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Abstract

Conflict-Based Search (CBS) is a leading two-level algorithm
for optimal Multi-Agent Path Finding (MAPF). The main
step of CBS is to expand nodes by resolving conflicts (where
two agents collide). Choosing the ‘right’ conflict to resolve
can greatly speed up the search. CBS first resolves conflicts
where the costs (g-values) of the resulting child nodes are
larger than the cost of the node to be split. However, the re-
cent addition of high-level heuristics to CBS and expanding
nodes according to f = g + h reduces the relevance of this
conflict prioritization method. Therefore, we introduce an ex-
panded categorization of conflicts, which first resolves con-
flicts where the f -values of the child nodes are larger than the
f -value of the node to be split, and present a method for iden-
tifying such conflicts. We also enhance all known heuristics
for CBS by using information about the cost of resolving cer-
tain conflicts with only a small computational overhead. Fi-
nally, we experimentally demonstrate that both the expanded
categorization of conflicts and the improved heuristics con-
tribute to making CBS even more efficient.

1 Introduction and Overview

Multi-Agent Path Finding (MAPF) is a coordination prob-
lem where the aim is to find a set of collision-free paths for
a team of mobile agents, each from its start location to its
designated target location. MAPF is a well-known and well-
studied topic with numerous real-world applications. For ex-
ample, MAPF is a core challenge automated warehouse lo-
gistics (Wurman, D’Andrea, and Mountz 2008), automated
parcel sortation (Kou et al. 2020), automated valet park-
ing (Okoso, Otaki, and Nishi 2019), computer games (Sil-
ver 2006) and a variety of other contexts (Ma et al. 2016).
Many optimal and suboptimal approaches for MAPF have
been proposed; a recent summary is given in (Felner et al.
2017).

In this work, we focus on optimal MAPF, where the goal
is to minimize the sum of path costs, and consider improve-
ment strategies for Conflict-Based Search (CBS) (Sharon
et al. 2015), a popular and successful MAPF solver. CBS can
be described as a two-level algorithm. The low level finds
optimal paths for the individual agents. If the paths of two
agents collide (i.e., are in conflict), the high level, via a split
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action, imposes constraints on the agents to avoid the colli-
sion, thus resolving the conflict. The search space of CBS
is therefore a binary Constraint Tree (CT), which the algo-
rithm explores in best-first order. CBS is complete, optimal
and often highly performant; e.g., recent variants (Li et al.
2019a,b,c) can solve MAPF problems with more than 100
agents.

CBS is very sensitive to the order in which conflicts are
chosen to be resolved. Boyarski et al. (2015b) introduced a
scheme for prioritizing conflicts. Highest in the suggested
priority ordering are cardinal conflicts, as resolving them
raises the cost for both child nodes. Next are semi-cardinal
conflicts, which raise the cost for only one child node, and
last are non-cardinal conflicts, which do not raise the cost
for either child node. This prioritization greatly speeds up
the search by decreasing the size of the CT, because child
nodes of higher costs are less likely to be expanded.

Later, Felner et al. (2018) and Li et al. (2019a) added
heuristics to CBS, which provided further performance im-
provements. Nodes of the CT are now prioritized based on
the sum of their cost and their heuristic value (f = g + h).

In this paper, we first propose an enhanced prioritization
function that allows CBS to distinguish between conflicts
that appeared equivalent when branching. We identify a set
of conflicts, called f -cardinal, which produce child nodes
with increased f -costs. We refer to conflicts that produce
child nodes with increased g-costs as g-cardinal. Next, we
propose a method for identifying f -cardinal conflicts and
a new conflict prioritization scheme where f -cardinal con-
flicts are resolved first, followed by other types of conflicts.
Then, we enhance all known heuristics for CBS by using in-
formation about the cost of resolving certain conflicts with
only a small computational overhead. Finally, we evaluate
both contributions experimentally. Our results indicate that
this new strategy and the new heuristics increase the effi-
ciency of current versions of CBS.

2 Background

In classical MAPF, the environment is a graph (usually a
grid), and time is discretized to time steps. In each time step,
an agent may traverse an edge to move from its vertex to an
adjacent vertex, or it may wait at its current vertex. Agents
have a vertex conflict if they are planned to occupy the same
vertex at the same time, and have an edge conflict if they







the g-cardinal conflict graph. For each such agent A, we tem-
porarily remove all of agent A’s edges and compute the size
of the MVC of the remaining graph. This simulates the g-
cardinal conflict graph of the child node of N that would
be generated if one of A’s g-cardinal conflicts were cho-
sen to be resolved and the child node constrained agent A’s
path. The graph simulates the most optimistic scenario that
agent A’s new path causes no new g-cardinal conflicts and
avoids all of A’s current conflicts. If the size of the MVC
remains unchanged, than all g-cardinal conflicts that agent
A participates in are semi-f -cardinal (like agent X and the
X-Y -conflict in the example); and, all g-cardinal conflicts
that agent A participates in, and where the other conflicting
agent is at its target, are f -cardinal (like agent Z and the Y -
Z-conflict). Otherwise, the size of the MVC decreases and
thus the agent’s g-cardinal conflicts remain g-cardinal (but
are not f -cardinal in our scenario).

In our implementation, we compute the MVC using a
Mixed-Integer Programming (MIP) solver. When we sim-
ulate the MVC of child nodes, we ‘warm start’ the MIP
model, removing rows and incrementally adding them back
to the model as needed. MIP solvers retain information be-
tween consecutive runs on the same model, which speeds up
the process of identifying f -cardinal conflicts.

6.3 Non-Stable Conflicts

For any g-cardinal conflict identified at CT node N , the
conflict will remain g-cardinal at every node in the subtree
rooted at N unless resolved in an ancestor. We call such con-
flicts stable. Interestingly, f -cardinal conflicts are not sta-
ble, as such a conflict in CT node N might become semi-f -
cardinal in a child, despite not being resolved. Similarly, a
semi-f -cardinal conflict might become only g-cardinal in a
child node.

In Figure 3, if we resolve the conflict between X and Y ,
the conflict between Y and Z will become semi-f -cardinal
in the resulting child nodes, and if we resolve the conflict be-
tween Y and Z, the conflict between X and Y will become
only g-cardinal in the CT node where the path of Z was re-
planned (and might be avoided altogether in the CT node
where the path of Y was replanned). Due to this observa-
tion, when an f -cardinal conflict is identified in a CT node,
we propose to terminate the identification procedure and im-
mediately resolve this conflict. Of course, it is not worth-
while to perform additional work to possibly identify other
f -cardinal conflicts, as the f -cardinal status of these con-
flicts would have to be re-checked in the child nodes (since
the conflicts are not stable).

7 Improved Heuristics for CBS

Conflict prioritization affects which nodes CBS generates
and adds to the CT and therefore strongly influences both the
shape and the size of the CT and thus also the efficiency of
CBS. Complementary to this strategy is the CBS high-level
heuristic, which influences the order in which CT nodes will
be selected for expansion. In this section, we show how
to exploit information about expected g-increases, gathered
at the conflict classification stage, to improve all current
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Figure 4: The g-cardinal conflict graph for figure 2, with
minimum expected g-increases labeled on the ends of edges

CBS high-level heuristics: CG (Felner et al. 2018), DG and
WDG (Li et al. 2019a). Our new and improved heuristics
are strictly more informed than their baselines. They may be
used in conjunction with our newly proposed conflict prior-
itization scheme or independently of it.

7.1 The NVW-CG Heuristic

Figure 4 shows the g-cardinal conflict graph for the exam-
ple in Figure 2, with minimum expected g-increases from
resolving the g-cardinal conflicts labelled on the ends of the
edges2. Recall that the h-value of the basic MVC heuristic
for this graph is 2.

Our new Near Vertex-Weighted Cardinal Conflict Graph
Minimum Vertex Cover (NVW-CG) heuristic for the la-
belled graph assigns a non-negative integer value xi for each
vertex vi. The heuristic estimate is the sum of the minimum
assignment of values for the vertices that satisfies the fol-
lowing condition for edges: each edge e = (vi, vj) with
corresponding values (cei , cej ) on its ends is covered by
xi ≥ cei ∨ xj ≥ cej . For our example, the improved heuris-
tic estimate is 3: either A or B is assigned a value of 1, and
either X and Z are assigned a value of 1, or Y a value of 2.

Note that the 1 label on the side of Z is underestimating
the cost to really resolve the dependency between agents Y
and Z by replanning agent Z’s path. The near-vertex weights
only take into account the expected g-increases from resolv-
ing the current conflict. They are thus trivial to compute, but
miss some information. In our example, adding a constraint
on Y ’s target at time step 6 for agent Z would simply cause
agent Z to wait one time step before entering the same ver-
tex and creating a new f -cardinal conflict.

7.2 The NVW-DG Heuristic

The Dependency Graph Minimum Vertex Cover (DG)
heuristic computes the MVC of the pairwise dependency
graph (Li et al. 2019a), which generalizes the g-cardinal
conflict graph. DG edges exist iff all cost-minimal paths of
the corresponding two agents have any type of conflict be-
tween them (not necessarily g-cardinal). Thus, the DG can
have more edges than the CG, and the size of its MVC can be
larger. The Near Vertex-Weighted version of the DG heuris-
tic (NVW-DG) is computed as follows: add a weight to the

2Resolving the conflict between agents Y and Z with length
constraints, as discussed earlier, actually increases the cost of the
path of agent Z by 2 when it is replanned, but that would only be
discovered when that child node is generated.





Instances Solved Hard Instances Solved

Type #Instances CBS f -cardinal CBS f -cardinal

City 36,300 12,767 13,071 270 574
Empty 48,400 9,209 9,283 163 237
Games 121,000 20,745 21,721 806 1782
Mazes 48,400 2,584 2,728 117 261
Random 48,400 11,454 11,767 333 631
Rooms 36,300 3,986 4,231 149 394
Warehouse 48,400 17,357 17,627 249 519

Total 387,200 78,102 80,428 2,087 4,398

Table 1: Number of solved instances for CBS and CBS-f -
cardinal for all instances and for hard instances

plemented bypassing conflicts (Boyarski et al. 2015a).

8.1 Results for the New Conflict Prioritization

We ran two CBS solvers: The baseline solver prioritized g-
cardinal conflicts, and our improved solver identified and
prioritized f -cardinal conflicts. Both used the CG heuristic.

Solved instances: Table 1 shows the success rates for the
two solvers and each of the different map types. The num-
ber of problem instances from each type is also presented.
There were 387,200 problem instances and, for each one,
each solver either attempted to solve it or failed implicitly.
We further distinguish a subset of hard instances, which we
define as any problem instance where at least one solver
failed or required more than half of the allotted time to solve
(30 seconds).

There were 2,464 problem instances that were solved
only by our improved solver and 153 problem instances
that were only solved by the baseline solver. The improve-
ment is statistically significant (McNemar’s Test produces
χ2 = 2040.78). Prioritizing f -cardinal conflicts is espe-
cially beneficial on hard instances, where it more than dou-
bles the success rate.

Co-solved instances: Figure 7 shows the average runtime
and number of generated nodes by the two solvers of CBS,
over all instances from each map type that both solvers
solved successfully, as a function of the number of agents.
Our improved solver consistently generates fewer nodes and
runs faster. The error bars represent one standard deviation
from the mean for each number of agents. Our solver clearly
has lower standard deviations for both the runtimes and the
number of generated nodes. The time that it spent on identi-
fying f -cardinal conflicts was negligible.

8.2 Results for the New Heuristics

We compare the performance of CBS with the CG (Felner
et al. 2018), DG, WDG (Li et al. 2019a), NVW-CG, NVW-
DG, and NVW-WDG heuristics. All solvers compute the
heuristics lazily and use memoization (Li et al. 2019a) to
reduce runtime. The solver used by WDG for the 2-agent
subproblems was CBS with the same configuration, except
it runs with the CG heuristic, and applies rectangle reasoning
(Li et al. 2019c), a technique that further speeds up CBS.

Previous heuristic evaluations have only been performed
on a small number of scenarios. Here we examine 111,480

Type #Instances CG NVW-CG DG NVW-DG WDG NVW-WDG

City 19,322 12,599 12,615 15,664 15,634 15,835 15,972
Empty 12,197 9,104 9,106 11,659 11,626 11,561 11,541
Games 31,450 20,843 20,812 23,686 23,612 25,875 26,078
Mazes 3,699 2,766 2,759 2,779 2,774 2,928 2,950
Random 16,006 11,645 11,639 14,490 14,417 14,387 14,344
Rooms 5,710 4,190 4,169 4,528 4,489 4,825 4,844
Warehouse 23,096 17,124 17,117 20,616 20,569 20,765 20,780

Total 111,480 78,271 78,217 93,422 93,121 96,176 96,509

Table 2: Solved instances with the CG, NVW-CG, DG,
NVW-DG, WDG and NVW-WDG heuristics.

Type CG NVW-CG DG NVW-DG WDG NVW-WDG h∗

City 1.30 1.40 1.32 1.42 2.32 2.51 2.62
Empty 0.18 0.18 0.48 0.48 0.62 0.62 1.11
Games 1.86 1.96 1.89 1.99 3.41 3.60 3.99
Mazes 1.79 1.92 1.80 1.92 4.15 4.39 5.64
Random 1.27 1.35 1.52 1.61 2.88 3.09 3.79
Rooms 1.80 1.90 1.90 2.01 4.03 4.32 5.45
Warehouse 0.50 0.51 0.57 0.58 1.66 1.70 1.94

All 1.18 1.25 1.29 1.35 2.51 2.65 3.09

Table 3: Average h-values of the root node with each heuris-
tic and with h∗ for each map type, on co-solved instances.

instances. In total, 97,706 problem instances were success-
fully solved with at least one of the six heuristics. Table 2
shows the number of instances that were solved success-
fully by each solver for the different map types. Interest-
ingly, while improving the weaker heuristics does not im-
prove success rate, for WDG overall it does. We conjecture
this is because with this short time limit, the overhead of new
heuristic calculations does not pay off.

Table 3 shows the average h-value of the root CT node on
co-solved instances with each heuristic, as well as the aver-
age optimal h-value (h∗). The average h-value of each im-
proved heuristic is better than its baseline. Table 4 shows the
average number and standard deviation of generated nodes
of each solver on co-solved instances, and the average time
in milliseconds per generated node, under 60-seconds, 300-
seconds and 1800-seconds time limits. Table 4 provides ev-
idence to the fact that the improved heuristics are more im-
portant for longer runs.

Figure 8 shows again the breakdown of ∆g, ∆h, and
∆f values of CT nodes relative to their parent, this time
when running the same CBS solver with the NVW-WDG
heuristic. Note that new colours were added for cases where
∆h ≤ −2, which isn’t possible with the CG and DG heuris-
tics. Without prioritizing f -cardinal conflicts, conflicts from
the orange bars, where ∆g = 1 but ∆f = 0, would be pri-
oritized over conflicts from the teal bars, where ∆f = 1 but
∆g = 0.

9 Conclusions and Future Work

In this paper, we first expanded the concept of cardinal con-
flicts, a key concept in CBS, and demonstrated that prioritiz-
ing the new category of f -cardinal conflicts substantially im-
proves performance. Second, we improved all current high-
level heuristics for CBS by exploiting information about
expected cost increases that arise from resolving conflicts.
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