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Eye-Track Modeling of Problem-Solving in Virtual Manufacturing
Environments

Abstract

Problem-solving focuses on defining and analyzing problems, then finding viable solutions
through an iterative process that requires brainstorming and understanding of what is known and
what is unknown in the problem space. With rapid changes of economic landscape in the United
States, new types of jobs emerge when new industries are created. Employers report that
problem-solving is the most important skill they are looking for in job applicants. However, there
are major concerns about the lack of problem-solving skills in engineering students. This lack of
problem-solving skills calls for an approach to measure and enhance these skills. In this research,
we propose to understand and improve problem-solving skills in engineering education by
integrating eye-tracking sensing with virtual reality (VR) manufacturing. First, we simulate a
manufacturing system in a VR game environment that we call a VR learning factory. The VR
learning factory is built in the Unity game engine with the HTC Vive VR system for navigation
and motion tracking. The headset is custom-fitted with Tobii eye-tracking technology, allowing
the system to identify the coordinates and objects that a user is looking at, at any given time
during the simulation. In the environment, engineering students can see through the headset a
virtual manufacturing environment composed of a series of workstations and are able to interact
with workpieces in the virtual environment. For example, a student can pick up virtual plastic
bricks and assemble them together using the wireless controller in hand. Second, engineering
students are asked to design and assemble car toys that satisfy predefined customer requirements
while minimizing the total cost of production. Third, data-driven models are developed to
analyze eye-movement patterns of engineering students. For instance, problem-solving skills are
measured by the extent to which the eye-movement patterns of engineering students are similar
to the pattern of a subject matter expert (SME), an ideal person who sets the expert criterion for
the car toy assembly process. Benchmark experiments are conducted with a comprehensive
measure of performance metrics such as cycle time, the number of station switches, weight,
price, and quality of car toys. Experimental results show that eye-tracking modeling is efficient
and effective to measure problem-solving skills of engineering students. The proposed VR
learning factory was integrated into undergraduate manufacturing courses to enhance student
learning and problem-solving skills.

1. Introduction

Manufacturing serves as a key wealth-creation engine and a vital provider of jobs in the United
States. Rapid technological advances call upon manufacturing industries to evolve and respond
to fierce-competing markets, new production paradigms, and data proliferation [1]. As the future
workforce in manufacturing industries, engineering students need efficient and effective learning
schemes to keep up with the technological advancements. A learning factory was developed by
the Pennsylvania State University in 1994 to provide a close-to-industry environment to
engineering students [2]. This learning factory involves a college-wide infrastructure to support
industry-related design projects. Students can be involved in hands-on activities and solve real-
world problems in a realistic manufacturing environment. However, some universities may not
be able to introduce the latest manufacturing systems and technologies into the learning factory
due to limited financial resources. Also, manufacturing safety is important to reduce the risks of



workplace injury. Injuries to students may cause significant compensation and medical treatment
costs [3]. Therefore, it is imperative to develop a cost-effective and safe learning environment for
engineering students to get hands-on training.

Virtual reality (VR) has emerged as a new technology which simulates the real-world experience
in an immersive virtual environment. This combined with the advances in computational power
and the maturation of game engine technologies allow students to interact with virtual objects in
ways never possible before. Therefore, VR can serve as an enabling tool to mimic the physical
learning factory. A VR learning factory is flexible to changes in manufacturing systems, thereby
providing students with the state-of-the-art manufacturing technologies. On the other hand, the
availability of eye-tracking sensing technology facilitates the acquisition and analysis of eye
movements in the VR learning factory. Eye movements allow for revealing cognitive processes
of engineering students while solving problems [4]. Thus, it is significant to integrate the VR
learning factory with the data analytics of eye movements, so as to understand and enhance
problem-solving skills of engineering students.

In this research, we integrate gaming technology, VR and eye-tracking sensing to evaluate and
enhance problem-solving skills of engineering students. First, we simulate a learning factory in a
VR game environment. The VR learning factory is built in the Unity game engine with the HTC
Vive VR system for navigation and motion tracking. A headset custom-fitted with Tobii eye-
tracking technology identifies the coordinates and objects a user is looking at. In the VR
environment, engineering students see through the headset a virtual learning factory composed of
a series of workstations and can interact with the workpieces in the virtual environment. Second,
engineering students are asked to design and assemble car toys that satisfy predefined customer
requirements while minimizing the total cost of production in the VR learning factory. Third, eye
movements of engineering students are analyzed with data-driven models to evaluate the
problem-solving skills of engineering students.

2. Relevant Literature

2.1 Learning Factory

Understanding manufacturing processes, dealing with change, and working collaboratively have
been reported as the most important technical challenges that new engineering graduates face in
manufacturing industries [5]. It is crucial to bridge the gap between engineering graduates’
problem-solving skills and competencies needed in manufacturing industries. The learning
factory was first developed for students to gain hands-on experience by applying classroom
knowledge to solve real-world engineering problems offered by manufacturing industries [2]. In
the past decade, the learning factory was tailored and evolved to enhance hands-on training and
learning experience for students and practitioners [6]. For example, the learning factory for lean
production at the Technical University of Munich is designed for implementing theoretical
principles into a real lean production environment [7]. In the new era of Industry 4.0, a
significant number of learning factories strive to incorporate digital twin concepts through
creating their virtual representations. However, convergence between physical and virtual
learning factories remains to be an unresolved challenge [8]. The availability of VR enables the
development of virtual learning factories by providing an immersive virtual environment in a 3D
simulation. VR is flexible to changes in modern manufacturing systems and encourages



collaboration through a shared visualization [9]. Combined with player modeling techniques,
learning factories can bring about effective learning experiences for students [10]. It is promising
to utilize VR technology to enhance the learning experience in learning factories.

2.2 Eye-Tracking in Complex Problem-Solving

Complex problem-solving requires many cognitive activities. The availability of eye-tracking
technology facilitates the study of cognitive activities through measuring an individual’s eye
movements [11], [12]. Eye-tracking has been utilized to evaluate the behaviors of individuals
when they solve science problems [13]. In this study, a group of students is displayed multi-
choice problems in biology, chemistry, and physics. Eye-tracking data including the location of
eye fixation on the computer screen, scan path, durations of fixation and between fixations are
recorded when students solve problems. It was found that students with higher levels of a
specific domain knowledge show quantifiably different eye-movement patterns from students
who have lower-level knowledge in that specific domain. Moreover, eye-tracking data have been
shown effective to distinguish students with different levels of expertise. Eye-tracking data such
as fixation duration and the number of fixations are also used to study the role of diagrams in
problem-solving [14]. Eye-tracking data analysis suggests that students split attentions between
the diagram and text and tend to spend less time on the text. It is shown that the cognitive load is
reduced when both formats are presented in problems and more cognitive resources are saved for
further steps in problem-solving. All these research studies suggest that eye-tracking is effective
in studying the problem-solving processes by revealing individuals’ cognitive activities.
However, little has been done to quantify the problem-solving performance of individuals.
Therefore, it is imperative to utilize data-driven analytics of eye-tracking data to evaluate and
enhance problem-solving skills, especially in the engineering field.

2.3 Quantification and Modeling of Problem-Solving

Quantification and modeling of problem-solving skills can help in understanding how problem
solvers analyze and solve the problems. This allows for developing effective strategies for
teaching and enhancing problem-solving skills. A few studies discussed the development of
models to quantify and understand problem-solving. For example, a study was conducted to
model visual problem-solving as analogical reasoning [15]. The study developed a model based
on comparing images via structure mapping which involves aligning the common relational
structure in two images to identify commonalities and differences. It was found that the proposed
model matches adult human performance and that problems which are difficult for the model are
also difficult for people. In another study, a modeling approach was proposed to help students
learn expert problem-solving [16]. The proposed approach allows modeling physics to be
integrated into a typical introductory college mechanics course. A third study developed models
of problem-solving to study children’s problem-solving process [17]. According to the study, the
conception of modeling the problem-solving process could provide a unifying framework for
thinking about problem-solving in children.

In this research, we integrate eye-tracking and VR to collect data from participants during the
problem-solving process. The collected data is used to develop models that allow for quantifying
and understanding the behavior of problem solvers and how their performance is compared to
experts. Performance measures are then developed to reflect the problem-solving skills.



3. Research Methodology

The proposed research methodology develops a VR learning factory to enhance student
understanding of manufacturing concepts. Data-driven models are integrated with eye-tracking
sensing to evaluate and enhance problem-solving skills of engineering students in the VR
learning factory. As shown in Figure 1, a physical learning factory is first developed to simulate
a manufacturing system where students can assemble physical car toys [18]. Second, a VR
learning factory is developed to mimic the physical factory. Eye-tracking sensing is integrated
with VR to record students’ eye movements during the problem-solving process. Third, problem-
solving skills of students are measured through eye-tracking data analytics. The analytical
models are evaluated by comparison with a VR-based composite index which reveals the
students’ assembly performance in the VR learning factory.
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Figure 1. Research methodology.

3.1 VR Simulation of Learning Factory

In this research, a VR learning factory as shown in Figure 2 is developed to help engineering
students understand manufacturing concepts and processes and gain hands-on training. The VR
learning factory was built in the Unity game engine and worked with the HTC Vive VR headset,
wireless controllers, and base stations for navigation and motion tracking [18]. Through the
headset, students were presented with a virtual factory with a series of workstations. They were
able to interact with the virtual environment and objects with wireless controllers.

To study the problem-solving of engineering students, we invited them to complete some
assembly tasks. Assembly tasks given to students involved the assembly of car toys according to
a set of customer requirements as shown in Figure 3. Students needed to minimize the total cost
of car toy assembly while satisfying customer requirements. Hence, the assembly task consists of
four main functions: design, sourcing, manufacturing, and inspection.
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Figure 2. Workstations in VR learning factory: (a) component selection station; (b) base station;
(c) roof station.

‘ Car Option #1

Car Option #2

(a) Vehicle must have four tires (with axles), windshield, steering wheel, and roof.
(b) All tires must be medium soft.

(c) Vehicle base width and length are 4 dots and 8 dots, respectively.

(d) Vehicle weight between 30 and 40 grams.

(e) Vehicle height must fit a sitting driver.

(£) Maximum different colors of the car is 6 (including color of tires and steering).
(g) Car price is $10,

(a) Vehicle must have four tires (with axles), windshield. steering wheel, and roof.
(b) All rires must be small soft.

(c) Vehicle base width and length are 4 dots and 6 dots. respectively.

(d) Vehicle weight between 20 and 30 grams.

(e) Vehicle height must fit a sitting driver.

(f) Maximum different colors of the car is 5 (including color of tires and steering).
(g) Car price is 59.

[ Car Option #3

Car Option #4

(a) Vehicle must have four tires (with axles), windshield, steering wheel, and roof.
(b) All tires must be large soft.

(¢) Vehicle base width and length are 6 dots and 8 dots, respectively.

(d) Vehicle weight between 55 and 70 grams.

(e) Vehicle height must fit a sitting driver.

(£) Maximum different colors of the car is 7 (including color of tires and steering).
(g) Car price is $25.

(a) Vehicle must have four tires (with axles), windshield, steering wheel, and roof.
(b) All tires must be medium hard.

(¢} Vehicle base width and length are 4 dots and 10 dots, respectively.

(d) Vehicle weight between 30 and 35 grams.

(e) Vehicle height must fit a sitting driver.

(f) Maximum different colors of the car is 6 (including color of tires and steering).
(g) Car price is §7.5.

Car Price: $ 5.81

Figure 3. Examples of customer requirements for the car toy assembly.

Once students entered the VR learning factory, audio instructions on how to interact with the
virtual environment were presented to them. After learning about the instructions, students could
press a button to start the car toy assembly. There are seven workstations in the VR learning
factory. The requirement station is the first workstation where students were shown a set of
customer requirements (see Figure 3). After understanding the customer requirements, students
moved to a component selection station (see Figure 2 (a)) and selected components by pointing
at them and pressing a button on the wireless controller. There are 8 colors to be selected for
each component. Then, students could complete the assembly process by assembling base, axle,
tire and rim, front and trunk, windshield, sides, and roof in subsequent workstations as shown in
Figure 4. Students could switch between seven workstations during the assembly process.
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Figure 4. Processes for car toy assembly [19].




Eye-movement patterns including locations and number of fixations, saccades, and students’
choices of components were recorded along the assembly process. Data-driven models are
incorporated with eye-movement patterns to analyze students’ problem-solving skills. For
example, problem-solving skills are measured by the extent to which the eye-movement patterns
of engineering students are similar to the pattern of an SME, a person who will set the expert
criterion for the car toy assembly process. In our case, the instructor who led the development of
the manufacturing simulations serves as SME.

3.2 Mean Squared Error for Eye Gaze Heatmap Comparison

Eye-tracking data generate compelling visualizations that are useful for the study of problem-
solving. An eye gaze heatmap, as one of the visualizations, is developed for each student and the
SME based on the number of fixations that one looks at components in the component selection
station. As shown in Figure 5, the red color represents a relatively large number of fixations,
while the blue color represents a relatively small number of fixations.

Pixel 2 : Pixel 2
R: 58

G: 207 *
B: 98

-
ki
-

(a) Eye gaze heatmap of a student (b) Eye gaze heatmap of the SME

Figure 5. Eye gaze heatmaps developed based on the number of fixations on each component for
every student and the SME. The red (or blue) color represents a relatively large (or small)
number of fixations. (a) the eye gaze heatmap of a student; (b) the eye gaze heatmap of an SME.

The comparison of eye gaze heatmaps between a student and the SME serves as one of the
measures of engineering problem-solving skills. Mean squared error (MSE) is widely used for
image comparison [20]. We use the eye gaze heatmap of an SME as the golden standard and
compute MSE of all pixels on eye gaze heatmaps for each student in terms of RGB color as:

N

M
1
MSE = 2 3" 3 [(Roun = Rinn)? + Gonn = Ginn)® + B = Binn)’]

m=1n=1

where M is the number of pixels along the horizontal axis, N is the number of pixels on the
vertical axis, 3 is the chromaticity number in an RGB color which are red, green, and blue, R,
Gmn, and B,,,, are the RGB color of each pixel on a student’s heatmap, R, Gy, and By, are



the RGB color of each pixel on the SME’s heatmap. Examples of RGB colors of two pixels are
as shown in Figure 5. MSE of the student in Figure 5 (a) is 5.56.

3.3 Heterogeneous Recurrence Analysis of Scan Path and Pick Path

A scan path and a pick path are generated based on the eye-tracking data of each student or the
SME as shown in Figure 6. A scan path provides the path that a student or the SME scans as they
view the component selection board. As shown in Figure 6 (a), the green dot represents the
starting point where the student starts to scan, while the red dot is the endpoint of the scan path.
On the other hand, a pick path is an ordered set of selected components. Similarly, in Figure 6
(b), blue dot and red dot represent a starting point and an endpoint of the pick path, respectively.
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(a) Scan path of a student (b) Pick path of a student

Figure 6. Scan path and pick path of a student: (a) scan path. Green and red dots represent
starting and endpoints of the scan path, respectively; (b) pick path. Blue and red dots are starting
and endpoints of the pick path, respectively.
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Figure 7. 28 states on the component selection board.



The selection board in the component selection station is divided into 28 states, that is, each
component represents a state as shown in Figure 7. A unique value of categorical variable k is
assigned to each state s(n), k € {1, 2, ..., K}. K = 28 in this case. We obtain a sequence of
categorical variables as one views the selection board.
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Figure 8. IFS plot of the scan path in Figure 6 (a).

In this research, an iteration function system (IFS) is introduced to represent heterogeneous
recurrences of the sequence of categorical variables [21] [22]. IFS maps each state s(n) to a
point [c,(n), ¢, (n)] in the 2D coordinate system as:

s(n) » k €{1,2,.
[Cx(n)l — ¢ (k lcx(n -1) > _ [a 0 ch(n - 1)1 cos (k % —)
cy(n)] leyn=1)]) Lo al |c,(n— sin (k x—)

C"(O)] = [g], « is a control parameter that prevents overlaps of two states in the 2D graph.

cy(0)
Figure 8 shows the recurrences of 28 states in the scan path of Figure 6 (a). This contractive
mapping clusters all the states with the same categorical variable k at local regions in the 2D
graph. State 21, 22, 23, 24, 25, 26, and 27 are missing in Figure 8 because the numbers of
fixations in these 7 states are 0, that is, the student did not look at components in 7 states. The
zoomed-in Figure 8 represents transition sequences from all states to State 19. Note that
transitions from State 1~7, 10~13, 15, 17, 18, 21~27 to State 19 are missing because the
transition probabilities from these states to State 19 are zeros.

where [

We denote clustered states as heterogeneous recurrence sets, i.e., Wy ., x, =

{p(kilky, ... ke)is(n) = ky,s(n—1) = ky, ..., s(n—t + 1) = ki, ky, ky, o ke €{1,2,...,K}
Furthermore, we extract 3 quantifiers, i.e., heterogeneous recurrence rate (HRR), heterogeneous
mean (HMean), and heterogeneous entropy (HENT) from the heterogeneous recurrence set

Wi, k... k. [23]. 3 heterogeneous recurrence quantifiers are defined based on the recurrence set

Wkl,kz,...,kt'



HRR measures the percentage of recurrences within the set Wy i, k.-

VT/k ka,...k
HRR = [ —- 2=t

where VT/k Lka,..k, denotes the cardinality of set Wy k. k., N is the total number of states in the
state transition process.

2

Recurrence set Wy, k., ..k, involves the same t-state sequence that is clustered at local regions in
Figure 8. But addresses of t-state sequences in the set Wy i, ., are not exactly the same and are
distributed in the local region. Thus, a distance matrix in the set is computed as:

D iyt () = || " — ¢’j|_
¢l,¢)] € Wk11k2r'"rkt; l,] = 1,2, ,W, i <]

where ¢! and ¢/ are the ith and jth elements in the set W, Lky,k,- HMean is defined as the
average distance of Dy x, ., to measure the average distance among states in the set Wy x, k.

5 wow
HMean = =—Z Z Dy, ey iee (6 1)
W-D& j=it1

The distance matrix Dy, , .k, (i, J) is divided into B equal bins from 0 to max (D) and the
probability is computed as:

3

p(b) =

1 b—-1 . b
ARy #{ B max(D) < Dy, i,k (6, )) < Emax(D)}, b=1.2,..,B
HENT is defined as the Shannon entropy of the probability distribution of Dy, «,(i,j) and
describes the uncertainty in the recurrence of a t-state sequence:

B
HENT = — ) p(b)Inp(b)

4. Experimental Results

There were 25 participants including 24 students and 1 SME in the experiment. All 24 students
were undergraduate engineering students. The average age was around 18. We recorded their
eye-tracking data while assembling car toys in the VR learning factory. A synthesized quantifier
was developed to combine 7 quantifiers extracted from eye-tracking data, i.e., MSE of heatmap,
HRRs, HENTs, and HMeans of scan path and pick path. Meanwhile, to validate the effectiveness
of the synthesized quantifier in measuring problem-solving skills, a VR-based composite index



was designed to serve as the ground truth of students’ assembly performance in the VR learning
factory. The protocol for the simulation experiments was reviewed and approved by the
university’s Office for Research Protections (IRB #: STUDY00009232).

4.1 VR-based Composite Index

The VR-based composite index is formulated based on scores of cycle time, number of station
switches, weight, price, and quality of the car toy. The highest score of car toy quality is 10.
Starting from 10 points, each violation of customer requirement deducts 1 point from 10 points.
For example, if a student does not assemble small soft tires, the student will lose 1 point and the
score of car toy quality will be 9. A car toy obtains a score of 2 for its weight or price when the
weight or price requirement is satisfied, otherwise, the score for weight or price is 1. A long
cycle time or a large number of station switches usually results in unsatisfactory assembly
performance. Therefore, scores of the cycle time and the number of station switches are
formulated according to the reverse scaling. Scores of the cycle time and the number of station
switches are formulated as:

Time S _ max(CT) — CTy 10
fme Score = max(CT) — min (CT)

Suiteh S _ max(nSwitch) — nSwitch, % 10
witch Score; = max(nSwitch) — min (nSwitch)

where Time Score; and Switch Score; denote scores of the cycle time and the number of station
switches of Ith participant,l = 1, 2, ..., L, CT is the cycle time set {CT;, CT,, ..., CT;,}, nSwitch is
the set of numbers of station switches {nSwitch;, nSwitch,, ..., nSwitch; }.

Car Quality Score Weight Score

(b)

Station
Switch
Score

Score
VR-based composite index = 85.60

e

VR-based compomsite index = 11.91
(a) (c)

Figure 9. VR-based composite index represented by the red area in each spider chart which
involves cycle time, the number of station switches, price, weight, and quality of the car toy. (a)
VR-based composite index of SME; (b) an example of high VR-based composite index; (c) an
example of low VR-based composite index.



Red areas in spider charts as shown in Figure 9 are values of VR-based composite indices. The
highest VR-based composite index is 85.60 and belongs to the SME. This is because SME has
full scores on all 5 axes. Examples of high and low VR-based composite indices are
demonstrated in Figure 9 (b) and (c), respectively.

4.2 Synthesized Quantifier

In the design of synthesized quantifier, we first compute correlation coefficients between VR-
based composite index and seven quantifiers which are summarized in Table 1. According to the
correlation coefficients, MSE of heatmaps, HENT and HMean of scan path, HENT and HMean of
pick path have negative correlations with VR-based composite index, which suggests the assembly
performance decreases as these 5 quantifiers increase; HRR of scan path and HRR of pick path
have positive correlations with VR-based composite index, suggesting larger values of these 2
quantifiers represent a better assembly performance. Therefore, HRR of scan path and HRR of
pick path are normally scaled to range [0, 6], while MSE of heatmaps, HENT and HMean of scan
path, HENT and HMean of pick path are reversely scaled to [0, 6].

Table 1. Correlation coefficients between VR-based composite index and the seven quantifiers.
MSE of Scan Path Pick Path
heatmap | HRR | HENT | HMean | HRR | HENT | HMean

Correlation Coefficient
between VR-based
Composite Index and
Each Quantifier

-0.34 0.13 -0.57 -0.07 0.08 -0.41 -0.50

HMean:Scan 6 MSE

HMean:Pick
Figure 10. Synthesized quantifier represented by the blue area in the spider chart which
combines MSE of heatmap, HRRs, HENTs, and HMeans of scan path and pick path.

A blue spider chart is designed to combine 7 quantifiers including MSE of heatmap, HRRs,
HENTSs, and HMeans of scan path and pick path as shown in Figure 10. The blue area in the
spider chart is the value of synthesized quantifier. Further, the correlation coefficient between



VR-based composite indices and synthesized quantifiers of all 25 participants is computed as
0.56. It is noted that the upper bound of this correlation coefficient for a 99% confidence interval
is 0.83.

4.3 Insights from the Analysis

According to the interpretation of correlation coefficients [24], a correlation coefficient of 0.56
with a 99% confidence interval upper bound of 0.83 demonstrates there is a strong correlation
between the synthesized quantifier and VR-based composite index, that is, the proposed
synthesized quantifier is effective to quantify students’ engineering problem-solving skills in the
VR learning factory. There might also be a potential nonlinear correlation between the
synthesized quantifier and composite index which needs further investigation in the future work.
On the other hand, this VR learning factory provides an advantageous environment for
engineering students to enhance their problem-solving skills. For example, students can learn
which are the necessary components they need to focus on and how to optimize the assembly
process by observing an SME’s behavior.

S. Integration into Manufacturing Courses

5.1 Laboratory Demonstration

The laboratory demonstration is a recognized technique in engineering education as it enhances
the students’ practical knowledge and allows students to investigate and solve real-world
engineering problems [25]. VR learning factory, as a flexible tool that can provide state-of-the-
art manufacturing systems and technologies as well as hands-on experiences to students, is
imperative to be integrated into manufacturing curriculums. The availability of VR learning
factory provides a new immersive environment to promote critical thinking, creativity, and
collaborations among students. The proposed VR learning factory has been integrated into an
undergraduate manufacturing systems course offered to Industrial Engineering students. Hands-
on labs on both physical and VR simulations were developed. Figure 11 shows sample pictures
from the physical simulation activities. Figure 12 shows sample pictures from the VR
simulations.

(b)

Figure 11. Sample pictures from the physical simulations: (a) student participants using physical
simulation to complete the production process, (b) inspection, (c¢) finished goods inventory [18].



(b) (c)
Figure 12. Sample pictures from the simulations: (a) student participants using VR simulation,
(b) sample car toy from the VR simulation, (¢) sample car toy from the physical simulation [19].

5.2 Engineering Examination

Written exams are commonly used in manufacturing curriculums to test students’ knowledge of
manufacturing concepts and their ability to solve problems. However, good grades in exams do
not sufficiently show if students have acquired manufacturing knowledge, because current exams
usually test memory more than students’ skills in solving real-world problems. Therefore, it s
preferable to incorporate a VR learning factory with eye-tracking data analytics in the
examination of manufacturing curriculums. For instance, an assessment can ask students to
complete a certain project in a VR learning factory while at the same time recording their eye-
tracking data working on the project. Evaluations can be based on the students’ problem-solving
performance in the project which is measured by the VR-based composite index as well as
results of eye-tracking data analysis, that is, the synthesized quantifier developed in this research,
as eye-tracking data are useful to reveal cognitive processes while students solving problems.
Manufacturing knowledge questions can also be incorporated into the VR simulations and
students can be asked to answer these questions in the VR environment once they finish the
simulation activity.

6. Future Plans

In this research, the VR learning factory is designed mainly for a single player to gain hands-on
manufacturing training. The single player simulation represents the craft manufacturing
paradigm in which skilled workers, using general-purpose machines, make exactly the product
the customer paid for; one at a time. Future work will focus on developing a VR learning factory
that expands the VR simulations to other manufacturing paradigms and provide hands-on
training for multiplayers as shown in Figure 13. The multiplayer VR learning factory comes with
complex processes in 5 paradigms of advanced manufacturing: craft production, mass
production, lean manufacturing, mass customization, and personalized production. Moreover,
digital twins will be integrated with the multiplayer VR factory. This VR learning factory is
composed of six rooms, one for each manufacturing paradigm and one for the inventory of
products. The VR learning factory is aimed at enhancing advanced manufacturing training and
facilitating collaborations through a shared visualization for both students and practitioners.
Furthermore, eye-tracking sensing technology and artificial intelligence (AI) will be utilized for
the data collection and modeling of users’ behavior. The multiplayer VR learning factory will
also allow for studying communication and teamwork in virtual teams as well as how students
solve problems collaboratively.



(c) Lean manufacturing room

(g) Interior of craft production room (h) Interior of mass production room (i) Interior of personalized production room

Figure 13. Snapshots of multiplayer VR learning factory for advanced manufacturing.
7. Conclusions

In this research, we developed a VR learning factory to mimic physical learning factories.
Further, data-driven models are integrated with eye-tracking sensing to evaluate and enhance
problem-solving skills of engineering students in a VR learning factory. First, a single-player
learning factory is simulated in a VR game environment. Second, engineering students are asked
to assemble car toys that satisfy customer requirements in the virtual environment. In the
meantime, their eye-tracking data are recorded during the assembly process. Third, we developed
data-driven models to analyze the eye-tracking data of students, thereby evaluating and
enhancing their problem-solving skills when facing real-world engineering problems.

Experimental results showed that the proposed synthesized quantifier is effective to quantify
problem-solving skills of engineering students due to its strong correlation with VR-based
composite index which serves as the ground truth of students’ assembly performance. The
synthesized quantifier has strong potentials to be incorporated into engineering examinations as
it is useful to reveal cognitive processes while students solving problems. Also, the VR learning
factory can be utilized in the laboratory demonstration of manufacturing curriculums because it
is flexible to provide hands-on training to students in the state-of-the-art manufacturing systems
and technologies. The shared visualization in VR environment can facilitate collaborations
among students.

Built upon the single-player VR learning factory, our future work will focus on the design of a
multiplayer VR learning factory. The multiplayer VR learning factory is aimed at enhancing
advanced manufacturing training and facilitating collaborations for both students and
practitioners. The richness of the collected sensing data from students allows for the modeling of



human behavior through machine learning techniques, and enables us to discover common trends
in the students’ learning and problem-solving process.
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