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Abstract. Under the linear regression framework, we study the variable se-
lection problem when the underlying model is assumed to have a small
number of nonzero coefficients. Non-convex penalties in specific forms are
well-studied in the literature for sparse estimation. A recent work [1] has
pointed out that nearly all existing non-convex penalties can be repre-
sented as difference-of-convex (DC) functions, which are the difference of
two convex functions, while itself may not be convex. There is a large
existing literature on optimization problems when their objectives and/or
constraints involve DC functions. Efficient numerical solutions have been
proposed. Under the DC framework, directional-stationary (d-stationary)
solutions are considered, and they are usually not unique. In this paper,
we show that under some mild conditions, a certain subset of d-stationary
solutions in an optimization problem (with a DC objective) has some ideal
statistical properties: namely, asymptotic estimation consistency, asymp-
totic model selection consistency, asymptotic efficiency. Our assumptions
are either weaker than or comparable with those conditions that have been
adopted in other existing works. This work shows that DC is a nice frame-
work to offer a unified approach to these existing works where non-convex
penalties are involved. Our work bridges the communities of optimization
and statistics.
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sparse estimation, nonconvex regularization, difference of convex (DC)
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1. INTRODUCTION

Sparse estimation under a linear regression model is a fundamental and classi-
cal problem in statistics. It continues to be highly active in the high-dimensional
regime when the underlying parameter is believed to be sparse. Properties on the
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resulting estimators have been extensively studied with different penalties of the
sparsity in [39, 30, 8, 9, 40, 14, 34, 37, 38], etc. However, most existing works focus
on the properties of a specific solution to the possibly nonconvex objective func-
tion, which is used to derive a sparse estimation of the unknown parameter. The
stationary solutions of other kinds might also be of interest and possess satisfy-
ing properties, such as the desired asymptotic estimation consistency, asymptotic
model selection consistency, asymptotic efficiency. A unified framework for the
penalized high-dimensional sparse estimation and the relation to a subfield of
optimization problems, namely, the difference-of-convex (DC) programming are
missing in the literature. We establish such a connection in this paper.

1.1 Sparsity induced penalties

We first present the formulation of high-dimensional sparse estimation in linear
regression setting using sparsity-induced penalties. Consider observations (y1, x1),
(y2, x2), . . ., (yn, xn), where we have the response yi ∈ R and the predictor xi ∈ Rp
satisfy

yi = β∗Txi + εi.

Here, β∗T is the transpose of the vector β∗ ∈ Rp, which is the true however
unknown underlying parameter to be estimated. We further assume that noises
εi’s are independently distributed, with 0 mean and equal variance σ2 (which can
be a sub-Gaussian distribution with variance parameter σ2), and are independent
of xi’s. The above model is commonly written in the following matrix form:

(1.1) y = Xβ∗ + ε,

where the vector y = (y1, · · · , yn)T ∈ Rn is the response vector, X ∈ Rn×p is the
model matrix with rows being individual predictors, xT1 , · · · , xTn , and the random
vector ε contains the noises.

In the high-dimensional regime where the number of the parameters, denoted
by p, exceeds the sample size, denoted by n, one of the most important methods
(according to many works such as [5, 3, 4]) is to estimate the parameter by using
the LASSO [27] approach. It is interesting to note that a mathematically equiva-
lent approach was proposed in [6] around the same time in the computational and
applied mathematics literature. LASSO is defined through solving the following
convex optimization problem:

(1.2) β̂lasso(y,X;λ) = arg min
β∈Rp

{ 1

2n
‖y −Xβ‖22 + λ‖β‖1

}
The first term in the above objective is the goodness-of-fit measure (a.k.a., the
residual sum of squares) in the linear regression model (1.1). The second term in
the objective is a penalty function, which is the sum of absolute values:

∑k
i=1 λ|βi|.

We can further write the penalty in a more general form
∑k

i=1 Pλ(βi), where the
univariate function Pλ(x) takes the form Pλ(x) = λ|x| in the LASSO approach.
Many existing works, including [39] and [30] and others, have proved that with
high probability (i.e., the probability goes to 1 as sample size goes to infinity),
under some conditions on the design matrix and the choices for λ, the LASSO
will be able to find the right signed support for the unknown parameter β∗. The
cases that have been studied include (1) when the matrix can be fixed or random,
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(2) the dimension of the unknown parameter is fixed or goes to infinity as the
sample size increases, and (3) other interesting situations.

Despite the success of obtaining sparse estimators by using LASSO, it is also
well known that the resulting estimator is biased. This can be readily seen by
considering the special scenario, where the design matrix X is orthonormal,
consequently, the L1 penalty leads to a soft-thresholding solution, which is bi-
ased from the true parameter β∗. The de-biasing procedure has been studied
in [35, 15, 29, 16]. In the present paper, we decide to focus on the regulariza-
tion (i.e., adding a penalty function) approach, partially because the de-biasing
approach may require solving multiple optimization problems, therefore could
be computationally disadvantageous. At the same time, we may explore other
algorithmic-design approaches in the future.

An effective extension of the LASSO estimator is to replace the penalty func-
tion Pλ(x) in (1.2) into some folded concave functions, which are non-convex.
Some representitive works include SCAD [8, 9], MCP [34], adaptive LASSO [40],
capped-l1 [38], together with others. In general, this leads to an NP-hard problem;
therefore no polynomial-time algorithm is known in finding the global optimal
solution. Specifically, SCAD is proposed in [8, 9], in order to debias the estima-
tion when the parameter is numerically relatively large, which gives a constant
penalty as the parameter is large enough. Adaptive LASSO is studied in [40, 14],
which is motivated by the fact that in the orthogonal design, the bias of the
parameter estimation is approximately λ in LASSO. The authors suggest giving
different sizes of penalties to different parameters so that the variables with large
coefficients have smaller weights in the `1 penalty (depending on some consistent
estimator β̂ of β∗). Then they can reduce the estimation bias of the lasso while re-
taining its sparsity property. MCP is proposed in [34], which also gives a constant
penalty as the parameter is large enough. Capped-l1 in [37, 38] gives a penalty of
truncated l1 penalty to ensure a constant penalty when the estimation is large.
Consistency results, including measuring the squared distance of the estimation,
prediction, signed support recovery, for the previously mentioned formulations
can be found in the original works.

1.2 Difference-of-convex (DC) unified penalties

Recently, it is pointed out by [1] that all the previously listed penalties can be
written in a unified DC form. Especially, the first term is the `1 penalty ‖β‖1.
This leads to a DC formulation; i.e., solving the penalized least square problem
with a generalized DC penalty function. In [1], they prove under some strong as-
sumptions (strong convexity of the loss functions) that the d-stationary solutions
found by a standard DC algorithm (i.e., DCA) are the global minimum. This
result might not be surprising because, under their assumptions, the objective
function (the DC-penalized loss functions) in fact can be strongly convex, which
makes the solution unique. They also prove that the `0 norm of the d-stationary
solution has an upper bound, which doesn’t shed light on the support recovery
property. Our paper is inspired by [1]. Compared to [1], we relax the assumptions
on strong convexity for the loss function and prove the existence of a class of
d-stationary solutions, which have the oracle properties in the linear regression
scenario. Our result indicates that the assumption on the strong convexity of
the loss function within the domain is not necessary. In addition, the aforemen-
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tioned work has an applied mathematics focus – their `0 norm result does not
imply statistical properties of the d-stationary solutions. In statistical literature,
the distance between the d-stationary solution and the assumed ground truth is
considered. Our result will be more formulated towards the statistical properties
of the d-stationary solutions: namely model estimation consistency, asymptotic
convergence rate in estimation, and model selection consistency. Despite the dif-
ference, it is interesting to point out that both works will require the restricted
convexity assumption, which is assumed in nearly all related work. Besides, we
also generalize the results to DC penalized general loss functions.

The use of DC functions offers a general framework for non-convex regular-
ization. Some special cases are discussed in [18] and [32], although they don’t
explicitly mention the DC functions in their work. The first work [18] assumes
that the penalty function pλ(β) is separable in parameter β and each of the uni-
variate penalty can be written as the difference of a convex function pλ,µ(t) and a
quadratic function µ

2 t
2, where µ is a known positive constant. Therefore one has

pλ(t) = pλ,µ(t)− µ
2 t

2. They restrict the feasible region to a bounded region con-
taining the ground truth β∗. Under certain regularity conditions on the penalty,
including differentiability, and restrictive strong convexity of the loss function,
they give the optimal upper bound for the estimation error as well as for predic-
tion error. Their assumption includes the popularly studied penalties like SCAD
and MCP. On the other hand, They don’t have results on the support recovery
and they purposely eliminated possible stationary solutions outside the bounded
feasible region they defined. The second work [32] mainly assumes the restricted
strong convexity of the penalties and the loss functions. They mainly discuss the
elliptical design regression, least-square loss, and logistic loss with SCAD, MCP
penalties, which can be written as the summation of the `1 penalty ‖β‖1 and
a concave function qλ(β) with proper bound in the concavity. They argue that
the local quadratic approximation algorithm they provided converges to a unique
local minimum, which enjoys the oracle properties as if you’ve already known the
support for the true parameter. They prove the estimation error upper bound.
And they are able to prove the support recovery results for a linear regression
model with the least square loss function. Both are under the assumption that
the concavity of the function qλ(β) is bounded.

Both works [18, 32] assume the decreasing first-order derivative of the penalty
function on the nonnegative real line, which is necessary for the unbiasedness for
estimation of larger β. They both restrict the penalties such that the objective
function is strongly convex within some regions where the local optimal solutions,
as well as the true unknown parameters, are in the given convex set.

While in the current work, we solve the unconstrained problem and prove the
asymptotic convergence results of the estimation for a class of local d-stationary
solutions without using the assumption of the bounded concavity of the qλ(·)
function and constant penalty when the parameter is large enough, which allows
us to include other penalties such as transformed `1 [36, 19] and logarithmic [20],
into our analysis. Equipped with the bounded convexity assumption, we further
prove that the support recovery consistency for the class of d-stationary solutions
we find near the ground truth.

From the computation perspective, there is rich literature on solving the penal-
ized (also known as regularized) problem numerically. For example, Local Linear
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Approximation (LLA) in [41] prove that a one-step estimator from LLA per-
forms well in SCAD with penalized likelihood estimation. They also prove the
asymptotic normality under some regularity conditions of the Fisher Information
matrix. In this paper, we would like to explore the relationship between LLA and
the popular DC Algorithm (DCA), which is often used in DC programming. It
turns out that all the above-mentioned algorithms are special cases of DCA.

This paper builds a bridge between optimization, where people focused on
solving the optimization problem efficiently, and statistics, where people mainly
focused on inference (finding the estimation). The link here would be the DC pro-
gramming and DCA. The DC programming enables us to generalize the classical
penalized likelihood function to the DC penalized likelihood function, while DCA
provides us efficient algorithms to solve the corresponding numerical problems.
Borrowing strength from existing literature enables us to solve the optimization
problem efficiently with convergence guarantees. We unify the existing algorithms
in the literature for finding the local minima of non-convex optimization problems
under the DCA framework.

1.3 Notations

For a real number q ∈ [1,+∞), the `q norm of a vector β = (β1, β2, · · · , βp) ∈
Rp is defined as ‖β‖q = (

∑p
i=1 β

q
i )

1/q. Specially, the `∞ norm is defined as ‖β‖∞ =
max1≤i≤p{|βi|}. The `0 norm is defined as ‖β‖0 = card{supp(β)}, where we have
supp(β) = {i : βi 6= 0} and card{·} is the cardinality of the set. We denote the
cardinality of a set S by |S| and its complement by Sc. For β = (β1, β2, · · · , βp) ∈
Rp, we let βS denote the sub-vector (of β) whose elements correspond to the set
S; we let XS denote the sub-matrix (of X) whose columns indices correspond to
the set S.

1.4 Organization

The rest of the paper is organized as follows. We review the basic properties
of the DC programming and the DC functions in Section 2. We form a penalized
least square problem with a generalized DC-penalty in Section 3. Under mild
assumptions, we prove in Section 4 that a set of the d-stationary solutions are
close to the ground truth. Furthermore, they are also support recovery consistent.
We also extend our results to generalized loss functions, such as logistic loss, etc.,
in Section 5. We provide the connections among popular exiting algorithms in
DC programming and statistics estimation with non-convex objective functions
in Section 6. We finally conclude this work in Section 7. When possible, the
technical proofs are relegated to the Appendix, which is included in an online
supplementary file.

2. DC FUNCTIONS AND RELATED BASIC PROPERTIES

In this section, we first provide the necessary background as well as a definition
of the Difference-of-Convex (DC) functions, before proceeding to our formulation
(Section 3) and the main results (Section 4 and 5). We present the definition of DC
functions and their known properties in Section 2.1. The directional derivatives
are reviewed in Section 2.2. The class of DC functions that we are particularly
interested in are reviewed in Section 2.3. We then define and study the directional
stationarity (d-stationarity) that we focus on in this work in Section 2.4.
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2.1 DC programming and DC functions

DC programming is pervasive nowadays in both optimization and statistics.
The DC program has been introduced in the literature from the 1950’s [2]. The
paper [11] gives a wealth of basic properties of the DC functions, which are the
functions that are used in the objectives and constraints in the DC programming.
In particular, the DC programming has been intensively studied in the field of
optimization in the early 1980’s [13, 12, 25, 28]. The following gives a formal
definition for a DC function.

Definition 2.1. A function, p(x), is called a difference-of-convex (DC) func-
tion if we have

p(x) = g(x)− h(x)

where both g(x) and h(x) are convex functions.

There are many known results regarding DC functions and DC programming.
We summarize these properties of DC programming from the literature in Ap-
pendix A.

2.2 Directional derivative

To enable our description, we define the directional derivative in the following.

Definition 2.2. For a function Q(β) that is defined on Ω where β ∈ Ω ⊂ R
or Rp, for β0, β1 ∈ Ω, the directional derivative at β0 in the direction of β1 − β0
is defined as follows:

Q′(β0;β1 − β0) = lim
τ→0+

Q(β0 + τ(β1 − β0))−Q(β0)

τ
,

where τ ∈ R+.

To compute the directional derivative, when a function P (β) is differentiable
in Rp, the directional derivative with regard to β at β0 is given below:

P ′(β0;β − β0) = 〈∇P (β0), β − β0〉,

where ∇P (β0) is the gradient of the function P (β) at β0, and 〈·, ·〉 represents the
inner product. When the function P (β) is non-differentiable however convex in
Rp, given its sub-gradient set ∂P (β0) at β0, the directional derivative with regard
to β at β0 can be written as [23, Theorem 23.4]:

P ′(β0;β − β0) = max
v∈∂P (β0)

〈v, β − β0〉.

The recent papers [21] and [1] discuss the pervasiveness of the existence of
the DC functions as well as its relation to statistics. Specifically, they have the
following results considering the pervasiveness of DC functions.

Lemma 2.1. [21, Proposition 1] For any univariate continuous concave func-
tion p that is defined on R+, the composite function θ(|t|) = p(|t|) is Difference-
of-Convex (DC) on R if and only if p′(0;+), the directional derivative of p(t) at
0, which can be written as follows,

p′(0;+) = lim
τ→0+

p(τ)− p(0)

τ
,
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exists and is finite.

The above lemma leads to the realization that nearly all the folded-concave
penalties [8, 9, 34, 37, 38] in the sparsity study nowadays belong to the DC family.
We articulate details in the subsequent subsection.

2.3 Relation to statistics

Based on the definition of the DC functions (Definition 2.1), it has been re-
alized (e.g., [31],[32], and [1]) that many well-studied penalties, such as SCAD,
MCP, capped `1, transformed `1, logarithmic, can be written as DC functions. We
articulate details in the following. Throughout this paper, we consider penalties
P (β) that are separable in the (potentially multivariate) parameter β: P (β) =∑p

i=1 p(βi), where β = (β1, . . . , βp) ∈ Rp. We argue that function p(x) is a DC
function for the popular existing penalties in the literature; that is, we have
p(x) = g(x)−h(x), where functions g and h are convex. More specifically, for the
penalties that are of interests to us and are widely used in statistical inference,
we always have g(x) = |x| (or g(x) = λ|x|, when an algorithmic parameter λ is
involved), however the function h(x) varies for different penalties.

In the following, we describe how the popular penalty functions p(x) that was
mentioned previously can be decomposed as DC functions. For simplicity, without
loss of generality, we set the tuning parameter as λ = 1.

1. In SCAD [8, 9], we have

pSCAD(t) = |t| − hSCADγ (t),

where

hSCADγ (t) =


0 |t| ≤ 1
(|t|−1)2

2(γ−1) 1 ≤ |t| ≤ γ

|t| − (γ+1)
2 |t| ≥ γ

and the function hSCADγ (t) can be verified to be convex on the positive real
line and have a continuous first order derivative.

2. In MCP [34], we have

pMCP (t) = |t| − hMCP
γ (t),

where

hMCP
γ (t) =

{
|t|2
2γ |t| ≤ γ

|t| − γ
2 |t| ≥ γ

and the function hMCP
γ (t) can be verified to be convex on the positive real

line and have a continuous first order derivative.
3. In Capped `1 [37, 38], we have

pcapped `1(t) = |t| −max

{
0,

2t

γ
− 1,−2t

γ
− 1

}
,

where one can verify that both |t| and max
{
0, 2tγ − 1,−2t

γ − 1
}
are convex

functions of t.

imsart-sts ver. 2014/10/16 file: sts-DC_without_supple.tex date: June 26, 2021



8 S. CAO, ET AL.

4. In Transformed `1 [36, 19], we have

pTransformed `1(t) =
a+ 1

a
|t| −

(
a+ 1

a
|t| − (a+ 1)|t|

a+ |t|

)
,

where one can verify that both a+1
a |t| and

(
a+1
a |t| − (a+1)|t|

a+|t|

)
are convex

functions.
5. In Logarithmic [20], we have

pLog(t) =
1

ε
|t| −

(
|t|
ε
− log(|t|+ ε) + log ε

)
,

where ε is a given positive scalar; similarly, one can verify that both λ
ε |t|

and
(
|t|
ε − log(|t|+ ε) + log ε

)
are convex functions.

Table 1 summarizes the aforementioned DC decompositions. The penalty func-
tions and their first order derivatives in terms of |t| are plotted in Figure 1. One
common point that most of the above penalties share is that their first order
derivative goes to 0 as |t| → ∞.

Penalty p(t) g(t) h(t)

`1 |t| |t| 0

SCAD
∫ |t|
0

1 ∧ (1− x−1
γ−1

)+dx |t| (|t|−1)2

2(γ−1)
I{1 < |t| < γ}

+(|t| − γ+1
2

)I{|t| ≥ γ}
MCP

∫ |t|
0

(1− x
γ
)+dx |t| (|t| − γ/2)I{|t| > γ}

+ t2

2γ
I{|t| < γ}

Capped-`1 min{γ/2, |t|} |t| max{0, 2t
γ
− 1}

Transformed `1
(a+1)|t|
a+|t|

a+1
a
|t| a+1

a
|t| − (a+1)|t|

a+|t|

Logarithmic log(|t|+ ε)− log ε |t|
ε

|t|
ε
− log(|t|+ ε) + log ε

Table 1
The DC decompositions of some well-known penalty functions in statistical inference. The first

column contains the name of the methodology. The second column describes the penalty
function. The last two columns present the corresponding two convex functional components

(i.e., g and h) in the DC decomposition: p(t) = g(t)− h(t).

Although there are many other different DC decompositions, this one has the
advantage of easy interpretation and correcting the penalty of LASSO, which in
some sense, does a debiasing job for the LASSO estimator (by choosing hλ(t) to
be linear with slope λ when |t| is large enough). It also shares common features
with popular penalties in literature, like SCAD, MCP, capped `1 penalties where
the penalty is close to or equal to `1 penalty when the solution is around the
origin. Furthermore, the resulting penalty p(x) = g(x) − h(x) is singular at 0,
which makes it possible to achieve the condition of sparsity and continuity of
the estimation [8]. The results in later sections can be applied to SCAD, MCP,
capped-`1, and many others.

2.4 Directional stationary points

Another important definition in this paper is the d(irectional)-stationary point,
which is used to describe the set of stationary solutions we are interested in this
paper. We give the definition of the d-stationary point in the following.
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Fig 1. Examples of famous DC penalties and their derivatives in the literature: the `0 penalty is
plotted in the solid black line; the `1 penalty function is plotted in the solid blue line; the MCP
penalty is plotted in the dotted blue line; the MCP penalty is plotted in the dash-dot line; the
Capped-`1 penalty is plotted in the dashed blue line.

Definition 2.3 (d-stationary point). A vector β̂ ∈ Ω is a d-stationary point
to a function Q(β) if the directional derivative, which is defined as

Q′(β̂;β − β̂) = lim
τ→0+

Q(β̂ + τ(β − β̂))−Q(β̂)

τ
,

satisfies Q′(β̂;β − β̂) ≥ 0 for all β ∈ Ω.

We prove later that under some proper conditions on the penalty function as
well as on the design matrix (which in some general cases are about the loss
functions), a set of d-stationary solutions to the DC programming problem are√
n consistent estimators with high probability (Theorem 4.1). Under further

conditions, it also recovers the true support in the unknown parameter with high
probability (Theorem 4.3).

A motivation of choosing the directional stationary solutions (which are the
directional stationary points in the corresponding optimization problem) rather
than stationary solutions of other kinds, such as that of a critical point for DC
programs, is provided in [1]. The authors argue that the directional stationary
solutions are the sharpest kind among stationary solutions of other kinds in the
sense, a directional stationary solution must be stationary according to other
definitions of stationarity. In the above sense, the d-stationary solutions possess
minimizing properties that are not in general satisfied by stationary solutions of
other kinds. We refer to the original paper for a more detailed discussion.

3. FORMULATION AND ASSUMPTIONS

In this section, we first give our detailed formulation in Section 3.1. We dis-
cuss the scale invariant properties of the formulation with some specific form of
penalties in Section 3.2. We then list the assumptions on the penalty functions
in Section 3.3, on the d-stationary solutions in Section 3.4, on the design matrix
for our analytical study and corresponding justifications in Section 3.5.

3.1 Formulation

We present our problem formulation in the following. Recall that the widely-
known SCAD [8] and MCP [34] choose their regularization term (i.e., the penalty
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function) as a function in the form, λ|t| − hλ(t), where the second term hλ(t)
has a continuous first order derivative. Motivated by the above, we propose to
analyze the following parameter estimation approach:

(3.1) min
β∈Rp

1

2n
‖Y −Xβ‖22 + λ‖β‖1 − hλ(β),

where function hλ(β) is assumed to be convex and the model is specified in (1.1).
As we have shown in Table 1, popular non-convex penalties in the literature can
all be expressed in DC form. In our formulation, following the approaches in the
main stream methodology, we focus on separable penalty, that is we have

P (β) = λ‖β‖1 − hλ(β) =

p∑
i=1

λ|βi| − hλ(βi),

for β = (β1, . . . , βp) ∈ Rp. Note that based on the context, function hλ(·) can
take both univariate and multivariate inputs. In our formulation, the univariate
function hλ(·) is assumed to be convex. Its properties are further specified later.

3.2 Scale-invariant property

In real world of processing data, programmers always perform rescaling on
the raw data set. We can make our formulation scale-invariant by assuming the
following format of the penalty function.

Assumption 3.1. pλ(t) = λ2p( tλ).

Suppose we scale the model in (1.1) by a scalar c, which leads to the following
model:

cY = X(cβ∗) + cε,

Let F (β, λ) = 1
2n‖Y − Xβ‖22 + λ‖β‖1 − hλ(β) denote the objective function,

corresponding to (1.1). Let F (cβ, cλ) = 1
2n‖cY − X(cβ)‖22 + cλ‖cβ‖1 − hcλ(cβ)

denote the objective function, corresponding to the scaled model. One can easily
verify that for any given positive scalar c,

(3.2) min
β∈Rp

F (cβ, cλ),

is equivalent to the original problem of minβ∈Rp F (β, λ) in (3.1) with scale free
penalties such as SCAD, `1, MCP, capped-`1, which have the common form stated
in Assumption 3.1. One can verify that most of the functions in Table 1 satisfy
this scale free condition except the logarithmic function and the transformed `1.
However, according to the unification DCA in Section 6, where in each iteration,
by using only the linear approximation, we solve a re-weighted LASSO problem,
which is scale invariant.

3.3 Assumptions on hλ(·)

We present the assumptions that we need in the analytical study in this section.
Recall that our penalty function has the form P (β) = λ‖β‖1 − hλ(β). Notice
that the first term of the DC penalty is always the `1 function. We specify our
assumptions on the univariate function hλ(β), for β ∈ R. We also require the
regularity conditions on the design matrix X, which is articulated later.
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DC UNIFIED REGULARIZATION FRAMEWORK 11

The following assumptions are utilized in our analysis. We briefly discuss the
assumptions and argue that our assumptions are equivalent or weaker to condi-
tions in most existing work.

Assumption 3.2. We have supt∈R |h′λ(t)| ≤ λ.

Assumption 3.3. We have hλ(t) is symmetric about 0.

Both Assumption 3.2 on the non-negativity of the penalty and Assumption 3.3
on the symmetry of the penalty function are standard assumptions in the litera-
ture. Assumption 3.2 makes sure that the penalty function Pλ(βi) is nonnegative.
In fact, we can even relax this condition to supt∈R |h′λ(t)| ≤ λ as long as the first
order derivative of the function hλ(t) is uniformly bounded in the real line.

Assumption 3.4. h′λ(t) is monotonically increasing and there exist two non-
negative constants η− ≥ η+ ≥ 0 such that for any t2 > t1:

(3.3) 0 ≤ η+ ≤
h′λ(t2)− h′λ(t1)

t2 − t1
≤ η−

Regarding Assumption 3.4, the lower bound η+ of the convexity of the function
hλ(t) is usually assumed to be 0 in other works, such as in the SCAD and the
MCP. The upper-bound of the convexity η− is used to control the convexity of
the function hλ(t). If hλ(t) has a “lot” of convexity, we are not able to have
the Restricted Strong Convexity of the objective function later. On the other
hand, this can be regarded as requiring the first order derivative of hλ(t) to be
continuous. The continuity assumption together with Assumption 3.2 and 3.6
ensure that Assumption 3.4 holds.

Assumption 3.5. We have hλ(0) = h′λ(0) = 0.

Assumption 3.5 is utilized to ensure the soft thresholding property of the
penalty function [8], recalling that the singularity of the whole penalty function
at 0.

Assumption 3.6. For some positive ζ, we have h′λ(t) = λ for all |t| ≥ ζ.

Assumption 3.6 is based on the fact [8] that making sure h′λ(t) = λ for t
positive enough and h′λ(t) = −λ for t negative enough help producing an unbiased
estimator. Recall that one of the main reasons of considering a generalized version
of the LASSO method is the bias of the estimation from LASSO.

Below, we make a table of the penalties discussed in Table 1 and presents the
decomposition to λ|t|−hλ(t). We also listed the properties that each of the hλ(t)
holds.

From Table 2, we can see that, SCAD and MCP penalty class satisfy all of
the assumptions. While Capped-`1 has discontinuous first order derivative, which
violates the Assumption 3.4. In order to extend the theories in this work to
Capped-`1 penalty, performing smoothing around the non-differentiable point is
enough. We re-scaled the linear term in Transformed `1 to match the assumptions.
ε in Logarithmic penalty is chosen to be 1 in the Table 2.
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Penalty h(t) sgn(t)h′(t) Convexity Assumptions
measure

`1 0 0 0 All except 3.6

Capped-`1 max{0, 2t
γ
− 1} 2

γ
I{|t| > γ/2} ∞ All except 3.4

MCP (|t| − γ/2)I{|t| > γ} min{ |t|
γ
, 1} γ−1 All

+ t2

2γ
I{|t| < γ}

SCAD (|t|−1)2

2(γ−1)
I{1 < |t| < γ} |t|−1

γ−1
I{1 < |t| < γ} (γ − 1)−1 All

+(|t| − γ+1
2

)I{|t| ≥ γ} +I{|t| ≥ γ}
Transformed `1 |t| − a|t|

a+|t|
(a+|t|)2−a2

(a+|t|)2
2
a

All except 3.6

Logarithmic |t| − log(|t|+ 1) |t|
|t|+1

1 All except 3.6

Table 2
The penalties in the sparse estimation literature and their properties with respect to our

assumptions. The first column gives the name of the methods. The second column presents the
h-function, which is the second component in the DC decomposition (p = g − h) of the

corresponding penalty function. The third column contains their first derivatives on the positive
axe. This is to verify Assumption 3.2. The fourth column computes for the quantities that are
raised in Assumption 3.4. The last column summarizes the assumptions that the corresponding

penalty satisfies.

3.4 Assumptions on the d-stationary solution

We list some assumptions on the d-stationary solutions.

Assumption 3.7. Let β∗ be the unknown true parameter, β̂ be the d-stationary
solution to problem (3.1), which satisfies the following condition:

1

n
XT
j X(β − β̂)sign(β̂j) ≥ cλ, for all j ∈ Sc, β = β∗ with c ∈ (0, 1).

Remark 3.1. The above Assumption 3.7 is no stronger than the assumptions
used in LASSO estimator [30] to prove the desired statistical properties in later
Sections. We show below that in the proof of LASSO estimator, it corresponds to
when c = 1

2 . Let β̂lasso = argminβ∈Rp
1
2n‖Y −Xβ‖22 + λ‖β‖1. Recall that in [30],

by the First Order Condition (FOC) at β̂lasso, we have

− 1

n
XT (Y −Xβ̂lasso) + λ∂‖β̂lasso‖1 = 0,

where ∂‖β̂lasso‖1 is a subgradient at β̂lasso for ‖β‖1. Multiplying (β∗ − β̂lasso)T

on both sides, we have

− 1

n
(β∗ − β̂lasso)TXT (Y −Xβ̂lasso) + λ(β∗ − β̂lasso)T∂‖β̂lasso‖1 = 0.

Since

(β∗ − β̂lasso)T∂‖β̂lasso‖1
=(β∗ − β̂lasso)TS∂‖β̂lassoS ‖1 + (β∗ − β̂lasso)TSc∂‖β̂lassoSc ‖1
=(β∗ − β̂lasso)TS∂‖β̂lassoS ‖1 − ‖β̂lassoSc ‖1

(3.4)
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Plugging into the FOC, we have

1

n
(β∗ − β̂lasso)TXT (Y −Xβ̂lasso)

=
1

n
(β∗ − β̂lasso)TXTX(β∗ − β̂lasso) +

1

n
(β∗ − β̂lasso)TXT ε

=
1

n
(β∗ − β̂lasso)TXTX(β∗ − β̂lasso) +

1

n
(β∗ − β̂lasso)TSX

T
S ε

+
1

n
(β∗ − β̂lasso)TScX

T
Scε

=
1

n
(β∗ − β̂lasso)TXTX(β∗ − β̂lasso) +

1

n
(β∗ − β̂lasso)TSX

T
S ε

−
∑
Sc

1

n
|β̂lasso|iXT

i εsign(β̂lassoi )

=λ(β∗ − β̂lasso)TS∂‖β̂lassoS ‖1 − λ‖β̂lassoSc ‖1

(3.5)

where in the first equality, we plugged in Y = Xβ∗ + ε. If we have the condition
that 1

nX
T
i X(β∗ − β̂lasso)sign(β̂lassoi ) > cλ (c = 1

2 in LASSO) for all i /∈ S, we
have

1

n
(β∗ − β̂lasso)TXTX(β∗ − β̂lasso)

≤ 3

2
λ‖β̂lassoS ‖1 − cλ‖β̂lassoSc ‖1

(3.6)

with high probability. Similarly, we made Assumption 3.7 in the generalized pe-
nalized regression to ensure good property of the solution.

Remark 3.2. Since the condition in Assumption 3.7 cannot be verified di-
rectly, in real data analysis, we can use the following checkable conditions instead:

1

n
XT
j (Y −Xβ̂)sign(β̂j) ≥ cλ, for all j ∈ Sc such that β̂j 6= 0, β = β∗,

where c is defined in Assumption 3.7. If the above holds, Assumption 3.7 holds
with high probability using similar argument of sub-Gaussian random variables as
in the proof of Theorem 4.2.

3.5 Assumptions on the design matrix X

Definition 3.1. The restricted strong convexity (RSC) condition on model
matrix X with respect to C is the following, there exists some constant γ > 0 such
that:

1
N νX

TXν

‖ν‖22
≥ γ for all nonzero ν ∈ C

here γ is called the restricted eigenvalue bound with regard to C.

Assumption 3.8. Denote CS by the diagonal matrix with {ci, i ∈ S}, CSC by
the diagonal matrix with {ci, i ∈ SC}, the restricted eigenvalues (RE) condition
holds on the following set with some positive c defined in Assumption 3.7:

C =

{
ν ∈ Rp

∣∣∣∣‖CSC · νSC‖1 ≤
5

2c
‖CS · νS‖1

}
,

where · indicates the matrix-vector multiplication.
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14 S. CAO, ET AL.

We have C ⊂ Rp strictly since it is of the form of cone.
The RSC (Assumption 3.8) is a standard assumption in the literature for prov-

ing the consistency results of regularized high-dimensional sparse estimation prob-
lems.

4. CONSISTENCY RESULTS FOR SOME D-STATIONARY SOLUTIONS

We prove our main results in this section. The non-asymptotic upper bound
for estimation errors is derived in Section 4.1. As a corollary, we provide the
upper bound for prediction errors as a byproduct in Section 4.2. We provide the
results regarding the asymptotic consistency of the estimation in Section 4.3. The
asymptotic consistency in support recovery is discussed in Section 4.4.

4.1 Non-asymptotic upper bound for estimation errors

In this section, we present our results on the non-asymptotic upper bound
for the estimation error. We mainly use the assumptions on the model matrix
to prove that the difference between the ground truth β∗ and the d-stationary
solution β̂λn will be in a cone-like set, where we have the restricted strong convexity
(RSC) assumption hold (as defined in Assumption 3.8). Without Assumption 3.4
on the continuity of the first order derivative on the function hλ(t), we will be
able to obtain the upper-bound of the `2 distance between the ground truth and
the d-stationary estimation.

Theorem 4.1. Suppose hλ(t) satisfies Assumptions 3.2, 3.3, 3.5, design ma-
trix X satisfies the restricted strong convexity with respect to C, which is defined

in Assumption 3.8 with ci = 1 for i = 1, · · · , p, with λ ≥ 2‖XT ε‖∞
n . If we further

assume Assumption 3.7 holds at the d-stationary solution β̂λn, we will have the
upper bound for estimation error on β∗ with the d-stationary estimation β̂λn:

‖β̂λn − β∗‖2 ≤
5

2γ
λ
√
‖β∗‖0

The proof of the above Theorem 4.1 is in an online supplementary file. The
results in Theorem 4.1 suggest that the d-stationary solution to Problem (3.1),
under mild conditions, will be able to retrieve the information in the unknown

parameter β∗ with error bounded within the order of O(
λ
√

|S|
γ ), which is optimal.

4.2 Non-asymptotic upper bound for prediction errors

From the proof of Theorem 4.1, we will be able to further give the upper bound
for the prediction error below.

Corollary 4.1. Under the assumptions of Theorem 4.1, we can further get
the upper-bound for the prediction error as:∥∥∥∥ 1√

n
X(β∗ − β̂λn)

∥∥∥∥2
2

≤ (
5

2
λ)2

1

γ

√
|S|

The proof of Corollary 4.1 is straight forward according to the proof in Theorem
4.1 and is in an online supplementary file.
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4.3 Asymptotic convergence rate

If we further assume that the errors are independent sub-Gaussian distributed,

we will be able to bound the estimation error in the order of

√
|S| log p

n with high
probability.

Corollary 4.2. Under the assumptions of Theorem 4.1, if we further as-
sume that the errors are from independent sub-Gaussian with variance param-
eter σ2 and mean 0, we will have the following hold with probability at least
1− 2 exp (− τ−2

2 log p)

‖β̂λn − β∗‖2 .
5

γ
σ

√
τ |S| log p

n
.

We provide the proof of Corollary 4.2 in an online supplementary file.

Remark 4.1. All the results above are considering the problem in (3.1). How-
ever, the conclusions will still hold for the constrained version of problem (3.1)
as long as the assumptions are satisfied. The results in this work assumes the
d-stationary solution that satisfies our assumptions exists. We will justify the
existence of the d-stationary solution satisfying our assumptions in Section 5.1.

4.4 Support recovery

In this section, we will first provide the KKT conditions for d-stationary so-
lutions, which says that the d-stationary condition in our work is equivalent to
the first order condition in the case of no constraints. Then we prove the Re-
stricted Strong Convexity for the objective function in Problem (3.1) under some
regularity conditions. By usage of the oracle estimator defined later in Problem
(4.3), we will be able to prove the support recovery consistency of some of the
d-stationary solutions to Problem (3.1).

Lemma 4.1. Let F (β) = L(β) + g(β) − h(β), where L(β), g(β), h(β) are
convex with β ∈ Rp. Further assume that L(β) and h(β) have continuous first
order derivative, g(β) = ‖β‖1. Let β0 be a d(irectional)-stationary solution to
F (β), we have the following first order condition (FOC) hold at β0. We will
be able to get the following equivalent condition: β0 is a d(irectional)-stationary
solution to F (β) if and only if there exists some z ∈ ∂g(β0), where ∂g(β0) is the
set of subgradient of g(β) at β0, such that:

(4.1) ∇L(β0) + z −∇h(β0) = 0,

where ∇L(β0), ∇h(β0) is the gradient of L, h at β0.

The above Lemma 4.1 states the equivalence between d-stationary solution and
first order condition (FOC) in the unconstrained case. While in constrained case,
this does not necessarily hold. From the proof Lemma 4.1, we can derive similar
conditions for “local maximals” for β̃. We obtain that as long as minpi=1{β̃i} = 0,
it will only satisfy the condition for “local” minimals and thus be a d-stationary
solution. Thus, in order to find the d-stationary solution, we only need to find a
β0 such that, there exists a vector z ∈ ∂‖β0‖1, the subgradient of function ‖β‖1
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at β = β0, such that ∇L(β0)−∇h(β0) + z = 0. Furthermore, if minpi=1{zi} < 1,
which is known as the strict dual feasibility condition [30], it will be satisfying
the condition for “local” minimals.

Remark 4.2. Generally, a d-stationary solution is not necessarily local min-
imal. For example, for a differentiable function f(x, y) = x2 − y2, where both the
function g(x, y) and h(x, y) are differentiable (slightly different from the above
situation in Lemma 4.1), at a saddle point (0, 0), which is stationary with 0
gradient, the directional derivative at this point will all be 0, which makes it a
d-stationary solution however not a local minimal. Another example would be
f(x, y) = |x| − y2 at the saddle point (0, 0).

Remark 4.3. The necessary condition to be a local minimal is being a d-
stationary point in the feasible region.

The following Lemma shows the RSC of the Problem (3.1).

Lemma 4.2. Under Assumption 3.8 with hλ satisfying Assumptions 3.2, 3.3,
3.4, 3.5, let β1, β2 ∈ Rp such that ν = β1 − β2 ∈ C, where C is defined in
Assumption 3.8. Then fλ(β) =

1
2n‖Y −Xβ‖22 − hλ(β) will satisfy the restricted

strong convexity given that γ > η−:

(4.2) fλ(β2) ≥ fλ(β1) +∇fλ(β1)T (β2 − β1) +
γ − η−

2
‖β2 − β1‖22

The proof can be found in an online supplementary file.

4.4.1 Oracle estimator The oracle estimator is defined as follows:

(4.3) βO = arg min
β∈Rp,βSc=0

1

2n
‖Y −Xβ‖22.

The oracle estimator is obtained as if there is an oracle telling the true support of
the underlying unknown estimator. According to the definition of oracle estimator
βO, we are able to provide the following `∞ error bound between βO and β∗. We
also demonstrate that βO is a d-stationary solution to the DC-penalized Problem
(3.1), which we are interested in this paper. The following Theorem 4.2 and
Lemma 4.3 also appeared in the work by Wang et al. [32]

Theorem 4.2. Under Assumption 3.8, the oracle estimator is the unique
global minimizer of (4.3). If the noise is independent sub-Gaussian with variance
parameter σ2, the oracle estimator will satisfy the following `∞ error bound with
high probability.

‖βO − β∗‖∞ ≤ Cσ
√

2/γ

√
log s

n
.

The proof is in an online supplementary file.

Lemma 4.3. Under Assumption 3.8 with hλ satisfying Assumptions 3.2, 3.3,
3.4, 3.5, 3.6, let βO be the aforementioned oracle estimator. Assume further that
for the ground truth β∗, we have minpi=1 |β∗i | > 2ζ, for ζ > 0. There exists a
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subgradient ξO ∈ ∂‖βO‖1 (where ∂‖βO‖1 stands for the subgradient of function
‖β‖1 at β = βO) such that for any β ∈ Rp:

(4.4) (β − βO)T
(
∇fλ(βO) + λξO

)
≥ 0

The above Lemma 4.3 assumes that the penalty on the parameters will be a
constant when the parameters are large. As it requires Assumption 3.6, the result
is not applicable for transformed `1 and logarithmic penalties. We provide the
proof in an online supplementary file.

Lemma 4.4. Under the assumptions in Lemma 4.3, let β̂ be a d-stationary
solution to (3.1) satisfying Assumption 3.7, and βO be the oracle estimator. The
following will hold with large probability:

(4.5) ν = β̂ − βO ∈ C.

The proof is in an online supplementary file. Based on the previous results
of the oracle estimator βO and properties of the d-stationary estimator β̂, we
will now be able to prove the support recovery consistency for our generalized
DC-penalized model.

Theorem 4.3. Under the conditions of Lemma 4.4, we will have supp(β̂) =
supp(βO) = supp(β∗) with high probability.

The proof is provided in an online supplementary file. We prove the support
recovery consistency for a set of d-stationary solutions, it implies that a set of the
convergence points (satisfying Assumption 3.7) from the DCA will converge to
the oracle estimator, which is unique. In the work fromWang et al [32], they prove
that the convergence point from each stage of the specific algorithm converges to
the oracle estimator in the linear model setting. The above results also inform us
how we should choose the penalty function such that the d-stationary solution
will be support recovery consistent. The penalty needs to be a constant when the
parameter gets larger (Assumption 3.6), so that the resulting oracle estimator
will be a d-stationary solution to the original Problem (3.1). Assumption 3.4 is
necessary for the restricted strong convexity in C.

5. DC PENALTY WITH GENERALIZED LOSS FUNCTIONS

In the previous section, we mainly focus on the linear model scenario. Most
of the analysis can be readily extended to generalized loss functions such as the
logistic loss function, etc. Below, we will present the formulation of DC penal-
ized likelihood and provide the statistical analysis regarding to the d-stationary
solutions.

We begin with a brief review on the exponential family. Exponential family is a
family of distributions with the probability density proportional to P (Y |X,β∗) ∝
exp{Y X

T β∗−ψ(XT β∗)
c(σ) }, where c(σ) is a scaling parameter and ψ(·) is the cumulant

function. According to [17], one standard property of exponential family is

ψ′(XTβ∗) = E[Y |X,β∗, σ].
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Given that ψ(·) is a univariate convex function, let L(β) = ψ(XTβ) − Y XTβ
be the negative log likelihood function, Ln(β) =

1
n

∑n
i=1(ψ(X

T
i β) − YiX

T
i β) be

the sample average of the negative log likelihood function, one can easily check
that E[∇L(β∗)] = 0 and ∇2Ln(β) ≥ 0. This implies that Ln(β) is convex. In the
following, we might omit the subscript n in the expression of Ln(β) where no
confusion will rise. In order to estimate the sparse ground truth β∗, we will solve
the following DC penalized optimization problem:

(5.1) min
β∈Rp

1

n

n∑
i=1

(ψ(XT
i β)− YiX

T
i β) + λ‖β‖1 − hλ(β),

Below, we will state the assumptions on the generalized loss functions, which
enable us to provide the analysis that the error between the d-stationary solution
β̂ and the ground truth β∗ is of the order O( 17λ

8(γ−η−)

√
|S|).

Assumption 5.1. Let β∗ represent the ground truth of the unknown param-
eter, L(β) be the negative log likelihood function. Assume that the infinity norm
of the gradient of the loss function at the ground truth ‖∇L(β∗)‖∞ ≤ λ

8 .

Assumption 5.2. Let β∗ be the unknown true parameter, β̂ be the d-stationary
solution to problem (3.1), which satisfies the following condition:

‖∇hλ(β̂Sc)‖∞ ≤ (1− c)λ, with c ∈ (0, 1).

Assumption 5.3. Let β∗ represent the ground truth of the unknown param-
eter, L(β) be the negative log-likelihood function. Assume that the following re-
stricted strong convexity holds on the set C,

C =

{
ν ∈ Rp

∣∣∣∣‖CSCνSC‖1 ≤
4 + c

c
‖CSνS‖1

}
,

L(β1) ≥ L(β2) +∇L(β2)T (β1 − β2) +
γ

2
‖β1 − β2‖22,

for any β1 and β2 such that β1 − β2 ∈ C.

Theorem 5.1. Let β̂ be the d-stationary solution to the penalized loss function
in (5.1). Suppose hλ(t) satisfies Assumptions 3.2, 3.3, 3.5, assume further that
Assumptions 5.1, 5.3 and 5.2 hold, if γ > η−,∥∥∥∥∥ 1n

n∑
i=1

(ψ′(XT
i β

∗)Xi − YiXi)

∥∥∥∥∥
∞

≤ c

2
,

we will have the following upper-bound for the estimation error of the d-stationary
solution

‖β∗ − β̂‖2 ≤
17λ

8(γ − η−)

√
|S|

The proof is provided in an online supplementary file.
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5.1 Existence of d-stationary solution

In this section, we will show the existence of the d-stationary solutions we
studied above. It is easy to see that in the linear regression setting with square
loss, the oracle estimator is a d-stationary solution under suitable conditions
we stated in Lemma 4.3. For general settings with generalized loss functions, let
r0 > 0 be such that h′λ(r0) = (1−c)λ, consider the following constrained problem:

(5.2) min
‖β−β∗‖2≤r

Ln(β) + λ‖β‖1 − hλ(β),

where r = cλ
√

|S|∧r0. It is straightforward to check that the sationary solutions
to Problem (5.2) satisfies all the assumptions of the d-stationary solution studied
in Section 4 and Section 5, which verifies the existence of the wanted d-stationary
solutions.

6. NUMERICAL APPROACH TO FIND THE D-STATIONARY POINTS

In this section, we will review the efficient algorithms in the DC literature, for
finding the local optima in the statistics and optimization areas. This provides a
comprehensive summary of solving DC programming. The most classic algorithm
is the Difference-of-Convex Algorithm (DCA) that has been studied in [13, 25, 24],
which iterates between the primal problem and the dual problem to find the local
minima. Given the DC problem below:

(6.1) min
x∈Rn

f(x) = g(x)− h(x),

where g(·) and h(·) are convex functions. For a function g : Rn → R, let g∗(y) be
its convex conjugate function, which is defined as g∗(y) = sup{xT y − g(x) : x ∈
Rn}. We have

inf
x∈Rn

f(x) = g(x)− h(x)

= inf
x
{g(x)− sup

y
{xT y − h∗(y)}}

= inf
x
{inf
y
{g(x) + h∗(y)− xT y}}

= inf
y
{− sup

x
{xT y − g(x)}+ h∗(y)}

= inf
y
{h∗(y)− g∗(y)}.

(6.2)

Thus, by iterating between the primal and the dual problems, the DCA will
converge to a d-stationary solution. Below shows the DCA.

According to [26] in Section 2.5, DCA has linear convergence rate for general
DC programmings. While in the statistics literature, Local Linear Approximation
(LLA) in [41] is widely used for solving regularized estimation problems with
non-convex penalties. The update at each iteration takes the LLA of the penalty
function:

xk+1 = argmin{g(x)− ∂h(xk)
Tx},

which is exactly the same procedure as shown in the Algorithm 1.
In the setting of this paper, the objective is defined in (3.1), where we are

minimizing the objective function over all β ∈ Rp with the first part of the DC
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1: Choose the initial x0
2: loop:
3: for k ∈ N do
4: Choose yk ∈ ∂h(xk).
5: Choose xk+1 ∈ ∂g∗(yk).
6: if (min{|(xk+1 − xk)i|, | (xk+1−xk)i

(xk)i
|} ≤ δ) then

7: return xk+1

8: end if
9: end for

Algorithm 1: Difference-of-Convex Algorithm (DCA)

function as g(β) = Ln(β) + λ‖β‖1, and the second part of DC function h(β) =
hλ(β). The DCA can be simplified to Local Linear Approximation (LLA) in the
general case as in [41], the detailed procedures can be found in [24]. Specifically,
if h(x) is differentiable, we will have the following equivalent algorithm as DCA:

1: Choose the initial β0
2: loop:
3: for k ∈ N do
4: Choose zk ∈ ∇h(βk).
5: βk+1 = argminLn(β) + λ‖β‖1 − 〈β,∇h(βk)〉.
6: if (min{|(βk+1 − βk)i|, | (βk+1−βk)i

(βk)i
|} ≤ δ) then

7: return βk+1

8: end if
9: end for

Algorithm 2: DCA (LLA)

According to [33], DCA is exactly the formulation of Convex Concave Proce-
dure (CCCP), which is also discussed in [22]. Thus, under proper conditions, all
results in [33] can be applied to the problem studied here. Since our formulation
(3.1) is a special form of the model considered in [22], which adopts the classi-
cal algorithm DCA (Difference-of-Convex Algorithm) in [13, 25, 24] and solves
a strictly convex problem at each iteration, it is guaranteed to converge quickly
to a d-stationary solution. Since the penalty is a function of the absolute value
of the estimator, one minor change to the above algorithm would be solving the
following transformed optimization problem within each iteration:

(6.3) βk+1 = argminLn(β) +

p∑
i=1

(λ− h′(|βki|))|βi|,

which is exactly the formulation of weighted LASSO estimator and can be solved
efficient using the LARS algorithm in [7].

Lemma 6.1. By updating the parameter β as in Procedure 6.3, the objective
function F (β) defined in 3.1 is monotonically decreasing.

In the one-step LLA procedure [41], the authors prove that starting from the
maximum likelihood estimator (MLE), after one step of the LLA update, the
resulting estimator is consistent when SCAD penalty function is used. While in
[10], they prove that from the LASSO initialization, with high probability that
the LLA converges to the oracle estimator in 2 iterations. The above results can
be similarly extended to our DC setting.
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7. CONCLUSIONS

In this work, we close the gap between the statistics and optimization by find-
ing a set of d-stationary solutions to the DC penalized loss functions. Specifically,
we relax the assumptions used in [1] and provide stronger statistical results on the
penalized estimation problem. We prove that a certain subset of d-stationary so-
lutions in an optimization problem (with a DC objective) has the ideal statistical
properties: asymptotic estimation consistency, asymptotic model selection consis-
tency, asymptotic efficiency under the linear model and the GLM settings. We also
provide the non-asymptotic upper bound for the estimation errors in both sce-
narios. We unify the framework of non-convex penalized high-dimensional sparse
estimation problems and the existing popular algorithms to solve the problems
in a DC framework.

Several open questions remain, which might be interesting directions for future
research. Since in this work, we mainly consider the unconstrained DC program-
ming, it is unclear whether a proper constraint, which might depend on specific
problems, will ensure a better set of solutions or possibly a unique solution to the
high-dimensional sparse estimation problem. Another direction would be more
general loss functions. When the observations have outliers or missing values,
it would be desirable to obtain theoretical guarantees on the sparse estimations
with possibly non-convex loss functions, such as Huber loss, Cauchy loss, etc.

APPENDIX A: PROPERTIES OF DC PROGRAMMING

The following are some known properties of the DC functions [25, 13].

1. Every DC function has a nonnegative DC decomposition; that is for a DC
function f , there exists a decomposition, f = g − h, where both g and h
are nonnegative and convex.

2. Every C1 (i.e., functions with continuously first order derivatives) function
with a Lipschitz gradient is a DC function.

3. Every twice continuously differentiable function is a DC function.
4. Every continuous function on a convex set is a limit of a sequence of uni-

formly converging DC functions.
5. Let fi be DC functions for i = 1, · · · ,m. The DC functions are closed under

the following operations:

• summation:
∑m

i=1 λifi(x), for λi ∈ R, i = 1, · · · ,m
• maximization: maxi=1,··· ,m fi(x)

• minimization: mini=1,··· ,m fi(x)

• product:
∏
i=1,··· ,m fi(x)

6. A locally DC function that is defined in Rn is a DC function.
7. The following statements about a DC program are equivalent:

• sup{f(x) : x ∈ C}, function f and set C are convex

• inf{g(x)− h(x) : x ∈ Rn}, functions g and h are convex

• inf{g(x)− h(x) : x ∈ C, f1(x)− f1(x) ≤ 0}, functions g, h, f1, and f2
and set C are all convex

Regarding the optimal solutions in the DC programming, the following have
been developed in the literature [25, 13].
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Definition A.1. (ε-subdifferential) For a convex function g(x), and ε > 0,
the ε-subdifferential of function g(x) at point x0 is denoted by ∂εg(x0) and is
defined as follows:

∂εg(x0) = {ν ∈ Rn|g(x) ≥ g(x0) + 〈x− x0, ν〉 − ε}.

One can verify that the subgradient [23, Chapter 23] (which is denoted by
∂g(x0)) of function g(x) at x0 is the 0-subdifferential (i.e., ε = 0).

Theorem A.1. (Global optimality condition) A point x∗ is a global op-
timal if and only if (iff) ∂εh(x

∗) ⊂ ∂εg(x
∗) for any ε > 0.

Theorem A.2. (Local optimality condition) A point x∗ is a local optimal
if ∂h(x∗) ⊂ int ∂g(x∗), where int ∂g(x∗) represents the interior of the set ∂g(x∗).
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Online Supplementary File for the Paper

This online supplementary file contains all the proofs in our paper.

APPENDIX B: PROOFS IN SECTION 4

B.1 Proof of Theorem 4.1

Proof. Since β̂λn is d-stationary, the directional derivatives should be nonneg-
ative in all directions, especially in the direction of β∗ − β̂λn:

− 1

n
(β∗ − β̂λn)TXT (Y −Xβ̂λn) + P ′λ(β̂λn;β∗ − β̂λn) ≥ 0,

where P ′λ(β̂λn;β∗ − β̂λn) is the directional derivative for the penalty function Pλ =

λ‖β‖1 − hλ(β) at β̂λn in the direction of β∗ − β̂λn.
According to Lemma 4.1, there exists a subgradient z ∈ ∂g(β̂λn), where ∂g(β̂λn)

is the set of subgradient of g(β) = ‖β‖1 at β̂λn, such that:

(B.1) ∇L(β̂λn) + λz −∇hλ(β̂λn) = 0,

Multiplying by (β∗ − β̂λn)T on both side and plugging in Y = Xβ∗ + ε, we have

− 1

n
(β∗ − β̂λn)TXTX(β∗ − β̂λn)− 1

n
(β∗ − β̂λn)TXT ε+ P ′λ(β̂λn;β∗ − β̂λn) = 0,

where without ambiguity, we let P ′λ(β̂λn;β∗ − β̂λn) = (β∗ − β̂λn)T (λz − ∇hλ(β̂λn))

since the true directional derivative for the penalty Pλ = λ‖β‖1 − hλ(β) at β̂λn in
the direction of β∗ − β̂λn is greater than (β∗ − β̂λn)T (λz −∇hλ(β̂λn)). We thus will
have

1

n
(β∗ − β̂λn)TXTX(β∗ − β̂λn) = − 1

n
(β∗ − β̂λn)TXT ε+ P ′λ(β̂λn;β∗ − β̂λn),(B.2)

which implies we have the following hold for j /∈ S

− 1

n
|(β̂λn)j |sign((β̂λn)j)X

T
j X(β∗ − β̂λn)

=
1

n
|(β̂λn)j |sign((β̂λn)j)X

T
j ε− λ|(β̂λn)j |+ h′λ((β̂λn)j)|(β̂λn)j |sign((β̂λn)j)

≤− cλ|(β̂λn)j |,

(B.3)

where the “≤” follows from Assumption 3.7.
For j ∈ S

1

n
(β∗ − β̂λn)jX

T
j X(β∗ − β̂λn)

=− 1

n
(β∗ − β̂λn)jX

T
j ε+ λ(β∗ − β̂λn)jzj − h′λ((β̂λn)j)(β

∗ − β̂λn)j

≤5

2
λ|(β∗ − β̂λn)j |,

(B.4)

where the “≤” follows from λ ≥ 2‖XT ε‖∞
n and Assumption 3.2.
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Let ν = β∗ − β̂λn, we thus will have

1

n
(β∗ − β̂λn)TXTX(β∗ − β̂λn) ≤ −cλ‖(ν)Sc‖1 +

5

2
λ‖(ν)S‖1,(B.5)

where the inequality follows from Assumption 3.2.
Since the left hand side of the above is nonnegative, we will have ν = β∗− β̂λn ∈

C. Under the restricted strong convexity condition, we will have

γ‖ν‖22 ≤
1

n
(β∗ − β̂λn)TXTX(β∗ − β̂λn) ≤ 5

2
λ‖(ν)S‖1(B.6)

Thus we will further have

‖ν‖22 ≤
5

2γ
λ‖(ν)S‖1 ≤

5

2γ
λ
√
|S|‖(ν)‖2,

from which we will have the upper bound

‖ν‖2 ≤
5

2γ
λ
√
|S| ∝

λ
√
|S|
γ

(B.7)

B.2 Proof of Corollary 4.1

Proof. From the proof of Theorem 4.1, let ν = β∗ − β̂λn,we have

‖ 1√
n
X(β∗ − β̂λn)‖22

=
1

n
(β∗ − β̂λn)TXTX(β∗ − β̂λn)

≤− cλ‖(ν)Sc‖1 +
5

2
λ‖(ν)S‖1

≤(
5

2
λ)2

1

γ

√
|S|

(B.8)

B.3 Proof of Corollary 4.2

Proof. Since εi for i = 1, · · · , n are from sub-Gaussian distribution with
parameter σ2,

P

(
xTj ε

n
≥ t

)
≤ 2 exp (− nt

2

2σ2
)

By Bonferroni bound, we will have

P(
‖XT ε‖∞

n
≥ t) ≤ 2 exp (− nt

2

2σ2
+ log p)

By setting t = σ
√

τ log p
n for some τ ≥ 2, we will be able to have

P(
‖XT ε‖∞

n
≥ t) ≤ 2 exp (−τ − 2

2
log p).

Thus:

‖β̂λn − β∗‖2 .
5

γ
σ

√
τ |S| log p

n
(B.9)
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B.4 Proof of Lemma 4.1

Proof. We will first prove the necessity. Since β0 is a d-stationary solution
to the objective function F (β), we will have

F ′(β0, β − β0) ≥ 0,

for any β ∈ Rp, where F ′(β0, β − β0) denotes the directional derivative in the
direction of β−β0. For any i = 1, · · · , p, let βi+ = β0 + ei, where ei ∈ Rp denotes
the unit vector with 1 in the ith position and 0 everywhere else. Let βi− = β0−ei.
We will have:

F ′(β0, β
i+ − β0) ≥ 0,

F ′(β0, β
i− − β0) ≥ 0,

which implies

• For i such that β0i 6= 0,

∇L(β0)i −∇h(β0)i + sign(β0i) ≥ 0,

−∇L(β0)i +∇h(β0)i − sign(β0i) ≥ 0,

where sign(x) = 1 if x > 0, sign(x) = −1 if x < 0.
• For i such that β0i = 0,

∇L(β0)i −∇h(β0)i + 1 ≥ 0,

−∇L(β0)i +∇h(β0)i + 1 ≥ 0.

We thus conclude that

• For i such that β0i 6= 0,

∇L(β0)i −∇h(β0)i + sign(β0i) = 0,

• For i such that β0i = 0,

|∇L(β0)i −∇h(β0)i| ≤ 1.

Thus for z such that zi = sign(β0i) when β0i 6= 0 and zi = −(∇L(β0)i−∇h(β0)i)
when β0i = 0 is what we need.

On the other hand, if there exists some z ∈ ∂g(β0), where ∂g(β0) is the set of
subgradient of g(β) at β0, such that:

(B.10) ∇L(β0) + z −∇h(β0) = 0,

• For i such that β0i 6= 0,

zi = sign(β0i) = 1 or − 1,

• For i such that β0i = 0,

−1 ≤ z = −(∇L(β0)i −∇h(β0)i) ≤ 1.
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• For i such that β0i 6= 0,

F ′(β0, β
i+ − β0) = 0,

F ′(β0, β
i− − β0) = 0.

• For i such that β0i = 0,

F ′(β0, β
i+ − β0) = ∇L(β0)i −∇h(β0)i + 1

= ∇L(β0)i −∇h(β0)i + z + 1− z
= 0 + 1− z ≥ 0

(B.11)

F ′(β0, β
i− − β0) = −∇L(β0)i +∇h(β0)i + 1

= −∇L(β0)i +∇h(β0)i − z + 1 + z

= 0 + 1 + z ≥ 0

(B.12)

We thus conclude that the directional derivative of the objective function at β0
is always nonnegative in any direction. This complete the proof.

Remark B.1. From the proof Lemma 4.1, we can derive similar conditions
for “local maximals” for β̃ satisfying the following:

(B.13) F ′(β̃, β − β̃) ≤ 0.

• For i such that β̃i 6= 0,
F ′(β̃, βi+ − β̃) = 0,

F ′(β̃, βi− − β̃) = 0.

• For i such that β̃i = 0,

∇L(β̃)i −∇h(β̃)i + 1 ≤ 0,

−∇L(β̃)i +∇h(β̃)i + 1 ≤ 0.

The above implies that if the stationary solution β̃ to the FOC satisfies: minpi=1{β̃i} =
0, it will only satisfy the condition for “local” minimals and thus be a d-stationary
solution.

B.5 Proof of Lemma 4.2

Proof. Since L(β) = 1
2n‖Y −Xβ‖

2
2 is quadratic and convex, we have

L(β2) = L(β1) +∇L(β1)
T (β2 − β1) +

1

2
(β2 − β1)T∇2L(β1)(β2 − β1),

where ∇2L(β1) is the Hessian matrix of L(β) at β1. Since ν = β1 − β2 ∈ C and
Assumption 3.8 holds on C, we will further have

L(β2) ≥ L(β1) +∇L(β1)
T (β2 − β1) +

γ

2
‖β2 − β1‖22.

On the other hand, hλ(β) is convex with 0 ≤ η+ ≤ h′λ(t2)−h
′
λ(t1)

t2−t1 ≤ η−, we will
have

hλ(β2) ≤ hλ(β1) +∇hλ(β1)
T (β2 − β1) +

η−

2
‖β2 − β1‖22

By combining the above two inequalities, we will be able to get (4.2).
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B.6 Proof of Theorem 4.2

Proof. The first part is easy to see since the feasible region is convex and is
a subset of C, in which the strong convexity condition holds (Assumption 3.8) for
the loss function (in our case, the least square loss function). The minimizer to a
strong problem is unique.
For the second conclusion, we first need to show that XT

SXS is invertible and
βOS = (XT

SXS)−1XT
S Y . This follows easily from the Assumption 3.8, which implies

γmin(XT
SXS), the minimum eigenvalue of XT

SXS is larger than nγ. We thus have
βOS = (XT

SXS)−1XT
S Y .

βOS − β∗S = (XT
SXS)−1XT

S Y − β∗

= (XT
SXS)−1XT

S ε
(B.14)

Since ej(X
T
SXS)−1XT

S ε, where ej ∈ Rswith all-zero elements except the j-th
coordinate. Recall that ε has independent sub-Gaussian coordinates with the
same variance parameter σ2, we thus will have

(B.15) P
(
|ej(XT

SXS)−1XT
S ε| > t

)
≤ 2 exp− t2

‖ej(XT
SXS)−1XT

S ‖22σ2
.

By using Bonferroni bound, the above implies

(B.16) P
(

max
j=1,··· ,s

|ej(XT
SXS)−1XT

S ε| > t

)
≤ 2s exp− t2

‖ej(XT
SXS)−1XT

S ‖22σ2
.

Taking t = C‖ej(XT
SXS)−1XT

S ε‖2σ ·
√

2 log s with C > 0, we will have

‖βOS − β∗S‖∞ = ‖(XT
SXS)−1XT

S ε‖∞
= max

j=1,··· ,s
|ej(XT

SXS)−1XT
S ε|

≤ C‖ej(XT
SXS)−1XT

S ε‖2σ ·
√

2 log s

(B.17)

hold with probability at least 1− 2 exp−C2/s. Since for any j ∈ {1, · · · , s},

‖ej(XT
SXS)−1XT

S ε‖22 = ej(X
T
SXS)−1XT

S ε(ej(X
T
SXS)−1XT

S ε
T )

= ej(X
T
SXS)−1eTj

≤ 1/γmin(XT
SXS)

≤ 1/nγ.

(B.18)

This complete the proof since ‖βOSc − β∗Sc‖∞ = 0.

B.7 Proof of Lemma 4.3

Proof. According to Theorem 4.2, we will have for j ∈ S,

|βOj | ≥ |β∗j | − ‖βO − β∗‖∞ ≥ ζ,

which further implies P ′j(λ, β
O
j ) = 0.
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For j /∈ S, we will have h′λ(βOj ) = 0 and since the errors are sub-Gaussian,

there will exist ξOSc ∈ ∂‖βOSc‖1 satisfying inequality (4.4) with high probability
and ‖ξOSc‖∞ ≤

1
10c where c is defined in the Assumption 3.7.(

∇Ln(βO)
)
Sc

+ λξOSc = 0.

In order to see this, first we notice that βOS = (XT
SXS)−1XT

S Y , βOSc = 0. We thus
will have

(
∇Ln(βO)

)
Sc

= − 1
nXSc(Y − (XT

SXS)−1XT
S Y ). Plugging in the true

model Y = Xβ∗+ε, we will have
(
∇Ln(βO)

)
Sc

= − 1
nXSc(I−XS(XT

SXS)−1XT
S )ε,

where (I −XS(XT
SXS)−1XT

S )ε is a vector of independent sub-Gaussian random
variables. By using the Bonferroni bound, we will have the conclusion.

B.8 Proof of Lemma 4.4

Proof. Since both β̂ and βO are d-stationary, per Lemma 4.3, we have:

(β̂ − βO)T
(
∇fλ(βO) + λξO

)
≥ 0,

and β̂ is d-stationary, there exists a ξ̂ ∈ ∂‖β̂‖1 ((where ∂‖β̂‖1 stands for the
subgradient of function ‖β‖1 at β = β̂)) such that

(βO − β̂)T
(
∇fλ(β̂) + λξ̂

)
≥ 0.

On the one hand,

0 ≤ (βO − β̂)T
(
∇fλ(β̂) + λξ̂

)
≤ (βO − β̂)T

(
∇fλ(β̂)

)
− λ‖(ν)Sc‖1 + λ‖(ν)S‖1

= − 1

n
(βO − β̂)TXTX(β∗ − βO + βO − β̂)− 1

n
(βO − β̂)TXT ε

− (βO − β̂)T∇hλ(β̂)− λ‖(ν)Sc‖1 + λ‖(ν)S‖1

≤ − 1

n
(βO − β̂)TXTX(β∗ − βO + βO − β̂)− 1

n
(βO − β̂)TXT ε

+
∑
i/∈S

|β̂i||h′λ(β̂i)| − λ‖(ν)Sc‖1 + 2λ‖(ν)S‖1.

(B.19)

By rearranging the terms, we will have

1

n
(βO − β̂)TXTX(β∗ − βO) +

1

n
(βO − β̂)TXTX(βO − β̂)−

∑
i/∈S

|β̂i||h′λ(β̂i)|

≤ − 1

n
(βO − β̂)TXT ε− λ‖(ν)Sc‖1 + 2λ‖(ν)S‖1.

(B.20)

On the other hand, according to the proof of Lemma 4.3, we will have(
∇hλ(βO))

)
S

= λsign(βOS ),(
∇hλ(βO))

)
Sc

= 0,

λξOSc = −
(
∇Ln(βO)

)
Sc
,
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‖ξOSc‖∞ ≤
1

2
.

By using the above facts, we will further obtain

0 ≤ (β̂ − βO)T
(
∇fλ(βO) + λξO

)
= − 1

n
(β̂ − βO)TXTX(β∗ − βO)− 1

n
(β̂ − βO)TXT ε+ (β̂ − βO)TScλξ

O
Sc

≤ − 1

n
(β̂ − βO)TXTX(β∗ − βO)− 1

n
(β̂ − βO)TXT ε+

1

10
cλ‖(ν)Sc‖1.

(B.21)

By rearranging the terms, we will have

1

n
(β̂ − βO)TXT ε− 1

10
cλ‖(ν)Sc‖1 ≤

1

n
(βO − β̂)TXTX(β∗ − βO)(B.22)

Plugging inequality (B.22) to inequality (B.20), we will have
(B.23)
1

n
(βO−β̂)TXTX(βO−β̂) ≤

∑
i/∈S

|β̂i||h′λ(β̂i)|−λ‖(ν)Sc‖1+
1

10
cλ‖(ν)Sc‖1+2λ‖(ν)S‖1.

Under the Assumption 3.7 with use of Bonferroni bound as in Corollary 4.2, we
will have

(B.24) 0 ≤ 1

n
(βO − β̂)TXTX(βO − β̂) ≤ − 8

10
cλ‖(ν)Sc‖1 + 2λ‖(ν)S‖1,

which implies λ‖(ν)Sc‖1 ≤ 5
2cλ‖(ν)S‖1 and ν ∈ C.

B.9 Proof of Theorem 4.3

Proof. According to Lemma 4.2, we will have at β̂ and βO, respectively:

fλ(βO) ≥ fλ(β̂) +∇fλ(β̂)T (βO − β̂) +
γ − η−

2
‖βO − β̂‖22,

fλ(β̂) ≥ fλ(βO) +∇fλ(βO)T (β̂ − βO) +
γ − η−

2
‖β̂ − βO‖22.

Since `1 norm penalty is convex, we will have

λ‖β̂‖1 ≥ λ‖βO‖1 + λ(β̂ − βO)T ξO,

λ‖βO‖1 ≥ λ‖β̂‖1 + λ(βO − β̂)T ξ̂,

where ξ̂ and ξO are the same as in Lemma 4.4. Combine the above together, we
will have:

0 ≥ (∇fλ(β̂) + λξ̂)T (βO − β̂) + (∇fλ(βO) + λξO)T (β̂ − βO) + (γ − η−)‖βO − β̂‖22.

Since both β̂ and βO are d-stationary, we will have

(β̂ − βO)T
(
∇fλ(βO) + λξO

)
≥ 0,

and β̂ is d-stationary, there exists a ξ̂ ∈ ∇{‖β̂‖1} such that

(βO − β̂)T
(
∇fλ(β̂) + λξ̂

)
≥ 0.

We thus will have 0 ≥ (γ − η−)‖βO − β̂‖22, which implies that βO = β̂.
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APPENDIX C: PROOFS IN SECTION 5

C.1 Proof of Theorem 5.1

Proof. Since β̂ is a d-stationary solution to Problem (5.1), we have

(C.1) ∇L(β̂) + λz −∇hλ(β̂) = 0,

where z ∈ ∂g(β̂), where ∂g(β̂) is the set of subgradient of g(β) = ‖β‖1 at β̂. We
can get the gradient for the loss function

∇L(β̂) =
1

n

n∑
i=1

(ψ′(XT
i β̂)Xi − YiXi).

We can further write the above expression as

∇L(β̂) =
1

n

n∑
i=1

(
(ψ′(XT

i β̂)Xi − ψ′(XT
i β
∗)Xi) + (ψ′(XT

i β
∗)Xi − YiXi)

)
,

where the term (ψ′(XT
i β
∗)−YiXi) does not depend on the d-stationary solution.

Multiply both side of (C.1) by (β∗ − β̂)T , we have
(C.2)

(β∗−β̂)T
{ 1

n

n∑
i=1

(
(ψ′(XT

i β̂)Xi−ψ′(XT
i β
∗)Xi)+(ψ′(XT

i β
∗)Xi−YiXi)

)
+λz−∇hλ(β̂)

}
= 0.

By rearranging the terms, we have

0 ≤ (β∗ − β̂)T
{ 1

n

n∑
i=1

(ψ′(XT
i β
∗)Xi − ψ′(XT

i β̂)Xi)
}

= (β∗ − β̂)T
{ 1

n

n∑
i=1

(ψ′(XT
i β
∗)Xi − YiXi) + λz −∇hλ(β̂)

}
≤ (β∗ − β̂)T

{ 1

n

n∑
i=1

(ψ′(XT
i β
∗)Xi − YiXi)

}
+ 2λ‖(β∗ − β̂)S‖1

− λ‖β̂Sc‖1 + β̂TSc∇hλ(β̂Sc)

≤ (2 +
c

2
)λ‖(β∗ − β̂)S‖1 −

c

2
λ‖β̂Sc‖1,

where the first “≤” is due to the convexity of the cumulant function, and the last
one is due to the assumptions. We thus conclude that β̂ ∈ C, which is defined in
the Assumption 5.3. Given the restricted strong convexity, according to Lemma
4.2, let f(β) = L(β)− hλ(β), we will have

fλ(β∗) ≥ fλ(β̂) +∇fλ(β̂)T (β∗ − β̂) +
γ − η−

2
‖β∗ − β̂‖22

and

fλ(β̂) ≥ fλ(β∗) +∇fλ(β∗)T (β̂ − β∗) +
γ − η−

2
‖β∗ − β̂‖22.

Adding the above up, we have

(C.3) ∇fλ(β̂)T (β̂ − β∗) ≥ ∇fλ(β∗)T (β̂ − β∗) + (γ − η−)‖β∗ − β̂‖22.
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Adding λzT (β̂ − β∗) to both side, we will have
(C.4)
0 = (∇fλ(β̂)T+λzT )(β̂−β∗) ≥ ∇fλ(β∗)T (β̂−β∗)+λzT (β̂−β∗)+(γ−η−)‖β∗−β̂‖22,

From inequalities (C.4) and (C.3), we have

(γ − η−)‖β∗ − β̂‖22 ≤ −∇fλ(β∗)T (β̂ − β∗)− λzT (β̂ − β∗)

≤ (2 +
c

2
)λ‖(β∗ − β̂)S‖1 −

c

2
λ‖β̂Sc‖1

≤ (2 +
c

2
)λ
√
|S|‖β̂ − β∗‖2

(C.5)

where the last “≤” is due to the fact that ‖(β̂ − β∗)S‖1 ≤
√
|S|‖β̂ − β∗‖2. We

thus derive the bound that

‖β∗ − β̂‖2 ≤
(4 + c)λ

2(γ − η−)

√
|S|(C.6)

APPENDIX D: PROOFS IN SECTION 6

D.1 Proof of Lemma 6.1

Proof. Given βk as the update in the kth iteration, we adopt the following
procedure to update the estimation:

(D.1) βk+1 = arg minLn(β) +

p∑
i=1

(λ− h′(|βki|))|βi|.

Let Q(β|βk) = Ln(β) +λ‖βk‖1−hλ(βk) +
∑p

i=1(λ−h′(|βki|))(|βi| − |βki|). It can
be easily checked that Q(βk|βk) = F (βk) and the following is equivalent to D.1:

(D.2) βk+1 = minQ(β|βk).

Since hλ(·) is convex by Assumption 3.4, we have

F (β) ≤ Q(β|βk).

According to the definition of βk+1, we have

F (βk+1) ≤ Q(βk+1|βk) ≤ Q(βk|βk) = F (βk).
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