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Abstract

Multi-Agent Path Finding (MAPF) is the problem of find-
ing collision-free paths for multiple agents. CBS is a lead-
ing optimal two-level MAPF solver whose low level plans
optimal paths for single agents and whose high level runs a
best-first search on a Constraint Tree (CT) to resolve the col-
lisions between the paths. ECBS, a bounded-suboptimal vari-
ant of CBS, speeds up CBS by reducing the number of col-
lisions that need to be resolved on the high level. It achieves
this by generating bounded-suboptimal paths with fewer col-
lisions with the paths of the other agents on the low level
and expanding bounded-suboptimal CT nodes that contain
fewer collisions on the high level. In this paper, we propose
Flexible ECBS (FECBS) that further reduces the number of
collisions that need to be resolved on the high level by us-
ing looser suboptimal bounds on the low level while still
providing bounded-suboptimal solutions. Instead of requir-
ing the cost of each path to be bounded-suboptimal, FECBS
requires only the overall cost of the paths to be bounded-
suboptimal, which gives us the freedom to distribute the cost
leeway among different agents according to their needs. Our
empirical results show that FECBS can solve more MAPF in-
stances than state-of-the-art ECBS variants within 5 minutes.

1 Multi-Agent Path Finding (MAPF)

MAPF is the problem of finding collision-free paths on a
graph for k agents {a1, . . . , ak}, each with a start vertex
and a goal vertex. At every discretized timestep, an agent
can either move to an adjacent vertex or wait at its current
vertex. A path for agent ai is a sequence of vertices indi-
cating where agent ai is at each timestep, with its path cost
being the number of timesteps needed by agent ai to reach
its goal vertex and stay there. A collision occurs when two
agents occupy the same vertex or traverse the same edge at
the same timestep. A solution is a set of collision-free paths,
one for each agent. An optimal solution is a solution with
the minimum sum of costs (SoC) of the paths.

2 Enhanced Conflict-Based Search (ECBS)

Enhanced Conflict-Based Search (ECBS) (Barer et al. 2014)
is a two-level MAPF solver that is guaranteed to find a
bounded-suboptimal solution, i.e., a solution whose SoC is
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at most w · C∗, where w is a user-specified suboptimality
factor and C∗ is the SoC of an optimal solution.

On the high level, ECBS searches a Constraint Tree (CT).
A CT node N contains a set of constraints (for resolving col-
lisions), a lower bound lbi(N) on the cost c∗

i
(N) of the op-

timal path of each agent ai that satisfies the constraints, and
a path with cost ci(N) ≤ w · lbi(N) for each agent ai that
satisfies the constraints. The root CT node contains no con-
straints. Given a collision between a pair paths in a CT node
chosen for expansion, ECBS resolves it by generating two
child CT nodes, each with an additional constraint that pro-
hibits one of the colliding agents from using the contested
vertex or edge at the colliding timestep. ECBS maintains an
open list OPENH (like A*) and a focal list FOCALH that
contains all CT nodes N in OPENH that satisfy

k∑

i=1

ci(N) ≤ w · LB, (1)

where LB = minN∈OPENH
{
∑

k

i=1
lbi(N)} is guaranteed to

be a lower bound on C∗. In each iteration, ECBS first up-
dates FOCALH and LB if necessary, then selects the CT
node in FOCALH with the smallest number of collisions,
and resolves one collision by expansion. ECBS terminates
when the selected CT node has no collisions. Since the SoC
of the paths of all CT nodes in FOCALH are at most w ·LB,
ECBS always finds a solution with a SoC of at most w ·C∗.

When generating a CT node N with an additional con-
straint on agent ai, ECBS first sets the constraints, the lower
bounds, and the paths of all agents other than agent ai in N
to those in its parent CT node and then finds the path and the
lower bound of agent ai in N via a search on its low level.

On the low level, ECBS searches in the vertex-timestep
space to find both a bounded-suboptimal path for an agent
that satisfies the constraints and a lower bound on the
cost of its optimal path that satisfies the constraints. ECBS
maintains an open list OPENL (like A*) and a focal list
FOCALL that contains all nodes n in OPENL whose f -
values are at most the threshold w · fmin, where fmin =
minn∈OPENL

{f(n)} is guaranteed to be a lower bound on
c∗
i
(N). In each iteration, ECBS first updates FOCALL and

fmin if necessary and then expands the node in FOCALL

with the smallest number of collisions with the paths of the
other agents in CT node N . Since the f -values of all nodes in



FOCALL are at most w·fmin, ECBS always finds a bounded-
suboptimal path with cost ci(N) ≤ w·lbi(N), where lbi(N)
is set to fmin when the low-level search terminates, that is,
lbi(N) is a lower bound on c∗

i
(N).

Thus, for every agent ai in every CT node N , we have
ci(N) ≤ w · lbi(N), which implies that

w ·

k∑

i=1

lbi(N)−

k∑

i=1

ci(N) ≥ 0. (2)

So, ECBS can always select a CT node from FOCALH in
each iteration on the high level because FOCALH contains at

least the CT node NLB = argminN∈OPENH
{
∑

k

i=1
lbi(N)}

as Inequality (2) ensures that NLB satisfies Inequality (1).

3 Flexible ECBS (FECBS)

On the low level, ECBS always finds a bounded-suboptimal
path for an agent that satisfies the constraints. However,
since the bounded suboptimality of ECBS is guaranteed by
only expanding CT nodes that satisfy Inequality (1) on the
high level, we can relax the bounded suboptimality on the
low level to further reduce the number of collisions that need
to be resolved on the high level. We thus propose Flexi-
ble ECBS (FECBS) that, rather than guaranteeing the cost
of each path to be bounded-suboptimal, only guarantees the
SoC of the paths in each CT node to be bounded-suboptimal,
that is, Inequality (2) to hold (otherwise, FOCALH might be
empty). We refer to the left-hand side of Inequality (2) as
the flex over the k agents. Intuitively, when FECBS replans
a path for agent ai in a CT node N , if the flex ∆i(N) =
w ·

∑
i′ 6=i

lbi′(N)−
∑

i′ 6=i
ci′(N) over the other k−1 agents

is positive, then it can satisfy Inequality (2) by finding a path
with a cost of at most w · lbi(N)+∆i(N) even if the cost is
larger than the threshold w · lbi(N) of ECBS.

Formally, FECBS differs from ECBS only in the thresh-
old of FOCALL. That is, when replanning the path of agent

ai in a CT node N whose parent CT node is N̂ , FOCALL

contains all nodes in OPENL whose f -values are at most

w ·max{fmin, lbi(N̂)} + ∆i(N) (instead of w · fmin). We

use max{fmin, lbi(N̂)} instead of fmin here because, other-
wise, the new threshold might be smaller than fmin, which
can result in an empty low-level FOCAL. More specifically,
if FECBS found paths for some agents with costs larger
than w times their lower bounds at ancestor CT nodes of
N , then ∆i(N) might be negative and w · fmin + ∆i(N)
might be smaller than fmin. But, because of Inequality (2),
we know that ∆i(N) = w·

∑
i′ 6=i

lbi′(N)−
∑

i′ 6=i
ci′(N) =

w ·
∑

i′ 6=i
lbi′(N̂) −

∑
i′ 6=i

ci′(N̂)) = (w ·
∑

k

i=1
lbi(N̂) −

∑
k

i=1
ci(N̂))−w · lbi(N̂)+ci(N̂) ≥ −w · lbi(N̂)+ lbi(N̂).

Thus, our new threshold satisfies w ·max{fmin, lbi(N̂)} +

∆i(N) ≥ w ·max{fmin, lbi(N̂)} −w · lbi(N̂) + lbi(N̂) =

w · max{fmin − lbi(N̂), 0} + lbi(N̂) ≥ max{fmin −

lbi(N̂), 0} + lbi(N̂) = max{fmin, lbi(N̂)} ≥ fmin, which
ensures that FOCALL is never empty.

FECBS usually uses a larger threshold of FOCALL than
ECBS, so, to avoid it finding paths that involve unnecessary

Figure 1: Success rates of MAPF solvers on different maps.

waits or detours, we add a tie-breaking rule to FOCALL: If
multiple nodes in FOCALL have the same number of colli-
sions, we prefer one with the smallest f -value. When the low
level of FECBS terminates, FECBS assigns the found path to

agent ai in N and sets lbi(N) to max{fmin, lbi(N̂)}. lbi(N)

is a lower bound on c∗
i
(N) because lbi(N̂) is a lower bound

on c∗
i
(N̂), which is at most c∗

i
(N) since the additional con-

straint on agent ai cannot make the cost of an optimal path
of agent ai smaller. Therefore, ci(N) ≤ w ·lbi(N)+∆i(N),
which implies that Inequality (2) holds, that is, FOCALH is
never empty. Since FECBS plans paths for agents one at a
time at the root CT node and does not know the flex over the
other agents in advance, FECBS uses the new threshold only
when replanning paths at non-root CT nodes.

4 Empirical Evaluation

We use two 4-neighbor grids, namely a 32 × 32 grid map
with 20% blocked cells (Grid) and a 257× 256 game map
(Den520d), and both the “even” and “random” scenarios
from the MAPF benchmark suite (Stern et al. 2019). We let
the suboptimality factor be 1.05 and 1.01 for the Grid and

Den520d maps, respectively. We use max{fmin, lbi(N̂)}
as the threshold of FOCALL and the f -values to break ties
in our ECBS implementation (which sped up ECBS).

ECBS with the Rapid Randomized Restart (RR) tech-
nique (Cohen et al. 2018) is a state-of-the-art ECBS vari-
ant. Given a user-specified number of runs #Runs and a time
limit T (in seconds), the RR technique restarts the search
every T/#Runs seconds. We denote ECBS and FECBS with
the RR technique as ECBS (RR) and FECBS (RR), respec-
tively. We define best #Runs as the value of #Runs in the
set {5, 20, 30, 40} that leads to the highest success rate, i.e,
the percentage of MAPF instances solved within 5 min-
utes. Figure 1 shows the success rates versus the number
of agents. We only show ECBS (RR) and FECBS (RR) with
their best #Runs. FECBS (RR) dominates on the Grid map,
and FECBS dominates on the Den520d map.
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