherited robustness of the target
model. To address such a problem, we propose
a novel cooperative adversarially-robust transfer
learning (CARTL) by pre-training the model via
feature distance minimization and fine-tuning the
pre-trained model with non-expansive fine-tuning
for target domain tasks. Empirical results show
that CARTL improves the inherited robustness by
about 28% at most compared with the baseline
with the same degree of accuracy. Furthermore,
we study the relationship between the batch nor-
malization (BN) layers and the robustness in the
context of transfer learning, and we reveal that
freezing BN layers can further boost the robust-
ness transfer.

1. Introduction
The immense progress of deep neural networks (DNNs)
leads interactions with machines to a new era. In many
fields, DNNs achieve high performance, even better than
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humans. However, training such a model requires a well-
designed network architecture, massive high-quality training
data, and extensive computational resources. Obviously, it
is impractical for small-scale scenarios due to limited GPUs
or insufficient training datasets.

When further implementing DNNs, we are facing more
problems. Numerous research efforts have revealed the brit-
tle robustness of DNNs, which hinders their applications in
many security-critical scenarios. Previous work on adversar-
ial examples (Szegedy et al., 2014; Papernot et al., 2016a;
Moosavi-Dezfooli et al., 2016; Carlini & Wagner, 2017; Ku-
rakin et al., 2017) demonstrated that DNNs can be deceived
when given the input with a carefully-crafted perturbation.
To solve this problem, adversarial training (Goodfellow
et al., 2015; Madry et al., 2018; Kannan et al., 2018) has
been considered as a promising defensive approach for im-
proving the adversarial robustness of DNNs. The key idea
of these approaches is to generate adversarial examples dur-
ing model training and add them to training datasets. An
extra computational burden, however, is introduced to the
model training process.

Regarding the above prerequisites of model training,
prior work (Pan & Yang, 2010; Bengio, 2012; Yosinski
et al., 2014) proposed transfer learning to obtain high-
performance DNN models with significantly reduced efforts.
It can greatly ease the burden in the (adversarially) training
process, especially for those with limited capabilities. Thus,
it has been considered as a promising machine learning as
a service (MLaaS) technique in the industry (Liakhovich
& Mbemba, 2017; Li & Li, 2018). The idea of transfer
learning is similar to the knowledge transfer in the human
world, where the knowledge obtained from the source do-
main is applied to the target domain for improving model
performance. For DNNs, the “knowledge” is included in
the weights of models. We call the model trained on the
source domain the source model and the one for the target
domain the target model (Utrera et al., 2021).

So far, most research efforts have mainly been devoted to
improving the accuracy of the target model (Kornblith et al.,
2019; Utrera et al., 2021; Salman et al., 2020), but neglect-
ing its robustness. The most recent work from Shafahi
et al. (2020) discussed how the robustness transfers in trans-
fer learning and pointed out that the target model can in-
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Figure 1: Overview of CARTL.

herit the robustness from an adversarially pre-trained source
model. However, it suggested only fine-tuning the last
fully-connected layer for inheriting robustness, which fails
to cover more general scenarios where the target model re-
quires to fine-tune multiple layers in transfer learning (Wang
et al., 2018; Utrera et al., 2021).

In this work, we first provide a complete evaluation for
the robustness transfer and demonstrate that the robustness
transfer is highly affected by the transfer strategy, namely,
the number of fine-tuned layers during transfer learning.
Specifically, we transfer a robust source model, which is
adversarially trained on the source domain, to the target
domain while freezing its first few layers. Our evaluation
indicates that as the number of fine-tuned layers increases,
the target model’s accuracy also improves. However, its
robustness only improves at the beginning but soon starts to
decrease afterward.

Based on the above observation, we find that training more
layers enables the target model to adapt to the target do-
main, which is good for improving accuracy on the target
domain. At the same time, modifying more early layers
of the source model, which can be seen as a robust feature
extractor, reduces the robustness of the target model. To
improve this trade-off, we present a new approach, coop-
erative adversarially-robust transfer learning (CARTL), as
illustrated in Figure 1. In CARTL, we consider training a
robust feature extractor of the source model, which outputs
similar features when given natural inputs and correspond-
ing adversarial inputs, and we call this feature distance
minimization. In addition, to further reduce the negative ef-
fects caused by the feature differences between natural and
adversarial inputs, we propose non-expansive fine-tuning,
which is used to control the Lipschitz constant of the net-
work during fine-tuning. We call our method cooperative
because it consists of an adjusted adversarial training on
the source model side and a constrained fine-tuning on the
target model side. We emphasize that CARTL requires no
adversarial examples during fine-tuning, which is far more
efficient than adversarial training.

Besides, we conduct a study, for the first time to our best

knowledge, on the relationship between the batch normal-
ization (BN) layers and the robustness in the context of
transfer learning. Our results reveal that selectively freezing
BN layers’ parameters helps boost the robustness transfer.
We conduct extensive experiments on several transfer learn-
ing scenarios and observe that the target model freezing
affine parameters of BN layers obtains higher robustness
with negligible loss of accuracy. We also show that though
BN layers’ statistics play a crucial role in the robustness
transfer, it will degrade the target model’s accuracy.

We summarize our main contributions as follows:

• Through experimental analysis, we reveal that there
is a trade-off between accuracy and robustness during
transfer learning, which has been overlooked by prior
work. Specifically, the target model obtains higher ac-
curacy on the target domain as it fine-tunes more layers.
However, as the number of fine-tuned layers increases,
the target model’s robustness is greatly affected and
eventually severely degraded.

• We propose a new transfer learning strategy, CARTL,
for improving the accuracy-robustness trade-off of the
target model. Our experimental evaluations on broadly-
used datasets show that our design improves the target
model’s inherited robustness while gaining competitive
accuracy on the target domain.

• We also conduct extensive experiments on several
transfer learning scenarios to demonstrate that selec-
tively freezing the BN layers can further boost the
robustness transfer.

2. Related Work
Various techniques focusing on defending adversarial exam-
ples have been proposed (Papernot et al., 2016b; Papernot &
McDaniel, 2017; Xie et al., 2019; Song et al., 2018). How-
ever, many defenses were still proven to be vulnerable to
stronger attacks (Carlini & Wagner, 2017; Athalye et al.,
2018; Tramer et al., 2020). Despite the fails of many de-
fenses, adversarial training (Szegedy et al., 2014; Kurakin
et al., 2017; Madry et al., 2018; Kannan et al., 2018) is
still widely regarded as a promising defense for protect-
ing trained models from adversarial examples and has been
extensively discussed (Tramèr et al., 2018; Schmidt et al.,
2018; Tsipras et al., 2019; Tramer & Boneh, 2019; Zhang
et al., 2019b).

Goodfellow et al. (Goodfellow et al., 2015) firstly observed
that adding adversarial examples into the training datasets
improves adversarial robustness, and the strategy is called
adversarial training. Madry et al. (Madry et al., 2018) used
a strong attack method to generate adversarial examples dur-
ing training, which demonstrated that the trained model is
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robust to single-step attacks as well as multi-step attacks. So
far, compared with the standard training, the main drawback
of adversarial training is the degraded efficiency of train-
ing, which is introduced by the generation of adversarial
examples. Meanwhile, some literature (Shafahi et al., 2019;
Zhang et al., 2019a; Wong et al., 2020) works on efficiency
optimization for adversarial training. Very recently, Shafahi
et al. (Shafahi et al., 2020) gave an evaluation of adversarial
robustness in transfer learning. They found that the target
model can efficiently inherit the adversarial robustness from
an adversarially pre-trained model. However, they only con-
sidered the target model that fine-tunes the last layer of the
source model while ignoring fine-tuning more layers of the
source model.

Similar to adversarial training, other work (Cisse et al., 2017;
Qian & Wegman, 2019; Lin et al., 2019) improves the ro-
bustness of the model during the model-training stage with a
different idea. The seminal work of Szegedy et al. (Szegedy
et al., 2014) attributed the vulnerability of adversarial exam-
ples to the instability of the model, which can be mitigated
by controlling the Lipschitz constant of the model. Based
on this idea, Cisse et al. (Cisse et al., 2017) proposed to
add a regularization term during model training to constrain
the Lipschitz constant of the entire model. The Lipschitz
constant of the entire model approximates to one, which
makes the model’s final prediction less sensitive to little
perturbations. The following work (Qian & Wegman, 2019)
relaxed the training limitations of Cisse et al. (Cisse et al.,
2017), which forces the weight matrix of each layer to be
orthogonal, providing more freedom for training.

We emphasize that our work is orthogonal to prior work
on domain adaptation (Shu et al., 2018). In this work, we
focus on transferring the adversarial robustness from the
source domain to the target domain, while domain adapta-
tion refers to leveraging the source model’s knowledge to
improve the accuracy of the target model. Besides, recent
work (Utrera et al., 2021; Salman et al., 2020) also reveals
that an adversarially pre-trained model tends to improve
the target model’s accuracy. We leave the studies of the
connection between the source domain robustness and the
target domain accuracy for our future work.

3. Preliminary
We consider DNN-based classification tasks and define an
L-layer feed-forward DNN model:

f(·;θ) :=
(
fLθL ◦ f

L−1
θL−1

◦ · · · f1
θ1

)
(·), (1)

which is parameterized by θ := {θ1, . . . ,θL}. We use fk

to represent the kth layer of the model f and use f (k1..k2)

to represent layers ranging from k1 to k2, i.e., f (k1..k2) :=
fk2 ◦ · · · ◦ fk1 . We also denote the first k layers as f (k) for

shorthand.

To train the model, given a proper loss function L, e.g.,
cross-entropy loss, we want to find the optimal parameters
θ∗ that minimizes the risk:

arg min
θ

E(x,y)∼D [L(f(x;θ), y)] , (2)

where D is the data distribution of image-label pair (x, y).
We define data x ∈ [0, 1]d, where d is the input dimension,
and define label y ∈ {0, 1, . . . , C − 1}, where C is the
number of class labels.

3.1. Adversarial Examples & Adversarial Training

Most adversarial example attacks consider an `p-norm con-
strained optimization problem that can be generalized as:

arg max
δ
L (f(x+ δ;θ), y) s.t. ‖ δ ‖p≤ ε. (3)

The hyper-parameter ε guarantees that the perturbation δ is
imperceptible. In our work, we consider `∞-norm-based
attacks (Madry et al., 2018) and let ε = 8/255.

We follow (Madry et al., 2018) defining the adversarial
training as a saddle-point problem that aims to minimize a
variant of the training risk:

arg min
θ

E(x,y)∼D

[
max
‖δ‖p≤ε

L (f (x+ δ;θ) , y)

]
. (4)

The inner maximization problem can be approximated by an
iterative version of Eq. (3), known as the projected gradient
descent (PGD). The method can be summarized as:

δi+1 := Π
(
δi + α · sign

(
∇δL

(
f
(
x+ δi

)
, y
)))

, (5)

where α is the step size. For `∞-based perturbations, the
projection Π clips the noise δ to the interval [−ε, ε]. Com-
pared with single-step attacks, PGD achieves higher error
rates since it tends to find the global maxima of Eq. (3). In
the following sections, we represent the N -step PGD attack
as PGD-N .

3.2. Lipschitz Constant

The Lipschitz constant defines an upper bound of the func-
tion’s slope. If we can find such an upper bound, we call
the function Lipschitz continuous, and formally, it can be
described as

‖ f(x)− f(x′) ‖2≤ Λ· ‖ x− x′ ‖2, (6)

where Λ is the Lipschitz constant. Specifically, we call
a function non-expansive when Λ ≤ 1. Intuitively, if a
function is non-expansive, the deviation of its output is no
more than the perturbation on its input. Recall Eq. (1), a
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Figure 2: Illustration of transfer learning.

DNN model is stacked in a layer-wise manner. From the
Lipschitz continuity perspective, we have

‖ f(x)− f(x′) ‖2≤ ΛL · ΛL−1 · · ·Λ1 ‖ x− x′ ‖2, (7)

where Λi is the Lipschitz constant of the ith layer. We can
observe that the Lipschitz constant of the whole model is a
product of each layer’s Lipschitz constant. When the lay-
ers’ Lipschitz constants are more than one, a little change
of the input may be amplified during forward propagation
and result in misclassification (Lin et al., 2019). The above
inequality also implies that we can mitigate the vulnerabil-
ity of adversarial examples by constraining the Lipschitz
constant of each layer no more than one (Cisse et al., 2017;
Qian & Wegman, 2019; Lin et al., 2019).

3.3. Transfer Learning

The main idea of transfer learning is to transfer “knowledge”
from a pre-trained source model to a target model for solving
target domain tasks. In deep learning, a widely-adopted
method for transfer learning is that the target domain tasks
copies the whole pre-trained model from the source model,
refines the architecture, typically adjusting the last fully-
connected layer, and fine-tunes the last k ∈ {1, . . . , L}
layers (Wang et al., 2018; Utrera et al., 2021). Formally, it
can be formulated as

arg min
θ̄

E(x,y)∼D
[
L
(
f

(L−k+1..L)

θ̄

(
f (L−k)(x)

)
, y
)]
,

(8)
where θ̄ := {θL−k+1, . . . ,θL}. An illustration of transfer
learning is depicted in Figure 2. Intuitively, we can view
the output of the first frozen L− k layers as the extracted
features of the input x, while the fine-tuned part of the
target model is a sub-model that directly takes as input those
features. During transfer learning, we reuse the powerful
feature extractor of the source model (green solid lines)
and adapt the sub-model (blue dashed lines) for the target
domain task.

4. Problem Statement
The previous work of Shafahi et al. (2020) gave an empirical
analysis of robustness transfer. However, their exploratory
experiments put less attention on the accuracy. Besides,
they mainly considered a strategy that all layers but the
last fully-connected layer are frozen, which does not cover
more general cases. In this work, we study how both the
robustness and accuracy transfer while the last k layers are
fine-tuned.

To see the effect of fine-tuning on the robustness and ac-
curacy, we adversarially train a Wide-ResNet (WRN) 34-
10 (Zagoruyko & Komodakis, 2017) on CIFAR-100 and a
WRN 28-4 on CIFAR-10 as source models, then transfer
them to CIFAR-10 and SVHN, respectively. The source
models are trained with PGD-7, and the perturbation is con-
strained in an `∞ ball with a radius of ε = 8/255. During
transferring, we break the source models into blocks and
fine-tune them in the unit of blocks (e.g., two layers at once
for a WRN block). Then we report the adversarial robust-
ness of the target models against the PGD-100 attack. We
emphasize that our settings are different from the explo-
ration in (Shafahi et al., 2020), where the last k blocks were
instead fine-tuned on the source domain.

Figure 3 illustrates how both the accuracy and robustness
are affected during transfer learning. As can be seen, only
retraining the last fully-connected layer fails to guarantee
high accuracy for target domain tasks. Besides, the insuffi-
cient accuracy also results in lower robustness. If we further
fine-tune the last few layers, the model accuracy is increased
together with the increased robustness. We attribute this phe-
nomenon to the increment of the accuracy of natural inputs.
The accuracy is continuously increased while we fine-tune
more layers, but the robustness quickly drops and ends with
negligible. The results demonstrate there is a trade-off be-
tween the target model’s accuracy on the target domain and
its robustness inherited from the source model. Besides,
simply fine-tuning the last few layers does help the target
model inherit the accuracy and robustness in a low cost.

Furthermore, besides the above observations, it is natural to
raise another question:

Can the target model obtain high accuracy while
inheriting more robustness from the source model?

To answer with this question, we propose a novel strategy
for transfer learning, which further improves the accuracy-
robustness trade-off during transfer learning.

5. Our Design: CARTL
In this section, to cope with the question raised in Section
4, we propose a new approach, cooperative adversarially-
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Figure 3: Accuracy and robustness of target models transferred from robust source models. Left: A WRN 34-10 model is
transferred from CIFAR-100 to CIFAR-10. Right: A WRN 28-4 model is transferred from CIFAR-10 to SVHN.

robust transfer learning (CARTL), to improve both the ro-
bustness and accuracy of the target model. We divide layers
of a robust source model into two parts during transfer learn-
ing according to whether they will be retrained. We take the
frozen part as a feature extractor like (Utrera et al., 2021),
and we propose that it outputs similar features if given natu-
ral examples and corresponding adversarial examples. As
for the trainable part fine-tuned on the target domain, we aim
to reduce the classification error caused by the differences
between the features extracted from natural and adversarial
inputs. Without loss of generality, we assume that the target
model fine-tunes the last k layers and freezes the first L− k
layers during transfer learning. We introduce our scheme,
starting with training the source model.

5.1. Feature Distance Minimization

Our intuition is that if a specific layer of a model extracts
similar features from two inputs, the subsequent layers tend
to classify the inputs into identical classes, even they have
different labels (Wang et al., 2018). Hence, we consider
making the frozen part of the source model a robust feature
extractor that can output similar features given natural ex-
amples and the corresponding adversarial examples. To do
so, we propose feature distance minimization (FDM) to re-
duce the dissimilarity of the extracted features. Specifically,
for the first L − k layers that take as input x and output
intermediate features f (L−k)(x), FDM adds a penalty term
to the training loss for two different inputs x and x̃:

LAT + λ ·D
(
f (L−k)(x), f (L−k)(x̃)

)
. (9)

Here, λ is the hyper-parameter controlling the strength of the
FDM penalty term, andD is a distance metric measuring the
dissimilarity between two features. LAT is the loss function
used during adversarial training, and x̃ is the adversarial
example corresponding to the natural example x.

Intuitively, we can view extracted features as points in a
subspace of Rd, where d is the feature’s dimension. For
a source model that can extract similar intermediate fea-
tures, features of natural examples and adversarial examples
should be close enough. Thus, we propose to use the Eu-
clidean distance between the natural feature and adversarial
feature as the penalty term. Specifically, we adjust the origi-
nal training loss Eq. (4) to

LAT +
λ√
d
·
∑
‖ f (L−k)(x)− f (L−k)(x̃) ‖2 . (10)

5.2. Non-Expansive Fine-tuning

The source model trained with FDM outputs similar features
if both natural and adversarial examples are given. However,
considering the previous discussion in Eq. (7), the little
dissimilarity between the features may be still amplified
during propagation in the rest of the network, leading to
misclassification. To improve the target model’s robustness,
we propose to suppress such the amplification effect via
controlling the network’s Lipschitz constant.

We start with the basic linear layer that can be expressed
as xl+1 = W lxl + bl, where W l ∈ Rdout×din and
bl ∈ Rdout . It is straightforward that the bias bl does not
affect the Lipschitz constant. Thus, the Lipschitz constant
of the linear layer is determined byW l. Since the Lipschitz
constant is upper bounded by the spectrum norm of W l,
i.e., its maximum singular value (Szegedy et al., 2014), sim-
ilar to the spectrum normalization (Miyato et al., 2018), we
divide weightsW l of last k layers by their spectrum norm
σ(W l) as

W l
∗ := β · W l

σ(W l)
, (l = L− k + 1, . . . , L). (11)

We also emphasize that different from the naive spectrum
normalization, we add a hyper-parameter β ∈ (0, 1] for



CARTL: Cooperative Adversarially-Robust Transfer Learning

Table 1: Effect of selectively freezing BN layers in various scenarios. The third and fourth columns are results of target
models freezing affine parameters of the feature extractor. The fifth and sixth rows are results of target models freezing all
parameters of the feature extractor. For each transfer learning scenario, the first rows are results of target models fine-tuning
all parameters of the sub-model, and the second rows are those that freeze affine parameters.

W , b µ,σ,W , b

Acc.(%) Rob.(%) Acc.(%) Rob.(%)

CIFAR-100→ CIFAR-10 (k = 8) - 91.17 14.36 90.86 14.89
W , b 90.70 17.41 90.84 18.54

CIFAR-10→ GTSRB (k = 6) - 93.02 30.22 89.29 32.22
W , b 92.13 32.22 88.94 34.53

CIFAR-10→ SVHN (k = 6) - 95.29 3.88 95.24 9.22
W , b 95.16 4.90 94.86 11.52

CIFAR-10→ SVHN (k = 5) - 93.47 4.71 92.92 12.45
W , b 93.41 5.64 92.10 14.16

further scaling the Lipschitz constant of the fine-tuned part.
The idea comes from the observation that parameters trained
with FDM tend to have a smaller (< 1) Lipschitz constant.
For the details of σ(·), please refer to Appendix A.

For the convolutional layer, we flatten each filter into a
vector withCin ·K ·K dimensions, whereCin is the number
of input channels, and K is the size of the convolution
kernel. We further stack the vectors forming a Cout-row
matrix, whereCout is the number of output channels. Hence,
we transform the weight matrix as W ∈ RCout×(K2·Cin).
As for the aggregation layer in the residual network (He
et al., 2016), which adds the predecessor layer’s output with
the shortcut connection’s output, we instead modify it to a
convex combination of its inputs (Cisse et al., 2017) and
manually set the weights be 1/n, where n is the number of
its inputs.

6. Rethinking Fine-tuning BN Layers
During our evaluation, we find a strong connection between
the BN layer and the transferred robustness. Before present-
ing experimental evaluations of CARTL, we first investigate
how the BN layer affects the target models’ robustness in
this section. Specifically, we find that selectively freezing
the BN layers of source models improves the transferred ro-
bustness of target models and generally brings little negative
impact on their accuracy.

We first simply recap the basis of the BN layer. In current
implementations of the BN layer1, it usually consists of four
parameters, including two running statistics µ and σ, and
two affine parametersW and b. Typically, a BN layer can

1E.g., PyTorch, TensorFlow.

be expressed as

BN(x) := W · x−mean(x)√
var(x) + ε

+ b. (12)

During training, both the running statistics µ and σ are
updated with a momentum based on batch’s statistics (i.e.,
mean and var), while W and b are updated via the gra-
dient descent. During inference, BN layers normalize the
activation with running statistics instead of batch’s statistics.

To see the effect of BN layers in transfer learning, we divide
all BN layers of a source model into two sets according to
whether they are in the frozen feature extractor or the fine-
tunable sub-model (see Section 3.3). In total, we consider
four cases regarding the BN layers, including updating or
freezing source model’s running statistics (i.e., µ and σ)
in the frozen feature extractor, and fine-tuning or freezing
source model’s affine weights (i.e., W and b) in the sub-
model. For other cases, we note that both W and b in the
feature extractor are naturally frozen in transfer learning,
and we also find that freezing running statistics µ and σ
in the fine-tunable layers makes the target model hard to
converge.

We conduct experiments on several transfer learning scenar-
ios where robust models are naively transferred to target do-
mains, and we present the results in Table 1 (more setups are
presented in Appendix C). It is shown that though it slightly
degrades accuracy, freezing all affine parameters (i.e., W
and b) of BN layers can further improve the transferred
robustness. For example, the target model’s robustness is
increased from 14.36% to 17.41%, while the accuracy is de-
creased by 0.47% if we transfer a robust source model from
CIFAR-100 to CIFAR-10. Unlike the analysis in Section
4, where we show that reducing the number of fine-tunable
layers harms the accuracy of the target model, we can see
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Table 2: Accuracy and robustness of target models transferred to CIFAR-10 under different choices of hyper-parameters,
including λ for FDM, β for NEFT and the number of fine-tuned layers.

NEFT β = 1.0 NEFT β = 0.6 NEFT β = 0.4

Acc.(%) Rob.(%) Acc.(%) Rob.(%) Acc.(%) Rob.(%)

Case-4 λ = 0.01 86.09 25.73 86.08 27.17 85.64 28.40
λ = 0.005 85.41 25.75 85.47 27.14 85.51 28.47

Case-6 λ = 0.01 87.78 25.58 87.92 27.27 87.96 29.60
λ = 0.005 87.66 25.97 88.07 27.64 87.79 30.94

Case-8 λ = 0.01 91.85 16.36 91.63 19.22 91.55 27.47
λ = 0.005 91.71 17.62 91.10 21.60 91.30 29.34

that merely freezing the BN layers’ affine parameters does
not aggressively decrease the accuracy while improving the
robustness. In addition, reusing the running statistics of the
BN layers in the frozen feature extractor plays a crucial role
in robustness transfer, e.g., transferring from CIFAR-10 to
SVHN. However, it tends to bring more negative effects to
the accuracy, especially when transferring from CIFAR-10
to GTSRB. We note that our findings corroborate the recent
studies (Xie & Yuille, 2019; Xie et al., 2020), which argue
that the BN layers highly relate to robustness.

7. CARTL Evaluation
In this section, we present the experimental results of
CARTL compared with the vanilla method and Shafahi’s
work (2020). We conduct a detailed experimental analysis
for the scenario of transferring from CIFAR-100 to CIFAR-
10. Besides, more scenarios are also tested to demonstrate
the generality of CARTL. We report the robustness of target
models under the PGD-100 attack. For more details about
experiment settings, please refer to Appendix C, and our
codes are available on GitHub2.

7.1. Improved Robustness-Accuracy Trade-off

Shafahi et al. (2020) noticed that merely retraining the last
layer maintains the robustness of the source model but re-
sults in low accuracy on the target domain. To cope with this
problem, they proposed an end-to-end fine-tuning method
with learning without forgetting (LwF)3. In addition to LwF,
we also consider the vanilla method, which refers to simply
fine-tune the last few layers of a robust source model on the
target domain without additional techniques. Source mod-
els for both LwF and the vanilla method are adversarially
trained with (Madry et al., 2018).

Figure 4 qualitatively illustrates the robustness-accuracy

2https://github.com/NISP-official/CARTL
3We give detailed introduction of LwF in Appendix B.
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Figure 4: The robustness-accuracy trade-off of target models
transferred with CARTL in comparisons with LwF and the
vanilla method when robust models transfer from CIFAR-
100 to CIFAR-10.

trade-off achieved by CARTL in comparison with LwF
and the vanilla method. It is shown that to obtain high
accuracy, LwF significantly degrades the target model’s
robustness (close to 0%). Moreover, LwF improves the
robustness of the target model but aggressively harms its
accuracy on the target domain. On the other hand, both the
vanilla method and CARTL maintain higher robustness in
the case of an equivalent level of accuracy, demonstrating a
better robustness-accuracy trade-off. Moreover, our method
CARTL further improves the accuracy-robustness trade-off
on the target domain during transfer learning. Specifically,
it improves the robustness by about 28% compared with
LwF when the accuracy is about 90%.

We also notice that a peak point appears in both curves of
CARTL and Vanilla. This phenomenon is in line with the
observations in Section 4 that the target model’s robustness
increases when the last few layers are fine-tuned. It implies
that there may exist a potential optimal configuration of k for
transfer learning, and we leave the corresponding searching
strategies for our future work.
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Table 3: Ablation studies of CARTL in the scenario of CIFAR-100→ CIFAR-10.

Method Case-4 Case-6 Case-8

Source Transfer Acc.(%) Rob.(%) Acc.(%) Rob.(%) Acc.(%) Rob.(%)

AT TL 83.22 25.23 86.92 25.38 90.82 18.54
AT NEFT 83.72 26.29 86.87 27.95 90.92 29.97

AT + FDM NEFT 85.51 28.47 87.79 30.94 91.30 29.34

Table 4: Comparison of CARTL with LwF and the vanilla method in multiple scenarios.

Source Target Arch. LwF Vanilla CARTL

Acc.(%) Rob.(%) Acc.(%) Rob.(%) Acc.(%) Rob.(%)

CIFAR-100 SVHN WRN 34-10 (k=6) 85.90 6.67 92.83 17.64 93.96 22.21
CIFAR-100 GTSRB WRN 34-10 (k=6) 70.34 15.85 80.40 30.25 83.07 47.34
CIFAR-10 SVHN WRN 28-4 (k=6) 94.32 4.68 94.86 11.52 94.76 21.65
GTSRB SVHN WRN 28-4 (k=6) 81.80 1.08 93.91 6.08 94.07 15.26

7.2. Selections for Hyper-parameters

In this subsection, we evaluate how hyper-parameters of
CARTL affect the accuracy and robustness of the target
model.

First, we test the effect of increasing the number of retrained
layers. We report both the target model’s accuracy and
robustness when fine-tuning the layers of the last 4, 6, and
8 blocks of WRN 34-10, which are denoted as Case-k, and
k = 4, 6, 8. When we increase the number of retrained
blocks, the accuracy generally rises from ≈ 86% to ≈ 91%.
As for the robustness, CARTL exhibits similar trends to the
vanilla method, achieving higher robustness at Case-6.

We further investigate how the hyper-parameter λ affects
both the accuracy and robustness of the target models. We
observe that for all cases, a smaller λ helps robustness trans-
fer, especially for the Case-8. On the other hand, we can see
that reducing λ cast slight negative impacts to the accuracy
of target models.

Finally, we evaluate the best choices for the hyper-parameter
β. Recall that in Eq. (11), we divide weights of fine-tuned
layers by their largest singular value while multiplying a
scalar β for further scaling their Lipschitz constants. For
example, if we let β = 0.4, the Lipschitz constants of all
fine-tuned layers are reduced to about β2 = 0.16. We can
see that reducing Lipschitz constants significantly improves
the target models’ robustness from 17.62% to 29.34% but
brings a negligible negative impact to the accuracy.

7.3. Ablation Studies

To test the effect of each component of CARTL on the
accuracy and robustness of the target model, we replace
part of the components of CARTL with the vanilla method
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Figure 5: The accuracy and robustness of target models fine-
tuned on CIFAR-10 of different sizes. For comparison, we
also train target models with LwF and the vanilla method.

while training the source models and fine-tuning the target
models. In Table 3, the first row presents the results using
the vanilla method, which is used as the baseline. Recall
that the vanilla method is consisted of simply adversarially
training the source model with (Madry et al., 2018), denoted
as AT, and directly fine-tuning the source model on the target
domain, denoted as TL. For the second row, we transfer an
adversarially trained model with NEFT, and the last row
presents the results achieved by CARTL.

We can see that fine-tuning the target model with NEFT sig-
nificantly increases its robustness by observing the first and
second rows. Besides, FDM further improves the robust-
ness except for the Case-8. We attribute this to the reason
that with the increasing number of fine-tuned layers, the
effect of constraining the features’ distance (i.e., FDM) is
reduced. On the other hand, the Lipschitz constraint (i.e.,
NEFT) plays a more important role when we fine-tune more
layers. As can be seen from the last column, the robustness
increases from 18.54% to 29.97%. Finally, we find that by
using FDM, the target model’s accuracy slightly rises in all
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cases.

7.4. Transfer to Smaller Dataset

In this subsection, we do additional experiments to test the
effect of data size on the target model’s performance. For
the target domain, CIFAR-10, we fine-tune target models on
subsets with the sizes of 50%, 20%, and 10%. To mitigate
bias, the number of training data for each label is equal. We
summarize and plot the results in Figure 5. Fine-tuning the
last six blocks with CARTL maintains better accuracy in all
cases, and CARTL provides outstanding robustness except
on the extremely small training set. However, CARTL still
slightly outperforms the vanilla method in that case. In
comparison, LwF relatively results in the lowest accuracy
and robustness in all cases. Generally speaking, CARTL
provides a better accuracy-robustness trade-off for small
datasets.

7.5. Studies on Extra Scenarios

To demonstrate the generality of CARTL, we conduct exper-
iments in scenarios including transferring from CIFAR-100
to SVHN, from CIFAR-100 to GTSRB, from CIFAR-10 to
SVHN, and from GTSRB to SVHN. According to Table 4,
we can see that the target model fine-tuned with CARTL
inherits superior robustness from the source model. Besides,
CARTL provides comparable accuracy against the vanilla
method. Table 4 demonstrates that CARTL can universally
improve the accuracy-robustness trade-off. As for LwF, it
leads to lower accuracy on the natural inputs and fails to
guarantee the robustness transfer. In all scenarios, LwF
obtains the lowest robustness.

8. Conclusion & Future Work
In this work, we have revealed the trade-off between the
robustness and the accuracy of the target model transferred
from an adversarially-trained source model. From our ob-
servation, we have proposed CARTL, which consists of fea-
ture distance minimization and non-expansive fine-tuning,
to help the target model inherit more robustness from the
source model while maintaining high accuracy. We have
also found that freezing all batch normalization layers’ affine
parameters can further improve the transferred robustness.
We hope our work brings insights to enable the following
researchers to build a more robust and accurate model in the
transfer learning scenario.

As our future work, we would like to solve the limitation
that FDM requires pre-training the source model with an
explicitly defined k. Other interesting directions include
improving the effect of robustness transfer further and con-
sidering more security threats against DNNs.
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A. Spectrum Normalization
In this section, we briefly recap spectrum normalization
(Miyato et al., 2018) for NEFT.

Without loss of generality, we define a linear function
f(x) = Wx + b, where W ∈ Rm×n and b ∈ Rm×1.
The Lipschitz constant of f is upper bounded by its largest
singular value σ(W ), i.e., the largest eigenvalue ofW TW .
Because directly calculating σ(W ) is costly, we can use
an iterative method to approximate it. To do so, we define
two vectors, u ∈ Rm and v ∈ Rn, and iteratively calculate
σ(W ) by

σ(W ) = uTWv,

vt+1 = W Tut/ ‖W Tut ‖2,
ut+1 = Wvt+1/ ‖Wvt+1 ‖2 .

(13)

To constrain the Lipschitz constant of f to be one, we divide
W by σ(W ).

B. Details of LwF (Shafahi et al., 2020)
This section introduces LwF (Shafahi et al., 2020), which
is considered as one of our baselines. In LwF, Shafahi et al.
(Shafahi et al., 2020) fine-tune all layers of the source model
while reducing the difference between the penultimate layer
outputs of the target model and the source model. The loss
of LwF can be expressed as

LLwF := LCE(f(x;θ), y)

+ λd· ‖ f (L−1)(x;θ)− f (L−1)(x;θ0) ‖2,
(14)

where θ0 is the original parameters of the source model, and
θ is the target models’ parameter. The hyper-parameter λd
controls the trade-off between the target domain accuracy
and the inherited robustness. In Figure 4, we follow the
settings in (Shafahi et al., 2020) where λd = 0.1, 0.01,
0.005, and 0.001, and we provide detailed results in Table
5. For other results of LwF (i.e., Table 4, Figure 5), we let
λd = 0.1, where it achieves best transferred robustness.

Table 5: Accuracy and robustness of target models trans-
ferred from CIFAR-100 to CIFAR-10 using LwF.

λd Acc.(%) Rob.(%)

0.1 74.87 17.59
0.01 81.45 16.67
0.005 84.86 8.59
0.001 89.87 0.22

C. Experiment Settings
In this section, we provide the experiment settings for our
evaluations.

• We adopt SGD with a momentum of 0.9 as the op-
timizer for training all models. The learning rate is
initialized as 0.1 and decays at epoch 40, 70, and 90
by a rate of 0.2. We train models with a batch size of
128 and set the training epoch as 100. Similar settings
are also applied during transfer learning.

• For adversarial training, we utilize PGD-7 to generate
adversarial examples during training source models.
The `∞-norm constraint (i.e., ε) is 8/255, and the step-
size is 2/255.

• We set the number of iterations for the spectrum nor-
malization to be one to avoid introducing extra compu-
tational overhead, and the experimental results demon-
strate a perfect approximation.

• In the model evaluation, we report both the accuracy
and robustness of the trained model on the entire test
set. Specifically, for the robustness evaluation, we
adopt the PGD-100 attack implemented by Foolbox4,
an adversarial attack framework, with the step-size of
2/255 and ε = 8/255.

• When we transfer robust source models to the target
domain with CARTL and the vanilla method, we freeze
all BN layers’ affine parameters, including the feature
extractor and the sub-model.

• The network architectures used in Section 6 are de-
tailed in Table 6.

Table 6: Network architecture configuration of experiments
for investigating BN layers’ effect.

Source Target Arch.

CIFAR-100 CIFAR-10 WRN 34-10
CIFAR-10 GTSRB WRN 28-4
CIFAR-10 SVHN WRN 28-4

4https://github.com/bethgelab/foolbox


