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Abstract

We build a Bayesian contextual classification
model using an optimistic score ratio for robust
binary classification when there is limited infor-
mation on the class-conditional, or contextual,
distribution. The optimistic score searches for the
distribution that is most plausible to explain the
observed outcomes in the testing sample among
all distributions belonging to the contextual am-
biguity set which is prescribed using a limited
structural constraint on the mean vector and the
covariance matrix of the underlying contextual
distribution. We show that the Bayesian classifier
using the optimistic score ratio is conceptually
attractive, delivers solid statistical guarantees and
is computationally tractable. We showcase the
power of the proposed optimistic score ratio clas-
sifier on both synthetic and empirical data.

1. Introduction

We consider a binary classification setting in which we
are provided with training samples from two classes but
there is little structure within the classes, e.g., data with
heterogeneous distributions except for means and covari-
ance. The ultimate goal is to correctly classify an unlabeled
test sample of a given feature. This supervised learning
task is the cornerstone of modern machine learning, and its
diverse applications are flourishing in promoting healthcare
(Naraei et al., 2016; Tomar & Agarwal, 2013), speeding
up technological progresses (Rippl et al., 2016; Zhu et al.,
2014), and improving societal values (Bhagat et al., 2011;
Bodendorf & Kaiser, 2009). Confronting the unstructured
nature of the problem, it is natural to exercise a Bayesian
approach which employs subjective belief and available
information, and then determine an optimal classifying deci-
sion that minimizes a certain loss function integrated under
the posterior distribution. In this modelling framework, a
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consensus on the selection of the loss function can be easily
reached. Unfortunately, the choice of a class prior and a
class-conditional distribution (i.e., the likelihood given the
class), two compulsory inputs to the Bayesian machinery to
devise the posterior, is more difficult to be agreed upon due
to conflicting beliefs among involving parties and limited
available data.

Robust Bayesian statistics, which explicitly aims to as-
semble a posterior inference model with multiple priors
and/or multiple class-conditional distributions, emerges as
a promising remedy to this longstanding problem. Exist-
ing research in this field mainly focuses on robust diver-
gences in the general Bayesian inference framework. Walker
(2013) identifies the behaviour of Bayesian updating in the
context of model misspecification to show that standard
Bayesian updating method learns a model that minimizes
the Kullback-Leibler (KL) divergence to the true data gener-
ating model. To achieve robustness in Bayesian inference,
existing works often target robust divergences, including
maximum mean discrepancy, Rényi’s alpha-divergences,
Hellinger-based divergences, and density power divergence
(Chérief-Abdellatif & Alquier, 2019; Knoblauch et al., 2019;
Bissiri et al., 2016; Jewson et al., 2018; Ghosh & Basu,
2016). Learning the learning rate in the general Bayesian in-
ference framework is also gaining more recent attention
(Holmes & Walker, 2017; Knoblauch, 2019). Besides,
Miller & Dunson (2019) use approximate Bayesian compu-
tation to obtain a ’coarsened’ posterior to achieve robustness
and Griinwald (2012) proposes a safe Bayesian method.

Despite being an active research field, alleviating the impact
of the model uncertainty in the class-conditional distribu-
tion (i.e., the likelihood conditional on the class) using ideas
from distributional robustness is left largely unexplored even
though this uncertainty arises naturally for numerous rea-
sons. Even if we assume a proper parametric family, the
plug-in estimator still carries statistical error from finite
sampling and rarely matches the true distribution. The un-
certainty is amplified when one relaxes to the nonparametric
setting where no hardwired likelihood specification remains
valid, and we are not aware of any guidance on a reasonable
choice of a likelihood in this case. The situation deteriorates
further when the training data violates the independent or
identically distributed assumptions, or when the test distri-
bution differs from the training distribution as in the setting
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of covariate shift (Gretton et al., 2009; Bickel et al., 2009;
Moreno-Torres et al., 2012).

We endeavor in this paper to provide the precise mathemati-
cal model for binary classification with uncertain likelihood
under the Bayesian decision analysis framework. Consider
a binary classification setting where Y € {0, 1} represents
the random class label and X € R represents the random
features. With a new observation x to be classified, we con-
sider the problem of finding an optimal action a € {0, 1},

{o
a =
1

to minimize the probability of misclassification by solving
the optimization problem

if classify z in class 0,
if classify z in class 1,

min aP(Y =0|X =2)+ (1 —a)P(Y =1|X = z),
ac{0,1}

where P(Y|X = z) denotes the posterior probability. If
a class-proportion prior 7 and the class-conditional (para-
metric) densities fp and f; are known, then this posterior
probability can be calculated by using the Bayes’ theo-
rem (Schervish, 1995, Theorem 1.31). Unluckily, we rarely
have access to the true conditional densities in real life.

To tackle this problem in the data-driven setting, for any
class ¢ € {0, 1}, the decision maker first forms, to the best
of its belief and on the a\@ilability of data, a nominal class-
conditional distribution P.. We assume now that the true
class-conditional distribution belongs to an ambiguity set
B,.(P.), defined as a ball, prescribed via an appropriate
measure of dissimilarity, of radius p. > 0 centered at the
nominal distribution P, in the space of class-conditional
probability measures. Besides, we allow to constrain the
class-conditional distributions to lie in a subspace P of
probability measures to facilitate the injection of optional
parametric information, should the need arise.

To avoid any unnecessary measure theoretic complications,
we position ourselves temporarily in the parametric setting
and assume that we can generically write B, (P.) NP para-
metrically as

B, (B) NP ={f(-16:): 0. €0} Vee{0,1},

where O, are non-empty (sub)sets on the finite-dimensional
parameter space O, and O, satisfy the additional regularity
condition that the density evaluated at point x is strictly
positive, i.e., f.(x]6.) > 0 for all §. € O.. Notice that the
parametric subspace of probability distributions P is now
explicitly described through the set of admissible parameters
©. If we denote the prior proportions by 7o = 7(Y = 0) >
0and m; = 7(Y = 1) > 0, then the ambiguity set over
the posterior distributions induced by the class-conditional

ambiguity sets By and B; can be written as

3fo € By (Po) NP, f1 € B, (P)) NP :

BodP: BY =X —a) = — Ty

S fe@mre |

c¢’€{0,1}

where the constraint in the set /3 links the class-conditional
densities f. and the prior distribution of the class propor-
tions 7 to the posterior distribution. Facing with the un-
certainty in the posterior distributions, it is reasonable to
consider now the distributionally robust problem

min sup aP(Y=0/X=2z)+ (1 —a)P(Y =1|X =x),
ae{0,1} peB
1

where the action a is chosen so as to minimize the worst-case
mis-classification probability over all posterior distribution
P € B. The next proposition asserts that the optimal action
a* belongs to the class of ratio decision rule.

Proposition 1.1 (Optimal action). The optimal action that
minimizes the worst-case mis-classification probability (1)
has the form

Suby, EBpl(@l)ﬁP S ('r)

Sllpfo €B,, (ﬁp?o)rrp fO (LU)
0 otherwise,

1

> 7(x),

for some threshold T > 0 that is dependent on z.

Motivated by this insight from the parametric setting, we
now promote the following classification decision rule

i >
) = {1 1f7€(a:)' > 7(x),
0 otherwise,

where R (x) is the ratio defined as
sup (z,Q)
& Q€B,, ®)NP

sup Uz, Q)
QEB,, (Po)NP

R(z)

and 7(x) > 0 is a positive threshold which is potentially
dependent on the observation x. The score function £(x, Q)
quantifies the plausibility of observing x under the probabil-
ity measure QQ, and the value R(x) quantifies how plausible
an observation = can be generated by any class-conditional
probability distribution in B,, (P;) N P relatively to any
distribution in B, (@0) M P. Because both the numerator
and the denominator search for the distribution in the respec-
tive ambiguity set that maximizes the score of observing z,
R(x) is thus termed the ratio of optimistic scores, and the
classification decision C is hence called the optimistic score
ratio classifier.



Robust Bayesian Classification Using an Optimistic Score Ratio

The classifying decision C(x) necessitates the solution of
two optimistic score evaluation problems of the form

sup  {(z,Q), 2
QeB, (P)nP

where the dependence of the input parameters on the label
¢ € {0, 1} has been omitted to avoid clutter. The perfor-
mance of C depends critically on the specific choice of ¢
and B, (IP). Typically, £ is subjectively tailored to the choice
of a parametric or a nonparametric view on the conditional
distribution, as we shall see later on in this paper. The con-
struction of B, (IP) is principally governed by choice of the
dissimilarity measure that specifies the p-neighborhood of
the nominal distribution IP. Ideally, B, (P) should allow a
coherent transition between the parametric and nonparamet-
ric setting via its interaction with the set P. Furthermore, it
should render problem (2) computationally tractable with
meaningful optimal value, and at the same time provide the
flexibility to balance between exerting statistical guarantees
and modelling domain adaptation. These stringent criteria
precludes the utilization of popular dissimilarity measures
in the emerging literature. Indeed, the likelihood problem
using the f-divergence (Ben-Tal et al., 2013; Namkoong
& Duchi, 2016) delivers unreasonable estimate in the non-
parametric setting (Nguyen et al., 2019a, Section 2), the
Wasserstein distance (Mohajerin Esfahani & Kuhn, 2018;
Kuhn et al., 2019; Blanchet et al., 2019; Gao & Kleywegt,
2016; Zhao & Guan, 2018) typically renders the Gaussian
parametric likelihood problem non-convex, and the maxi-
mum mean discrepancy (Iyer et al., 2014; Staib & Jegelka,
2019) usually results in an infinite-dimensional optimization
problem which is challenging to solve. This fact prompts us
to explore an alternative construction of B, (P) that meets
the criteria as mentioned above.

The contributions of this paper are summarized as follows.

e We introduce a novel ambiguity set based on a divergence
defined on the space of mean vector and covariance matrix.
We show that this divergence manifests numerous favorable
properties and evaluating the optimistic score is equivalent
to solving a non-convex optimization problem. We prove
the asymptotic statistical guarantee of the divergence, which
directs an optimal calibration the size of the ambiguity set.

e We show that, despite its inherent non-convexity and
hence intractability, the optimistic score evaluation prob-
lem can be efficiently solved in both nonparametric and
parametric Gaussian settings. We reveal that the optimistic
score ratio classifier generalizes the Mahalanobis distance
classifier and the linear/quadratic discriminant analysis.

Because evaluating the plausibility of an observation x is
a fundamental problem in statistics, the results of this pa-
per have far-reaching implications beyond the scope of the

classification task. These include Bayesian inference using
synthetic likelihood (Wood, 2010; Price et al., 2018), ap-
proximate Bayesian computation (Csilléry et al., 2010; Toni
et al., 2009), variational Bayes inference (Blei et al., 2017;
Ong et al., 2018), and composite hypothesis testing using
likelihood ratio (Cox, 1961; 2013). These connections will
be explored in future research.

All proofs are relegated to the appendix.

Notations. We let M be the set of probability measures
supported on R? with finite second moment. The set of
(symmetric) positive definite matrices is denoted by S‘j_ 4
ForanyQ e M, p e Réand ¥ € S¢, weuse Q ~ (11, %)
to express that (Q has mean vector p and covariance matrix
Y. The d-dimensional identity matrix is denoted by ;.
The space of Gaussian distributions is denoted by A/, and
N (u, ) denotes a Gaussian distribution with mean 4 and
covariance matrix Y. The trace and determinant operator
are denoted by Tr [A] and det(A), respectively.

2. Moment-based Divergence Ambiguity Set

We specifically study the construction of the ambiguity set
using the following divergence on the space of moments.

Definition 2.1 (Moment-based divergence). For any vectors
U1, o € R and matrices ¥1, Xo € SiJr, the divergence
Sfrom the tuple (p1,31) to the tuple (ps2, Xo) amounts to

D((p1,%1) || (p2,32)) = (p2 — 1) 25 (2 — pa)
+Tr [5155"] — logdet(3:55 1) — d.

To avoid any confusion, it is worthy to note that contrary
to the usual utilization of the term ‘divergence’ to specify a
dissimilarity measure on the probability space, in this paper,
the divergence is defined on the finite-dimensional space of
mean vectors and covariance matrices.

It is straightforward to show that ID is a divergence on R% x
Si 4 by noticing that D is a sum of the log-determinant
divergence (Chebbi & Moakher, 2012) from X7 to X2 and
a non-negative Mahalanobis distance between 1 and pio
weighed by ¥5. As a consequence, D is non-negative, and
perishes to 0 if and only if ¥; = ¥y and p; = pe. With
this property, DD is an attractive candidate for the divergence
on the joint space of mean vector and covariance matrix
of d-dimensional random vectors. One can additionally
verify that D is affine-invariant in the following sense. Let
¢ be a d-dimensional random vector and ¢ be the affine-
transformation of &, that is, { = A& + b for an invertible
matrix A and a vector b of matching dimensions, then the
value of the divergence D is preserved between the space of
moments of £ and (. In fact, if £ is a random vector with
mean vector y; € R? and covariance matrix $; € S,
then ¢ has mean Ay, + b and covariance matrix AX; A"
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for j € {1,2}, and we have

D((p1,%1) || (12, 22)) 3)
=D((Aps + b, AZ1AT) || (Apa + b, AT, AT)).

A direct consequence is that D is also scale-invariant. Fur-
thermore, the divergence D is closely related to the KL diver-
gence', or the relative entropy, between two non-degenerate
Gaussian distributions as

D ((p1, £1) || (p2, B2)) =2 KL (N (p1, 1) | NV (2, B2))-

However, we emphasize that D is not symmetric, and in gen-

eral ]D((:ulﬂzl) ” (/1'2722)) 7é ]D((/JQ?EQ) ‘ (vazl))'
Hence, D is not a distance on R? x S¢ _ .

For any vector 7i € R?, invertible matrix S e S‘i 4 and

radius p € Ry, we define the uncertainty set U, (11, X) over
the mean vector and covariance matrix space as

up(ﬁ7 Z) é

. 4

(D) e RO xS, D(@ D) [ (D) <p).
By definition, U, (1, 5 includes all tuples (1, %) which
is of a divergence not bigger than p from the tuple (i, f])
Because D is not symmetric, it is important to note that
U,(1, X) is defined with the tuple (1, %) being the first
argument of the divergence DD, and this uncertainty set can

be written in a more expressive form as

~

Uy (1, %) =

(1, ) eREx ST, - R
(=) TS (p—n)+Tr [EX7!] +logdetE < p

for a scalar p % p+d+logdet $3. Moreover, one can as-
sert that U, (11, ) is non-convex due to the log-determinant
term, and this non-convexity cannot be eliminated using
the reparametrization to the space of inverse covariance
matrices (or equivalently called the precision matrices).

Equipped with U, (&, i), the ambiguity set B, (]IA”) is system-
atically constructed as follows. If the nominal distribution P
admits a nominal mean vector /i and a nominal nondegener-
ate covariance matrix X, then B, (IP) is a ball that contains
all probability measures whose mean vector and covariance
matrix are contained in U, (i1, ), that is,

B,(P)£{Q e M:Q~ (1, %), (1, %) € Up(1, 2)}. (5)
The set B p(@), by construction, differentiates only through
the information about the first two moments: if a distribution

If @1 is absolutely continuous with respect to QQ2, then
the Kullback-Leibler divergence from @Q; to Q2 amounts to
KL(Q: || Q2) £ Eg, [logdQ/dQ2], where dQ; /dQ> is the
Radon-Nikodym derivative of Q; with respect to Q2.

~

Q belongs to B, (IP), then any distribution Q" with the same
mean vector and covariance matrix with Q also belongs to
B,(PP). Further, B,(IP) embraces all types of probability
distributions, including discrete, continuous and even mixed

continuous/discrete distributions.

We now delineate a principled approach to solve the op-
timistic score evaluation problem (2) for a generic score
function ¢ : RY x M — R. We denote by M (u,Y) the
Chebyshev ambiguity set that contains all probability mea-
sures with fixed mean vector ;1 € R and fixed covariance
matrix ¥ € Si+, that is,

M(M,E)é{@GMQN(M,E)}

~

The moment-based divergence ambiguity set B,(IP) then
admits an equivalent representation

BP(HAD) = U

(1, 2) €U, (1,E)

M(p, %),

which is an infinite union of Chebyshev ambiguity sets,
where the union operator is taken over all tuples of mean
vector-covariance matrix belonging to U, ([, X). Leverag-
ing on this representation, problem (2) can now be decom-
posed as a two-layer optimization problem

Lz, Q).
6)

The inner subproblem of (6) is a distributionally robust
optimization problem with a Chebyshev second moment
ambiguity set, hence there is a strong potential to exploit ex-
istent results from the literature, see Delage & Ye (2010) and
Wiesemann et al. (2014), to reformulate this inner problem
into a finite dimensional convex optimization problem. Un-
fortunately, the outer subproblem of (6) is a robust optimiza-
tion problem over a non-convex uncertainty set i, (i, 2),
thus the two-layer decomposition problem (6) remains com-
putationally intractable in general. As a direct consequence,
solving the optimistic score evaluation problem requires an
intricate adaptation of non-convex optimization techniques
applied on a case-by-case basis. Two exemplary settings in
which problem (6) can be efficiently solved will be depicted
subsequently in Sections 3 and 4.

sup {(z,Q) = sup sup
QeB, (P) (1, 2)eU,(7,S) QEM(p,Z)NP

We complete this section by providing the asymptotic sta-
tistical guarantees of the divergence D, which serves as a
potential guideline for the construction of the ambiguity set
B,(IP) and the tuning of the radius parameter p.

Theorem 2.2 (Asymptotic guarantee of D). Suppose that
a d-dimensional random vector £ has mean vector m €
R¢, covariance matrix S € S‘_i._ o and admits finite fourth

moment under a probability measure P. Let fAt eERYL t =
1,...,n be independent and identically distributed samples
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of € from P. Denote by fi,, € R? and S, € S‘j_ the sample
mean vector and sample covariance matrix defined as

i =18 E S - S GG -
fin =1 ;é, S == & )& — )" (D

t=1

Letn = S™2(£ — m) be the isotropic transformation of
the random vector &, let H be a d-dimensional Gaussian
random vector with mean vector 0 and covariance matrix
14, and let Z be a d-by-d random symmetric matrix with the
upper triangle component Zjy, (j < k) following a Gaussian
distribution with mean 0 and the covariance coefficient
between Z;;, and Z 1y is

cov(Zjk, Zjrwr) = Ep[njmenj ] — Be[nne] Bpnjme].

Furthermore, H and Z are jointly Gaussian distributed with
the covariance between H; and Z;, as

cov(H;, Zji) = Ep[nin;nk].
Asn T oo, we have
1% D((fin, Zn) || (m, 9))

1
— H"H+ 3 Tr [22] in distribution.

We were not able to locate Theorem 2.2 in the existing liter-
ature. Interestingly, Theorem 2.2 also sheds light upon the
asymptotic behavior of the KL divergence from an empiri-

cal Gaussian distribution N (fi,,, X, ) to the data-generating
Gaussian distribution N'(m, S).

Corollary 2.3 (Asymptotic guarantee of D — Gaussian dis-
tributions). Suppose that Et e RLt =1,...,n are in-
dependent and identically distributed samples of & from
P = N(m,S) for some m € R* and S € S{_. Let
fn € R? and in € Si be the sample mean vector and
covariance matrix defined as in (7). As n T oo, we have

1 x KL (N (fin, ) || N(m, S))

— L+ 3)2)

3 in distribution,

where x* (d(d +3)/2) is a chi-square distribution with
d(d + 3)/2 degrees of freedom.

If we use independent and identically distributed (i.i.d.)
samples to estimate the nominal mean vector and covari-
ance matrix of [P, then the radius p should be asymptotically
scaled at the rate n~! as the sample size n increases. In-
deed, Theorem 2.2 and Corollary 2.3 suggest that n ! is
the optimal asymptotic rate which ensures that the true but
unknown mean vector and covariance matrix of the data-
generating distribution fall into the set U, ([, X2) with high

probability. While the limiting distribution under the Gaus-
sian setting is a typical chi-square distribution, the general
limiting distribution H " H + Tr [Z?] /2 in Theorem 2.2
does not have any analytical form. This limiting distribution
can be numerically approximated, for example, via Monte
Carlo simulations. If the i.i.d. assumption of the training
samples is violated or if we expect a covariate shift at test
time, then the radius p reflects the modeler’s belief regard-
ing the moment mismatch measured using the divergence
D and in this case, the radius p should be considered as an
exogenous input to the problem.

For illustrative purpose, we fix dimension d = 20 and con-
sider the random vector £ = C'¢ + m, where entries of ¢
are mutually independent and the i-th entry follows a nor-
malized chi-square distribution, i.e., ¢; ~ (x*(1) — 1)/ V2.
Then the covariance matrix of {is S = C C'T. Notice that
by the identity (3), D ((fin, ) || (m, S)) is invariant of
the choice of C' and m. We generate 10,000 datasets, each
contains n i.i.d. samples of § and calculate for each dataset
the empirical values of n x D((7in, $y) || (m, S)). We plot
in Figure 1 the empirical distribution of n x D ( (%, o) |l
(m, S)) using 10,000 datasets versus the limiting distribu-
tion of H'™ H + Tr [Z?] /2 for different values of n. One
can observe that for a small sample size (n < 100), there is
a perceivable difference between the finite sample distribu-
tion and the limiting distribution, but as n becomes larger
(n > 100), this mismatch is significantly reduced.

0.01 0.01

0.005 0.005

0 . [Thve s 0 o “
200 400 600 200 400 600

0.01 0.01

0 — = (e :
200 400 600 200 400 600
(c) n = 300 (d) n = 1000

Figure 1. Empirical distribution of n x D((fin, &) || (m, S))
collected from 10,000 datasets (orange histogram) versus the lim-
iting distribution H '™ H + % Tr [Z 2} obtained by Monte Carlo
simulations (blue curve) for different sample sizes n.
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3. Optimistic Nonparametric Score

We consider in this section the nonparametric setting in
which no prior assumption on the class-conditional distri-
bution is imposed. A major difficulty in this nonparametric
setting is the elicitation of a reasonable score function ¢ that
can coherently encapsulate the plausibility of observing x
over the whole spectrum of admissible Q, including contin-
uous, discrete and mixed continuous/discrete distributions,
while at the same time being amenable for optimization
purposes. Taking this fact into consideration, we thus posit
to choose the score function of the form

U(z,Q) = Q({z}),

which is the probability value of the singleton, measurable
set {«} under the measure Q. If Q is a continuous distri-
bution, then apparently Q({z}) is zero, hence this score
function is admittedly not perfect. Nevertheless, it serves as
a sensible proxy in the nonparametric setting and delivers
competitive performance in machine learning tasks (Nguyen
et al., 2019b). It is reasonable to set P = M in the non-
parametric setting, and with this choice of /, the optimistic
nonparametric score evaluation problem becomes

sup  Q({z}),

QeB, (P)

which is inherently challenging because it is an infinite-
dimensional optimization problem. The next theorem as-
serts that solving the nonparametric optimistic likelihood
optimization problem is equivalent to solving a univariate
convex optimization problem.

Theorem 3.1 (Optimistic nonparametric probability). Sup-
pose that P ~ (11, X) for some fi € R and ¥ € S . For
any p € Ry, we have

sup_ Q({z})
QeB,(P)
= max [+ (p—-2)'S (u—-2)]"" (8a)
(B, X)EU, (R,X)
=1+ =) (=) (=), (8b)

where (u*,X*) € R x S¢ | satisfies

. _ T+
A1+7 (8¢)
=%+ m(x—ﬁ)($—ﬁ)T7

and v* € R solves the univariate convex optimization
problem

Ti*@—ﬁn_

1+« 8d)

min yp — 7y log (1 + (@ =7
720

~

Because the feasible set B, (P) is not weakly compact, the
existence of an optimal measure that solves the optimistic
likelihood problem on the left-hand side of (8a) is not trivial.
However, equation (8a) asserts that this optimal measure
exists, and it can be constructed by solving a non-convex op-
timization problem over the mean vector-covariance matrix
tuple (i, X2). Notice that (8a) is a non-convex optimization
problem because U, ([, f)) is a non-convex set. Surpris-
ingly, one can show that the optimizer of (8a) can be found
semi-analytically: the maximizer (u*, ¥*) depends only on
a single scalar «* through (8c), where v* solves the uni-
variate optimization problem (8d). Because problem (8d) is
convex, y* can be efficiently found using a bisection algo-
rithm or using a Newton-Raphson method, and we expose
in Appendix E the first- and second-order derivative of the
objective function of (8d).

A nonparametric classifier Cyopparam can be formed by utiliz-
ing the optimistic nonparametric score ratio

sup  Q({z})

Qe]Bpl (ﬁl)
Rn nparam é - AN
()= Q)
QEB,, (B)

©))

where each nominal class-conditional distribution P, has
mean vector i, € R? and covariance matrix ¥, € S‘j_ +

~

and each ambiguity set B, (P.) is defined as in (5). The
results of Theorem 3.1 can be used to compute the numer-
ator and denominator of (9), thus the classification deci-
sion Chonparam () can be efficiently evaluated. In particular,
by substituting the expression (8a) into (9), we also find

7?/nonparam (37 )
max (14 (p—2)'S (p—-a)]7"
(XU (11,2)
T R R e
(1, 2) €U (o, 20)
1+ min _ (p—z)' XY u—1)
o (1, 2)EUp, (Fo,X0)
1+ min (p—2)T8 Y — )

(1,5 €Uy, (fi1,51)

Suppose that pg = p; = 0 and 7(«) = 1, then the nonpara-
metric classifier assigns Cnonparam () = 1 whenever

~

(7 —2) 'S (i — 2) < (o — ) " E5 (o — ),

and Cponparam () = 0 otherwise. In this case, the classi-
fier coincides with the class-specific Mahalanobis distance
classifier (MDC) where >y and Y1 denote the intra-class
nominal covariance matrices. If in addition the nominal co-
variance matrices are homogeneous, that is, Xy = X1, then
this classifier coincides with the Linear Discriminant Anal-
ysis (LDA) (Murphy, 2012, Section 4.2.2). The Bayesian
version of LDA can be equivalently obtained from Cponparam
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by setting a proper value of 7(x). This important observa-
tion reveals an intimate link between our proposed classifier
Cronparam Using the optimistic nonparametric score ratio and
the popular classifiers MDC and LDA. On the one hand,
Cronparam can now be regarded as a generalization of MDC
and LDA, which takes into account the statistical impre-
cision of the estimated moments and/or the potential shift
in the moment statistics in test data versus training data
distributions. On the other hand, both MDC and LDA now
admit a nonparametric, generative interpretation in which
the class-conditional distribution is chosen in the set of all
distributions with the same first- and second-moments as
the nominal class-conditional measure P.. This novel in-
terpretation goes beyond the classical Gaussian model, and
it potentially explains the versatile performance of MDC
and LDA when the conditional distribution are not normally
distributed as empirically observed in (Lee et al., 2018).

4. Optimistic Gaussian Score

We now consider the optimistic score evaluation problem
under a parametric setting. For simplicity, we assume that
the true class-conditional distributions of the feature belong
to the family of Gaussian distributions. Thus, a natural
choice of the score value £(x, Q) in this case is the Gaus-
sian likelihood of an observation = when Q is a Gaussian
distribution with mean 4 and covariance matrix X, that is,

1 exp (_ (x

(2m)d det 2

—p) s
2

(2, Q) = (x—u)).

It is also suitable to set P in problem (2) to the (sub)space
of Gaussian distributions A/ and consider the following
optimistic Gaussian score evaluation problem

sup (z,Q). (10)
QeB, (P)nN

One can verify that the maximizer of problem (10) coincides
with the maximizer of

sup L(z,Q),

QeB, (B)NN

where L is the translated Gaussian log-likelihood defined as

L, Q) =2 (log (0, Q) + ;llog(%r))

= —(n—2z)" 27 (u—2) — logdet 2.

Theorem 4.1 is a counterpart to the optimistic nonparametric
likelihood presented in Theorem 3.1.

Theorem 4.1 (Optimistic Gaussian log-likelihood). Sup-
pose that P ~ N (1i,3) for some Ji € R% and & € Sd,.

For any p € R, we have

sup  L(z,Q)
QeB, (B)nN
= max _ —(u—x)' 27 (u—x)—logdet®
(1,2) €U, (1,%)
(11a)
— (p* =) (=) (u* —x) —logdetT*,  (11b)
where (1, X*) € RY x S, satisfies
TR
W=
Vo . (11c)
Z*: E+ *)2($—ﬁ)($—ﬁ)T7

1+9* (14~

and v* € R solves the univariate convex optimization
problem

1
Iynznol{w +d(y+1)log (1 + ;) o
— S ey
(1+9) '

—(1+~)log (1+ @

Notice that we impose the condition P ~ A/ (1, ) in The-
orem 4.1 to conform with the belief that the true data gen-
erating distribution is Gaussian. This condition, in fact,
can be removed without affecting the result presented in
Theorem 4.1. Indeed, for any radius p > 0, the ambigu-
ity set B (IP’) by definition contains a Gaussian distribution
with the same mean vector and covariance matrix with the
nominal distribution P, and thus the feasible set of (10) is
always non-empty and the value of the optimistic Gaussian
log-likelihood is always finite. In Appendix E, we provide
the first- and second-order derivatives of the objective func-
tion of (11d), which can be exploited to derive efficient
algorithm to solve the convex program (11d).

Returning to the construction of the classifier, one can now
construct the classifier Car(x) using the optimistic Gaussian
score ratio R ar(z) expressed by

sup (x,Q)
QeB,, (P1)NN
Rar(a) & 220
(@) sup Lz, Q)
QEBpD(Po)mN

exp (% sup L'(a:,@))
_ QeB,, (P1)NN (12)
exp ( sup Lz, Q))

QEB,, (Po)n N

(SIS

where each nominal distribution I@ is a Gaussian distri-
butlon with mean vector fi. € R¢ and covariance matrix
¢ € S++, and each ambiguity set B, (]P’ ) is defined as
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in (5). Theorem 4.1 can be readily applied to evaluate the
value Rar(z), and classify = using Cyr(z). Furthermore,
suppose that pg = p; = 0 and 7(z) = 1, then the result-
ing classifier recovers the Quadratic Discriminant Analy-
sis (Murphy, 2012, Section 4.2.1). The Bayesian version of
the QDA can be equivalently obtained from Cs by setting a
proper value for 7(z).

It is imperative to elaborate on the improvement of Theo-
rem 4.1 compared to the result reported in Nguyen et al.
(2019a, Section 3). While both results are related to the eval-
uation of the optimistic Gaussian log-likelihood, Nguyen
et al. (2019a, Theorem 3.2) restricts the mean vector to its
nominal value and optimizes only over the covariance ma-
trix. On the other hand, Theorem 4.1 of this paper optimizes
over both the mean vector and the covariance matrix, thus
provides full flexibility to choose the optimal values of all
sufficient statistics of the family of Gaussian distributions.
From a technical standpoint, the non-convexity is overcome
in Nguyen et al. (2019a, Theorem 3.2) through a simple
change of variables; nonetheless, the proof of Theorem 4.1
demands an additional layer of duality arguments to disen-
tangle the multiplicative terms between p and ¥ in both the
objective function £ and the divergence D. By inspecting
the expressions in (11c), one can further notice that in gen-
eral the optimal solution p* is distinct from the nominal
mean /i, this observation suggests that optimizing jointly
over (u, X2) is indeed more powerful than optimizing simply
over X from a theoretical perspective.

5. Numerical Results

All experiments are run on a standard laptop with 1.4 GHz
Intel Core i5 and 8 GB of memory, the codes and datasets are
available at https://github.com/nian-si/bsc.

5.1. Decision Boundaries

In this section, we visualize the classification decision
boundaries generated by the classifiers Cponparam proposed
in Section 3 and Car proposed in Section 4 using synthetic
data. To ease the exposition, we consider a two dimensional
feature space d = 2 and the class-conditional distributions
are Gaussian of the form

o () v ([ s %)

We sample i.i.d. data points {Z.;};°, in each ¢ € {0,1}
with ng = n; = 1000 as the training set, then estimale the
nominal mean [i. and the nominal covariance matrix X, for
each class ¢ € {0, 1} using the sample average formula (7).

We first consider when the ambiguity sets have the same ra-
dius, i.e., pg = p1 = p and fix the threshold 7(x) = 1 for ev-
ery x. Figure 2 shows the optimistic Gaussian and nonpara-
metric decision boundaries for p € {0.5,0.7}. We find that

for optimistic Gaussian decision rule, the decision bound-
aries look similar across different radii; while in nonpara-
metric case, the decision boundaries exhibit different shapes.
We then consider the case with distinct radii by setting
7 = (po,p1) = (0.1,1.0) and 7 = (po, p1) = (1.0,0.1).
Further, we fix the threshold to a constant 7(x) = 7* for a
scalar 7% € R that solves

%;1{73@0,1-)<T}+21{R(&,¢)2T}, (13)

i=1

where 1{ - } is the indicator function. The decision bound-
aries are plotted in Figure 3. We find the decision boundaries
have different shapes for different decision rules and for dif-
ferent choices of radii.

(a) Gaussian, p = 0.5

(d) Nonparametric, p = 0.7

(c) Gaussian, p = 0.7

Figure 2. Decision boundaries for different p. Red/blue regions
indicate the class partitions, black dots locate the mean, and white
dashed ellipsoids draw the class-conditional density contours.

5.2. Real Data Experiments

In our experiments, we first compute the nominal mean
by empirical average and we use the Ledoit-Wolf covari-
ance estimator (Ledoit & Wolf, 2004) to compute a well-
conditioned nominal covariance matrix. We experiment two
methods of tuning the radii p of the ambiguity sets: using
cross-validation on training data, or using the quantile of
the limiting distribution in Corollary 2.3. Specifically, for
the second criteria, we choose

pe=ng ' xa(d(d+3)/2)  Vee{0,1},
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Table 1. Correct classification rate on the benchmark date sets. Bold number corresponds to the best performance in each dataset.

DATASET GQDA,CV GQDA,CLT NPQDA,CV NPQDA,CLT KQDA RQDA SQDA
AUSTRALIAN 85.38 84.91 85.84 85.03 85.38 85.61 85.37
BANKNOTE 99.83 99.33 99.3 99.83 99.8 99.77 99.83
CLIMATE MODEL 94.81 89.33 93.92 90.37 92.59 94.07 93.92
CYLINDER 71.04 70.81 71.11 70.89 71.11 71.11 70.67
DIABETIC 75.52 73.49 76.09 76.30 75.47 75.00 74.32
FOURCLASS 77.82 79.26 80.28 78.98 78.38 79.07 78.84
HABERMAN 74.93 75.33 75.45 75.45 74.94 74.80 74.16
HEART 81.76 83.09 83.09 81.91 81.76 81.91 83.68
HOUSING 91.66 90.55 91.81 91.50 91.66 91.66 91.97
ILPD 68.84 69.52 69.25 68.15 69.18 67.94 69.52
MAMMOGRAPHIC MASS 80.39 80.00 79.90 79.61 79.95 80.05 80.24

(c) Gaussian, 5= (1.0,0.1)

(d) Nonparametric, = (1.0, 0.1)

Figure 3. Decision boundaries with distinct radii. Indications are
verbatim from Figure 2.

where n. is the number of training samples in class ¢ and
X2 (d(d + 3)/2) is the a-quantile of the chi-square distri-
bution with d(d + 3)/2 degrees of freedom. Notice that
for large degrees of freedom, the chi-square distribution
concentrates around the mean, because a chi-square ran-
dom variable with k degrees of freedom is the sum of k
i.i.d. x?(1). The optimal asymptotic value of the radius
pe 1s therefore insensitive to the choice of «, so we select
numerically o = 0.5 in our experiments. We tune the thresh-
old to maximize the training accuracy following (13) after
computing the ratio value for each training sample. The
whole procedure is summarized in Algorithm 1. In partic-
ular, this algorithm trains the parameters using only one
pass over the training samples, which makes it significantly
faster than the cross-validation approach. We observe em-
pirically in most cases that the performance of classifying

Algorithm 1 Optimistic score ratio classification
1: Input: datasets {Z.;};<, for c € {0,1}. A test data .
2: Compute the nominal mean and the nominal covariance
matrix
Compute the radii p. < n_ *x2 5(d(d + 3)/2).
Compute the optimistic ratio R(Z. ;) for every Z. ;
Compute the threshold 7* that solves (13).
Output: classification label 1{R(x) > 7}.

AN AN

using Algorithm 1 is comparable in terms of test accuracy to
classifying with cross-validating on the tuning parameters.

We test the performance of our classification rules on vari-
ous datasets from the UCI repository (Dua & Graff, 2017).
Specifically, we compare the following methods:

e Gaussian QDA (GQDA) and Nonparametric QDA
(NPQDA): Our classifiers Cxr and Cronparam:

e Kullback-Leibler QDA (KQDA): The classifier based on
KL ambiguity sets with fixed mean (Nguyen et al., 2019a);

e Regularized QDA (RQDA): The regularized QDA based
on the linear shrinkage covariance estimator >, + p.Ig;

e Sparse QDA (SQDA): The sparse QDA based on the
graphical lasso covariance estimator (Friedman et al., 2008)
with parameter p.

For GQDA and NPQDA, we also compare the performance
of different strategies to choose the radii p using cross-
validation (CV) and selection based on Theorem 2.2 (CLT).
For all methods that need cross-validation, we randomly
select 75% of the data for training and the remaining 25%
for testing. The size of the ambiguity sets and the reg-
ularization parameter are selected using stratified 5-fold
cross-validation. Furthermore, to promote a fair compari-
son, we tune the threshold for every method using (13). The
performance of the classifiers is measured by the average
correct classification rate (CCR) on the validation set. The
average CCR score over 10 trials are reported in Table 1.
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