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Abstract

Recent work in unsupervised parsing has tried

to incorporate visual information into learn-

ing, but results suggest that these models need

linguistic bias to compete against models that

only rely on text. This work proposes gram-

mar induction models which use visual infor-

mation from images for labeled parsing, and

achieve state-of-the-art results on grounded

grammar induction on several languages. Re-

sults indicate that visual information is espe-

cially helpful in languages where high fre-

quency words are more broadly distributed.

Comparison between models with and without

visual information shows that the grounded

models are able to use visual information for

proposing noun phrases, gathering useful in-

formation from images for unknown words,

and achieving better performance at preposi-

tional phrase attachment prediction.1

1 Introduction

Recent grammar induction models are able to pro-

duce accurate grammars and labeled parses with

raw text only (Jin et al., 2018b, 2019; Kim et al.,

2019b,a; Drozdov et al., 2019), providing evi-

dence against the poverty of the stimulus argument

(Chomsky, 1965), and showing that many linguistic

distinctions like lexical and phrasal categories can

be directly induced from raw text statistics. How-

ever, as computational-level models of human syn-

tax acquisition, they lack semantic, pragmatic and

environmental information which human learners

seem to use (Gleitman, 1990; Pinker and MacWhin-

ney, 1987; Tomasello, 2003).

This paper proposes novel grounded neural-

network-based models of grammar induction which

take into account information extracted from im-

ages in learning. Performance comparisons show

1The system implementation and translated datasets
used in this work can be found at https://github.com/
lifengjin/imagepcfg.

(a) friend as companion (b) friend as condiment

Figure 1: Examples of disambiguating information pro-

vided by images for the prepositional phrase attach-

ment of the sentence Mary eats spaghetti with a friend

(Gokcen et al., 2018).

that the proposed models achieve state-of-the-art re-

sults on multilingual induction datasets, even with-

out help from linguistic knowledge or pretrained

image encoders. Experiments show several specific

benefits attributable to the use of visual informa-

tion in induction. First, as a proxy to semantics,

the co-occurrences between objects in images and

referring words and expressions, such as the word

spaghetti and the plate of spaghetti in Figure 1,2

provide clues to the induction model about the syn-

tactic categories of such linguistic units, which may

complement distributional cues from word collo-

cation which normal grammar inducers rely on

solely for induction. Also, pictures may help dis-

ambiguate different syntactic relations: induction

models are not able to resolve many prepositional

phrase attachment ambiguities with only text — for

example in Figure 1, there is little information in

the text of Mary eats spaghetti with a friend for the

induction models to induce a high attachment struc-

ture where a friend is a companion — and images

may provide information to resolve these ambi-

guities. Finally, images may provide grounding

information for unknown words when their syntac-

tic properties are not clearly indicated by sentential

context.

2https://github.com/ajdagokcen/

madlyambiguous-repo
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2 Related work

Existing unsupervised PCFG inducers exploit

naturally-occurring cognitive and developmental

constraints, such as punctuation as a proxy to

prosody (Seginer, 2007), human memory con-

straints (Noji and Johnson, 2016; Shain et al., 2016;

Jin et al., 2018b), and morphology (Jin and Schuler,

2019), to regulate the posterior of grammars which

are known to be extremely multimodal (Johnson

et al., 2007). Models in Shi et al. (2019) also match

embeddings of word spans to encoded images to

induce unlabeled hierarchical structures with a con-

creteness measure (Hill et al., 2014; Hill and Ko-

rhonen, 2014). Additionally, visual information is

observed to provide grounding for words describ-

ing concrete objects, helping to identify and catego-

rize such words. This hypothesis is termed ‘noun

bias’ in language acquisition (Gentner, 1982, 2006;

Waxman et al., 2013), through which the early ac-

quisition of nouns is attributed to nouns referring

to observable objects. However, the models in Shi

et al. (2019) also rely on language-specific branch-

ing bias to outperform other text-based models, and

images are encoded by pretrained object classifiers

trained with large datasets, with no ablation to show

the benefit of visual information for unsupervised

parsing. Visual information has also been used for

joint training of prepositional phrase attachment

models (Christie et al., 2016) suggesting that visual

information may contain semantic information to

help disambiguate prepositional phrase attachment.

3 Grounded Grammar Induction Model

The full grounded grammar induction model used

in these experiments, ImagePCFG, consists of two

parts: a word-based PCFG induction model and

a vision model, as shown in Figure 2. The two

parts have their own objective functions. The

PCFG induction model, called NoImagePCFG

when trained by itself, can be trained by maximiz-

ing the marginal probability P(σ) of sentences σ.

This part functions similarly to previously proposed

PCFG induction models (Jin et al., 2018a; Kim

et al., 2019a) where a PCFG is induced through

maximization of the data likelihood of the training

corpus marginalized over latent syntactic trees.

The image encoder-decoder network in the vi-

sion model is trained to reconstruct the original

image after passing through an information bottle-

neck. The latent encoding from the image encoder

may be seen as a compressed representation of vi-

sual information in the image, some of which is

semantic, relating to objects in the image. We hy-

pothesize that semantic information can be helpful

in syntax induction, potentially through helping

three tasks mentioned above.

In contrast to the full model where the encoded

visual representations are trained from scratch, the

ImagePrePCFG model uses image embeddings en-

coded by pretrained image classifiers with param-

eters fixed during induction training. We hypothe-

size that pretrained image classifiers may provide

useful information about objects in an image, but

for grammar induction it is better to allow the in-

ducer to decide which kind of information may

help induction.

The two parts are connected through a syntactic-

visual loss function connecting a syntactic sentence

embedding projected from word embeddings and

an image embedding. We hypothesize that visual

information in the encoded images may help con-

strain the search space of syntactic embeddings of

words with supporting evidence of lexical attributes

such as concreteness for nouns or correlating ad-

jectives with properties of objects.3

3.1 Induction model

The PCFG induction model is factored into three

submodels: a nonterminal expansion model, a ter-

minal expansion model and a split model, which

distinguishes terminal and nonterminal expansions.

The binary-branching non-terminal expansion rule

probabilities,4 and unary-branching terminal ex-

pansion rule probabilities in a factored Chomsky-

normal-form PCFG can be parameterized with

these three submodels. Given a tree as a set τ

of nodes η undergoing non-terminal expansions

cη → cη1 cη2 (where η ∈ {1, 2}∗ is a Gorn address

specifying a path of left or right branches from

the root), and a set τ′ of nodes η undergoing ter-

minal expansions cη → wη (where wη is the word

at node η) in a parse of sentence σ, the marginal

3The syntactic nature of word embeddings indicates that
any lexical-specific semantic information in these embeddings
may be abstract, which is generally not sufficient for visual
reconstruction. Experiments with syntactic embeddings show
that it is difficult to extract semantic information from them
and present visually.

4These include the expansion rules generating the top node
in the tree.
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Figure 2: Different configurations of PCFG induction models: the model without vision (NoImagePCFG), the

model with a pretrained image encoder (ImagePrePCFG) and the model with images (ImagePCFG.)

probability of σ can be computed as:

P(σ) =
∑

τ,τ′

∏

η∈τ

P(cη → cη1 cη2) ·
∏

η∈τ′

P(cη → wη)

(1)

We first define a set of Bernoulli distributions

that distribute probability mass between terminal

and nonterminal rules, so that the lexical expansion

model can be tied to the image model (see Section

4.2):

P(Term | cη) = softmax
{0,1}

(ReLU(Wspl xB,cη + bspl)),

(2)

where cη is a non-terminal category, Wspl ∈ R
2×h

and bspl ∈ R
2 are model parameters for hidden

vectors of size h, and xB,cη ∈ R
h the result of a

multilayered residual network (Kim et al., 2019a).

The residual network consists of B architecturally

identical residual blocks. For an input vector xb−1,c

each residual block b performs the following com-

putation:

xb,c = ReLU(Wb ReLU(W′
b xb−1,c + b′b)

+ bb) + xb−1,c, (3)

with base case:

x0,c = ReLU(W0 E δc + b0) (4)

where δc is a Kronecker delta function – a vector

with value one at index c and zeros everywhere else

– and E ∈ Rd×C is an embedding matrix for each

nonterminal category c with embedding size d, and

W0 ∈ R
h×d, Wb,W

′
b
∈ Rh×h and b0,bb,b

′
b
∈ Rh

are model parameters with latent representations

of size h. B is set to 2 in all models following

Kim et al. (2019a). Binary-branching non-terminal

expansion rule probabilities for each non-terminal

category cη and left and right children cη1 cη2 are

defined as:

P(cη → cη1 cη2) = P(Term=0 | cη) ·

softmax
cη1,cη2

(Wnont E δcη + bnont), (5)

where Wnont ∈ R
C2×d and bnont ∈ R

C2

are parame-

ters of the model.

The lexical unary-expansion rule probabilities

for a preterminal category cη and a word wη at

node η are defined as:

P(cη → wη) = P(Term=1 | cη) ·
exp(ncη,wη)
∑

w exp(ncη,w)

(6)

nc,w = ReLU(w⊤lex nB,c,w + blex) (7)

where w is the generated word type, and wlex ∈ R
h

and blex ∈ R are model parameters. Similarly,

nb,c,w = ReLU(W′′
b ReLU(W′′′

b nb−1,c,w + b′′′b )

+ b′′b ) + nb−1,c,w, (8)

with base case:

n0,c,w = ReLU(W′
0

[

E δc
L δw

]

) + b′0) (9)
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where W′
0
∈ Rh×2d, W′′

b
,W′′′

b
∈ Rh×h and

b0,b
′′
b
,b′′′

b
∈ Rh are model parameters for latent

representations of size h. L is a matrix of syntactic

word embeddings for all words in vocabulary.

4 Vision model

The vision model consists of an image encoder-

decoder network and a syntactic-visual projector.

The image encoder-decoder network encodes an

image into an image embedding and then decodes

that back into the original image. This reconstruc-

tion constrains the information in the image em-

bedding to be closely representative of the origi-

nal image. The syntactic-visual projector projects

word embeddings used in the calculation of lexical

expansion probabilities into the space of image em-

beddings, building a connection between the space

of syntactic information and the space of visual

information.

4.1 The image encoder-decoder network

The image encoder employs a ResNet18 architec-

ture (He et al., 2016) which encodes an image with

3 channels into a single vector. The encoder con-

sists of four blocks of residual convolutional net-

works. The image decoder decodes an image from

a visual vector generated by the image encoder.

The image decoder used in the joint model is the im-

age generator from DCGAN (Radford et al., 2016),

where a series of transposed convolutions and batch

normalizations attempts to recover an image from

an image embedding.5

4.2 The syntactic-visual projector

The projector model is a CNN-based neural net-

work which takes a concatenated sentence embed-

ding matrix Mσ ∈ R|σ|×d as input, where embed-

dings in Mσ are taken from L, and returns the

syntactic-visual embedding eσ. The jth full length-

wise convolutional kernel is defined as a matrix

K j ∈ R
u j×k jd which slides across the sentence ma-

trix M to produce a feature map, where u j is the

number of channels in the kernel, k j is the width of

the kernel, and d is the height of the kernel which is

equal to the size of the syntactic word embeddings.

Because the kernel is as high as the embeddings, it

produces one vector of length u j for each window.

The full feature map F j ∈ R
u j×H j , where H j is total

5Details of these models can be found in the cited work
and the appendix.

number of valid submatrices for the kernel, is:

F j =
∑

h

(K j vec(Mσ[h..k j+h−1,∗]) + b j) δ
⊤
h . (10)

Finally, an average pooling layer and a linear trans-

form are applied to feature maps from different

kernels:

f̂ = [mean(F1) . . . mean(F j)]
⊤, (11)

eσ = tanh(WpoolReLU(f̂) + bpool). (12)

All Ks,bs and Ws here are parameters of the pro-

jector.

5 Optimization

There are three different kinds of objectives used

in the optimization of the full grounded induction

model. The first loss is the marginal likelihood

loss for the PCFG induction model described in

Equation 1, which can be calculated with the Inside

algorithm. The second loss is the syntactic-visual

loss. Given the encoded image embedding em and

the projected syntactic-visual embedding eσ of a

sentence σ, the syntactic-visual loss is the mean

squared error of these two embeddings:

L(em, eσ) = (em − eσ)⊤(em − eσ). (13)

The third loss is the reconstruction loss of the im-

age. Given the original image represented as a

vector im and the reconstructed image îm, the recon-

struction objective is the mean squared error of the

corresponding pixel values of the two images:

L(m) = (im − îm)⊤(im − îm). (14)

Models with different sets of input optimize the

three losses differently for clean ablation. NoIm-

agePCFG, which learns from text only, optimizes

the negative marginal likelihood loss (the negative

of Equation 1) using gradient descent. The model

with pretrained image encoders, ImagePrePCFG,

optimizes the negative marginal likelihood and the

syntactic-visual loss (Equation 13) simultaneously.

The full grounded grammar induction model Im-

agePCFG learns from text and images jointly by

minimizing all three objectives: negative marginal

likelihood, syntactic-visual loss and image recon-

struction loss (Equation 14):

L(σ,m) = −P(σ) + L(em, eσ) + L(m). (15)
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6 Experiment methods

Experiments described in this paper use the

MSCOCO caption data set (Lin et al., 2015) and

the Multi30k dataset (Elliott et al., 2016), which

contains pairs of images and descriptions of im-

ages written by human annotators. Captions in the

MSCOCO data set are in English, whereas captions

in the Multi30k dataset are in English, German and

French. Captions are automatically parsed (Kitaev

and Klein, 2018) to generate a version of the ref-

erence set with constituency trees.6 In addition to

these datasets with captions generated by human

annotators, we automatically translate the English

captions into Chinese, Polish and Korean using

Google Translate,7 and parse the resulting transla-

tions into constituency trees, which are then used

in experiments to probe the interactions between

visual information and grammar induction.

Results from models proposed in this paper —

NoImagePCFG, ImagePrePCFG and ImagePCFG

— are compared with published results from Shi

et al. (2019), which include PRPN (Shen et al.,

2018), ON-LSTM (Shen et al., 2019) as well as the

grounded VG-NSL models which uses either head

final bias (VG-NSL+H) or head final bias and Fast-

text embeddings (VG-NSL+H+F) as inductive biases

from external sources. All of these models only in-

duce unlabeled structures and have been evaluated

with unlabeled F1 scores. We additionally report

the labeled evaluation score Recall-Homogeneity

(Rosenberg and Hirschberg, 2007; Jin and Schuler,

2020) for better comparison between the proposed

models. All evaluation is done on Viterbi parse

trees of the test set from 5 different runs. Details

about hyper-parameters and results on development

data sets can be found in the appendix. How-

ever, importantly, the tuned hyperparameters for

the grammar induction model are the same across

the three proposed models, which facilitates direct

comparisons among these models to determine the

effect of visual information on induction.

6.1 Standard set: no replication of effect for

visual information

Both unlabeled and labeled evaluation results are

shown in Table 1 with left- and right-branching

baselines. First, trees induced by the PCFG induc-

tion models are more accurate than trees induced

6The multilingual parsing accuracy for all languages used
in this work has been validated in Fried et al. (2019) and
verified in Shi et al. (2019).

7https://translate.google.com/.

with all other models, showing that the family of

PCFG induction models is better at capturing syn-

tactic regularities and provides a much stronger

baseline for grammar induction. Second, using the

NoImagePCFG model as a baseline, results from

both the ImagePCFG model, where raw images

are used as input, and the ImagePrePCFG model,

where images encoded by pretrained image classi-

fiers are used as input, do not show strong indica-

tion of benefits of visual information in induction.

The baseline NoImagePCFG outperforms other

models by significant margins on all languages

in unlabeled evaluation. Compared to seemingly

large gains between text-based models like PRPN

and ON-LSTM8 and the grounded models like VG-

NSL+H on French and German observed by Shi

et al. (2019), the only positive gain between NoIm-

agePCFG and ImagePCFG shown in Table 1 is the

labeled evaluation on French where ImagePCFG

outperforms NoImagePCFG by a small margin. Be-

cause the only difference between NoImagePCFG

and ImagePCFG models is whether the visual in-

formation influences the syntactic word embed-

dings, the results indicate that on these languages,

visual information does not seem to help induction.

The gain seen in previous results may therefore

be from external inductive biases. Finally, the Im-

agePrePCFG model performs at slightly lower ac-

curacies than the ImagePCFG model consistently

across different languages, datasets and evaluation

metrics, showing that the information needed in

grammar induction from images is not the same as

information needed for image classification, and

such information can be extracted from images

without annotated image classification data.

6.2 Languages with wider distribution of

high-frequency word types: positive

effect

One potential advantage of using visual informa-

tion in induction is to ground nouns and noun

phrases. For example, if images like in Figure 1

are consistently presented to models with sentences

describing spaghetti, the models may learn the cat-

egorize words and phrases which could be linked

with objects in images as nominal units and then

bootstrap other lexical categories. However, in the

test languages above, a narrow set of very high fre-

8PCFG induction models where a grammar is induced
generally perform better in parsing evaluation than sequence
models where only syntactic structures are induced (Kim et al.,
2019a; Jin et al., 2019).
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Models on MSCOCO
Korean** Polish** Chinese**

F1 RH F1 RH F1 RH

NoImagePCFG 38.1±8.5 22.3±6.8 58.9±3.7 47.1±3.8 61.2±3.5 48.5±3.7

ImagePrePCFG 39.0±4.1 23.5±3.2 60.5±1.8 49.8±3.3 60.0±4.6 47.2±4.5

ImagePCFG 45.0±2.2 27.1±2.6 53.6±8.3 41.3±7.8 64.9±6.6 51.2±8.6

Models on Multi30k
Korean** Polish Chinese**

F1 RH F1 RH F1 RH

NoImagePCFG 30.7±5.6 22.8±3.1 49.6±4.6 39.9±5.1 59.1±3.3 53.2±4.7

ImagePrePCFG 27.1±4.4 19.9±3.4 48.4±3.1 38.3±2.9 57.9±7.0 51.0±7.7

ImagePCFG 44.9±1.3 33.8±2.1 49.7±7.2 40.4±6.1 58.5±3.2 52.8±4.6

Table 2: Averages and standard deviations of labeled Recall-Homogeneity and unlabeled F1 scores of various

unsupervised grammar inducers on the MSCOCO and Multi30k caption datasets in the additional languages with

high numbers of high-frequency word types. (** : the unlabeled performance difference between NoImagePCFG

and ImagePCFG is significant p < 0.01.)

of nouns and noun phrases, especially on languages

where nouns and noun phrases are not readily iden-

tifiable by neighboring high frequency words. Sec-

ond, visual information may provide bottom-up

information for unknown word embeddings. Lan-

guages where neighboring words can reliably pre-

dict the grammatical category of an unknown word

may build robust representations of unknown word

embeddings, but the construction of the UNK em-

bedding may also benefit from bottom-up infor-

mation from images, especially when sentential

context is not enough to build informative UNK

embeddings. Finally, semantic information inside

images may be helpful in solving syntactic am-

biguities like prepositional phrase attachment in

languages like English. Results from experiments

described below with the ImagePCFG and NoIm-

agePCFG models show evidence of all three ways.

7.1 Grounding of nouns and noun phrases

The ‘Noun bias’ hypothesis (Gentner, 1982) postu-

lates that visual information in the induction pro-

cess may impact how words are categorized gram-

matically, and nouns may receive an advantage be-

cause they correspond to objects in images. How-

ever, objects in images are often described with

phrases, not single words. For example, captions

like a red car is parked on the street, are common

in both caption datasets, where the objects in the

image may associate more strongly with modifier

words like red than the head noun car.

Evaluations are carried out on the parsed sen-

tences of all languages from two caption datasets

using a part-of-speech homogeneity metric (Rosen-

berg and Hirschberg, 2007) for measuring the part-

of-speech accuracy, and an unlabeled NP recall

score for measuring how many noun phrases in

gold annotation are also found in the induced trees.

Results in Figure 4 first show that the POS homo-

geneity scores from different models on the same

induction dataset are extremely close to each other.

Given that nouns are one of the categories with

the most numerous tokens, the almost identical

performance of POS homogeneity across different

models indicates that the unsupervised clustering

accuracy for nouns across different models is also

very close, in contrast to substantial RH score dif-

ferences on English and Korean.

However, NP recall scores show a pattern of

performance ranking that resembles the ranking

observed in Tables 1 and 2. For all datasets except

for the Polish Multi30k dataset, when the RH score

of ImagePCFG is higher than NoImagePCFG, the

NP recall score for the ImagePCFG model is also

higher. Significance testing with permutation sam-

pling shows that all performance differences are

significant (p < 0.01).10 High accuracy on noun

phrases is crucial to high accuracy of other con-

stituents such as prepositional phrases and verb

phrases, which usually contain noun phrases, and

eventually leads to high overall accuracy. This re-

sult suggests that the benefit contributed by visual

information works at phrasal levels, most likely

10Significance testing is not done on POS homogeneity due
to the possibility that the same induced POS label may mean
different things in different induced grammars.





404

Models
MSCOCO Multi30k

En Ko Pl Zh De En Fr Ko Pl Zh

NoImagePCFG 46.2 21.7 45.8 46.0 52.8 49.9 42.2 22.8 38.9 51.6

ImagePCFG 41.2 26.4 40.2 48.1 51.3 39.9 42.6 33.2 39.7 53.2

Table 3: Average labeled Recall-Homogeneity of the NoImagePCFG and ImagePCFG models on the MSCOCO

and Multi30k caption datasets with random words replaced by the UNK symbol. Standard deviations across the

datasets are similar to what is reported in Table 1 and 2. Chinese Multi30k is the one on which the NoImagePCFG

model outperforms the ImagePCFG model on the normal test set but not on the UNK test set.

higher performance of the NoImagePCFG models

on unlabeled F1 and labeled RH than that of the

ImagePCFG models on English from both caption

datasets. Results indicate that induction models use

visual information for weighting competing latent

syntactic trees for a sentence, which is consistent

with the third hypothesized advantage of visual in-

formation for induction. This also indicates that the

reason that the overall parsing performance of Im-

agePCFG on English is lower than NoImagePCFG

lies within other syntactic structures, which is left

for future work.

8 Conclusion

This work proposed several novel neural network-

based models of grammar induction which take

into account visual information in induction. These

models achieve state-of-the-art results on multi-

lingual induction datasets without any help from

linguistic knowledge or pretrained image encoders.

Further analyses isolated three hypothesized bene-

fits of visual information: it helps categorize noun

phrases, represent unknown words and resolve syn-

tactic ambiguities.
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A Details of datasets

The MSCOCO caption dataset used in Shi et al.

(2019) contains 413,915 sentences in the training

set, and 5000 sentences in the development and

test sets respectively.12 Every image is accompa-

nied by 5 captions,and there are 82,783 images in

total in the training set. The image embeddings

of size 2048 used in Shi et al. (2019) are encoded

by an image classifier with ResNet128 architecture

trained with on the ImageNet classification task

(Deng et al., 2009).

The Multi30k caption dataset contains 29,000

sentences in the training set, and 1,014 sentences

in the development and 1,000 in the test set in four

different languages, all of which except Czech are

used in this work thanks to the availability of high

accuracy constituency parsers in these languages.13

There are as many images as there are captions in

the training set. The image embeddings of size

2048 provided with the dataset are encoded by an

image classifier with ResNet50 architecture also

trained with on the ImageNet classification task.

For data preprocessing, following Shi et al.

(2019), the size of the vocabulary is limited to

10,000 for all languages and datasets. All raw im-

ages are resized to 3 × 64 × 64 and normalized

with means [0.485, 0.456, 0.406] and standard de-

viations [0.229, 0.224, 0.225], calculated from im-

ages in ImageNet.

B Hyperparameters

The hyperparameters used in all proposed mod-

els are tuned with the MSCOCO English develop-

ment set. For the grammar induction model, the

size of word and syntactic category embeddings,

as well as the size of hidden intermediary repre-

sentations is 64. The size of the image embedding

in the ImagePCFG system is also 64. All out-of-

vocabulary words are replaced by the UNK symbol.

Sentences with more than 40 words in the training

set are trimmed down to 40 words. For the pro-

jector model, five different convolutional kernels,

from (1,64) to (5,64), are used with 128 output

channels. The trainable image encoder employs a

12The data set can be found at https://github.com/
ExplorerFreda/VGNSL along with image embeddings en-
coded by pretrained image encoders.

13The data set can be found at https://github.com/
multi30k/dataset along with image embeddings encoded
by pretrained image encoders.

ResNet18 architecture,14 and the decoder employs

the decoder architecture in the DCGAN model.15

A batch size of 2 is used in training. Adam

is used as the optimizer, with the initial learning

rate at 5 × 10−4. The loss on the validation set

is checked every 20000 batches, and training is

stopped when the validation loss has not been low-

ered for 10 checkpoints. The model with the lowest

validation loss is used as the candidate model for

test evaluation, where best parses are generated

with the Viterbi algorithm on an inside chart.

C Development

Table 4 and 5 report unlabeled F1 and labeled RH

results on the development sets in the multilingual

caption datasets. Results show that development

and test results are very similar, indicating that

the general characteristics of the two sets are very

close.

14https://pytorch.org/docs/stable/_modules/

torchvision/models/resnet.html#resnet18
15https://github.com/pytorch/examples/blob/

master/dcgan/main.py
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Models
English Korean Polish Chinese

F1 RH F1 RH F1 RH F1 RH

NoImagePCFG 60.3±8.2 46.4±11.0 38.6±8.7 22.6±6.9 59.5±3.8 47.5±3.9

ImagePrePCFG 55.7±7.5 39.6±5.4 39.5±4.2 24.1±3.4 61.2±1.6 50.1±3.3

ImagePCFG 55.4±2.7 43.2±1.8 45.1±2.3 27.5±2.6 54.3±8.3 41.6±7.9

Table 4: Averages and standard deviations of labeled Recall-Homogeneity and unlabeled F1 scores of various

unsupervised grammar inducers on the MSCOCO caption development datasets.

Models
German English French

F1 RH F1 RH F1 RH

NoImagePCFG 47.2±5.7 53.6±5.7 59.1±8.1 52.2±8.5 43.8±4.9 43.2±5.2

ImagePrePCFG 44.8±7.9 50.0±8.3 46.7±7.3 40.7±7.5 42.3±10.3 42.8±10.5

ImagePCFG 45.6±5.2 50.6±8.5 47.7±5.4 40.9±5.2 43.1±5.1 43.9±5.5

Models
Korean Polish Chinese

F1 RH F1 RH F1 RH

NoImagePCFG 30.6±5.7 22.2±3.0 49.4±4.9 40.0±5.3 59.7±3.3 53.6±4.7

ImagePrePCFG 27.0±4.8 19.2±3.6 48.5±3.1 38.5±3.1 55.5±9.3 48.3±10.4

ImagePCFG 45.1±1.1 33.4±1.9 49.5±7.6 40.8±6.3 58.3±3.2 52.1±4.3

Table 5: Averages and standard deviations of labeled Recall-Homogeneity and unlabeled F1 scores of various

unsupervised grammar inducers on the Multi30k caption development datasets.


