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Abstract

Learning pose invariant representation is a fundamental

problem in shape analysis. Most existing deep learning al-

gorithms for 3D shape analysis are not robust to rotations

and are often trained on synthetic datasets consisting of

pre-aligned shapes, yielding poor generalization to unseen

poses. This observation motivates a growing interest in ro-

tation invariant and equivariant methods. The field of rota-

tion equivariant deep learning is developing in recent years

thanks to a well established theory of Lie group representa-

tions and convolutions. A fundamental problem in equivari-

ant deep learning is to design activation functions which are

both informative and preserve equivariance. The recently

introduced Tensor Field Network (TFN) framework pro-

vides a rotation equivariant network design for point cloud

analysis. TFN features undergo a rotation in feature space

given a rotation of the input pointcloud. TFN and similar

designs consider nonlinearities which operate only over ro-

tation invariant features such as the norm of equivariant

features to preserve equivariance, making them unable to

capture the directional information. In a recent work en-

titled ”Gauge Equivariant Mesh CNNs: Anisotropic Con-

volutions on Geometric Graphs” Hann et al. interpret 2D

rotation equivariant features as Fourier coefficients of func-

tions on the circle. In this work we transpose the idea of

Hann et al. to 3D by interpreting TFN features as spher-

ical harmonics coefficients of functions on the sphere. We

introduce a new equivariant nonlinearity and pooling for

TFN. We show improvments over the original TFN design

and other equivariant nonlinearities in classification and

segmentation tasks. Furthermore our method is competi-

tive with state of the art rotation invariant methods in some

instances.

1. Introduction

In recent years many successful deep learning architec-

tures for 3D geometric deep learning and point cloud anal-

ysis in particular have been developed, we refer to [14] for

a comprehensive survey. Yet, most methods developed for

point cloud analysis are not robust to rotations. Further-

more point cloud dataset like ModelNet [33] or ShapeNet

[6] used for training and evaluating these methods often

consist of synthetic pre-aligned shapes. In consequence,

well established point cloud methods like [25, 27, 4, 31, 21]

fail to generalise to unseen poses. An important perfor-

mance gap between the aligned and unaligned or rota-

tion augmented settings has been reported in in multiple

publications [11, 24, 7, 37]. Recently numerous works

[12, 22, 24, 7, 37, 36, 20, 39, 28] have addressed the issue of

designing rotation invariant deep learning architectures for

3D data analysis with a variety of approaches. A particu-

larly interesting property for 3D deep learning algorithms

closely related to rotation invariance is rotation equivari-

ance. At a high level a rotation equivariant neural network

produces features that undergo a rotation in feature space

given a rotation of the input. The key point is that this trans-

form only depends on the rotation applied to the input. This

is a precious property for learning, guaranteeing immediate

generalization to unseen poses. Many rotation equivariant

designs [30, 17, 11, 32, 2] have been proposed, thanks to

a well established theory of SO(3) representations. A fun-

damental challenge in the design of equivariant networks is

the design of equivariant non-linearities. To preserve equiv-

ariance such non-linearities must commute with the rota-

tions of equivariant features, this constraint limits the pos-

sible designs. The aforementioned methods either rely on

non-linearities applied to rotation invariant quantities like

the norm of equivariant features which cannot capture di-

rectional information or, consider polynomial equivariant

features which can be expensive to compute and compli-

cates training. In the recent work [9] Hann et al. introduce

a non linearity for local intrinsic rotation equivariant fea-

tures over surfaces by interpreting the features as Fourier

coefficients of functions over the circle, composing these

functions with non linear activations and getting new equiv-

ariant features by computing the Fourier coefficients of the

composed functions. In this work we explore a similar ap-
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proach in the context of 3D rotation equivariant features

from Tensor Field Networks [30] over point-clouds. We

propose a simple yet effective design of rotation equivari-

ant non-linearities for Tensor Field Networks. TFN relies

on convolutional filters based on spherical harmonics and

the resulting features share the same equivariant properties

as the spherical harmonics basis. We interpret such fea-

ture vectors as the set of coefficients of a function on the

unit sphere. Moving to a sphere function representation by

applying inverse spherical harmonics transform we can ap-

ply non trivial activation functions or MLP’s in a pointwise

fashion over the sphere. We then return back to the equivari-

ant feature representation by computing the spherical har-

monics transform of the resulting function. This operation

has a non trivial effect on both the norm and direction of

equivariant features, allowing to capture directional infor-

mation. We present the general setting of point cloud con-

volutions and TFN and briefly review the underlying the-

ory in section (2). In section (3) we describe our method

and specificities of our design compared to the general ap-

proach described in section (2). We present our results in

section (4) where we compare our method to state of the art

rotation invariant methods for shape classification and seg-

mentation and show improvements over existing equivariant

non-linearities. We believe our contibution is of general rel-

evance to other equivaraint networks like [32] sharing sim-

ilar structures to TFN.

2. Background and Related work

2.1. Point cloud & graph convolution

In recent years the field of point cloud processing has

developed a lot thanks to many works introducing various

notions of graph or point-cloud convolution [27, 21, 4, 31].

Graph convolution aggregates information over the neigh-

bourhood of each vertex. Point cloud and graph convolu-

tions are related as we can define a notion of point cloud

convolution by considering the graph of k nearest neigh-

bours of the point cloud. More generally, it is convenient to

aggregate information in the neighborhoods of points from

a second point cloud, typically a sub-sampled or an up-

sampled point cloud, similarly to the idea of strided con-

volutions. The general formulation for graph convolutions

is as follows: Let V be the set of vertices and X ,Y ⊂ V
non empty subsets of V . Given signals x : X → R

k,

y : Y → R
k and f : X → R and a relation kernel function

κ : X × Y → R, the convolution of f by κ is the signal

g : Y → R defined by:

gi = ci ©
j∼i

κ(xj , yi)fj (1)

where © is a permutation invariant operator like
∑

or max,

j ranges across the neighbours in X of vertex i in Y and ci

is a normalization factor. We follow an approach similar to

[4, 30, 24] for point cloud convolution where, x : X → R
3,

y : Y → R
3 are the points euclidean coordinates of point

clouds X and Y and, κ : R3 → R is a kernel function:

gi = f ∗x,y κ = ci
∑

j∼i

κ(xj − yi)fj (2)

where j ranges across the k-nearest neighbours of i in Y or

points in Y within a ball of a given radius centred at i. A

typical choice for ci is to divide by the number of neigh-

bours of i, ci =
1

|N (i)| but in practice we will choose a dif-

ferent normalization as we shall see later. In deep learning

applications a collection of kernel functions κm is chosen

and linear combinations of the f ∗x,y κm are learned.

Feature propagation We also borrow the feature propaga-

tion layers from [27] for segmentation tasks. Feature prop-

agation allows to transfer signals between two point clouds.

Given two point clouds x and y and a signal f over x, the

feature propagation of f to y is defined as follows:

gi =





∑

j∼i

1

‖xj − yi‖22





−1
∑

j∼i

fj
‖xj − yi‖22

(3)

where j ranges across the 3 nearest neighbors of xi in y.

Feature propagation is used in the segmentation architec-

ture of [27] which is a variant of U-Net architecture. The

network computes series of conv like layers down sampling

the signal, then feature propagation layers up sample the

signal to concatenate it with the output of the conv like layer

of corresponding resolution and, applies a fully connected

layer to the channels axis followed by a batch normalization

layer and a ReLu activation. An MLP is applied to the last

layer for final point classification.

2.2. 3D rotation equivariant CNNs

In this subsection we describe the construction of 3D ro-

tation equivariant CNNs and we refer to [18, 8, 16] for a

more extensive view of the underlying theory. We espe-

cially consider Tensor Field Networks [30] which operate

on point clouds but, our description also partly covers other

works like [32, 17, 2] which also rely on equivariant convo-

lution based on steerable kernels. 3D Rotation equivariant

CNN’s are built around the notion of 3D steerable kernels.

A steerable kernel basis is a basis of the form:

κℓ
rm(x) = ϕr(‖x‖2)Y

ℓ
m

(

x

‖x‖2

)

(4)

where Y ℓ : x 7→ (Y ℓ
−ℓ, . . . , Y

ℓ
ℓ ) ∈ R

2ℓ+1 is the vector of

degree ℓ ∈ N spherical harmonics and (ϕr : R → R)r are

the radial component of the kernels. A key property of Y ℓ

is that it undergoes a rotation in R
2ℓ+1 given a rotation of

its input. More precisely for any rotation R ∈ SO(3), there
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exist a rotation matrix Dℓ(R) ∈ SO(2ℓ + 1) associated to

R called the Wigner matrix (of type ℓ) [8, 16, 18] such that,

Y ℓ(Rx) = Dℓ(R)Y ℓ(x). By construction the kernel basis

from Eq. (4) satisfies the same equivariance property as

spherical harmonics:

κℓ
r(Rx) = Dℓ(R)κℓ

r(x). (5)

Many choices are possible for the radial component, we de-

tail our exact kernel design in section (3). Given a point

cloud x ∈ R
n×3 and a signal f ∈ R

n×k over x, we say that

v(x, f) ∈ R
2ℓ+1 is a type ℓ equivariant feature if:

v(Rx, f) = Dℓ(R)v(x, f) (6)

Type ℓ vector features can be global or point-wise. Type 0
features are rotation invariant scalars. Any rotation invariant

descriptor or pose independent signal can be thought of as a

type 0 feature. Type 1 features undergo rotations in R
3 (up

to permutation of axes), the yzx coordinates of the points

are type 1 features. The convolution of a type 0 features

with a type ℓ kernel produces type ℓ features:

(

κell
r ∗R.x,R.y f

)

i
= ci

∑

j∼i

κℓ
r(R(xj − yi))fj

= Dℓ(R)



ci
∑

j∼i

κℓ
r(xj − yi)fj





(7)

Stacking convolutions with equivariant kernels involves

computing convolutions between equivariant kernels and

equivariant features of various types. The resulting features

are linear combinations of tensor products of equivariant

features. The Peter-Weyl theorem [16] implies that such

tensor products can be decomposed into orthogonal sums

of irreducible features of different types. More specifically,

for any k, ℓ and any J ∈ Jm− ℓ,m+ ℓK there exists an or-

thogonal projection matrix Q(k,l),J such that Q(k,l),Ju⊗ v
is a type J feature vector. The convolution of a signal f ℓ of

type ℓ vectors over x by a type k equivariant kernel κrk is

the collection of tensors:

(κk
r ∗x,y f

ℓ)Jip := Q(k,ℓ),J



ci
∑

j∼i

κk
r (xj − yi)⊗ f ℓ

jp





(8)

For J ∈ J|l − k|, l + kK, the coefficients of the matrices

Q(k,ℓ),J are given by the so called Clebsch-Gordan coeffi-

cients [8]. TFN consist of a multi-head architecture where

each head is a tensor stacking pointwise equivariant fea-

tures of a given type. An equivariant convolution layer takes

a collection (f ℓ)ℓ of such tensors as input, computes their

convolution with kernels of different types, decomposes the

results into irreducible features and, groups them by type

and learns linear combinations between the resulting fea-

tures:
∑

p

W J
qp(κ

k ∗x,y f
ℓ)Jip + δJ0bq. (9)

In practice we only take decomposed features up to type

3. A bias term b can be added for type 0 outputs since the

bias is pose independent it is only compatible with type 0
(invariant) features. Notice that only linear combinations

between vector features are taken. The reason is that the

weights matrices must commute with the Wigner matrix.

By a corollary of Schur’s lemma [16], a linear map com-

mutes with the Wigner matrix iff it is an homothety. Thus to

preserve equivariance we can only take linear combinations

of equivariant features of the same type and not between

their coordinates. This is a limitation compared to tradi-

tional non-equivariant filters where we can consider any lin-

ear combinations of the basis filters.

Equivariant Activations A major limitation in the design

of rotation equivariant neural networks is the choice of ac-

tivation functions. To preserve equivariance, the activation

function must commute with the Wigner matrix. Equivari-

ant non-linearities follow two trends. Works like [30, 32]
multiply equivariant features by non-linear functions of in-

variant features. The resulting features still commute with

the Wigner matrix as only their norm is affected and thus

they are equivariant. However such non-linearities don’t

have effect on the direction of features which limits their ex-

pressivity. An other direction explored by [17] and [2] is to

build equivariant features as polynomials of other equivari-

ant features. While it has been proven in [10] that equivari-

ant polynomial features can approximate equivariant func-

tions, in practice they can be computationally heavy and

are difficult to train as reported in section (8.1) of [2]. We

now briefly review non-linearities from [30, 32, 17] and [2].

TFN [30] introduce the notion of norm non-linearities, for

a multi head equivariant signal f it is defined by:

g0i0c := ξ(f0
i0c+b0c), ∀ℓ > 0, gℓi:c := ξ(‖f ℓ

i:c‖2+bℓc)
f ℓ
i:c

‖f ℓ
i:c‖2
(10)

Where the ξ is the ReLu function and the bℓ’s are learn-

able bias terms. 3D steerable cnns [32] introduce a simi-

lar but slightly more elaborate approach called gated non-

linearities. Instead of only producing a multi head equiv-

ariant signal f like in TFN, a layer also produces a rotation

invariant signal γℓ for each equivariant head f ℓ with ℓ > 0
(one can simply split the invariant head of the signal in two

parts) the gated non linearity is defined by:

g0i0c := ξ(f0
i0c + b0c), ∀ℓ > 0, gℓimc := σ(γℓ

i0c + bℓc)f
ℓ
imc

(11)

where σ is the sigmoid function and the bℓ are learnable

bias vectors. On the other hand [17] and [2] consider tensor

product non-linearities. The idea is to take tensor products
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of equivariant features and decompose them using the Cleb-

sch Gordan Decomposition producing quadratic equivariant

features:

gJi:,c :=
⊕

J∈J|ℓ−k|,ℓ+kK

Q(k,ℓ),Jfk
i:,c ⊗ f ℓ

i:,c (12)

where the ⊕ sign indicates concatenation on the last axis.

The supplementary material of [32] also provides a descrip-

tion of the aforementioned non-linearities.

3. Our method

In this section we present our method and the specific

changes we introduce to the pipeline presented in section

(2). Our main contribution is to interpret rotation equiv-

ariant features as coefficients of functions in the spherical

harmonics basis with two applications: Equivariant non-

linearities and equivariant spatial max pooling. Before de-

tailing these points we specify our kernel design and point

cloud sampling strategy.

Our kernels and sampling strategy As explained in equa-

tion (2) of section (2) point cloud convolution requires two

point clouds a first point cloud caries the signal and the sec-

ond one (typically a sub-sampling or up-sampling of the

first one) defines the locations at which to apply the con-

volution kernels. We adopt the same sampling strategy as

[24], we consider point clouds whose cardinal is a power

of two and index them by a balanced kd-tree, we can then

sub-sample the point cloud by applying 1D average pooling

with a pool size which also a power of two. This computes

the means of sub-trees at a given depth. For convolutions

we use a similar kernel to [30, 32, 24] but our normaliza-

tion differs slightly as we empirically observed a slight im-

provement with the L2 normalization (14). Like [32, 24]

we chose Gaussian shell functions for the radial component

functions ϕ of equation (4) but, we divide by the sum of the

radial functions so that each point in the kernel support is

assigned a mass of 1 and, we restrict the kernel support to

a ball of radius r. Denoting rj := jr
d

we define the radial

component of the steerable kernel of Eq. (4) by:

ϕrjm(‖x‖2) :=
exp

(

− ln(2)d2(‖x‖2 − rj)
2
)

∑d−1
k=0 exp (− ln(2)d2(‖x‖2 − rk)2)

(13)

We normalize the kernels at each point by their average L2

norm, leading to the following formula for the normaliza-

tion factor cirℓ in formula (4):

cirℓ =







1

N

N
∑

i=1





∑

j∼i

‖κℓ
r(x

k
j − xk+1

i )‖22





1

2







−1

. (14)

Equivariant features as functions The convolution lay-

ers presented in equations (4, 8, 9) of section (2) produce

equivariant features tensors (f ℓ)ℓ where the type ℓ ranges

between 0 and ℓmax > 0, we set the same number of chan-

nels for each head. We observe that type ℓ rotation equiv-

ariant features as defined in equation (6) of section (2) and

spherical harmonics of degree ℓ share the same equivariance

properties, that is they are multiplied by the Wigner matrix

Dℓ(R) when their input is rotated by R ∈ SO(3). This

motivates us to interpret them as coefficients of functions in

the spherical harmonics basis. For each point i and channel

index c we can compute the inverse Spherical Harmonics

Transform (SHT) resulting in a function on the unit sphere:

F+(f)ic(x) :=

ℓmax
∑

ℓ=0

〈f ℓ
i:c, Y

ℓ(x)〉 =

ℓmax
∑

ℓ=0

ℓ
∑

m=−ℓ

f ℓ
imcY

ℓ
m(x)

(15)

Equivariant non-linearities The inverse SHT functional

representation allows us to apply non-linearities in a point-

wise fashion over the sphere by composing F+(f) with any

activation function ξ and, compute the coefficients of the

composition in the spherical harmonics basis using forward

SHT:

ξ(f)ℓimc := F(ξ◦F+(f)ic)
ℓ :=

∫

S2

ξ(F+(f)ic(x))Y
ℓ
m(x)dx

(16)

Our contribution relies on the following observation:

Theorem 3.1 Our continuous non linearity ξ(•) is SO(3)
equivariant. That is, for any rotation R ∈ SO(3) we have

ξ(R.f)ℓi:c = Dℓ(R)ξ(f)ℓi:c.

We refer to the supplementary material for a proof. Unfor-

tunately there is no closed form for the integral of equation

(16) so, in practice we have to rely on a discrete approxi-

mation of the SHT and its inverse. For that we consider a

discrete sampling of the unit sphere given by a finite set of

points p1, . . . , pN ∈ S2, we define the discretized inverse

SHT by:

F+(f)ijc := F+(f)ic(pj) (17)

We then apply the non linearity ξ at all points (pj)j and

compute the coefficients of this discrete approximation of

F+(f)ic into the spherical harmonic basis using the dis-

cretized SHT (18). Given a discrete signal {Fijc} over the

points P = (pj)j for all point i of the input point cloud and

all channel index c we define our SHT layer by:

F(F )ℓimc :=
4π

N

N
∑

j=1

FijcY
ℓ
m(pj) (18)

We use the the intermediate representation F+(f) to apply

pointwise operations at each sample pj like a dense layer

over the channel axis and non-linearities or more generaly
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MLP’s while maintaining equivariance up to our discretiza-

tion. We apply our activation function ξ to f by:

ξ[f ]ℓimc := F(ξ ◦ F+(f))imc (19)

We consider different samplings of the sphere, a first

choice motivated by theorem (3.2) is to use the vertices of

polyhedrons with non trivial symmetry groups. Specifically

we chose the Regular dodecahedron with its 20 vertices and

the Pentakis decahedron with its 32 vertices.

Theorem 3.2 Our non linearity ξ[•] is equivariant w.r.t.

the symmetry group of the sampling. That is, for any ro-

tation R ∈ SO(3) in the symmetry group of the sampling P
we have ξ[R.f ]ℓi:c = Dℓ(R)ξ[f ]ℓi:c.

We refer to the supplementary material for a proof. We

also consider the Fibonaci Sampling from [23] providing a

more systematic and flexible sampling allowing to choose

the number of points.

Equivariant pooling An other benefit of our approach is

that we can use our functional representation to perform

max pooling. Given a sub-sampling y of the point cloud

x we define local max pooling by:

MP(f)lic = F(max
i∼j

F+(f)i,...)
ℓ
ic (20)

where j ranges across the k-nearest neighbours of yi in x.

We also define global max-pooling by:

GMP(f)ℓc := F(max
i

F+(f)i,...)
ℓ
c (21)

3.1. Architecture and models

In our experiments we consider a classification and a

segmentation architecture. The basic brick of our archi-

tectures is our equivariant point cloud convolution layer

described in figure (1). It has been shown in [10] that

simply concatenate each conv layer of TFN with the yzx
coordinates of the underlying point clouds without applying

non-linearities is enough to ensure that the resulting class

of networks is a universal approximator of equivariant

features (up to certain choices of radial functions in the

definition of the kernels). Here we adopted this construc-

tion to compensate for the loss of information induced by

the truncation of the features type. We adopt following

notations to describe our layers and network architecture:

We denote our equivariant convolution layer by

EC(K, r, d, ℓmax, [u0, . . . , uk]) where:

• K is the number of centroid points at which to apply

equivariant kernels.

• r is the radius of the K convolution windows.

• d is the number of shells of the kernels.

• ℓmax is the highest equivariant output type of the layer.

• u0 is the number of units of the dense layers applied to

the output of the equivariant convolution.

• [u1, . . . , uk] are the number of units of the MLP layers.

Figure 1. Our convolution layer

takes a dictionary of tensors

of equivariant features (f ℓ,k)ℓ,k
for ℓ ∈ J0, ℓkmaxK as input. First

we concatenate type 1 features

with the yzx coordinates of

the underlying point cloud, then

we perform equivariant convo-

lution (9) and again concate-

nate type 1 output features with

the yzx coordinates of the next

point cloud. We apply inverse

SHT from Eq. (17) followed by

a batch norm layer and ReLu

activation optionally followed

by an MLP. Finally we obtain

a new set of equvariant features

(f ℓ,k+1)ℓ,k for ℓ ∈ J0, ℓk+1
maxK

by computing SHT from Eq.

(18).

Equivariant Conv

f 0,k f 1,k f 2,k

FC FC FC

F
+

F

f 0,k+1 f 1,k+1 f 2,k+1

BN + ReLu / MLP

yzxk

yzxk+1 concat

concat

We denote by FC(k, d) a fully connected layer with k
units followed by a batch normalization and ReLu layer and

a dropout layer with dropout rate d. Our classification ar-

chitecture is as follows:

EC(256, 0.2, 3, 3, [32, 32, 32])

→ EC(64, 0.4, 3, 3, [64, 64, 64])

→ EC(16, 0.8, 3, 3, [128, 128, 256])

→ GMP → norm

→ FC(512, 0.5) → FC(256, 0.5) → FC(K)

(22)

It takes a point cloud with 1024 points index it by a kd-

tree and computes coarser point clouds of size 256, 64 and

16 using average kd-tree pooling. Then it computes three

successive equivariant convolution layers as in figure (1),

taking the the constant signal equal to 1 as a type 0 fea-

ture input to the first layer. After the last convolution we

have equivariant tensors of types 0 to 3 representing a sig-

nal over the 16 points of the last point cloud, we apply a

global max pooling layer (21), compute the norms of the

resulting global features and pass them through a final two

layers MLP for the class prediction.

For segmentation we adopt a U-Net like architecture in-

spired by the segmentation architecture of [27]. Like our

classification architecture we have three equivariant convo-

lution layers going from a point cloud with 2048 points to

a coarse point cloud of 32 points. We then up sample the
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signal back to 2048 points using feature the propagation

layers from [27] described in equation (3). The output of

each feature propagation layer is concatenated with the out-

put of the convolutional layer on the corresponding point

cloud if available or the yzx coordinates of the input point

cloud for the last feature propagation layer. Then we apply

fully connected layers over the channel axis and equivari-

ant activation as described in figure (1) (with no MLP to

reduce computational cost). We denote our feature propa-

gation layer by FP (d) where d is the number of units of the

fully connected layers. Our segmentation architecture is as

follows:

EC(512, 0.2, 3, 3, [16]) → EC(128, 0.4, 3, 3, [32])

→ EC(32, 0.8, 3, 3, [64])

→ FP (64) → FP (32) → FP (32) → norm

→ FC(128, 0.1) → FC(128, 0.1) → FC(K)

(23)

4. Experiments and results

We evaluate our method in point cloud classification and

segmentation tasks. We consider three different experimen-

tal train / test settings: z/z, z/SO(3) and SO(3)/SO(3)
where z stands for aligned data augmented by random ro-

tations around the vertical axis and SO(3) indicates data

augmented by random SO(3) rotations. The data is ran-

domly rotated at each training iteration. We consider differ-

ent non-linearities for TFN: ’ReLu’ where we simply use a

ReLu activation in our equivariant convolution layer (EC)

described in Figure (1), ’mlp’ where we stack a two layer

mlp on top of the ReLu activation, ’norm’ which is the orig-

inal TFN non linearity and ’gated’ wich is the gated non lin-

earity from [32]. For each non linearity x we denote TFN[x]

the TFN version based on x. Thus TFN[norm] is similar to

the original TFN. We use the following abbreviations to re-

fer to the sampling pattern: R for the regular dodecahedron,

P for the Pentakis dodecahedron and F for Fibonacci sam-

pling.

We compare to two categories of methods: rotation sen-

sitive and, rotation robust methods which are specifically

designed for handling non aligned data. The z/z case of-

fers a baseline for rotation sensitive methods. The z/SO(3)
setting allows to measure the robustness of a method to the

observation of new poses unseen during training while, the

SO(3)/SO(3) is the most practical setting as in practice it is

more representative of real world where the pose of objects

is not known in advance nor consistent and, it is always pos-

sible to apply random rotation augmentation.

For classification we consider two datasets. The Mod-

elNet40 dataset [33] consists of 12,311 synthetic shapes

in canonical pose divided into 40 categories with a

9,843/2,468 train / test split and the ScanObjectNN dataset

[3] which consists of 2902 point clouds sampled from real-

world objects across 15 different categories with a 2309/581

train test split. For segmentation we consider the ShapeNet

part dataset [6] which contains 16,881 shapes from 16

classes, annotated with 50 parts labels in total. We trained

all our models with a TensorFlow [1] implementation using

the Adam optimizer [15] with learning rate 0.001. We used

a batch size of 32 for classification reported in section (4.1)

and 24 for segmentation reported in section (4.2).

4.1. Classification

Table (1) shows our results for classification on Mod-

elNet40 and compares it to state of the art methods. We

considered an alternative variant of our method using pre-

alignment with PCA refereed to by the indication (PCA).

We trained our models for 200 epochs and observed con-

vergence in around 150 epochs. We report two different

metrics, since the ModelNet40 dataset does not have an of-

ficial validation set we used the test set as validation set

and select the best model over training based on validation

score. We average the test score over 40 randomly rotated

copies of the test set to smooth the variability introduced

by random rotations augmentation. We use the same best

z/z model for both the z/z and z/SO(3) scores. We re-

fer to these results with the indication (best). We observed

oscillations of validation accuracy even after convergence

we included these results to indicate an upper bound of the

performance of our models. For fair comparison we also re-

port the average validation accuracy over the last 10 epochs

which is more representative of actual performance. While

our method is mostly robust to rotations as suggested by

the z/SO(3) setting, we still observe a performance drop

but this is due to our pooling and activation being only ap-

proximately equivariant in practice. We notice that our PCA

pre-aligned version produced more consistent results across

the 3 different settings z/z, z/SO(3) and SO(3)/SO(3).
Our method does not quite match the best state of the art

methods yet, these methods either rely on richer input data

or slightly different representation. EMVnet [12] consider a

multi-view image based representation of the shapes based

on renderings of meshes. LGR-Net [39] relies on surface

normals, SFCNN [28] propose an original approach similar

to multi-view by mapping input point-clouds to a sphere.

Our results are close to GC-Conv [36] and RI-Framework

[20] which both rely only on the point coordinates.

A fundamental question is whether it is enough to stack

purely invariant layers for rotation invariant tasks, it has

been stated in in GC-Conv [36] that rotation invariant fea-

tures are usually not as distinctive as non invariant ones. In

this work we rely on equivariant layers which unlike invari-

ant layers can transmit directional information to the next

layers. Our baseline for rotation invariant layers is SPHNet

[24] as we use very similar spherical harmonics based ker-

nels in a 3 layered conv architecture, the difference is that

SPHNet takes the norm of each equivariant features right
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after convolution instead of computing equivariant convo-

lution. These observation together with our results showing

a noticeable improvement over SPHNet suggest that simply

stacking invariant layers is not optimal.

We propose an ablation study of our ModelNet40 exper-

iment in table (2) to compare our equivariant non linear-

ity (19) to the norm non linearity (11) introduced in [30]

and gated non linearity (12) introduced in [32]. We also

study the impact of the number of samples and the sam-

pling pattern on the performance of our non linearity. For

better comparison with other non-linearities we consider

TFN[ReLu] so that we only measure the effect of our new

non linearity. We apply the norm and gated non linearites on

top of the fully connected layers following the equivariant

convolution step. To produce a global descriptor layers in

our classification architecture we apply norm in a pointwise

fashion, reducing equivariant features to invariant scalars,

allowing to apply rotation invariant global max pooling. Re-

sults are shown in table 2, we observe a noticeable improve-

ment over the norm and gated non-linearities baselines and

interestingly the results of TFN[norm] are very close to the

results of SPHNet [24] shown in table (1). Although the

later uses purely invariant layers both rely on non similar

linearities applied only to the norm of equivariant features.

As for the effect of the number of samples we observe as

expected that more samples improves robustness to rota-

tions as shown by the z/SO(3) setting. We add a qualitative

study of the equivariance error w.r.t. the number of samples

in the supplementary material.

We report results on ScanObjectNN [3] in table (4). We

compare our method to several state of the art methods, in

particular the recent SE(3)-Transformers framework [13]

introducing a transformer architecture built on top of TFN.

We follow the same experimental setting as [13], training

our network until convergence (100 epochs) and average

over 5 runs on the basic OBJ ONLY version of the dataset

with no rotation augmentation and using the z coordinate

as a 0 type input (indicated by +z). We achieve compa-

rable results to SE(3)-Transf.+z [13] and noticeably better

results than TFN+z. We note that SE(3)-Transf uses less in-

put points but in (Appendix D.1.2) of [13] the authors report

that increasing the number of point did not improve the per-

formance. We also adapted the radius of our kernels(0.14,

0.28, 0.56 instead of 0.2, 0.4, 0.8 for Modelnet40.

4.2. Segmentation

For our segmentation experiment on ShapeNet [6] we

used the official train/val/test split we select the best model

according to the the validation accuracy over a 150 epochs

training which is a fair metric since validation and test sets

are distinct. Table (3) compares our per class and average

class intersection over union scores (IoU) to state of the art

methods. Our method falls in between GC-Conv [36] and

RI-Framework [20] which both use only xyz coordinates of

the point clouds as we do unlike the best performing method

LGR-Net [39] which also uses normals. We again observe

a noticeable improvement over other TFN non-linearities.

Rot-sensitive Methods z/z z/SO(3) SO(3)/SO(3)

SubVolSup MO [26] 89.5 45.5 85.0

PointNet [25] 87.0 21.6 80.3

PointNet++ [27] 91.8 28.4 85

PointCNN [21] 92.5 41.2 84.5

DGCNN [31] 92.9 20.0 81.1

ShellNet [38] 93.1 19.9 87.8

PCNN [4] 92.3 11.9 85.1

Rot-robust Methods z/z z/SO(3) SO(3)/SO(3)

EMVnet [12] 94.4 - 91.1

SPHNet [24] 87.7 86.6 87.6

Spherical-CNN [11] 88.9 76.7 86.9

a3S-CNN [22] 89.6 87.9 88.7

ClusterNet [7] 87.1 87.1 87.1

RI-Conv [37] 86.5 86.4 86.4

GC-Conv [36] 89.0 89.1 89.2

RI-Framework [20] 89.4 89.4 89.3

LGR-Net [39] 90.9 90.9 91.1

SFCNN(xyz) [28] 91.4 84.8 90.1

SFCNN(xyz+n) [28] 92.3 85.3 91.0

TFN[mlp] P 89.4 87.9 89.0

TFN[mlp] P + PCA 88.6 88.7 88.8

TFN[mlp] P (best) 90.5 88.2 89.3

TFN[mlp] P + PCA (best) 89.7 89.7 89.7

Table 1. Test classification accuracy on the modelnet40 dataset

[33] in three train / test scenarios. z stands for aligned data aug-

mented by random rotations around the vertical axis and SO(3) in-

dicates data augmented by random SO(3) rotations. (best) stands

for the best model selected over 200 training epochs.

Methods # samples z/z z/SO(3) SO(3)
SO(3) time

TFN[norm] - 87.7 86.7 87.2 27s

TFN[gated] - 88.3 86.7 87.8 27s

TFN[ReLu] R 20 89.1 87.0 88.5 25s

TFN[ReLu] P 32 89.1 88.1 88.1 25s

TFN[ReLu] F 16 89.8 81.8 88.6 25s

TFN[ReLu] F 32 89.6 85.4 88.8 25s

TFN[ReLu] F 64 89.3 87.6 88.2 26s

TFN[norm] (b) - 88.5 85.3 87.6 27s

TFN[gated] (b) - 88.7 87.1 88.5 27s

TFN[ReLu] R (b) 20 89.6 86.5 89.0 25s

TFN[ReLu] P (b) 32 89.8 87.2 89.1 25s

TFN[ReLu] F (b) 16 90.3 83.4 88.6 25s

TFN[ReLu] F (b) 32 89.6 84.7 89.0 25s

TFN[ReLu] F (b) 64 89.9 87.2 89.2 26s

Table 2. Comparison of equiavriant non-linearities for TFN on the

ModelNet40 classification dataset. ReLu is our non linearity (19),

norm is the norm non linearity of Eq. (11) introduced in [30], gated

is the gated non linearity of Eq. (12) introduced in [32]. (b) stands

for the best model selected over 200 training epochs. Timings in

seconds for 1 epoch are given for an RTX 3090 gpu.

713180



method aero bag cap car chair earph. guitar knife lamp laptop motor mug pistol rocket skate table avg. mIoU

z/SO(3)
PointNet [25] 40.4 48.1 46.3 24.5 45.1 39.4 29.2 42.6 52.7 36.7 21.2 55.0 29.7 26.6 32.1 35.8 37.8

PointNet++ [27] 51.3 66.0 50.8 25.2 66.7 27.7 29.7 65.6 59.7 70.1 17.2 67.3 49.9 23.4 43.8 57.6 48.3

PointCNN [21] 21.8 52.0 52.1 23.6 29.4 18.2 40.7 36.9 51.1 33.1 18.9 48.0 23.0 27.7 38.6 39.9 34.7

DGCNN [31] 37.0 50.2 38.5 24.1 43.9 32.3 23.7 48.6 54.8 28.7 17.8 74.4 25.2 24.1 43.1 32.3 37.4

ShellNet [38] 55.8 59.4 49.6 26.5 40.3 51.2 53.8 52.8 59.2 41.8 28.9 71.4 37.9 49.1 40.9 37.3 47.2

RI-Conv [37] 80.6 80.0 70.8 68.8 86.8 70.3 87.3 84.7 77.8 80.6 57.4 91.2 71.5 52.3 66.5 78.4 75.3

GC-Conv [36] 80.9 82.6 81.0 70.2 88.4 70.6 87.1 87.2 81.8 78.9 58.7 91.0 77.9 52.3 66.8 80.3 77.2

RI-Framework [20] 81.4 82.3 86.3 75.3 88.5 72.8 90.3 82.1 81.3 81.9 67.5 92.6 75.5 54.8 75.1 78.9 79.2

LGR-Net [39] 81.5 80.5 81.4 75.5 87.4 72.6 88.7 83.4 83.1 86.8 66.2 92.9 76.8 62.9 80.0 80.0 80.0

TFN[norm] 80.1 76.5 84.7 71.0 88.1 67.6 90.1 80.8 75.8 79.3 57.6 92.5 73.9 58.0 73.6 78.7 76.8

TFN[gated] 80.0 78.8 82.4 71.1 88.4 73.5 89.9 75.5 76.3 78.9 60.0 91.2 75.4 48.3 72.9 79.2 77.0

TFN[ReLu] 81.1 77.8 79.8 74.5 89.1 77.2 90.8 82.8 77.7 78.6 60.3 93.4 77.0 54.7 74.4 79.5 78.1

TFN[ReLu] + PCA 80.9 75.2 81.9 73.8 89.0 61.0 90.8 83.0 76.9 80.2 58.5 92.8 76.3 54.0 74.5 79.1 76.7

SO(3)/SO(3)
PointNet [25] 81.6 68.7 74.0 70.3 87.6 68.5 88.9 80.0 74.9 83.6 56.5 77.6 75.2 53.9 69.4 79.9 74.4

PointNet++[27] 79.5 71.6 87.7 70.7 88.8 64.9 88.8 78.1 79.2 94.9 54.3 92.0 76.4 50.3 68.4 81.0 76.7

PointCNN [21] 78.0 80.1 78.2 68.2 81.2 70.2 82.0 70.6 68.9 80.8 48.6 77.3 63.2 50.6 63.2 82.0 71.4

DGCNN [31] 77.7 71.8 77.7 55.2 87.3 68.7 88.7 85.5 81.8 81.3 36.2 86.0 77.3 51.6 65.3 80.2 73.3

ShellNet [38] 79.0 79.6 80.2 64.1 87.4 71.3 88.8 81.9 79.1 95.1 57.2 91.2 69.8 55.8 73.0 79.3 77.1

RI-Conv [37] 80.6 80.2 70.7 68.8 86.8 70.4 87.2 84.3 78.0 80.1 57.3 91.2 71.3 52.1 66.6 78.5 75.3

GC-Conv [36] 81.2 82.6 81.6 70.2 88.6 70.6 86.2 86.6 81.6 79.6 58.9 90.8 76.8 53.2 67.2 81.6 77.3

RI-Framework [20] 81.4 84.5 85.1 75.0 88.2 72.4 90.7 84.4 80.3 84.0 68.8 92.6 76.1 52.1 74.1 80.0 79.4

LGR-Net [39] 81.7 78.1 82.5 75.1 87.6 74.5 89.4 86.1 83.0 86.4 65.3 92.6 75.2 64.1 79.8 80.5 80.1

Ours norm 79.9 79.6 81.6 68.0 87.6 73.4 90.3 82.3 76.2 79.8 56.0 92.2 73.3 46.1 74.1 78.4 76.2

TFN[gated] 79.6 77.8 81.2 71.1 88.4 75.0 90.2 81.9 78.0 77.7 61.2 92.5 75.4 52.1 73.2 78.8 76.9

TFN[ReLu] 80.8 74.5 82.8 74.4 89.4 75.7 90.6 81.0 77.8 80.5 62.4 93.3 78.5 55.8 74.7 79.5 78.2

TFN[ReLu] + PCA 80.3 77.3 82.6 74.7 88.8 76.3 90.7 81.7 77.4 82.4 60.7 93.2 79.4 54.3 74.7 79.6 78.4

Table 3. Test segmentation mean per class and mean intersection over union (IoU) on the ShapeNet shape segmentation benchmark [6].

z stands for aligned data augmented by random rotations around the vertical axis and SO(3) indicates data augmented by random SO(3)
rotations. PCA stands for PCA pre-alignment.

Methods # points test acc

DeepSet [35] 1024 71.4

3DmFV [5] 1024 73.8

Set Transformer [19] 1024 74.1

PointNet [25] 1024 79.2

SpiderCNN [34] 1024 79.5

TFN+z [30] 128 81.0

PointNet++ [27] 1024 84.3

SE(3)-Transf.+z [13] 128 85.0

PointCNN [21] 1024 85.5

DGCNN [31] 1024 86.2

PointGLR [29] 1024 87.2

TFN[norm] + z 1024 80.7

TFN[norm] + z (best) 1024 83.2

TFN[gated] + z 1024 81.1

TFN[gated] + z (best) 1024 83.0

TFN[MLP]+z 1024 85.3

TFN[MLP]+z (best) 1024 88.1

Table 4. Classification accuracy on the ScanObjectNN [3]

OBJ ONLY dataset the z stands for z coordinate as 0 type feature

input. The central column indicates the number of input points.

(best) stands for the best model selected over 100 training epochs.

TFN is the original TFN implementation while TFN[norm] is our

implementation of TFN.

5. Conclusion and future work

In this work we highlight the importance of the design

of equivariant non-linearities. We introduced a novel ro-

tation equivariant non linearity for Tensor Field Networks

[30] based on a functional interpretation of equivariant fea-

tures. In future work we would like to explore this idea

further. An interesting direction would be to use equivari-

ant features to produce rotation equivariant functions over

the 3D space with potential applications such as rotation

equivariant auto encoder based on implicit surface repre-

sentation. In our experiments we observed that better per-

forming methods such as [39, 28] often use point cloud nor-

mals. Tensor Field Networks are direction agnostic as they

are SO(3) equivariant. Adding local direction information

like normals allows to reduce the dimension of the rotation

group by restricting SO(3) tor rotations around the normals

which might help designing more informative and cost ef-

fective equivariant non-linearities.
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