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Abstract

In many real-world applications, multiple
agents seek to learn how to perform highly
related yet slightly different tasks in an online
bandit learning protocol. We formulate this
problem as the e-multi-player multi-armed
bandit problem, in which a set of players con-
currently interact with a set of arms, and
for each arm, the reward distributions for all
players are similar but not necessarily identi-
cal. We develop an upper confidence bound-
based algorithm, ROBUSTAGG(¢), that adap-
tively aggregates rewards collected by differ-
ent players. In the setting where an upper
bound on the pairwise dissimilarities of re-
ward distributions between players is known,
we achieve instance-dependent regret guaran-
tees that depend on the amenability of infor-
mation sharing across players. We comple-
ment these upper bounds with nearly match-
ing lower bounds. In the setting where pair-
wise dissimilarities are unknown, we pro-
vide a lower bound, as well as an algorithm
that trades off minimax regret guarantees for
adaptivity to unknown similarity structure.

1 Introduction

Online multi-armed bandit learning has many impor-
tant real-world applications (see Villar et al., 2015;
Shen et al., 2015; Li et al., 2010, for a few examples).
In practice, a group of online bandit learning agents
are often deployed for similar tasks, and they learn to
perform these tasks in similar yet nonidentical envi-
ronments. For example, a group of assistive healthcare
robots may be deployed to provide personalized cogni-
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tive training to people with dementia (PwD), e.g., by
playing cognitive training games with people (Kubota
et al., 2020). Each robot seeks to learn the prefer-
ences of its paired PwD so as to recommend tailored
health intervention based on how the PwD reacts to
and is engaged with the activities (as captured by sen-
sors on the robots) (Kubota et al., 2020). As PwD
may have similar preferences and may therefore exhibit
similar reactions, one natural question arises—can the
robots as a multi-agent system learn to perform their
respective tasks faster through collaboration? In this
paper, we develop multi-agent bandit learning algo-
rithms where each agent can robustly aggregate data
from other agents to better perform its respective task.

We generalize the multi-armed bandit problem (Auer
et al., 2002) and formulate the e-Multi-Player Multi-
Armed Bandit (e-MPMAB) problem, which models
heterogeneous multitask learning in a multi-agent ban-
dit learning setting. In an e-MPMAB problem in-
stance, a set of M players are deployed to perform
similar tasks—simultaneously they interact with a set
of actions/arms, and for each arm, different play-
ers receive feedback from similar but not necessarily
identical reward distributions. In the above assistive
robotics example, each player corresponds to a robot;
each arm corresponds to one of the cognitive activ-
ities to choose from; for each player and each arm,
there is a separate reward distribution which reflects
a PwD’s personal preferences. Informally, € > 0 is a
dissimilarity parameter that upper bounds the pair-
wise distances between different reward distributions
for different players on the same arm (see Definition 1
in the next section). The players can communicate
and share information among each other, with a goal
of maximizing their collective reward.

While multi-player bandit learning has been studied
extensively in the literature (e.g., Landgren et al.,
2016; Cesa-Bianchi et al., 2013; Gentile et al., 2014),
warm-starting bandit learning using different feedback
sources has been investigated (Zhang et al., 2019), and
sequential transfer between similar tasks in a bandit
learning setting has also been studied (Azar et al.,
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2013; Soare et al., 2014), to our knowledge, no prior
work models multitask learning in a multi-player ban-
dit learning perspective with a focus on adaptive and
robust aggregation of player-dependent heterogeneous
feedback. In Section 5, we further discuss and compare
our problem formulation with related papers.

It is worth noting that naively utilizing data collected
by other players may substantially hurt a player’s re-
gret (Zhang et al., 2019), if there are large disparities
between the sources of feedback. This is also well-
known as negative transfer in transfer learning (Rosen-
stein et al., 2005; Brunskill and Li, 2013).

Therefore, the main challenge of the ee MPMARB prob-
lem is for the players to properly manage when and
how to utilize auxiliary data shared by others—while
auxiliary data can be useful to maintain more accurate
estimates of the rewards for each player and each arm,
they can also easily be inefficacious or even mislead-
ing. While transfer learning in the offline setting has
been well studied, in this paper we seek to character-
ize the difficulty of the more challenging problem of
learning through heterogeneous feedback aggregation
in a multi-player online setting.

We will first study the e MPMAB problem when the
dissimilarity parameter € is known, and then move on
to the harder setting in which ¢ is unknown. Here is a
summary of our main contributions:

e We model online multitask bandit learning from
heterogeneous data sources as the e-MPMAB
problem, with a goal of studying how to adap-
tively and robustly aggregate data to improve the
collective performance of the players.

e In the setting where € is known, we propose an
upper confidence bound (UCB)-based algorithm,
RoOBUSTAGG(€), that adaptively aggregates re-
wards collected by different players.

We provide (suboptimality)-gap-dependent and
gap-independent upper bounds on the collective
regret of ROBUSTAGG(€). Our regret bounds de-
pend on the set of arms that admit information
sharing among the players. When this set is large,
ROBUSTAGG(€) can potentially improve the gap-
dependent regret bound by nearly a factor of M
compared to the baseline of players acting indi-
vidually using UCB-1 (Auer et al., 2002).

We complement these upper bounds with nearly
matching gap-dependent and gap-independent
lower bounds.

e In the setting where € is unknown, we first estab-
lish a lower bound, showing that if an algorithm
guarantees sublinear minimax regret with respect

to all MPMAB instances, then it must be un-
able to significantly utilize inter-player similarity
in a large collection of instances. To complement
the above result, we use the framework of Cor-
ral (Agarwal et al., 2017; Pacchiano et al., 2020;
Arora et al., 2020) and present an algorithm that
trades off minimax regret guarantee for adaptivity
to “easy” MPMAB problem instances.

2 Problem Specification

We formulate the e-MPMAB problem, building on the
standard model of stochastic multi-armed bandits (Lai
and Robbins, 1985; Auer et al., 2002).

Throughout, we denote by [n] = {1,...,n}. An
MPMARB problem instance consists of a set of M play-
ers, labeled as elements in [M], and a set of K arms,
labeled as elements in [K]. In addition, each player
p € [M] and each arm i € [K] is associated with an
unknown reward distribution DY with support [0, 1]
and mean pf. If all D’s are Bernoulli distribu-
tions, we call this instance a Bernoulli MPMAB prob-
lem instance; under the Bernoulli reward assumption,
1= (11%)ic(k],peim) completely specifies the instance.

The reward distributions of the same arm are not nec-
essarily identical for different players—we consider the
following notion of dissimilarity between the reward
distributions of the players. Related conditions have
been considered in works on multi-task bandit learn-
ing (e.g., Azar et al., 2013; Soare et al., 2014).

Definition 1. An MPMAB problem instance is said
to be an e-MPMAB problem instance, if for every pair
of players p,q € [M], max;ex) |t — pf] < e, where
€ € [0,1]. We call € the dissimilarity parameter.

Interaction protocol. Let T > max(M, K) be the
horizon of an MPMAB (e-MPMAB) problem instance.
In each round ¢ € [T], every player p € [M] pulls an
arm 7}, and observes an independently-drawn reward
P~ fo. Once all the M players finish pulling arms

in round ¢, each decision, ¥, together with the corre-
sponding reward received, r}, is immediately shared
with all players.

Arm pulls, gaps, and performance measure.
Let pf = max;c(x) i be the optimal mean reward
for every player p € [M]. Denote by n?(t) the number
of pulls of arm i by player p after ¢ rounds, and A? =
pk — pf > 0 the suboptimality gap (abbrev. gap) be-
tween the means of the reward distributions associated
with some optimal arm i{ and arm i for player p. For
any arm i € [K], define A"™ = min,¢[p AY. To mea-
sure the performance of MPMAB algorithms, we use
the following notion of regret. The expected regret of
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player p is defined as E[RP(T)] = 3=, ) A7 -E[nf (1)),
and the players’ expected collective regret is defined as
E[R(T)] = X pepar) EIRP(T)]-

Bandit learning algorithms. A multi-player ban-
dit learning algorithm A4 with horizon T is defined
as a sequence of conditional probability distributions
{m}le, where for every t in [T], m is the policy used
in round ¢; specifically, (- | (4%, 7%)set—1],pe[ar]) is @
conditional probability distribution of actions taken
by all M players in round ¢, given historical data.
A bandit learning algorithm is said to have sublin-
ear regret for the e MPMAB (resp. MPMAB) prob-
lem, if there exists some C' > 0 and o > 0 such that
E[R(T)] < CT*=* for all e MPMAB (resp. MPMAB)
problem instances.

Miscellaneous notations. Throughout, we use O
notation to hide logarithmic factors. Given a universe
set H and any J C H, we use JC to denote the set
HN\T.

Baseline: Individual UCB. We now consider a
baseline algorithm that runs the UCB-1 algorithm in-
dividually for each player without communication—
hereafter, we refer to it as IND-UCB. By (Auer et al.,
2002, Theorem 1), and summing over the individual
regret guarantees of all players, the expected collec-
tive regret of IND-UCB satisfies

sral<o( > BT,

i€[K] pe[M]:AP>0

In addition, IND-UCB has a gap-independent re-
gret bound of O(M\/KT) (e.g., Lattimore and
Szepesvéri, 2020, Theorem 7.2).

2.1 Can auxiliary data always help?

Since the interaction protocol allows information shar-
ing among players, in any round ¢t > 1, each player
has access to more data than they would have without
communication. Can the players always expect bene-
fits from such auxiliary data and collectively perform
better than IND-UCB?

Below we provide an example that illustrates that the
role of auxiliary data depends on the dissimilarities
between the player-dependent reward distributions, as
indicated by €, as well as the intrinsic difficulty of each
multi-armed bandit problem each player faces individ-
ually, as indicated by the gaps AY’s. Specifically, we
show in the example that when € is much larger than
the gaps AP’s, any sublinear-regret bandit learning
algorithm for the e-MPMAB problem cannot signifi-
cantly take advantage of auxiliary data.

Example 2. For a fized e € (0,3) and § < €/4,
consider the following Bernoulli MPMAB problem in-
stance: for each p € [M], pf = 5 + 6, pb = 5. This
is a 0-MPMAB instance, hence an e-MPMAB problem
instance. Also, note that € is at least four times larger

than the gaps AL = 6.

Claim 3. For the above example, any sublinear
regret algorithm for the e-MPMAB problem must
have Q(W) regret on this instance, matching the
IND-UCB regret upper bound.

The claim follows from Theorem 9 in Section 3.3; see
Appendix B for details. The intuition is that any sub-

linear regret e-MPMAB algorithm must have (l’g—zT)

pulls of arm 2 from every player; otherwise, as ¢ is
small compared to €, we can create a new e-MPMAB
instance such that arm 2 is optimal for some player
and is sufficiently indistinguishable from the original
MPMAB problem, causing the algorithm to fail its
sublinear regret guarantee.

Complementary to the above negative result, in the
next section, we establish algorithms and sufficient
conditions for the players to take advantage of the aux-
iliary data to achieve better regret guarantees.

3 «MPMAB with Known ¢

In this section, we study the e-MPMAB problem with
the dissimilarity parameter ¢ known to the players.
We first present our main algorithm ROBUSTAGG(e)
in Section 3.1; Section 3.2 shows its regret guaran-
tees; Finally, Section 3.3 provides nearly matching re-
gret lower bounds. Our proofs are deferred to Appen-
dices C, D and E.

3.1 Algorithm: RobustAgg(e)

We present ROBUSTAGG(¢€), an algorithm that adap-
tively and robustly aggregates rewards collected by dif-
ferent players in e-MPMAB problem instances, given
dissimilarity € as an input parameter.

Intuitively, in any round, a player may decide to take
advantage of data from other players who have similar
reward distributions. Deciding how to use auxiliary
data is tricky—on the one hand, they can help reduce
variance and get a better mean reward estimate, but
on the other hand, if the dissimilarity between play-
ers’ reward distributions is large, auxiliary data can
substantially bias the estimate. Our algorithm is built
upon this insight of balancing bias and variance. A
similar tradeoff in offline transfer learning for classifi-
cation is studied in the work of Ben-David et al. (2010);
we discuss the connection and differences between our
work and theirs in Section 5.2.
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Algorithm 1: ROBUSTAGG(e): Robust learning in e MPMAB

Input: Distribution dissimilarity parameter e € [0, 1];
Initialization: Set n? =0 for all p € |

M] and all i € [K].

fort=1,2...,T do
for p € [M] do
for i € [K] do
p_
Let m; = ZqG[M] :q7p 1!
Let n? = max(1,n”) and m? = max(1,m?);
Let
1
er,nl == Z qu and kY (t, ) = AP (t) + (1 — NnP(¢);
’L s<t my; ge[M] s<t
=i q#p ta=t
Let F(r?,mP, \, ) = 8\/131HT [A + wﬂ (1 Ne

Compute \* = argminy g 1) F/(n},m}, A, €);

UCB?(t) =

Let i} = argmax;¢[x)UCB] ();
Player p pulls arm 4} and observes reward r¥;
for p € [M] do

‘ Let i =i} and set n? =n? + 1.

Compute an upper confidence bound of the reward of arm 4 for player p:

KP(t, A*) + F(nP,mP, A" e).

Algorithm 1 provides a pseudocode of ROBUSTAGG(¢).
Specifically, it builds on the classic UCB-1 algorithm
(Auer et al., 2002): for each player p and arm i,
it maintains an upper confidence bound UCB?(t) for
mean reward p} over time (lines 5 to 10), such that
with high probability, uf < UCB?(t), for all ¢.

To achieve the best regret guarantees, we would like
our confidence bounds on !’ to be as tight as possi-
ble. To this end, we consider a family of confidence
intervals for u?, parameterized by a weighting factor
A€ [0,1]: [KP(t,N) £ F(nf,ml' X e)].

In the above confidence interval formula, (¢, \) esti-
mates pf by taking a convex combination of ¥ (¢) and
nY(t), the empirical mean reward of arm i based on
the player’s own samples and the auxiliary samples, re-
spectively (line 7). The width F(n?, m¥, A, €) is a high-
probability upper bound on |s?(t, A) — p?| (line 8).
Varying A reveals the aforementioned bias-variance

tradeoff: the first term, 8 131nT[2:i+ (17;\)2

], is

a high probability upper bound on the deviation of
kY (t,\) from its expectation E[x% (¢, \)]; the second
term, (1 — A)e, is an upper bound on the difference
between E[x(¢,\)] and p?. We choose \* € [0,1] to
minimize the width of our confidence interval for p?
(line 9), similar to the calculation in (Ben-David et al.,

2010, Section 6).!

3.2 Regret analysis
We first define the notion of subpar arms. Let

T ={i:3p € [M],pf — uf > 5¢}

be the set of subpar arms for an ee-MPMARB problem in-
stance. Intuitively, Z. contains the set of “easier” arms
for which data aggregation between players can be ef-
fective. For each arm i € Z, the following fact shows
that the gap AY = pf — u? is sufficiently larger than
the dissimilarity parameter e for all players p € [M].
This allows ROBUSTAGG(€) to exploit the “easiness”
of these arms through data aggregation across players,
thereby reducing avoidable individual explorations.
Fact 4. |Z.| < K—1. In addition, for each arm i € I,
AN > 3e: in other words, for all players p in [M],
AP = (8 — P > 3e; consequently, arm i is suboptimal
for all players p in [M].

We now present regret guarantees of ROBUSTAGG(e).
Theorem 5. Let ROBUSTAGG(e) run on an e-
MPMAB problem instance for T rounds. Then, its

1See Appendix H for an analytical solution to the opti-
mal weighting factor A*.
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expected collective regret satisfies

E[R(T)] < 0( > (leTn + MA;““‘) +

i€, v

> oy i)

i€ZC pe[M]:AP>0

The first term in the above bound shows that the
collective regret incurred by the players for the sub-
par arms Z. and the second term for arms in Z¢ =
[K]\ Ze. Observe that for each subpar arm, the regret
of the players as a group can be upper-bounded by

O (BT + Marn),

regret on each player is O(lnT) unless A? = 0.

whereas for each arm in ZC, the

1

Fact 6. For any i € Z, <& Zpe[M] AT

) rnin
Ai

Fallback guarantee. The regret guarantee of
ROBUSTAGG(€e) by Theorem 5 is always no worse than
that of IND-UCB by a constant factor, as from Fact 6,

for all ¢ in Z, leq; +MAP™ =0 (Zpe[M} 127?)

Two extreme cases of [Z.]. If Z. = @, in which
case we do not expect data aggregation across players
to be beneficial, the above bound can be simplified to:

zz%’f

i€[K] pe[M]:AP>0 —?

E[R(T)] <O

In contrast, when Z. has a larger size, namely,
more arms admit data aggregation across players,
ROBUSTAGG(€) has an improved regret bound. The
following corollary gives regret bounds in the most fa-
vorable case when Z. has size K — 1. It is not hard
to see that, in this case, Iec is equal to a singleton set
{i.}, where arm i, is optimal for all players p.

Corollary 7. Let ROBUSTAGG(e) run on an e-
MPMAB problem instance with |Z,| = K — 1 for T

rounds. Then, its expected collective regret satisfies
ER() <0 [ 32 4 i3 amn
B i#i A i '

It can be observed that, compared to the IND-UCB
baseline, under the assumption that |Z.| = K — 1,
ROBUSTAGG(¢) improves the regret bound by nearly
a factor of M: if we set aside the O (M D, A?‘in)
term, which is of lower order than the rest under the
(Alg,l%)g), then
the expected collective regret in Corollary 7 is a factor
of O(4;) times that of IND-UCB, in light of Fact 6.

mild assumption that M = O (min#i*

Gap-independent upper bound. We now provide
an upper bound on the expected collective regret that
is independent of the gaps Als.

Theorem 8. Let ROBUSTAGG(e) run on an e-
MPMARB problem instance for T rounds. Then its ex-
pected collective regret satisfies

E[R(T)] <O (\/|I€| MT + M\/(|Z¢| - DT + M IE> .

Recall that IND-UCB has a gap-independent bound
of O (M VK T). By algebraic calculations, we

can see that when T = Q(KM), the re-
gret bound of ROBUSTAGG(e) is a factor of

max (

bound. Therefore, when M = w(1) and |ZIC| = o(K),
i.e., when there is a large number of players, and an
overwhelming portion of subpar arms, ROBUSTAGG
has a gap-independent regret bound of strictly lower
order than IND-UCB.

]\1/[> times IND-UCB'’s regret

Observe that the above bound has a term

M,/(|Z¢] —1)T with a peculiar dependence on

‘IEC| —1; this is due to the fact that in the special case
of |Z.| = K — 1, i.e., |IC‘ =1, the contribution to the
regret from arms in ZC is zero. Indeed, in this case,
7¢ is a singleton set {z*} where arm i, is optimal for
all players.

3.3 Lower bounds

Gap-dependent lower bound. To complement
our gap-dependent upper bound in Theorem 5, we now
present a gap-dependent lower bound. We show that,
for any fixed €, any sublinear regret algorithm for the
e-MPMAB problem must have regret guarantees not
much better than that of ROBUSTAGG(e) for a large
family of §-MPMAB problem instances.

Theorem 9. Fix e > 0. Let A be an algorithm and
C > 0,a > 0 be constants, such that A has CT % re
gret in all e-MPMAB environments. Then, for any
Bernoulli §-MPMAB instance p = (11f)ic[k),pe[M]
such that pf € [12,41] for all i and p, we have:

EROIz0| Y Y ln(AfAﬂ

i€ZC,, PE[M]:AT >0

o

i€ j20: AP >0

In(AmnTe /()
A;nin

Theorem 9 is nearly tight compared with the upper
bound presented in Theorem 5 with two differences.
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First, the upper bound is in terms of Z., while the lower
bound is in terms of 7 50; we leave the possibility of
exploiting data aggregation for arms in Z. \ Z /50 as an
open question. Second, the upper bound has an extra
O ier. MAM®) term, caused by the players issuing
arm pulls in parallel in each round; we conjecture that
it may be possible to remove this term by developing
more efficient multi-player exploration strategies.

Gap-independent lower bound. The following
theorem shows that, there exists a value of € (that
depends on T and |Z|), such that any algorithm must
have a minimax collective regret not much lower than
the upper bound shown in Theorem 8 in the family of
all e MPMAB problems.

Theorem 10. For any K > 2, M, T € N, and ,1¢ in
N such that | < K — 1,1+ 1¢ = K, there exists some
€ > 0, such that for any algorithm A, there exists an
e-MPMAB problem instance, in which |Z| = 1, and
A has a collective regret at least Q(M+/(I¢ — 1)T +

VMIT).

The above lower bound is nearly tight in light of the
upper bound in Theorem 8: as long as T' = Q(K M),
the upper and lower bounds match within a constant.

4 eMPMAB with Unknown e

We now turn to the setting when ¢ is unknown to the
learner. Unlike the ROBUSTAGG(e) algorithm devel-
oped in the last section, which only has nontrivial re-
gret guarantees for all e MPMAB instances, in this
section, we aim to design algorithms that have non-
trivial regret guarantees for all MPMAB instances.

Recall that ROBUSTAGG(e) relies on the knowledge
of € to construct reward confidence intervals for each
arm and player; when € is unknown, constructing such
confidence interval becomes a big challenge. In Ap-
pendix I, we give evidence showing that it may be
impossible to design confidence interval-based algo-
rithms that significantly benefit from inter-player in-
formation sharing. This suggests that new algorithmic
ideas seem necessary to obtain nontrivial results in this
setting.

4.1 Gap-dependent lower bound

Recall that IND-UCB achieves a gap-dependent re-

gret bound of O(Zie[K] Zpe[M]:A,{-’>O IZ—?) for all
MPMAB problems without knowing e. Interestingly,
we show in the following theorem that any sublin-
ear regret algorithm for the MPMAB problem must
have gap-dependent lower bound not much better than
IND-UCB for a large family of MPMAB problem in-

stances, regardless of the value of € and the size of Z,
of that instance.

Theorem 11. Let A be an algorithm and C' > 0, >
0 be constants such that A has CT'~ regret in all
MPMAB problem instances. Then, for any Bernoulli
MPMAB instance p = (118 )ic (k) pe[m) Such that pf €

(33, 1%] for all i € [K],p € [M],

In(T*A?/C)
AP

RETI DD

i€[K] pe[M]:A?>0

4.2 Gap-independent upper bound

While we have shown gap-dependent lower bounds
that nearly matches the upper bounds for IND-UCB
for sublinear regret MPMAB algorithms in Theo-
rem 11, this does not rule out the possibility of achiev-
ing regret that improves upon IND-UCB in small-gap
instances. To see this, note that if A is of order
O(T~?) for all ¢ in [K] and p in [M], the above lower
bound becomes vacuous. Therefore, it is still possi-
ble to get gap-independent upper bounds that improve
over the O(M+/KT) upper bound by IND-UCB.

We present ROBUSTAGG-AGNOSTIC in Appendix F,
an algorithm that achieves such guarantee: specif-
ically, it achieves a gap-independent regret upper
bound adaptive to |Za.|. In a nutshell, the algorithm
aggregates over a set of ROBUSTAGG(¢€) base learners
with different values of €, using the strategy of Cor-
ral (Agarwal et al., 2017). We have the following the-
orem:

Theorem 12. Let ROBUSTAGG-AGNOSTIC Tun on an
e-MPMAB problem instance with any € € [0,1]. Its
expected collective regret in a horizon of T rounds sat-
isfies

E[R(T)] < O <<|125| +M ’ng VT + M|IE|> .

Under the mild
Q(min(K?, M?)), the

that T =
bound be-

assumption
above regret

comes O<<|Igﬁ| + M |Z§, )\/T If furthermore
|Zoe] = K — o(vK) and M = w(VK), the regret
bound of ROBUSTAGG-AGNOSTIC is of lower or-
der than IND-UCB’s O(M+/KT) regret guarantee.
In the most favorable case when |Zp| = K — 1,
ROBUSTAGG-AGNOSTIC has expected collective

regret O ((M + K)\/T)
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Such adaptivity of ROBUSTAGG-AGNOSTIC to un-
known similarity structure comes at a price of
higher minimax regret guarantee: when Z, = 0,

ROBUSTAGG-AGNOSTIC has a regret of O (M K \/T),

a factor of K higher than O(M+/KT), the worst-
case regret of IND-UCB. We conjecture that this may
be unavoidable due to lack of knowledge of ¢, similar
to results in adaptive Lipschitz bandits (Locatelli and
Carpentier, 2018; Krishnamurthy et al., 2019; Hadiji,
2019).

5 Related Work and Comparisons

5.1 Multi-agent bandits.

We first compare existing multi-agent bandit learning
problems with the ee MPMAB problem. We provide a
more detailed review of the literature in Appendix A.

A large portion of prior studies (Kar et al., 2011;
Szorényi et al., 2013; Landgren et al., 2016; Cesa-
Bianchi et al., 2019; Kolla et al., 2018; Sankararaman
et al.,; 2019; Wang et al., 2019; Dubey and Pentland,
2020a; Chawla et al., 2020; Wang et al., 2020) focuses
on the setting where a set of players collaboratively
work on one bandit learning problem instance, i.e.,
the reward distributions of an arm are identical across
all players. In contrast, we study multi-agent bandit
learning where the reward distributions across players
can be different.

Multi-agent bandit learning with heterogeneous feed-
back has also been covered by previous studies. In
(Shahrampour et al., 2017), a group of players seek
to find the arm with the largest average reward over
all players; however, in each round, the players have
to reach a consensus and choose the same arm. Cesa-
Bianchi et al. (2013) study a network of linear contex-
tual bandit players with heterogeneous rewards, where
the players can take advantage of reward similarities
hinted by a graph. They use a Laplacian-based reg-
ularization, whereas we study when and how to use
information from other players based on a dissimilar-
ity parameter. Gentile et al. (2014); Li et al. (2016)
assume that the players’ reward distributions have a
cluster structure; in addition, players that belong to
one cluster share a common reward distribution; our
paper do not assume such cluster structure. Dubey
and Pentland (2020b) assume access to some side in-
formation for every player, and learns a reward predic-
tor that takes both player’s side information models
and action as input. In comparison, our work do not
assume access to such side information.

Similarities in reward distributions are explored in
(Shivaswamy and Joachims, 2012; Zhang et al., 2019)

to warm start bandit learning agents. Azar et al.
(2013); Soare et al. (2014) investigate multitask learn-
ing in bandits through sequential transfer between
tasks that have similar reward distributions. In con-
trast, we study the multi-player setting, where all play-
ers learn continually and concurrently.

There are other practical formulations of multi-
player bandits with player-dependent reward distribu-
tions (Bistritz et al., 2020; Boursier et al., 2020), where
the existence of collision is assumed; i.e., two players
pulling the same arm in the same round receive zero
reward. In comparison, collision is not modeled in this

paper.

5.2 Learning using weighted data
aggregation

Our design of confidence interval in Section 3.1 has re-
semblance to the weighted empirical risk minimization
algorithm proposed for domain adaptation by Ben-
David et al. (2010), but our purposes are different
from theirs. Specifically, our choice of A minimizes
the length of the confidence intervals, whereas Ben-
David et al. (2010) find A that minimizes classifica-
tion error in the target domain. Furthermore, our set-
ting in Section 4 is more challenging: in offline domain
adaptation, one may use a validation set drawn from
the target domain to fine-tune the optimal weight A\*,
to adapt to unknown dissimilarity between the source
and the target; however, in our setting (and online
bandit learning in general), such tuning does not re-
sult in sample efficiency improvement.

The idea of assigning weights to different sources of
samples has also been studied by Zhang et al. (2019)
for warm starting contextual bandit learning from mis-
aligned distributions and by Russac et al. (2019) for
online learning in non-stationary environments. Zhu
et al. (2020) use a weighted compound of player-based
estimator and cluster-based estimator for collaborative
Thompson sampling, where the weights are given by a
hyper-parameter; in contrast, we adaptively compute
our weighting factor based on the numbers of samples
collected by the players as well as the dissimilarity pa-
rameter e.

6 Empirical Validation

We now validate our theoretical results with some em-
pirical simulations using synthetic data?. Specifically,
we seek to answer the following questions:

1. In practice, how does our proposed algorithm

20ur code is available
zhiwang123/eps-MPMAB.

at https://github.com/
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Figure 1: Compares the average performance of ROBUSTAGG-ADAPTED(0.15), IND-UCB, and NAIVE-AGG in
randomly generated Bernoulli 0.15-MPMAB problem instances with K = 10 and M = 20. The z-axis shows a
horizon of T'= 100, 000 rounds, and the y-axis shows the cumulative collective regret of the players.
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Figure 2: Compares the average performance of ROBUSTAGG-ADAPTED(0.15) and IND-UCB in randomly gen-
erated Bernoulli 0.15-MPMAB problem instances with K = 10. The z-axis shows different values of M, and the
y-axis shows the cumulative collective regret of the players after 100,000 rounds.

compare with algorithms that either do not take
advantage of adaptive data aggregation or do not
execute aggregation in a robust fashion?

2. How does the performance of our algorithm
change with different numbers of subpar arms?

We note that these questions are considered in the
setting where the dissimilarity parameter € is known
to the algorithms.

6.1 Experimental setup

We first describe the algorithms compared in the sim-
ulations. We then discuss the procedure we used for
generating synthetic data.

RobustAgg-Adapted(e). Since standard concen-
tration bounds are loose in practice, we per-
formed simulations on a more practical and ag-
gressive variant of ROBUSTAGG(e), which we call
ROBUSTAGG-ADAPTED(€). Our adaptation involves
two minor modifications:

o We used a different constant “2” inside the square

root in the UCBs; this constant was taken from
the original UCB-1 algorithm, which is an ingredi-
ent of the baseline IND-UCB, and we simply kept
the default value.

o We also added an initialization phase, where each
player pulls each arm once, to match with UCB-1
which has this phase.

A pseudocode of ROBUSTAGG-ADAPTED(¢) can be
found in Appendix G.

Baselines. We evaluate the following two algorithms
as baselines: (a) IND-UCB, described in Section 2; and
(b) NAIVE-AGG, in which the players naively aggre-
gate data assuming that their reward distributions are
identical—in other words, NAIVE-AGG is equivalent to
ROBUSTAGG-ADAPTED(0).

Instance generation. We generated problem in-
stances using the following randomized procedure. We
first set € = 0.15. Then, given the number of players
M, the number of arms K, and the number of sub-
par arms |Z.| € {0,1,..., K — 1}, we first sampled the
means of the reward distributions for player 1:
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Let ¢ = K — |Z.|. For i € {1,2,...,c}, we sampled
wh b U[0.8,0.8 + €), where U[a,b) is the uniform
distribution with support [a,b]. Let d = max;¢| pl.
1 Lid.

. ~
K3

Then, for i € {¢+ 1,...,K}, we sampled pu
U[0,d — 5e).

We then sampled the means of the reward distribu-
tions for players p € {2,..., M}: For each ¢ € [K], we
$),min(l + 5,1)).
Fact 13. The above construction gives a Bernoulli

0.15-MPMAB problem instance that has exactly (K —
c¢) subpar arms, namely, T = {i:c+1<i < K}.

sampled R U [ max (0, puf —

6.2 Simulations and results

We ran two sets of simulations, and the results are
shown in Figure 1 and Figure 2. More detailed results
are deferred to Appendix G.

Experiment 1. We compare the cumulative collec-
tive regrets of the three algorithms in problem in-
stances with different numbers of subpar arms. We
set M = 20, K = 10 and ¢ = 0.15. For each
v € {0,1,2,...,9}, we generated 30 Bernoulli 0.15-
MPMAB problem instances, each of which has ex-
actly v subpar arms, i.e., we generated instances with
|Ze| = v. Figures la, 1b and lc show the average re-
grets in a horizon of 100,000 rounds over these gener-
ated instances, in which |Z.| = 8,6 and 0, respectively.
In the interest of space, figures in which |Z.| takes other
values are deferred to Appendix G.3.

Notice that ROBUSTAGG-ADAPTED(0.15) outper-
forms both baseline algorithms in Figures la and 1b
when |Z.| = 8 and 6. Figure lc demonstrates that
when |Z,] = 0, i.e., when there is no arm that is
amenable to data aggregation, the performance of
ROBUSTAGG-ADAPTED(0.15) is still on par with that
of IND-UCB. Also, as shown in Figure la, even
when |Z€] = 2, i.e., when there are only two “com-
petitive” (not subpar) arms, the collective regret of
NAIVE-AGG can still easily be nearly linear in the
number of rounds.

Experiment 2. We study how the collective regrets
of ROBUSTAGG-ADAPTED(0.15) and IND-UCB scale
with the number of players in problem instances with
different numbers of subpar arms. We set K = 10 and
€ = 0.15. For each combination of M € {5,10,20} and
v € {0,1,2,...,9}, we generated 30 Bernoulli 0.15-
MPMAB problem instances with M players and ex-
actly v subpar arms, that is, for each instance, |Z.| = v.
Figures 2a, 2b and 2c compare the average regrets af-
ter 100, 000 rounds in instances with different numbers
of players M, in which |Z| are set to be 9,5 and 0,

respectively. Again, figures in which |Z,| takes other
values are deferred to Appendix G.3.

Observe that when |Z.| is large, the collective re-
gret of ROBUSTAGG-ADAPTED(0.15) is less sensi-
tive to the number of players. In the extreme case
when |Z.| = 9, all suboptimal arms are subpar
arms, and Figure 2a shows that the collective regret
of ROBUSTAGG-ADAPTED(0.15) has negligible depen-
dence on the number of players M.

6.3 Discussion

Back to the questions we raised earlier, our simula-
tions show that ROBUSTAGG-ADAPTED(e), in gen-
eral, outperforms the baseline algorithms IND-UCB
and NAIVE-AGG. When the set of subpar arms Z, is
large, we showed that properly managing data aggre-
gation can substantially improve the players’ collec-
tive performance in an eMPMAB problem instance.
When there is no subpar arm, we demonstrated the
robustness of ROBUSTAGG-ADAPTED(¢), that is, its
performance is comparable with IND-UCB, in which
the players do not share information. These empirical
results validate our theoretical analyses in Section 3.

7 Conclusion and Future Work

In this paper, we studied multitask bandit learning
from heterogeneous feedback. We formulated the e-
MPMAB problem and showed that whether inter-
player information sharing can boost the players’ per-
formance depends on the dissimilarity parameter € as
well as the intrinsic difficulty of each individual bandit
problem that the players face. In particular, in the
setting where € is known, we presented a UCB-based
data aggregation algorithm which has near-optimal
instance-dependent regret guarantees. We also pro-
vided upper and lower bounds in the setting where €
is unknown.

There are many avenues for future work. For example,
we are interested in extending our results to contex-
tual bandits and Markov decision processes. Another
direction is to study multitask bandit learning under
other interaction protocols (e.g., only a subset of play-
ers take actions in each round). In the future, we would
also like to evaluate our algorithms in real-world ap-
plications such as healthcare robotics (Riek, 2017).
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