
Anytime Multi-Agent Path Finding via Large Neighborhood Search

Jiaoyang Li1 , Zhe Chen2 , Daniel Harabor2 , Peter J. Stuckey2 and Sven Koenig1

1University of Southern California, USA
2Monash University, Australia

jiaoyanl@usc.edu, {zhe.chen, daniel.harabor, peter.stuckey}@monash.edu, skoenig@usc.edu

Abstract

Multi-Agent Path Finding (MAPF) is the challeng-
ing problem of computing collision-free paths for
multiple agents. Algorithms for solving MAPF
can be categorized on a spectrum. At one end
are (bounded-sub)optimal algorithms that can find
high-quality solutions for small problems. At the
other end are unbounded-suboptimal algorithms
that can solve large problems but usually find
low-quality solutions. In this paper, we con-
sider a third approach that combines the best
of both worlds: anytime algorithms that quickly
find an initial solution using efficient MAPF algo-
rithms from the literature, even for large problems,
and that subsequently improve the solution qual-
ity to near-optimal as time progresses by replan-
ning subgroups of agents using Large Neighbor-
hood Search. We compare our algorithm MAPF-
LNS against a range of existing work and report
significant gains in scalability, runtime to the initial
solution, and speed of improving the solution.

1 Introduction

Multi-Agent Path Finding (MAPF) asks us to plan collision-
free paths for a team of moving agents: each from a start loca-
tion to a target location. MAPF is important for a wide variety
of application areas, including computer games, robotics, and
traffic management. For such applications, MAPF instances
can involve hundreds and sometimes thousands of agents.
Desirable solutions are those which can be computed quickly
but which also minimize an operational objective, such as the
sum of costs or makespan. Unfortunately, MAPF is NP-hard
to solve optimally [Yu and LaValle, 2013].

One category of leading MAPF algorithms is optimal and
bounded-suboptimal algorithms, which guarantee to return a
solution that is not larger than optimal by more than some
fixed multiplicative factor. The main drawback is their scal-
ability: problems with hundreds of agents are considered ex-
tremely challenging, and timeout failures are common. An-
other category of leading MAPF algorithms is unbounded-
suboptimal algorithms, which trade optimality guarantees for
speed and which can scale to thousands of agents. Here, plan-
ning is very fast because coordination is achieved by using

pre-determined movement rules or by planning the agents one
after the other in some specified order. The main drawback is
their solution quality: the computed solution can be far from
optimal, which is usually undesirable for applications.

In this work, we consider an alternative and anytime ap-
proach to solving MAPF. First, we aim to find an initial
solution fast so that one is usually available, even for ex-
tremely challenging problems. We experiment with a vari-
ety of MAPF algorithms from the existing literature. Next,
if more time is available, we aim to reduce the cost of the
incumbent solution by replanning subgroups of agents. We
employ Large Neighborhood Search (LNS) [Shaw, 1998],
a well-known meta-heuristic framework from combinatorial
optimization. We propose a variety of destroy heuristics and
repair operators specific to MAPF. Each destroy heuristic se-
lects a subset of agents and discards their current paths. Each
repair operator finds new paths for the selected agents with
the objective of reducing their overall cost.

We evaluate our algorithm MAPF-LNS in an extensive set
of experiments and report large gains over a variety of com-
peting algorithms from the recent literature, including one-
shot bounded- and unbounded-suboptimal algorithms and
other anytime algorithms. In contrast to the existing work,
MAPF-LNS can be understood as a near-optimal algorithm
(with no guarantee), which combines the strengths of leading
algorithms from across the algorithmic spectrum in the sense
that we (i) compute initial solutions fast; (ii) find near-optimal
solutions eventually; and (iii) scale to very large numbers of
agents. This paper is an extension of [Li et al., 2021a].

2 MAPF Definition

MAPF is a broad family of problems with many vari-
ants [Stern et al., 2019]. In this paper, we use a common for-
mulation that considers: (i) vertex and swapping conflicts, (ii)
the “stay at target” assumption, and (iii) the objective of min-
imizing the sum of (individual path) costs. Nevertheless, the
proposed algorithm MAPF-LNS is flexible and can be easily
adapted to other MAPF formulations.

Formally, MAPF takes as input a graph G = (V,E) and
a set of m agents A = {a1, . . . , am}. Each agent ai ∈ A
has a start vertex si ∈ V and a target vertex gi ∈ V . At
each discretized timestep, an agent can either move to an
adjacent vertex or wait at its current vertex. A path pi for
agent ai is a sequence of vertices which are adjacent (i.e.,

Figure 1: Rough comparison of scalability versus solution quality
tradeoffs of existing algorithms and MAPF-LNS.

(pi[t], pi[t + 1]) ∈ E, indicating a move action) or identical
(i.e., pi[t] = pi[t + 1], indicating a wait action) and which
starts at si and ends at gi. We assume that the agents remain
at their goal vertices forever after completing their paths. The
length l(pi) of path pi is the number of its constituent edges
(i.e., move and wait actions). The distance d(x, y) from ver-
tex x to vertex y is the length of the shortest path from x
to y. The delay delay(pi) = l(pi) − d(si, gi) of path pi is
the difference between its length and the distance between its
endpoints si and gi. A collision occurs when two agents at-
tempt to occupy the same vertex or traverse the same edge
in opposite directions at the same timestep. A solution is a
set of collision-free paths, one for each agent. Our task is to
find a solution P = {pi | ai ∈ A} that minimizes its sum of
costs

∑
ai∈A l(pi), which is equivalent to minimizing its sum

of delays
∑

ai∈A delay(pi).

3 Existing MAPF Algorithms

We categorize the existing algorithms below and provide a
rough comparison of them in Figure 1, together with an entry
for our new algorithm MAPF-LNS.

Optimal algorithms include A*-based algorithms and
compilation-based algorithms. The leading algorithms in this
category often deploy a strategy of planning paths for each
agent independently by ignoring other agents first and resolv-
ing collisions afterward, such as CBS [Sharon et al., 2015;
Gange et al., 2019; Li et al., 2020] and BCP [Lam and Bodic,
2020]. However, due to their time complexity, they can find
optimal solutions only for small or medium-sized instances
and run out of time or memory for other instances.

Bounded-suboptimal algorithms are usually variants of
optimal algorithms, such as the CBS variants BCBS [Barer et
al., 2014] and EECBS [Li et al., 2021c]. They scale to larger
instances than optimal algorithms but still provide guarantees
on the solution quality. However, they are still exponential-
time algorithms and thus also have limited scalability. Even
if a large suboptimality bound is used, they can still run out
of time or memory when solving hard instances.

Prioritized algorithms plan paths based on a priority or-
dering of the agents. For example, Prioritized Planning (PP)
[Erdmann and Lozano-Perez, 1987] plans a shortest path for

each agent one after the other in the order from high to
low-priority agents that avoids collisions with the (already
planned) paths of higher-priority agents. Although prioritized
algorithms can scale to large instances, they do not provide
guarantees on completeness or solution quality.

Rule-based algorithms, such as MAPP [Wang and Botea,
2011] and Parallel-Push-and-Swap (PPS) [Sajid et al., 2012],
plan paths via simple movement rules. Although many of
them guarantee to find solutions in polynomial time and can
solve extremely congested instances (with a high ratio of the
number of agents over the number of vertices in the graph),
their solution quality has no guarantees and is always sub-
stantially worse than that of other algorithms.

The algorithms described above have different aims and
tradeoffs in terms of suboptimality, scalability, and complete-
ness. Interestingly, anytime behavior, i.e., generating an ini-
tial solution fast and improving it over time, is not the focus
of them. In practice, anytime behavior is highly desirable:
(bounded-sub)optimal algorithms that fail to find a solution
for the large-sized instances encountered in applications are
not acceptable, while unbounded-suboptimal algorithms are
not attractive if their solution is far from optimal. There is
little existing work on anytime algorithms: OA [Standley
and Korf, 2011] and X* [Vedder and Biswas, 2021] achieves
the anytime behavior by repeatedly calling A* to find opti-
mal solutions for larger and larger sub-problems and are ef-
fective only for non-congested instances. IMMI [Wang and
Goh, 2015] repeatedly replan single-agent paths to reduce the
makespan (instead of the sum of costs) of the solution over
time. The optimal algorithm BCP [Lam and Bodic, 2020]

uses a branch-and-bound algorithm, which is anytime in the-
ory, but rarely finds solutions much earlier than the optimal in
practice [Li et al., 2021c]. Anytime BCBS [Cohen et al., 2018]

adapts the high-level focal search of the bounded-suboptimal
algorithm BCBS [Barer et al., 2014] to anytime focal search.
It starts with an infinite bound on the sum of costs objective,
which is then repeatedly tightened to S − 1 whenever a new
solution with the sum of costs S is found.

4 Large Neighborhood Search for MAPF

Large Neighborhood Search (LNS) [Shaw, 1998] is a popular
meta-heuristic for finding good solutions to challenging dis-
crete optimization problems. Starting from a given solution,
we delete part of the solution, called a neighborhood, and
treat the remaining part of the solution as fixed. What results
is a simpler form of the original problem to solve. We can use
whatever approach we desire to solve the reduced problem,
assuming that it can take into account the fixed information.
If the new solution found is better than the current solution,
we replace the current solution with the new solution.

Although LNS is widely used for solving different opti-
mization problems [Hoang et al., 2018; Björdal et al., 2020;
Song et al., 2020], we are unaware of any previous LNS ap-
proaches for MAPF. Given a MAPF instance, we first call
a MAPF algorithm to find an initial solution P . Any non-
optimal algorithms can be used here. Then, in each itera-
tion, we select a subset of agents As ∈ A, remove their paths
P−

s = {pi ∈ P | ai ∈ As} from P , and replan new paths

Algorithm 1: Generate an agent-based neighborhood.

Input: Graph G = (V,E), agents A = {a1, . . . , am},
neighborhood size N , paths of the agents
P = {p1, . . . , pm}, and tabu list tabuList

1 ak ← argmax
ai∈A\tabuList

{delay(pi)};

2 tabuList← tabuList ∪ {ak};
3 if |tabuList| = m ∨ delay(pk) = 0 then
4 tabuList← ∅;

5 As ← {ak};
6 while |As| < N do
7 As ← RANDOMWALK(G, ak, P,As, N);
8 ak ← a random agent in As;

9 return As;

10 Function RANDOMWALK(G, ak, P,As, N) :
11 (x, t)← (pk[t], t), where t is a random timestep in

[0, l(pk));
12 Nx ← {v ∈ V |

(x, v) ∈ E ∪ {(x, x)} ∧ t+ 1 + d(v, gk) < l(pk)};
13 while |Nx| > 0 ∧ |As| < N do
14 y ← a random vertex in Nx;
15 As ← As ∪ {ai ∈ A | pi[t+ 1] = y ∨

(pi[t] = y ∧ pi[t+ 1] = x)};
16 (x, t)← (y, t+ 1);
17 Nx ← {v ∈ V | (x, v) ∈ E ∪ {(x, x)} ∧

t+ 1 + d(v, gk) < l(pk)};

18 return As;

for them by calling a modified MAPF algorithm. The modi-
fied algorithm returns a set of paths P+

s , one for each agent in
As, that do not collide with each other and with the paths in
P . Most optimal, bounded-suboptimal, and prioritized algo-
rithms can be adapted to this modified variant by treating the
paths in P as moving obstacles. We then compare the (old)
path set P−

s with the (new) path set P+
s and add the one with

the smaller sum of costs to P . We repeat this procedure until
we time out. We call the resulting algorithm MAPF-LNS.

5 Neighborhood Selection

The selection of good neighborhoods for exploration is crit-
ical to the success of LNS. For adaptive LNS (introduced in
the next section) to be most successful, the neighborhoods
should be orthogonal, in the sense that they are formed very
differently. Therefore, in this section, we define three dif-
ferent neighborhood-selection heuristics for MAPF. We use a
predefined parameter N to specify the number of agents that
we want to put in one neighborhood.

5.1 Agent-Based Neighborhood

The first heuristic is based on the agents and their paths. We
want to select an agent whose path could be shorter if some
other agents were not blocking its way, as replanning them
together has a chance to reduce the overall costs of their paths.

Algorithm 1 shows the pseudo-code. We first choose the
agent ak that is not in the tabu list (i.e., a globally maintained
set, initially being empty, to avoid selecting the same agent
repeatedly) and whose path has the largest delay [Line 1].
We update the tabu list by adding agent ak to it [Line 2]. In

case that the agents being delayed are all in the tabu list or the
path of agent ak has a delay of zero (indicating that the path
of any agent that is not in in the tabu list has a delay of zero),
we empty the tabu list [Lines 3 and 4]. We then initialize
the neighborhood As with agent ak [Line 5] and let the agent
perform a restricted random walk (with details introduced in
the next paragraph) to collect the agents that prevent it from
reaching its target vertex gk earlier. These agents are added
to the neighborhood As as well [Line 7]. We randomly select
an agent in As [Line 8], which could be the same agent or a
different agent, and repeat the procedure as long as fewer than
N agents are in As [Line 6]. In the experiments, we iterate
for at most 10 iterations (not shown in the pseudo-code) to
address the situation where the agent density is too low for us
to collect N agents in As.

In function RANDOMWALK(G, ak, P, As, N), agent ak
performs a restricted random walk, which allows it to take
only the move or wait actions that could potentially lead to a
path shorter than its current one, ignoring collisions with the
paths in P . Then, the agents that agent ak collides with dur-
ing the random walk are the ones that might prevent agent ak
from reaching its target vertex gk earlier and thus added to As.
Formally, we first randomly choose a start state (i.e., a vertex-
time pair) along the path of agent ak for the random walk,
i.e., a vertex x along path pk at some timestep t ∈ [0, l(pk))
[Line 11]. We then collect the possible vertices Nx of agent
ak at timestep t + 1 that might be on shorter paths to gk (ig-
noring other agents) than its current path pk [Line 12]. More
specifically, d(v, gk) is the length of a shortest path from ver-
tex v to vertex gk (ignoring other agents). So, the length of a
path for agent ak that visits vertex v at timestep t+1 is at least
t+1+d(v, gk). Thus, if t+1+d(v, gk) < l(pk), then agent
ak might be able to reach gk via vertex v at timestep t + 1
earlier than by following path pk. As long as the vertex set
Nx is not empty and we have not yet collected enough agents
in As [Line 13], we let the agent move to a random vertex y
in Nx [Line 14] and add any agents to As whose paths collide
with this action [Line 15]. Lastly, we update the state of agent
ak [Line 16] and the vertex set Nx [Line 17].

5.2 Map-Based Neighborhood

The second heuristic is based on the topology of the map
(= graph). In particular, we are interested in the agents that
visit the same intersection vertex, i.e., a vertex with a degree
greater than 2, because a different ordering of the agents to
traverse an intersection vertex could lead to solutions of dif-
ferent qualities. In case that there are not enough agents at
one intersection vertex, we explore the map around the inter-
section vertex to find nearby intersection vertices and collect
agents that visit them as well. This neighborhood is orthogo-
nal by design from the agent-based neighborhood.

Algorithm 2 shows the pseudo-code. We begin by collect-
ing all intersection vertices [Line 1] and picking a random one
[Line 2]. We put this vertex into a queue [Line 3] and perform
a breadth-first search from it. Every time when we pop a ver-
tex x from the queue [Line 6], we examine whether it is an
intersection vertex [Line 7]. If it is, we add the agents that
visit vertex x to the neighborhood As [Line 8] (with details
introduced in the next paragraph). We then add the vertices

Algorithm 2: Generate a map-based neighborhood.

Input: Graph G = (V,E), agents A = {a1, . . . , am},
neighborhood size N , and paths of the agents
P = {p1, . . . , pm}

1 VI ← {v ∈ V | degree(v) ≥ 3};
2 x← a random vertex in VI ;
3 Q← {x}; // Q is a queue
4 As ← ∅;
5 while |Q| > 0 ∧ |As| < N do
6 x← Q.pop();
7 if degree(x) ≥ 3 then
8 As ← GETINTERSECTIONAGENTS(x, P,As);

9 foreach y ∈ V : (x, y) ∈ E do
10 if y has not been visited before then
11 Q.push(y);

12 return As;

13 Function GETINTERSECTIONAGENTS(x, P,As) :
14 T ← max{t ∈ N | ∃pi ∈ P : pi[t] = x}; // T is the

last timestep when a path in P visits vertex x
15 t← a random timestep in [0, T];
16 ∆← 0;
17 while |As| < N ∧∆ ≤ max{t, T − t} do
18 if ∃pi ∈ P : pi[t+∆] = x then
19 As ← As ∪ {ai};

20 if ∃pi ∈ P : pi[t−∆] = x then
21 As ← As ∪ {ai};

22 ∆← ∆+ 1;

23 return As;

adjacent to vertex x to the queue [Lines 9 to 11]. This pro-
cedure is repeated until we have collected N agents in As or
explored the entire map [Line 5].

We use function GETINTERSECTIONAGENTS(x, P,As) to
add those agents to As whose paths in P visit vertex x. We
first pick a random timestep t in the range when agents visit
vertex x [Lines 14 and 15]. We then add agents to As by
iteratively exploring which agents visit vertex x within some
∆ timesteps before or after timestep t until we have collected
N agents in As or explored all timesteps [Line 16 to 22].

5.3 Random Neighborhood

The third heuristic is to select N agents uniformly at random.
Random neighborhoods are a good baseline used in many
LNS approaches [Demir et al., 2012; Song et al., 2020]. Al-
though this sounds naı̈ve, it is surprisingly effective for con-
gested instances, as we later show in Table 2.

6 Adaptive LNS for MAPF

Adaptive LNS (ALNS) [Ropke and Pisinger, 2006] is a strong
variant of LNS as it adapts to what is working on the prob-
lem at hand. It makes use of multiple neighborhood selection
heuristics by recording their relative success in improving the
current solution and choosing the next neighborhood guided
by the most promising heuristic. Given the three aforemen-
tioned heuristics, we instantiate ALNS as described below.

We maintain a weight wi ≥ 0 for each heuristic i that rep-
resents the relative success of heuristic i in improving the
current solution. In our experiments, we use wi = 1 for
all heuristics initially. Then, in each iteration, we select a
heuristic according to the weights to generate a neighbor-
hood. Specifically, we use the roulette wheel selection [Gold-
berg, 1989] for selecting a heuristic. That is, we select heuris-
tic i with probability wi/

∑
j wj . We then use the selected

heuristic to generate a neighborhood and replan the paths
for the agents in the neighborhood. After the new paths are
found, we update the weights of the heuristics according to
how much the new paths improve the solution quality. If we
chose heuristic i in the current iteration, then wi is set to

γmax{
∑

p∈P
−

s

l(p)−
∑

p∈P
+
s

l(p), 0}+ (1− γ)wi,

where γ ∈ [0, 1] is a user-specified reaction factor that con-
trols how quickly the weights react to the changes in the
relative success in improving the current solution. We use
γ = 0.01 in our experiments. The weights of the other heuris-
tics remain the same.

7 Empirical Evaluation

We evaluate our MAPF-LNS on six representative maps from
the MAPF benchmark suite [Stern et al., 2019], namely
empty-8-8 of size 8×8, empty-32-32 of size 32×32, random-
32-32-20 of size 32×32 (denoted as random), warehouse-10-
20-10-2-1 of size 161×63 (denoted as warehouse), ost003d of
size 194×194, and den520d of size 256×257 (see Figure 3).
We use the “random” scenarios from the MAPF benchmark
suite, yielding 25 instances for each map and each number of
agents. In cases where the number of agents that we want to
test exceeds the number of agents in the benchmark suite, we
generate new instances with the start and target vertices be-
ing selected uniformly at random. The algorithms are imple-
mented in C++, and the experiments are conducted on Ubuntu
20.04 LTS on an Intel Xeon 8260 CPU with a memory limit of
8 GB and a time limit of 60s, except for Experiment 1 where
the time limit is 10s and Experiment 7 where the time limit is
600s. For all CBS-based algorithms (i.e., CBS, EECBS, and
BCBS) that we use as sub-algorithms in anytime algorithms,
we use a modern implementation of them with state-of-the-
art CBS improvements, including the WDG heuristic [Li et
al., 2019a], conflict prioritization [Boyarski et al., 2015b],
symmetry reasoning [Li et al., 2019b; Li et al., 2020], and
bypassing [Boyarski et al., 2015a]. Our implementation is
available at https://github.com/Jiaoyang-Li/MAPF-LNS. We
use EECBS(x) to denote EECBS with a suboptimality factor
of x (i.e., it is guaranteed to find a solution whose sum of
costs is at most x times larger than optimal).

Before examining the experimental results in detail, we
show the evolution of the solution in terms of the sum of de-
lays for different algorithms on the same instance in Figure 2.
Traditional algorithms, like EECBS, return a single solution,
shown as a point. Anytime algorithms improve the solution
as time progresses, shown as continuous curves. More details
are provided in Experiment 6. To judge an anytime algorithm,
we are interested in the Area Under the Curve (AUC) since it

In m
Iterations (x 1k) Final sum of delays AUC

In m
Iterations (x 1k) Final sum of delays AUC

P E C P E C E
P

C
P

P E C P E C E
P

C
P

em
p

ty
-8

-8 E
16 1,644 257 275 3 3 3 1.00 1.03

em
p

ty
-3

2
-3

2

E
300 68 36 22 437 450 435 1.28 1.31

24 1,125 170 131 13 13 13 1.00 0.98 350 45 27 17 855 879 855 1.03 1.02
32 1,013 125 98 30 32 31 1.04 1.03 400 29 18 11 1,616 1,614 1,593 1.01 1.02

S
40 1,319 104 86 76 80 71 1.15 1.10

S
450 11 1 1 6,588 26,991 28,544 1.72 1.72

48 770 32 20 1,067 834 969 0.88 0.98 500 3 1 1 37,013 47,055 47,233 1.13 1.13

ra
n

d
o

m E

50 206 60 30 27 28 27 1.05 1.01

w
ar

eh
o

u
se E

150 13 10 3 132 136 133 1.06 1.06
100 71 32 16 143 147 142 1.03 0.98 200 7 5 2 268 291 276 1.10 1.10
150 48 20 10 383 401 382 1.04 1.01

S
250 5 1 0.3 891 1,211 2,977 1.93 3.51

200 24 13 6 871 889 878 1.03 1.03 300 3 1 0.1 1,774 3,903 10,510 1.85 2.74
S 250 9 2 1 4,718 11,131 11,082 1.77 1.77 350 2 0.2 0.1 3,830 14,343 20,783 1.79 1.99

o
st

0
0

3
d

P

100 13 9 1 51 64 79 1.35 3.82

d
en

5
2

0
d

P

500 5 1 0.1 1,788 6,422 9,116 2.53 3.07
200 8 4 0.4 333 495 1,150 1.80 3.92 600 5 1 0.1 3,480 9,742 13,796 2.05 2.46
300 7 2 0.2 1,198 2,139 4,806 1.75 2.95 700 5 0.3 0.1 5,980 15,743 18,678 1.88 2.04
400 5 1 0.1 3,337 7,217 10,344 1.78 2.11 800 4 0.3 0.1 10,149 21,003 24,008 1.55 1.67
500 3 0.3 0.1 8,813 15,171 17,969 1.43 1.54 900 4 0.4 0.1 15,275 27,133 30,371 1.40 1.49

Table 1: Results for MAPF-LNS using various algorithms for replanning. In is the algorithm for finding initial solutions. P, E, C, and S
are short for PP, EECBS, CBS, and PPS, respectively. The success rate for each map and each number of agents is the same as in Figure 3.
Numbers in the AUC columns are the ratios of the average AUC of EECBS/CBS over the average AUC of PP. Numbers in bold correspond
to the cases when EECBS/CBS has a smaller AUC/final sum of delays than PP.

m
Final Sum of delays AUC

m
Final Sum of delays AUC

Rand Agent Map ALNS Rand
ALNS

Agent

ALNS

Map

ALNS
Rand Agent Map ALNS Rand

ALNS

Agent

ALNS

Map

ALNS

em
p

ty
-8

-8

16 3 3 3 3 1.00 1.18 1.02
em

p
ty

-3
2

-3
2 300 453 437 418 408 1.11 1.06 1.01

24 12 13 13 12 0.99 1.12 1.08 350 853 852 794 772 1.10 1.08 1.02
32 30 30 33 29 1.04 1.04 1.14 400 1,559 1,613 1,407 1,423 1.08 1.09 0.99
40 83 76 85 74 1.16 1.04 1.11 450 4,626 7,774 5,618 4,469 0.96 1.31 1.18
48 480 1,051 583 434 1.10 2.33 1.30 500 32,060 38,933 34,510 30,830 1.02 1.10 1.03

ra
n

d
o

m

50 25 27 28 25 0.99 1.06 1.07

w
ar

eh
o

u
se

150 138 134 146 130 1.11 1.03 1.19
100 138 143 145 139 1.02 1.04 1.05 200 300 280 326 283 1.11 0.98 1.17
150 391 382 385 373 1.05 1.02 1.03 250 1,535 884 1257 831 1.41 1.09 1.53
200 881 870 864 838 1.04 1.03 1.02 300 2,706 1,708 2,851 1,736 1.27 1.13 1.38
250 3,388 4,700 3,843 3,988 0.90 1.13 1.01 350 4,555 3,694 6,917 3,256 1.14 1.11 1.28

o
st

0
0

3
d

100 59 51 211 44 2.59 1.00 5.10

d
en

5
2

0
d

500 8,451 1,752 5,288 1,661 2.99 0.96 2.13
200 1,106 334 1,192 330 3.41 0.96 3.08 600 13,087 3,415 7,669 3,462 2.31 0.94 1.64
300 3,964 1,215 2,985 1,227 2.46 0.92 1.81 700 17,364 6,209 11,024 6,597 1.82 0.93 1.37
400 8,779 3,289 5,777 3,343 1.92 0.96 1.42 800 22,607 9,882 14,969 10,054 1.61 0.95 1.25
500 15,386 8,926 11,947 9,207 1.40 0.97 1.18 900 28,342 15,367 19,956 15,746 1.41 0.97 1.15

Table 2: Results for MAPF-LNS using LNS with various neighborhood selection heuristics w.r.t. MAPF-LNS using ALNS. Rand is short for
Random. Numbers in bold correspond to the cases when LNS with a single heuristic have a smaller AUC/final sum of delays than ALNS.

by the sum of costs of the individual shortest paths that ig-
nore collisions with other agents. Overall, the suboptimality
of MAPF-LNS is small. For the large maps (i.e., the ware-
house, ost003d, and den520d maps), it is never worse than
14%, and almost certainly much better. For the small maps
(i.e., the empty and random maps), it can grow large for large
numbers of agents, but the upperbound on the suboptimality
is highly misleading since, for these extremely congested in-
stances, the sum of costs of the optimal solution (if we could
find it) is probably much larger than that of the individual
shortest paths. When we use only instances for which we can
find optimal solutions, the (actual) suboptimality of MAPF-
LNS is much smaller. Among the 750 (easier) instances used
in Experiment 6, CBS solved 199 instances to optimality
within 60s. Among these instances, MAPF-LNS finds op-
timal solutions for 171 instances and <0.01%, <0.1%, and
<1% suboptimal solutions for 175, 195, and 198 instances,

respectively. The worst solution is 1.35% suboptimal.

Experiment 6: Alternative anytime algorithms. We
compare MAPF-LNS with the state-of-the-art anytime al-
gorithm Anytime BCBS. Anytime BCBS is based on the
bounded-suboptimal algorithm BCBS, which is much slower
than more recent bounded-suboptimal algorithms, such as
EECBS. We therefore also created an anytime version of
EECBS based on restarting. Anytime EECBS starts with an
initial suboptimality factor of 2. Whenever a solution with
the sum of costs S is found, together with a lower bound L,
the suboptimality factor is updated to 1 + 0.99× (S/L− 1),
and the search restarts. Since the value of S/L − 1 is guar-
anteed to be at least 1% smaller after each iteration, it will
converge to 0 after a finite number of iterations. That is, the
solutions of Anytime EECBS are guaranteed to converge to
optimal. MAPF-LNS uses EECBS(2) to generate an initial
solution (i.e., the same initial solution as used by Anytime

m
Iterations (x 1k) AUC

m
Iterations (x 1k) AUC

N2 N4 N8 N16 N2
N4

N8
N4

N16
N4

N2 N4 N8 N16 N2
N4

N8
N4

N16
N4

em
p

ty
-8

-8

16 3,268 1,548 832 510 1.25 0.97 0.97

em
p

ty
-3

2
-3

2 300 172 87 33 17 1.18 0.92 0.99
24 2,708 1,455 800 451 1.39 0.89 0.88 350 117 55 20 10 1.15 0.98 1.11
32 2,558 1,236 655 381 1.38 0.91 0.87 400 71 33 13 6 1.09 1.00 1.17
40 2,727 1,593 809 431 1.71 0.91 1.84 450 27 15 3 1 1.19 1.54 1.85
48 1,971 1,363 226 52 1.12 3.59 4.20 500 5 4 1 0.4 1.04 1.13 1.19

ra
n

d
o

m

50 451 257 146 81 1.11 0.96 0.95

w
ar

eh
o

u
se

150 28 19 11 6 1.22 0.95 0.89
100 206 103 49 28 1.10 0.94 0.94 200 14 9 5 2 1.13 0.94 0.93
150 137 58 24 14 1.11 0.96 0.96 250 12 6 3 2 1.51 1.06 1.09
200 77 30 11 6 1.12 0.98 1.05 300 8 4 2 1 1.27 1.14 1.12
250 35 12 4 2 0.99 1.29 1.57 350 4 2 1 0.4 1.21 1.08 1.16

o
st

0
0

3
d

100 28 19 10 5 2.27 0.82 0.87

d
en

5
2

0
d

500 10 7 3 1 2.05 0.85 0.91
200 15 11 6 3 2.44 1.17 1.14 600 9 6 3 1 1.77 0.85 0.83
300 11 7 3 1 1.81 1.00 0.97 700 8 5 2 1 1.53 0.83 0.81
400 8 5 2 1 1.66 0.90 0.95 800 7 5 2 1 1.43 0.83 0.85
500 5 3 1 0.4 1.31 0.97 1.02 900 6 4 2 1 1.31 0.91 0.84

Table 3: Results for MAPF-LNS using neighborhood sizes of 2 (denoted as N2), 4 (denoted as N4), 8 (denoted as N8), and 16 (denoted as
N16). Numbers in bold correspond to the neighborhood size with the smallest AUC. If no numbers are in bold, N4 has the smallest AUC.

N m
Sum of delays Sub-

N m
Sum of delays Sub-

N m
Sum of delays Sub-

Initial Final opt Initial Final opt Initial Final opt

em
p

ty
-8

-8

16 16 7 3 ≤1.03

em
p

ty
-3

2
-3

2 8 300 1,515 367 ≤1.06

ra
n

d
o

m

16 50 47 24 ≤1.02
16 24 33 11 ≤1.09 8 350 2,740 743 ≤1.10 16 100 299 130 ≤1.06
16 32 79 25 ≤1.16 8 400 4,445 1,374 ≤1.16 16 150 914 346 ≤1.10
8 40 1,314 63 ≤1.30 4 450 40,513 5,121 ≤1.54 8 200 2,139 792 ≤1.18
4 48 2,586 668 ≤3.67 4 500 55,057 33,554 ≤4.16 4 250 24,455 3,390 ≤1.60

w
ar

eh
o

u
se

16 150 261 124 ≤1.01

o
st

0
0

3
d

8 100 1,338 37 ≤1.00

d
en

5
2

0
d

8 500 12,002 869 ≤1.01
16 200 526 266 ≤1.02 4 200 4,103 346 ≤1.01 8 600 16,424 2,034 ≤1.02
8 250 13,199 635 ≤1.03 8 300 8,129 1,098 ≤1.02 16 700 20,713 4,473 ≤1.04
8 300 18,587 1,400 ≤1.06 8 400 13,634 2,427 ≤1.04 8 800 25,885 7,408 ≤1.05
4 350 25,539 3,979 ≤1.14 8 500 19,914 8,223 ≤1.11 16 900 31,888 12,186 ≤1.08

Table 4: Solution quality of MAPF-LNS. Numbers in the Subopt columns are upperbounds on the suboptimality.

m
Success rate Time to sol Iterations

m
Success rate Time to sol Iterations

B LNS B LNS B E LNS B LNS B LNS B E LNS

em
p

ty
-8

-8

8 1.00 1.00 0.0002 0.0002 1 2 1,053k

em
p

ty
-3

2
-3

2 100 1.00 1.00 0.05 0.02 10 7 111k
16 1.00 1.00 0.0012 0.0005 2 4 524k 200 1.00 1.00 4.21 0.11 15 7 55k
24 1.00 1.00 0.01 0.0018 8 11 462k 300 0.72 1.00 16.96 0.45 8 5 18k
32 1.00 1.00 0.05 0.01 7 11 377k 400 0.00 1.00 - 3.36 - 4 7k
40 0.60 1.00 0.87 0.43 5 4 401k 500 0.00 1.00 - 33.33 - 1 1k

ra
n

d
o

m

50 1.00 1.00 0.06 0.02 17 10 78k

w
ar

eh
o

u
se

50 1.00 1.00 0.23 0.03 3 3 13k
100 0.96 1.00 0.88 0.10 11 8 27k 100 0.92 1.00 1.54 0.12 23 8 12k
150 0.88 1.00 9.63 0.42 7 6 13k 150 0.92 1.00 7.65 0.90 17 5 6k
200 0.08 1.00 39.60 1.50 2 6 6k 200 0.80 1.00 27.00 2.86 4 3 3k
250 0.00 1.00 - 5.00 - 4 4k 250 0.28 1.00 33.04 4.67 6 2 2k

o
st

0
0

3
d

50 1.00 1.00 0.30 0.06 2 5 7k

d
en

5
2

0
d

100 0.92 1.00 0.69 0.26 2 4 5k
100 0.92 1.00 2.42 0.22 6 6 5k 200 0.68 1.00 4.35 0.88 5 5 3k
150 0.84 1.00 6.98 1.48 4 4 3k 300 0.44 1.00 12.39 1.83 3 3 2k
200 0.52 1.00 18.20 1.86 2 3 2k 400 0.08 1.00 20.98 3.16 1 2 2k
250 0.16 1.00 29.72 2.88 3 1 2k 500 0.00 1.00 - 3.58 - 1 1k

Table 5: Comparison of MAPF-LNS (denoted as LNS) against Anytime BCBS (denoted as B) and Anytime EECBS (denoted as E) on easier
instances. Numbers in the Time to sol (short for runtime to the initial solution) and Iterations columns are averaged over all instances solved
by each algorithm. We omit the columns for Anytime EECBS when its values are always the same as the ones of MAPF-LNS. Numbers in
bold correspond to the largest success rates or the smallest runtimes to the initial solution.

EECBS), ALNS with a neighborhood size of 16 to generate
neighborhoods, and PP to replan. Since Anytime BCBS and
Anytime EECBS cannot find solutions for many of the in-

stances used in our previous experiments, we use instances
with fewer agents than before in this experiment. Table 5
summarizes the success rate, runtime to the initial solutions,

References
[Barer et al., 2014] Max Barer, Guni Sharon, Roni Stern, and Ariel

Felner. Suboptimal variants of the conflict-based search algo-
rithm for the multi-agent pathfinding problem. In SoCS, pages
19–27, 2014.

[Björdal et al., 2020] Gustav Björdal, Pierre Flener, Justin Pearson,
Peter J. Stuckey, and Guido Tack. Solving satisfaction problems
using large-neighbourhood search. In CP, pages 55–71, 2020.

[Boyarski et al., 2015a] Eli Boyarski, Ariel Felner, Guni Sharon,
and Roni Stern. Don’t split, try to work it out: Bypassing con-
flicts in multi-agent pathfinding. In ICAPS, pages 47–51, 2015.

[Boyarski et al., 2015b] Eli Boyarski, Ariel Felner, Roni Stern,
Guni Sharon, David Tolpin, Oded Betzalel, and Solomon Eyal
Shimony. ICBS: Improved conflict-based search algorithm for
multi-agent pathfinding. In IJCAI, pages 740–746, 2015.

[Boyarski et al., 2020] Eli Boyarski, Ariel Felner, Daniel Harabor,
Peter J. Stuckey, Liron Cohen, Jiaoyang Li, and Sven Koenig.
Iterative-deepening conflict-based search. In IJCAI, pages 4084–
4090, 2020.

[Cohen et al., 2018] Liron Cohen, Matias Greco, Hang Ma, Carlos
Hernández, Ariel Felner, T. K. Satish Kumar, and Sven Koenig.
Anytime focal search with applications. In IJCAI, pages 1434–
1441, 2018.

[Demir et al., 2012] Emrah Demir, Tolga Bektas, and Gilbert La-
porte. An adaptive large neighborhood search heuristic for the
pollution-routing problem. European Journal of Operational Re-
search, 223(2):346–359, 2012.

[Erdmann and Lozano-Perez, 1987] Michael Erdmann and Tomas
Lozano-Perez. On multiple moving objects. Algorithmica, 2(1-
4):477, 1987.

[Gange et al., 2019] Graeme Gange, Daniel Harabor, and Peter J.
Stuckey. Lazy CBS: Implicit conflict-based search using lazy
clause generation. In ICAPS, pages 155–162, 2019.

[Goldberg, 1989] David E. Goldberg. Genetic Algorithms in Search
Optimization and Machine Learning. Addison-Wesley, 1989.

[Hoang et al., 2018] Khoi D. Hoang, Ferdinando Fioretto, William
Yeoh, Enrico Pontelli, and Roie Zivan. A large neighboring
search schema for multi-agent optimization. In CP, pages 688–
706, 2018.

[Lam and Bodic, 2020] Edward Lam and Pierre Le Bodic. New
valid inequalities in branch-and-cut-and-price for multi-agent
path finding. In ICAPS, pages 184–192, 2020.

[Laurent et al., 2021] Florian Laurent, Manuel Schneider, Chris-
tian Scheller, Jeremy D. Watson, Jiaoyang Li, Zhe Chen,
Yi Zheng, Shao-Hung Chan, Konstantin Makhnev, Oleg Svid-
chenko, Vladimir Egorov, Dmitry Ivanov, Aleksei Shpilman, Ev-
genija Spirovska, Oliver Tanevski, Aleksandar Nikov, Ramon
Grunder, David Galevski, Jakov Mitrovski, Guillaume Sartoretti,
Zhiyao Luo, Mehul Damani, Nilabha Bhattacharya, Shivam
Agarwal, Adrian Egli, Erik Nygren, and Sharada P. Mohanty.
Flatland competition 2020: MAPF and MARL for efficient train
coordination on a grid world. In PMLR, 2021.

[Li et al., 2019a] Jiaoyang Li, Ariel Felner, Eli Boyarski, Hang Ma,
and Sven Koenig. Improved heuristics for multi-agent path find-
ing with conflict-based search. In IJCAI, pages 442–449, 2019.

[Li et al., 2019b] Jiaoyang Li, Daniel Harabor, Peter J. Stuckey,
Hang Ma, and Sven Koenig. Symmetry-breaking constraints for
grid-based multi-agent path finding. In AAAI, pages 6087–6095,
2019.

[Li et al., 2020] Jiaoyang Li, Graeme Gange, Daniel Harabor, Pe-
ter J. Stuckey, Hang Ma, and Sven Koenig. New techniques
for pairwise symmetry breaking in multi-agent path finding. In
ICAPS, pages 193–201, 2020.

[Li et al., 2021a] Jiaoyang Li, Zhe Chen, Daniel Harabor, Peter J.
Stuckey, and Sven Koenig. Anytime multi-agent path finding via
large neighborhood search: Extended abstract. In AAMAS, pages
1581–1583, 2021.

[Li et al., 2021b] Jiaoyang Li, Zhe Chen, Yi Zheng, Shao-Hung
Chan, Daniel Harabor, Peter J. Stuckey, Hang Ma, and Sven
Koenig. Scalable rail planning and replanning: Winning the 2020
flatland challenge. In ICAPS, 2021.

[Li et al., 2021c] Jiaoyang Li, Wheeler Ruml, and Sven Koenig.
EECBS: bounded-suboptimal search for multi-agent path find-
ing. In AAAI, 2021.

[Ropke and Pisinger, 2006] Stefan Ropke and David Pisinger. An
adaptive large neighborhood search heuristic for the pickup and
delivery problem with time windows. Transportation Science,
40(4):455–472, 2006.

[Sajid et al., 2012] Qandeel Sajid, Ryan Luna, and Kostas E.
Bekris. Multi-agent pathfinding with simultaneous execution of
single-agent primitives. In SoCS, pages 88–96, 2012.

[Sharon et al., 2015] Guni Sharon, Roni Stern, Ariel Felner, and
Nathan R. Sturtevant. Conflict-based search for optimal multi-
agent pathfinding. Artificial Intelligence, 219:40–66, 2015.

[Shaw, 1998] Paul Shaw. Using constraint programming and local
search methods to solve vehicle routing problems. In CP, pages
417–431, 1998.

[Song et al., 2020] Jialin Song, Ravi Lanka, Yisong Yue, and Bis-
tra Dilkina. A general large neighborhood search framework for
solving integer programs. In NeurIPS, 2020.

[Standley and Korf, 2011] Trevor Scott Standley and Richard E.
Korf. Complete algorithms for cooperative pathfinding problems.
In IJCAI, pages 668–673, 2011.

[Stern et al., 2019] Roni Stern, Nathan R. Sturtevant, Ariel Felner,
Sven Koenig, Hang Ma, Thayne Walker, Jiaoyang Li, Dor Atz-
mon, Liron Cohen, T. K. Satish Kumar, Eli Boyarski, and Ro-
man Bartak. Multi-agent pathfinding: Definitions, variants, and
benchmarks. In SoCS, pages 151–159, 2019.

[Vedder and Biswas, 2021] Kyle Vedder and Joydeep Biswas. X*:
Anytime multi-agent path finding for sparse domains us-
ing window-based iterative repairs. Artificial Intelligence,
291:103417, 2021.

[Wang and Botea, 2011] Ko-Hsin Cindy Wang and Adi Botea.
MAPP: a scalable multi-agent path planning algorithm with
tractability and completeness guarantees. Journal of Artificial
Intelligence Research, 42:55–90, 2011.

[Wang and Goh, 2015] Wenjie Wang and Wooi Boon Goh. An it-
erative approach for makespan-minimized multi-agent path plan-
ning in discrete space. Autonomous Agents and Multi-Agent Sys-
tems, 29(3):335–363, 2015.

[Yu and LaValle, 2013] Jingjin Yu and Steven M. LaValle. Struc-
ture and intractability of optimal multi-robot path planning on
graphs. In AAAI, pages 1444–1449, 2013.

	Introduction
	MAPF Definition
	Existing MAPF Algorithms
	Large Neighborhood Search for MAPF
	Neighborhood Selection
	Agent-Based Neighborhood
	Map-Based Neighborhood
	Random Neighborhood

	Adaptive LNS for MAPF
	Empirical Evaluation
	Conclusions

