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Abstract

The adoption of low latency persistent memory modules

(PMMs) upends the long-established model of remote storage

for distributed file systems. Instead, by colocating computa-

tion with PMM storage, we can provide applications with

much higher IO performance, sub-second application failover,

and strong consistency. To demonstrate this, we built the As-

sise distributed file system, based on a persistent, replicated

coherence protocol that manages client-local PMM as a lin-

earizable and crash-recoverable cache between applications

and slower (and possibly remote) storage. Assise maximizes

locality for all file IO by carrying out IO on process-local,

socket-local, and client-local PMM whenever possible. Assise

minimizes coherence overhead by maintaining consistency at

IO operation granularity, rather than at fixed block sizes.

We compare Assise to Ceph/BlueStore, NFS, and Octopus

on a cluster with Intel Optane DC PMMs and SSDs for com-

mon cloud applications and benchmarks, such as LevelDB,

Postfix, and FileBench. We find that Assise improves write

latency up to 22×, throughput up to 56×, fail-over time up to

103×, and scales up to 6× better than its counterparts, while

providing stronger consistency semantics.

1 Introduction

Byte-addressable non-volatile memory (NVM), such as Intel’s

Optane DC persistent memory module (PMM) [14], is now

commercially available as main memory. NVM provides high-

capacity persistent memory with near-DRAM performance at

lower cost. The promise of NVM as a low-cost main memory

add-on is driving the adoption of node-local NVM at scale [43,

86, 87]. Remote direct memory access (RDMA) allows NVM

access across the network without CPU overhead, raising

interest in NVM for high-performance distributed storage.

A common paradigm in distributed file systems, like Ama-

zon EFS [2], NFS [39], Ceph [82], Colossus/GFS [37], and

NVM re-designs, like Octopus [58] and Orion [85], is to sep-

arate storage servers from clients. In this server-client design,

files are stored by servers on machines physically separated

from clients running applications. Client main memory is

treated as a volatile block cache managed by the client’s OS

⋆Lead student author.
†Co-student authors.

kernel. This design simplifies resource pooling by physically

separating application from storage concerns with simple,

server-managed data consistency mechanisms.

This simplicity comes at a cost, which becomes apparent

as we move from SSD/HDD to NVM storage. In steady state,

application performance is limited by the overhead to ac-

cess kernel-level client caches. Upon a cache miss, multiple

network round trips are needed to consult remote metadata

servers and to fetch the actual data. On failure, client-server

file systems must rebuild caches of failed clients from scratch,

involving long fail-over times to re-establish application-level

service and necessitating high network utilization during re-

covery. Third, managing client caches at fixed page-block

granularity amplifies the small IO operations typical of many

distributed applications and increases cache coherence over-

head when IO is larger than the block size. These costs prevent

NVM from reaching its performance potential and have led

some within the storage community to advocate for a com-

plete redesign of the file system API [54, 72, 73, 88].

We present Assise, a distributed file system designed to

maximize the use of client-local NVM without requiring a

new API for high performance. Assise unleashes the per-

formance of NVM via pervasive and persistent caching in

process-local, socket-local, and node-local NVM. Assise ac-

celerates POSIX file IO by orders of magnitude by leveraging

client-local NVM without kernel involvement, block amplifi-

cation, or unnecessary coherence overheads. Assise provides

near-instantaneous application fail-over onto a hot replica that

mirrors an application’s local file system cache in the replica’s

local NVM. Assise reduces node recovery time by orders of

magnitude by locally recovering NVM caches with strong

consistency semantics. Finally, Assise leverages cluster-wide

NVM via warm replicas that provide lower latency reads than

slower storage media, such as SSDs. In cascaded hot replica

failure scenarios, warm replicas can become hot replicas to

preserve near-instantaneous fail-over.

To enable these properties, we design and build to our

knowledge the first crash consistent distributed file system

cache coherence layer for replicated NVM (CC-NVM). CC-

NVM serves cached file system state in Assise with strong

consistency guarantees and locality. CC-NVM provides pre-

fix crash consistency [80] by enforcing write order to local
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NVM via logging and to cross-socket and remote NVM by

leveraging the write order of DMA and RDMA, respectively.

CC-NVM provides linearizability for all IO operations via

leases [38] that can be delegated among nodes, sockets, and

processes for local management of file system state. CC-NVM

consistently chain-replicates [77] all file system updates to a

configurable set of hot and warm replicas for availability.

Using CC-NVM, Assise achieves the following goals:

• Simple programming model. Assise supports unmodified

applications using the familiar POSIX API with strong

linearizability and crash consistency [80].

• Scalability. Unlike NVM-aware distributed file systems

that are limited to rack-scale [71, 85], Assise provides

strong consistency but remains scalable using dynamic

delegation of leases to nodes, sockets, and processes; local

sharing uses CC-NVM for consistency without network,

cross-socket, or kernel communication.

• Low IO tail latency. To efficiently support applications

with low tail latency requirements, Assise allows kernel-

bypass access to authorized local and remote NVM areas.

To reduce write latency with replicated persistence, Assise

provides an optimistic mode using asynchronous chain

replication with prefix crash consistency.

• High availability. Assise provides near-instantaneous fail-

over to a configurable number of replicas and minimizes

the time to restore the replication factor after failure.

• Efficient bandwidth use. The high bandwidth provided by

NVM means that communication can be a throughput bot-

tleneck (cf. Table 1). Assise minimizes communication by

eliminating redundant writes [52] and reducing coherence

protocol overhead via logging.

We make the following contributions:

• We present the design (§3) and implementation (§4) of

Assise, a distributed file system that fully utilizes NVM by

persistent caching in client-local NVM as a primary design

principle. Assise uses client-local NVM to recover the file

system cache for fast fail-over and locally synchronizes

reads and writes to file system state.

• We present CC-NVM (§3.3), the first persistent and avail-

able distributed cache coherence layer. CC-NVM provides

locality for data and metadata access, replicates for avail-

ability, and provides linearizability and prefix crash consis-

tency for all file system IO.

• We quantify the performance benefits of using local NVM

versus remote NVM for distributed file systems (§5). We

compare Assise’s steady-state and fail-over behavior to

RDMA-accelerated versions of Ceph with BlueStore [21]

and NFS, as well as Octopus [58], a distributed file sys-

tem designed for RDMA and NVM, using common cloud

applications and benchmarks, such as LevelDB, Postfix,

MinuteSort, and FileBench.

Our evaluation shows that Assise provides up to 22× lower

write latency and up to 56× higher throughput than NFS and

Ceph/BlueStore. Assise outperforms Octopus by up to an

Memory R/W Latency Seq. R/W GB/s $/GB

DDR4 DRAM 82 ns 107 / 80 9.77 [19]

NVM (local) 175 / 94 ns 32 / 11.2 3.83 [20]

NVM-NUMA 230 ns 4.8 / 7.4 -

NVM-kernel 0.6 / 1 µs - -

NVM-RDMA 3 / 8 µs 3.8 -

SSD (local) 10 µs 2.4 / 2.0 0.32 [15]

Table 1: Memory & storage price/performance (October 2020).

order of magnitude. Assise scales better than Ceph, providing

6× throughput for Postfix with 48 processes over 3 nodes.

Assise is more available than Ceph, returning a recovering

LevelDB store to full performance up to 103× faster. Demon-

strating that strong consistency with the familiar POSIX API

and high performance are not mutually exclusive, Assise fin-

ishes a local external sort 3% faster than a hand-tuned im-

plementation using processor loads and stores to memory

mapped NVM. Finally, Assise finishes the MinuteSort dis-

tributed sorting benchmark up to 2.2× faster than a parallel

NFS installation.

Assise supports networked access to remote storage where

it makes sense. Assise can automatically migrate cold data

that does not fit in NVM to slower, network-attached stor-

age devices, such as SSDs and HDDs. To do so, Assise’s

implementation builds on Strata [52] as its node-local store.

2 Background

Distributed applications have diverse workloads, with IO gran-

ularities large and small [56], different sharding patterns,

and consistency requirements. All demand high availabil-

ity and scalability. Supporting these properties simultane-

ously has been the focus of decades of distributed storage

research [23, 39, 41, 58, 81, 82, 85]. Before NVM, trade-offs

had to be made. For example, by favoring large transfers

ahead of small IO, or steady-state performance ahead of crash

consistency and fast recovery, leading to the common idiom

of remote-storage file system design. We argue that with the

arrival of fast NVM, these trade-offs need to be re-evaluated.

The opportunity posed by NVM is two-fold:

Cost/performance. Table 1 shows measured access latency,

bandwidth, and cost for modern server memory and storage

technologies, including Optane DC PMM (measurement de-

tails in §5). We can see that local NVM access latency and

bandwidth are close to DRAM, up to two orders of magnitude

better than SSD. At the same time, NVM’s per-GB cost is

only 39% that of DRAM. NVM’s unique characteristics allow

it to be used as the top layer in the storage hierarchy, as well

as the bottom layer in a server’s memory hierarchy.

Fast recovery. Persistent local storage with near-DRAM

performance can provide a recoverable cache for hot file

system data that can persist across reboots. The vast majority

of system failures are due to software crashes that simply

require rebooting [25, 36, 40]. Caching hot file system data in

NVM allows for quick recovery from these common failures.

For these reasons, data center operators are deploying NVM
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at scale [43, 86, 87]. However, to fully realize its potential,

we have to efficiently use local NVM. NVM accessed via

RDMA (NVM-RDMA), via loads and stores to another CPU

socket (NVM-NUMA), or via the kernel on the same socket

(NVM-kernel) can be an order of magnitude slower in terms

of latency and bandwidth.

2.1 Related Work

We survey the existing work in distributed storage and high-

light why it cannot fully utilize the storage system perfor-

mance offered by local NVM.

Block and object stores, such as Amazon’s EBS [1], S3 [3],

and Ursa [56], provide a new API to a multi-layer storage

hierarchy that can provide cheap, fault-tolerant access to vast

amounts of data. However, block stores have a minimum IO

granularity (16KB for EBS) and IO smaller than the block size

suffers performance degradation from write amplification [56,

69]. For this reason, Dropbox uses Amazon S3 for data blocks,

but keeps small metadata in DRAM for fast access, backed by

an SSD [62]. Apache Crail [4] and Blizzard [63] provide file

system APIs on top of block stores, but both focus on parallel

throughput of large data streams, rather than small IO.

To realize the performance benefits of NVM for all IO,

we need to abandon fixed block sizes and instead persist and

track IO at its original operation granularity. Hence, Assise

leverages logging to persist writes at their original granularity

in NVM. A similar model is realized in the RAMcloud [66]

key-value store. RAMcloud maintains data in DRAM for per-

formance, using SSDs for asynchronous persistence. However,

the capacity limits of DRAM mean that many RAMcloud op-

erations still involve the network, and because DRAM state

cannot be recovered after a crash, it is vulnerable to cascad-

ing node failures. Even after single node failures, state must

be restored from remote nodes and RAMcloud requires a

full-bisection bandwidth network for fast recovery. Assise

leverages local NVM for recovery and does not require full-

bisection bandwidth or asynchronous backup storage.

Client-server file systems, like Ceph [82], use distributed

hashing over nodes to provide scalable file service for cloud

applications. However, network and system call latency harms

file IO latency, as shown in Table 1. Typical network access

bandwidth to NVM is similarly surpassed by the higher band-

width of local NVM.

To combat network overheads, several file systems have

been built [58, 85] or retrofitted [13, 39, 44] to use RDMA.

Octopus [58] and Orion [85] are redesigns that use RDMA

for high performance access to NVM. Still, neither leverages

kernel-bypass for low-latency IO (Octopus uses FUSE, Orion

runs in the kernel) and both pool storage remotely. Like Ceph,

Octopus uses distributed hashing to place files on nodes (Oc-

topus does not replicate). Orion can store data locally via

“internal clients,” but uses a metadata server. Clover [76] is

a key-value store that takes the opposite approach, locating

metadata with applications, but storing data remotely. All

Concept Explanation

LibFS Per-process, user-level file system library

SharedFS Per-socket system daemon; manages local leases

CC-NVM Crash-consistent cache coherence with linearizability

Hot replica Cache-hot replica for fast failover

Warm replica Provides NVM for low-latency, remote, warm reads

Cluster manager Fault-tolerant service for membership & leases

Table 2: Concepts used in Assise.

systems perform remote operations in the common case to

update data and/or metadata, increasing IO latency.

Network latency and limited bandwidth increase operation

latency, reduce throughput, and limit scalability. For example,

due to update contention at a central metadata server, Orion

scales only to a small number of clients. Orion omits an

evaluation of server fail-over and recovery (Assise’s is in

§5.4). Tachyon [55] aims to circumvent replication overhead

by leveraging the concept of lineage, where lost output is

recovered by re-executing application code that created the

output. However, to do so, Tachyon requires applications to

use a complex data lineage tracking API.

To maximize NVM utility, we need to design for a scenario

where kernel and networking overheads are high compared to

storage access. Hence, Assise eliminates kernel overhead for

local IO operations and remote IO incurs a single operation

to the nearest replica in the common case, without requiring

dedicated metadata servers or a distributed hash to balance

load. For scalability, we need to enforce data and metadata

consistency locally, which CC-NVM tackles with the help of

leases. Unlike Tachyon, Assise supports the classic POSIX

file API and is fully compatible with existing applications.

Leases [38, 57] have long been integral to performance in

distributed file systems, by allowing local operations to leased

portions of the file system name space, with linearizability.

Read-only leases are a common design pattern [12,27,39,42],

but some research systems have explored using both read

and write leases in a similar manner to Assise. A prominent

example is Berkeley xFS [23], which maintained a local block-

level update log at each node, written as a software RAID 5/6

partitioned across other nodes. Assise differs from xFS by

using an operational log, replicating rather than striping the

log, and by doing update coalescing.

2.2 Remote Storage versus Local NVM

Figure 1 contrasts the IO architecture of traditional client-

server file systems and Assise. Each subfigure shows two

dual-socket nodes executing a number of application pro-

cesses sharing a distributed file system. Both designs use a

replicated cluster manager for membership management and

failure detection, but they diverge in all other respects.

Traditional distributed file systems first partition available

cluster nodes into clients and servers. Clients cache file sys-

tem state in a volatile kernel buffer cache that is shared by

processors across sockets (NVM-NUMA) and accessed via

expensive system calls (NVM-kernel). Persistent file system

state is stored in NVM on remote servers. For persistence and
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(a) Traditional distributed FSes with server-side storage (NFS, Ceph, . . . ).

Client 0

NUMA 0 NUMA 1

Client N

NUMA 0 NUMA 1

Cluster manager

SharedFS

proc

LibFS
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LibFS

SharedFS

proc

LibFS

proc

LibFS

SharedFS

proc

LibFS

proc

LibFS

SharedFS

proc

LibFS

proc

LibFS

(b) Client-local NVM (Assise).

Figure 1: Distributed file system IO architectures. Arrow = RPC/system call. Cylinder = persistence. Black = hot replica.

consistency, clients thus have to coordinate updates with repli-

cated storage and metadata servers via the network (NVM-

RDMA) with higher latency than local NVM. The cluster

manager is not involved in IO. Data is typically distributed

at random over replicated storage servers for simplicity and

load balance [82]. The overhead of updating a large set of

storage nodes atomically means that (crash) consistency is

often provided only for metadata, which is centralized.

3 Assise Design

Assise avoids remote storage servers and instead uses CC-

NVM to coordinate linearizable state among processes. Pro-

cesses access cached file system state in local NVM directly

via a library file system (LibFS), which may be replicated for

fail-over (two LibFS hot replicas shown in black in Figure 1).

CC-NVM coordinates LibFSes hierarchically via per-socket

daemons (SharedFS) and the cluster manager. Table 2 ex-

plains several Assise-related concepts.

Crash consistency modes. Assise supports two crash con-

sistency modes: optimistic or pessimistic [30]. Mount op-

tions specify the chosen crash consistency mode. When pes-

simistic, fsync forces immediate, synchronous replication

and all writes prior to an fsync persist across failures. When

optimistic, Assise commits all operations in order, but it is

free to delay replication until the application forces it with

a dsync call [30]. Optimistic mode provides lower latency

persistence with higher throughput, but risks data loss after

crashes that cannot recover locally (§3.4). In either mode, As-

sise guarantees a prefix crash-consistent file system [80]—all

recoverable writes are in order and no parts of a prefix of the

write history are missing.

We now describe cluster coordination and membership

management in Assise (§3.1). We then detail the IO paths

(§3.2) and show how CC-NVM interacts with them to provide

linearizability and prefix crash consistency (§3.3). Finally, we

describe recovery (§3.4) and warm replicas (§3.5). We close

with a discussion of connected design questions (§3.6).

3.1 Cluster Coordination and Failure Detection

Like other distributed file systems, Assise leverages a repli-

cated cluster manager for storing the cluster configuration

and detecting node failures. Assise uses the ZooKeeper [10]

distributed coordination service as its cluster manager.

Cluster coordination. Each SharedFS in Assise registers

with the cluster manager. In our prototype, the system admin-

istrator decides which SharedFS replicates which parts of the

cached file system namespace and the caching policy (hot

or warm replica) for arbitrary subtrees; the cluster manager

records this mapping. When a subtree is first accessed, LibF-

Ses contact their local SharedFS, which consults the cluster

configuration and sets up an RDMA replication chain from

LibFS through the subtree’s hot replicas. For each chain, hot

replicas preallocate a configurable amount of NVM for repli-

cation (sensitivity evaluated in §5.2). It is future work to

implement a distributed replica discovery service (e.g., using

CC-NVM). LibFSes on any node are already able to cache

any (meta-)data with linearizability.

Failure detection. The cluster manager sends heartbeat mes-

sages to each active SharedFS once every second. If no re-

sponse is received after a timeout, the node is marked failed

and all connected SharedFS are notified. When the node

comes back online, it contacts the cluster manager and initi-

ates recovery (§3.4).

3.2 IO Paths

Application IO interacts first with Assise caches. To keep tail

latency low, Assise does not use a shared kernel buffer cache.

Instead, LibFS caches file system state first in process-local

memory. The LibFS cache uses both NVM and DRAM. NVM

stores updates, while DRAM caches reads. LibFS implements

the POSIX API at user-level. We now discuss cache operation

upon IO, including replication, eviction, and access permis-

sions. Figure 2 shows these mechanisms for two hot replicas

and one warm replica, using SSDs for cold storage. Cache

coherence is discussed in §3.3.

3.2.1 Write Path

Writes in Assise involve three mechanisms that operate on

different time scales:

1. To allow for persistence with low latency, LibFS directly

writes into a process-local cache in NVM ( W ). To effi-

ciently support writes of any granularity, the write cache

is an update log, rather than a block cache.

2. To outlive node failures, the update log is chain-replicated,

with kernel-bypass, by LibFS (S1 , S2 ).

3. When update logs fill beyond a threshold, evictions are

initiated (E2 ), moving their contents to SharedFS. We

describe replication and eviction next.

Replication and crash consistency. When pessimistic,

fsync forces immediate, synchronous replication. The caller
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Figure 2: Assise IO paths. Dashed line = RDMA operation, solid

line = local operation. Shaded areas are per process.

is blocked until all writes up to the fsync have been repli-

cated. Thus, all writes prior to an fsync outlive node failures.

When optimistic, Assise is free to delay replication. This

provides Assise with an opportunity to coalesce [52] tempo-

rary durable writes (i.e., overwritten or deleted files), a work-

load pattern seen in application-level commit protocols [67].

Eliminating these writes allows Assise to conserve network

bandwidth. In optimistic mode, Assise initiates replication on

dsync or upon log eviction.

In both cases, the local update log contents are written to

preallocated NVM on the first replica along the replication

chain via RDMA (S1 ). The replica continues chain replica-

tion to the next replica (S2 ), and so on. The final replica in

the chain sends an acknowledgment back along the chain to

indicate that the chain completed successfully.

Cache eviction. When a LibFS update log fills, it replicates

any unreplicated writes and initiates eviction. Eviction is done

in least-recently-used (LRU) fashion through the SharedFS

shared caches to cold storage (E2 , E3 ). Hot replicas keep

hot data in NVM, while moving warm and cold data to cold

storage. Warm replicas (§3.5) keep hot and cold data in cold

storage, while warm data resides in NVM to accelerate warm

reads (§3.5). Cold storage may be remote (e.g., via NVMe-

over-Fabrics [17]). Each replica along the chain evicts in

parallel and acknowledges when eviction is finished. This

ensures that all replicas cache identical state for fast failover.

For log eviction (E2 ), issuing direct stores to NVM shared

caches on another socket has overhead due to cross-socket

hardware cache coherence, limiting throughput [83]. Since

CC-NVM provides cache coherence, Assise can bypass hard-

ware cache coherence by using DMA [53] when evicting to

NVM-NUMA. This yields up to 30% improvement in cross-

socket file system write throughput (§5.5).

3.2.2 Read Path

LRU cache eviction guarantees that the latest version of all

data is always available in the fastest cache. Thus, upon a read,

LibFS (1) checks the process-private write and read caches

(via a log hashtable and read cache, shown in Figure 2) for

the requested data (R1 ). If not found, LibFS (2) checks the

node-local hot SharedFS cache (R2 ) (via an extent tree used

to index the SharedFS cache [52]). If the data was found in

either of these areas, it is read locally. If not found, LibFS (3)

checks the warm replica’s SharedFS cache (R3 ), if it exists,

and, in parallel, checks cold storage (R4 ).

Read cache management. Recently read data is cached

in process-local DRAM, except if it was read from local

NVM, where DRAM caching does not provide benefit. LibFS

prefetches up to 256KB from cold storage and up to 4KB from

remote NVM. For remote NVM reads, LibFS first fetches the

requested data and then prefetches the remainder. This mini-

mizes small read latency while improving the performance of

workloads with spatial locality. Data from remote NVM and

cold storage is evicted from the read cache to the process-local

update log (E1 ).

3.2.3 Permissions and Kernel Bypass

Assise assumes a single administrative domain with UNIX file

and directory ownership and permissions. SharedFS enforces

that LibFS may access only authorized data, by checking

permissions and metadata integrity upon cache eviction and

enforcing permissions on reads. To minimize latency of node-

local SharedFS cache reads, Assise allows read-only mapping

of authorized parts of the SharedFS cache into the LibFS

address space. LibFS caches and mappings are invalidated

when files or directories are closed and whenever the update

log is evicted.

The metadata integrity of the file system is ensured by

SharedFS. LibFS operations do not prevent one thread from

corrupting another’s data in the process-local update log, but

SharedFS verifies that all metadata operations are valid before

they become visible to other processes. This implies that

processes can corrupt their own data in their private update

log, even after it was written (memory protection keys can

mitigate inter-thread data corruption [34]). However, only

process-local writes go to the process-local update logs. Multi-

process access to any filesystem object (including a subtree)

is linearizable and access-controlled via leases. Processes

cannot corrupt shared file system (meta-)data.

3.3 Crash Consistent Cache Coherence with CC-NVM

CC-NVM provides distributed cache coherence with lineariz-

ability when sharing file system state among processes; it

provides prefix semantics upon a crash.

Prefix crash consistency. To provide prefix crash consis-

tency, CC-NVM tracks write order via the update log in

process-local NVM. Each POSIX call that updates state is

recorded, in order, in the update log. When chain-replicating,

CC-NVM leverages the write ordering guarantees of (R)DMA

to write the log in order to replicas. In optimistic mode, CC-

NVM wraps coalesced file system operations in a Strata trans-

action [52]. This ensures that file system updates are persisted

and replicated atomically and that a prefix of the write history

can be recovered (§3.4).

Sharing with linearizability. CC-NVM serializes concur-

rent access to shared state by multiple processes and recovers

the same serialization after a crash via leases [38]. Leases
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provide a simple, fault-tolerant mechanism to delegate access.

Leases function similarly to reader-writer locks, but can be

revoked (to allow another process access) and expire after a

timeout (after which they may be reacquired). In CC-NVM,

leases are used to grant shared read or exclusive write access

to a set of files and directories—multiple read leases to the

same set may be concurrently valid, but write leases are exclu-

sive. Reader/writer semantics efficiently support shared files

and directories that are read-mostly and widely used, but also

write-intensive files and directories that are not frequently

shared. CC-NVM also supports a subtree lease that includes

all files and directories at or below a particular directory. A

subtree lease holder controls access to files and directories

within that subtree. For example, a LibFS with an exclusive

subtree lease on /tmp/bwl-ssh/ can recursively create and

modify files and directories within this subtree.

Leases must be acquired by LibFS from SharedFS via a

system call before LibFS can cache the data covered by the

lease. Assise does this upon first IO; leases are kept until

they are revoked by SharedFS. This occurs when another

LibFS wishes access to a leased file or when a LibFS instance

crashes or the lease times out. Lease revocation latency is

bounded by a grace period, within which the current lease

holder can finish its ongoing IO before releasing contended

leases. If LibFS fails to surrender the lease after the grace

period, the lease is revoked by SharedFS and any subsequent

IO on the leased file is rejected as invalid. SharedFS enforces

that the lease holder’s read and write caches are cleaned and

evicted of the covered data before the lease is transferred. The

time taken to do so is bounded by the holder’s update log size.

SharedFS logs and replicates each lease transfer in NVM for

crash consistency. A LibFS may overlap IO with SharedFS

lease replication until fsync/dsync.

Hierarchical coherence. To localize coherence enforcement,

leases are delegated hierarchically. The cluster manager is

at the root of the delegation tree, with SharedFSes as chil-

dren, and LibFSes as leaves (cf. Figure 1b). LibFSes request

leases first from their local SharedFS. If the local SharedFS

is not the lease holder, it consults the cluster manager. If

there is no current lease holder, the cluster manager assigns

the lease to the requesting SharedFS, which delegates it to

the requesting LibFS and becomes its lease manager. If a

lease manager already exists, SharedFS forwards the request

to the manager and caches the lease manager’s information

(leased namespace and expiration time of lease). The cluster

manager expires lease management from SharedFSes every 5

seconds. This allows CC-NVM to migrate lease management

to the local SharedFS, while preventing leases from changing

managers too quickly, facilitating scalability.

Hierarchical coherence minimizes network communication

and thus lease delegation overhead. LibFSes on the same

node or socket require only local SharedFS delegation in the

common case. This structure maps well to the data sharding

patterns of many distributed applications (§5.5).

3.4 Fail-over and Recovery

Assise caches file system state with persistence in local NVM,

which it can use for fast recovery. Assise optimizes recovery

performance for the most common crash types.

LibFS recovery. An application process crashing is the most

common failure scenario. In this case, the local SharedFS sim-

ply evicts the dead LibFS update log, recovering all completed

writes (even in optimistic mode) and then expires its leases.

Log-based eviction is idempotent [52], ensuring consistency

in the face of a system crash during eviction. The crashed

process can be restarted on the local node and immediately re-

use all file system state. The LibFS DRAM read-only cache

has to be rebuilt, with minimal performance impact (§5.4).

SharedFS recovery. Another common failure mode is a

reboot due to an OS crash. In this case, we can use NVM to

dramatically accelerate OS reboot by storing a checkpoint of

a freshly booted OS. After boot, Assise can initiate recovery

for all previously running LibFS instances, by examining the

SharedFS log stored in NVM.

Cache replica fail-over. To avoid waiting for node recovery

after a power failure or hardware problem, we immediately

fail-over to a hot replica. The replica’s SharedFS takes over

lease management from the failed node, using the replicated

SharedFS log to re-grant leases to any application replicas.

The new instances will see all IO that preceded the most

recently completed fsync/dsync.

Writes to the file system can invalidate cached data of the

failed node during its downtime. To track writes, the cluster

manager maintains an epoch number, which it increments

on node failure and recovery. All SharedFS instances are

notified of epoch updates. All SharedFS instances share a

per-epoch bitmap in a sparse file indicating what inodes have

been written during each epoch. The bitmaps are deleted at

the end of an epoch when all nodes have recovered.

Node recovery. When a node crashes, the cluster manager

makes sure that all of the node’s leases expire before the node

can rejoin. When rejoining, Assise initiates SharedFS recov-

ery. A recovering SharedFS contacts an online SharedFS to

collect relevant epoch bitmaps. SharedFS then invalidates ev-

ery block from every file that has been written since its crash.

This simple protocol could be optimized, for instance, by

tracking what blocks were written, or checksumming regions

of the file to allow a recovering SharedFS to preserve more of

its local data. But the table of files written during an epoch is

small and quickly updated during file system operation, and

our simple policy has been sufficient.

3.5 Warm Replicas

To fully exploit the memory hierarchy presented in Table 1,

remote NVM can be used as a third-level cache, below local

DRAM and local NVM. To do so, we introduce warm repli-

cas. Like hot replicas, warm replicas receive all file system

updates via chain-replication, but leverage a different update
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log eviction policy. Warm replicas track the LRU chain for

a specified portion of “warm data” beyond the LibFS and

SharedFS caches. Warm replicas do not impact the latency of

replicated writes, but they reduce read latency for warm data

by serving these reads from NVM, rather than cold storage.

LibFSes can read from warm replicas via RDMA with

lower latency and higher bandwidth than cold storage (NVM-

RDMA versus SSD in Table 1). Applications do not run on

warm replicas in the common case. In the rare case of a failure

cascade crashing all hot replicas, processes can fail-over to

warm replicas, albeit with reduced short-term performance.

After fail-over, warm replicas become hot replicas and hot

data must be migrated back into local NVM.

3.6 Discussion

Assise may be deployed at scale. The use of local NVM

together with hierarchical lease delegation aligns well with

datacenter server, rack, and pod architecture [22]. We discuss

factors of Assise’s design that impact such a deployment.

In particular, the memory overhead of per-process and per-

replica update logs, the use of NVM and RDMA at scale, and

security.

Update log scalability. Assise uses per-process and per-

replica update logs for efficient chain-replication with kernel-

bypass. These update logs are preallocated on process cre-

ation in our prototype. While update logs can support high

performance at moderate size (§5.2), a deployment at scale

might be concerned with the memory consumption of update

logs. In this case, the per-process and per-replica update log

size can be adapted dynamically to momentarily available

NVM capacity and per-process IO demand. SharedFS can

resize logs upon eviction. The most significant overhead for

log resizing is memory registration for RDMA. It requires

pinning the memory and mapping it in the RDMA NICs. This

operation can be overlapped with the log eviction itself. To

help reduce the need for frequent resizing, logs can be re-

sized multiplicatively, similar to resizing approaches in prior

work [84].

RDMA scalability. Assise uses RDMA reliable connec-

tions (RCs) for each process and replica. RCs require the

NIC to create and maintain connection state. For larger clus-

ters, maintaining a large number of connections can stress

the NIC’s limited memory and degrade performance. Sev-

eral proposals have been made to reduce NIC cache thrash-

ing [29, 68] and Mellanox introduced dynamically-connected

(DC) transports [70], which allows connection-sharing and

enables a high degree of scalability. Assise can leverage these

approaches to scale the use of RDMA.

NVM wear-out. Assise uses local NVM extensively. This

use can lead to the wear-out of NVM. To prevent frequent

NVM replacement at scale, it is important to minimize writes

to the NVM media. Assise’s update logs minimize write

amplification, but update log eviction in causes a 2× write

amplification in the worst case. This write amplification can

be partially eliminated via coalescing as seen in workloads,

like Varmail (§5.3). To further reduce write amplification,

update log pages may be remapped to the SharedFS shared

cache, without introducing any additional writes [48]. We

leave this as future work.

Security. In a large-scale public cloud scenario, data from

each tenant is usually encrypted for security. For this pur-

pose, both NVM and RDMA support encryption of data at

rest and in-flight. Intel’s Optane DC PMMs support transpar-

ent hardware encryption of data stored in NVM and modern

RDMA NICs [61] support transparent encryption of RDMA

operations.

4 Implementation

Assise uses libpmem [11] for persisting data on NVM and

libibverbs for RDMA operations in userspace. Assise inter-

cepts POSIX file system calls and invokes the corresponding

LibFS implementation of these functions in userspace [8].

The Assise implementation consists of 28,982 lines of C code

(LoC), with LibFS and SharedFS using 16,515 and 6,563 LoC,

respectively. The remaining 5,904 LoC contain utility code,

such as hash tables and linked lists. SharedFS communicates

with LibFSes via shared memory [24]. Assise uses Strata

code (LoC not counted) for cold storage in SSD and HDD.

Assise uses Intel Optane DC PMM in App-Direct mode.

App-Direct exposes NVM as a range of physical memory. It

is the most efficient way to access NVM, but it requires OS

support. OS-transparent modes have weaker persistence or

performance properties [45]. For example, memory mode inte-

grates NVM as volatile memory, using DRAM as a hardware-

managed level 4 cache. Sector mode exposes NVM as a disk,

with attendant IO amplification and disk driver overheads.

4.1 Strata as a Building Block

Assise builds upon Strata’s local file system functionality and

augments it with the CC-NVM cache coherence layer and

RDMA to create a replicated and highly efficient distributed

file system with prefix crash conistency. Assise inherits sev-

eral components from Strata, including its use of extent trees

to index storage managed by SharedFS (in turn based on

Ext4 [60]), the LibFS update log, and log coalescing. We en-

hance Strata’s extent trees to manage directories and Strata’s

leases to support delegation.

4.2 Efficient Network IO with RDMA

Assise makes efficient use of RDMA. For lossless, in-order

data transfer among nodes, Assise uses RDMA reliable con-

nections (RCs). RCs have low header overhead, improving

throughput for small IO [49, 59]. RCs also provide access to

one-sided verbs that bypass CPUs on the receiver side, reduc-

ing message transfer times [35, 64] and memory copies [74].

Log replication. Logs are naturally suited for one-sided

RDMA operations. Replication typically requires only one

RDMA write, reducing header and DMA overheads [59]. As-
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sise uses RDMA write-with-immediate for log replication.

This operation performs a write and also notifies the remote

replica to forward the data to the next replica in the chain.

The only exceptions are when the remote log wraps around

or when the local log is fragmented (due to coalescing), such

that it exceeds the NIC’s limit for scatter-gather DMA.

Persistent RDMA writes. The RDMA specification does

not define the persistence properties of remote NVM writes

via RDMA. In practice, the remote CPU is required to flush

any RDMA writes from its cache to NVM. Assise flushes

all writes via the CLWB and SFENCE instructions on each

replica, before acknowledging successful replication. In the

future, it is likely that enhancements to PCIe will allow

RDMA NICs to bypass the processor cache and write directly

to NVM to provide persistence without CPU support [50].

Remote NVM reads. Assise reads remote data via RPC.

To keep the request sizes small, Assise identifies files using

their inode numbers instead of their path. As an optimization,

DRAM read cache locations are pre-registered with the NIC.

This allows the remote node to reply to a read RPC by RDMA

writing the data directly to the requester’s cache, obviating

the need for an additional data copy.

5 Evaluation

We evaluate Assise’s common-case as well as its recovery per-

formance, and break down the performance benefits attained

by each system component. We compare Assise to three

state-of-the-art distributed file systems that support NVM

and RDMA. Our experiments rely on several microbench-

marks and Filebench [75] profiles, in addition to several real

applications, such as LevelDB, Postfix, and MinuteSort. Our

evaluation answers the following questions:

• IO latency and throughput breakdown (§5.2). What is

the hardware IO performance of a storage hierarchy with

local NVM (Table 1)? How close to this performance do

the file systems operate under various IO patterns? What

are the sources of overhead?

• Cloud application performance (§5.3). What is the per-

formance of cloud applications with various consistency,

latency, throughput, and scalability requirements? What

is the overhead of Assise’s POSIX API implementation

versus hand-tuned, direct use of local NVM? By how much

can a warm replica improve read latency? By how much

can optimistic crash consistency improve write throughput

for real applications?

• Availability (§5.4). How quickly can applications recover

from various failure scenarios?

• Scalability (§5.5). How well does Assise perform when

multiple processes share the file system? By how much

can Assise’s hierarchical coherence improve multi-process,

multi-socket, and multi-node scalability?

Testbed. Our experimental testbed consists of 5× dual-socket

Intel Cascade Lake-SP servers running at 2.2GHz, with a total

of 48 cores (96 hyperthreads), 384GB DDR4-2666 DRAM,

Feature Assise Ceph NFS Octopus Orion

Cache recovery !

Local consistency !

Kernel-bypass !

Linearizability ! !

Data crash consistency ! !

Byte-oriented ! ! !

Replication ! ! !

RDMA ! ! ! ! !

Table 3: Features of the evaluated distributed file systems.

6TB Intel Optane DC PMM, 375GB Intel Optane DC P4800X

series NVMe-SSD, and a 40GbE ConnectX-3 Mellanox In-

finiBand NIC, connected via an InfiniBand switch. Exploiting

all 6 memory channels per processor, there are 6 DIMMs of

DRAM and NVM per socket. NVM is used in App-Direct

mode (§4). All nodes run Fedora 27 with Linux kernel version

4.18.19.

Hardware performance. We first measure the achievable IO

latency and throughput for each memory layer in our testbed

server. We do this by using sequential IO and as many cores of

a single socket as necessary. We measure DRAM and NVM

(App-Direct) latency and throughput using Intel’s memory

latency checker [5]. NVM-RDMA performance is measured

using RDMA read and write-with-immediate (to flush remote

processor caches) operations to remote NVM. SSD perfor-

mance is measured using /dev/nvme device files. The IO

sizes that yielded maximum performance are 64B for DRAM,

256B for NVM, and 4KB for SSD. Table 1 shows these re-

sults. The measured IO performance for DRAM, NVM, and

SSD matches the hardware specifications of the correspond-

ing devices and is confirmed by others [45]. NVM-RDMA

throughput matches the line rate of the NIC. NVM-RDMA

write latency has to invoke the remote CPU (to flush caches)

and is thus larger than read latency. We now investigate how

close to these limits each file system can operate.

State-of-the-art. Table 3 shows performance-relevant fea-

tures of the state-of-the-art and Assise. We can see that no

open-source distributed file system provides all of Assise’s

features. Hence, a direct performance comparison is difficult.

We perform comparisons against the Linux kernel-provided

NFS version 4 [39] and Ceph version 14.2.1 [82] with Blue-

Store [21], both retrofitted for RDMA, as well as Octopus [58].

We cannot directly compare with Orion [85] as it is not pub-

licly available, but we emulate its behavior where possible.

Only Ceph provides availability via replicated object storage

daemons (OSDs), delegating metadata management to a (po-

tentially sharded) metadata server (MDS). Octopus and NFS

do not support replication for availability and thus gain an

unfair performance advantage over Assise. However, Assise

beats them even while replicating for availability, showing

that both features can be had when leveraging local NVM.

Other file systems do not support persistent caches and their

consistency semantics are often weaker than Assise’s. Assise

provides data crash consistency, while both Ceph/BlueStore
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and Octopus provide only metadata crash consistency [31].

For NFS, crash consistency is determined by the underlying

file system. We use EXT4-DAX [9], which also provides

only metadata crash consistency. When sharing data, NFS

provides close-to-open consistency [39], while Octopus and

Ceph provide “stronger consistency than NFS” [28], and As-

sise provides linearizability, which is stronger than Octopus’

and Ceph’s guarantees. In all performance comparisons, As-

sise provides stronger consistency than the alternatives. Ceph

is the closest comparison point.

File system compliance tests. We tested Assise using xf-

stests [18] and CrashMonkey [65]. Assise passed all 75

generic xfstests that are recommended for NFS [16]. NFSv4.2

and Ceph v14.2.1 pass only 71 and 69 of these tests, respec-

tively. In part, this is due to their weaker consistency model.

Assise also successfully passes CrashMonkey tests, runs all

existing Filebench profiles, passes all unit tests for the Lev-

elDB key-value store, and passes MinuteSort validation.

5.1 Experimental Configuration

Machines. Each experiment specifies the number (≥ 2) of

testbed machines used. By default, machines are used as hot

replicas in Assise, as a pool of storage nodes in Octopus,

and as OSD and MDS replicas in Ceph. NFS uses only one

machine as server, the rest as clients. We place applications

on hot replicas for Assise, on OSD replicas for Ceph, on

storage nodes for Octopus, and on clients for NFS. Assise’s

and Ceph’s cluster managers run on 2 additional testbed ma-

chines (NFS and Octopus do not have cluster managers). The

colocated deployment of applications and OSDs for Ceph is

due to the small size of our cluster. It gives Ceph a potential

performance advantage over an all-remote OSD deployment.

Network. We use RDMA for the NFS client-server connec-

tion. Ceph provides its client-side file system via the Ceph

kernel driver and uses IP over InfiniBand, which was the

fastest configuration (we also tried FUSE and Accelio [13]).

Assise and Octopus use RDMA with kernel-bypass.

Storage and caches. For maximum efficiency, all file sys-

tems use NVM in App-Direct mode to provide persistence

(cylinders in Figure 1) and DRAM when persistence is not

needed (e.g., kernel buffer cache). We investigate Ceph and

NFS performance using NVM in memory mode for volatile

caches and find it to degrade throughput by up to 25% versus

DRAM. For efficient access to NVM, Ceph OSDs use Blue-

Store and NFS servers use EXT4-DAX. Octopus uses FUSE

to provide its file system interface to applications in direct IO

mode to NVM, bypassing the kernel buffer cache [6].

To evaluate a breadth of cache behaviors with limited appli-

cation data set sizes, we limit the fastest cache size for all file

systems to 3GB. For Ceph and NFS, we limit the kernel buffer

cache to 3GB. For Assise, we partition the LibFS cache into

a 1GB NVM update log and a 2GB DRAM read cache (the

SharedFS second-level cache may use all NVM available),

and we run Assise in pessimistic mode.
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(b) Read latencies for cache hits, misses, and remote (RMT) misses.

Figure 3: Avg. and 99%ile (error bar) IO latencies. Log scale.

5.2 Microbenchmarks

Average and tail write latency. We compare unladen syn-

chronous write latencies with 2 machines (except Assise-3r

which uses 3 machines). Synchronous writes involve write

calls (fixed-width font identifies POSIX calls) that operate

locally (except for Octopus where write may be remote),

and fsync calls that involve remote nodes for replication (As-

sise, Ceph) and/or persistence (Ceph, NFS). Each experiment

appends 1GB of data into a single file, and we report per-

operation latency. In this case, the file size is smaller than each

file system’s cache size, so no evictions occur—with giga-

bytes of cache capacity, this is common for latency-sensitive

write bursts.

Figure 3a shows the average and 99th percentile sequential

write latencies over various common IO sizes (random write

latencies are similar for all file systems). We break writes

down into write (solid line) and fsync call latencies (bar).

Octopus’ fsync is a no-op. Assise’s local write latencies

match that of Strata [52]. Assise’s average write latency for

128B two-node replicated writes is only 8% higher than the

aggregate latencies of the required local and NVM-RDMA

writes (cf. Table 1). Three replicas (Assise-3r) increase As-

sise’s overhead to 2.2× due to chain-replication with sequen-

tial RPCs. The 99th percentile replicated write latency is up

to 2.1× higher than the average for 2 replicas. This is due

to Optane PMM write tail-latencies [45]. The tail difference

diminishes to 19% for 3 replicas due to the higher average.

Ceph and NFS use the kernel buffer cache and interact at

4KB block granularity with servers. For small writes, the in-

curred network IO amplification during fsync is the main

reason for up to an order of magnitude higher aggregate write

latency than Assise. In this case, their write latency is up
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to 3.2× higher than Assise due to kernel crossings and copy

overheads. For large writes (≥ 64KB), network IO amplifica-

tion diminishes but the memory copy required to maintain the

kernel buffer cache becomes a major overhead. The latency of

large writes is higher than Assise’s replicated write latency

(and up to 2.7× higher than Assise’s non-replicated write

latency), while aggregate write latency is up to 7.2× higher

than Assise. Ceph has higher fsync latency than NFS due to

replication.

Octopus eliminates the kernel buffer cache and block ori-

entation, which improves its performance drastically versus

NFS and Ceph. However, Octopus still treats all NVM as re-

mote and uses FUSE for file IO. Octopus exhibits up to 2.1×

higher latency than Assise for small (< 64KB) writes. This

overhead stems from FUSE (around 10µs [78]) and writing to

remote NVM via the network. Large writes (≥ 64KB) amor-

tize Octopus’ write overheads. Assise has up to 1.7× higher

write latency due to replication. Octopus does not replicate.

Average and tail read latency. We compare unladen read

latencies across different cache configurations. To do this, we

read a 1GB file using various IO sizes, once with a warm

cache (to report cache hits) and once with a cold cache (to

report misses). The results are shown in Figure 3b. Assise has

a second-layer cache in SharedFS before going remote, and

we report three cases for Assise. Reads in Octopus are always

remote.

We first compare cache-hit latencies (HIT), where Assise

is up to 40% faster than NFS and 50% faster than Ceph.

Assise serves data from the LibFS read cache, while NFS

and Ceph use the kernel buffer cache. If Assise misses in the

LibFS cache, data may be served from the local SharedFS

(MISS). Assise-MISS incurs up to 3.2× higher latency than

Assise-HIT due to reading the extent tree index, especially

for larger IO sizes that read a greater number of extents. If

Assise misses in both caches, it has to read from a remote

replica (RMT). Assise-RMT incurs the latency of an RPC

using RDMA. When NFS and Ceph miss in the cache, their

clients have to fetch from remote servers, which incurs up

to orders of magnitude higher average and tail latencies than

Assise-RMT and Assise-MISS. Ceph performs worse than

NFS due to a more complex OSD read path.

The elimination of a cache hurts Octopus’ read perfor-

mance, because it has to fetch metadata and data (serially)

from remote NVM (RMT). Octopus’ read latency is up to

two orders of magnitude higher than the other file systems

hitting in the cache, and up to an order of magnitude lower

than NFS and Ceph missing in the cache. Octopus does not

handle small (≤ 4KB) reads well due to FUSE overheads,

with up to 3.54× Assise-RMT read latency. This overhead is

amortized for larger reads (≥ 64KB), where Octopus incurs

up to 1.46× the read latency of Assise-RMT. By configuring

FUSE to use the kernel buffer cache for Octopus, we reduce

Octopus’ read hit latency to 1.8× that of Assise-HIT, with the

remaining overhead due to FUSE. However, using the kernel

buffer cache inflates write latencies for Octopus by up to an

order of magnitude due to additional buffer cache memory

copies.

Peak throughput. Figure 4 shows average throughput of

sequential and random IO to a 120GB dataset (on the local

socket) with 4KB IO size from 24 threads (all cores of one

socket). To evaluate a standard replication factor of 3, we use

3 machines for Assise and Ceph. The dataset is sharded over

24 files, and 5GB of data is written per thread. For random

writes, a random offset is generated for every IO. write calls

are not followed by fsync and the total amount of accessed

data is larger than the cache size, causing cache eviction on

write. The cache is initially cold so reads miss in the cache.

For Assise, we show cache miss performance from a local and

remote SharedFS. Octopus crashes during this experiment

and is not shown.

For sequential writes, Assise and NFS achieve 74% and

66% of the NVM-RDMA bandwidth (cf. Table 1), respec-

tively, due to protocol overhead for NFS and log header over-

head for Assise. Chain-replication in Assise affects through-

put only marginally. Ceph replicates in parallel to 2 remote

replicas, consuming 3× the network bandwidth. This re-

duces its throughput to 31% of Assise and 35% of NFS. As-

sise achieves similar performance for sequential and random

writes, as Assise’s writes are log-structured. NFS and Ceph

perform poorly for random writes due to cache block mis-

prefetching incurring additional reads from remote servers,

causing Assise to achieve 4.8× Ceph’s throughput. NFS

throughput is at only 67% that of Ceph, which is due to kernel

locking overhead.

To quantify the benefit of bypassing hardware cache co-

herence for cross-socket writes with DMA, we repeat the

benchmark, placing all files on the remote socket. We can see

that Assise-DMA attains 44% higher cross-socket through-

put than non-temporal processor writes (Assise). Sequential

and random writes provide comparable performance. NVM-

NUMA writes occur during eviction from the LibFS update

log (local socket) to the NVM shared cache (remote socket).

When writing to the local socket, Assise-DMA attains identi-

cal throughput to Assise, regardless of pattern.

For local sequential and random reads from the local

SharedFS cache, Assise achieves 90% and 68%, respectively,

of local, sequential NVM bandwidth. The 10% difference for

sequential reads to local NVM bandwidth is due to metadata

lookups, while random reads additionally suffer PMM buffer

misses [45]. Assise remote reads (Assise-RMT) attain full

NVM-RDMA bandwidth (3.8GB/s), regardless of access pat-

tern. NFS and Ceph are limited by NVM-RDMA bandwidth

for all reads and again have worse random read performance

due to prefetching.

Log size sensitivity. To evaluate the impact of log size on

write throughput, we conduct a sensitivity analysis. We run

a single-process microbenchmark that writes a 1GB file se-

quentially at 4KB IO granularity. This experiment models a
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(a) Write. 3.8GB/s is NVM-RDMA bandwidth. (b) Read. 32GB/s is NVM read bandwidth.

Figure 4: Average throughput with 24 threads at 4KB IO size.

Figure 5: Worst-case throughput versus up-

date log size, normalized to 2GB.

Figure 6: Average LevelDB benchmark latencies. Log scale.

worst case scenario. In the absence of sharing, processes can

quickly fill up their allocated log space. Figure 5 shows the

normalized write throughput at different log sizes. Through-

put increases with log size, but the performance impact is

small. Throughput increases by only 22% when using a 2GB

log size versus a 16MB log size, a 128× increase in log size.

For workloads that share data, we expect this gap to be smaller,

as logs are evicted upon lease handoff. With 6TB of NVM

per machine, Assise can scale to thousands of processes even

with 2GB update logs. At 16MB, 100,000s of processes can

be supported.

5.3 Application Benchmarks

We evaluate the performance of a number of common cloud

applications, such as the LevelDB key-value store [33], the

Fileserver and Varmail profiles of the Filebench [75] bench-

marking suite, emulating file and mail servers, and the Min-

uteSort benchmark. We use 3 machines for LevelDB and

Filebench and 5 machines for MinuteSort.

LevelDB. We run a number of single-threaded LevelDB

latency benchmarks using LevelDB’s db_bench, including

sequential and random IO, skewed random reads with 1%

of highly accessed keys, and sequential synchronous writes

(fsync after each write). All benchmarks use a key size of

16B and a value size of 1KB with a working set of 1M KV

pairs. Figure 6 presents the average measured operation la-

tency, as reported by the benchmark.

Assise, Ceph, and NFS perform similarly for reads, where

caching allows them to operate close to hardware speeds. For

non-synchronous writes, NFS is up to 26% faster than Assise,

as these go to its client kernel buffer cache in large batches

(LevelDB has its own write buffer), while Assise is 69% faster

than NFS for synchronous writes that cannot be buffered.

Random IO and synchronous writes incur increasing LevelDB

indexing overhead for all systems. Ceph performs worse than

NFS for writes because it replicates (as does Assise) and

Figure 7: LevelDB random read latencies with warm replica.

Assise performs 22× better. Octopus bypasses the cache and

thus performs worst for reads and better only than Ceph for

writes, as it does not replicate.

Warm replica read latency. Warm replicas reduce read la-

tency for warm data by allowing these reads to be served

from remote NVM, rather than cold storage. For this bench-

mark, we configure Assise to limit the aggregate (LibFS and

SharedFS) cache to 2GB and use the local SSD for cold stor-

age. We then run the LevelDB random read experiment with

a 3GB dataset. We repeat the experiment with two setups:

(1) with 3 hot replicas and (2) with 2 hot and 1 warm replica.

Figure 7 shows a CDF of read latencies. The benchmark ac-

cesses data uniformly at random, causing 33% of the reads to

be warm. Consequently, at the 50th percentile, read latencies

are similar for both configurations (served from cache). At

the 66th percentile, reads in the first setup are served from

SSD and have 2.2× higher latency than warm replica reads

in the second setup. At the 90th percentile, the latency gap

extends to 6×.

Filebench. Varmail and Fileserver operate on a working set

of 10,000 files of 16KB and 128KB average size, respectively.

Files grow via 16KB appends in both benchmarks (mail de-

livery in Varmail). Varmail reads entire files (mailbox reads)

and Fileserver copies files. Varmail and Fileserver have write

to read ratios of 1:1 and 2:1, respectively. Varmail leverages

a write-ahead log with strict persistence semantics (fsync

after log and mailbox writes), while Filebench consistency

is relaxed (no fsync). Figure 8 shows average measured

throughput of both benchmarks. Assise outperforms Octo-

pus (the best alternative) by 6.7× for Fileserver and 5.1× for

Varmail. Ceph performs worse than NFS for Varmail due to

stricter persistence requiring it to replicate frequently and due

to MDS contention, as Varmail is metadata intensive.

Optimistic crash consistency. We repeat this benchmark for

Assise in optimistic mode (Assise-Opt) and change Varmail to

use synchronous writes for the mailbox, but non-synchronous

writes for the log. Prefix semantics allow Assise to buffer and
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System Processes Partition [s] Sort [s] Total [s] GB/s

Assise 160 20.3 43.0 63.3 5.1

320 52.1 43.0 95.1 6.7

NFS 160 60.9 79.3 140.2 2.3

320 104.1 84.2 188.3 3.4

DAX 320 – 44.1 – –

Table 4: Average Tencent Sort duration breakdown.

coalesce the temporary log write without losing consistency.

Assise-Opt achieves 2.1× higher throughput than Assise. File-

server has few redundant writes and Assise-Opt is only 7%

faster.

MinuteSort. We implement and evaluate Tencent Sort [46],

the current winner of the MinuteSort external sorting com-

petition [7]. Tencent Sort sorts a partitioned input dataset,

stored on a number of cluster nodes, to a partitioned output

dataset on the same nodes. It conducts a distributed sort con-

sisting of 1) a range partition and 2) a mergesort (cf. MapRe-

duce [32]). Step 1 presorts unsorted input files into ranges,

stored in partitioned temporary files on destination machines.

Step 2 reads these files, sorts their contents, and writes the

output partitions. Each step uses one process per partition; the

parallelism equals the number of partitions. A distributed file

system stores the input, output, and temporary files, implicitly

taking care of all network operations.

We benchmark the MinuteSort Indy category, which re-

quires sorting a synthetic dataset of 100B records with 10B

keys, distributed uniformly at random. Creating a 2GB input

partition per process, we run 160 or 320 processes in paral-

lel, uniformly distributed over 4 machines. MinuteSort does

not require replication, so we turn it off. It calls fsync only

once for each output partition, after the partition is written.

We compare a version running a single Assise file system

with one leveraging per-machine NFS mounts. For Assise,

we configure the temporary and output directories to be colo-

cated with the mergesort processes. We do the same for NFS,

by exporting corresponding directories from each mergesort

node. We conduct three runs of each configuration and report

the average. We use the official competition tools [7] to gen-

erate and verify the input and output datasets. We use equal

dataset sizes to compare Assise and NFS, rather than equal

time. Table 4 shows that Assise sorts up to 2.2× faster than

NFS. Running twice the number of processes only marginally

improves performance, as Assise is bottlenecked by network

bandwidth.

To show that Assise’s POSIX implementation does not

reduce performance, we modify the sort step to map all files

into memory using EXT4-DAX and use processor loads and

non-temporal stores to sort directly in NVM, rather than using

file IO. We can see that the sort phase is 3% slower with DAX.

libc buffers IO in DRAM to write 4KB at a time to NVM,

performing better than direct, interleaved appends of 100B

records.

Figure 8: Avg. Varmail and Fileserver throughput. Log scale.

5.4 Availability

Ceph and Assise are fault tolerant. We evaluate how quickly

these file systems return an application back to full perfor-

mance after the fail-over and recovery situations of §3.4. To

do so, we run LevelDB on the same dataset (§5.3) with a 1:1

read-write ratio and measure operation latency before, during,

and after fail-over and recovery. We report average results

over 5 benchmark runs.

Process fail-over. For this benchmark, we simply kill Lev-

elDB. In this case, the failure is immediately detected by the

local OS and LevelDB is restarted. Ceph can reuse the shared

kernel buffer cache in DRAM, resulting in LevelDB restoring

its database after 1.63s and returning to full performance after

an additional 2.15s, for an aggregate 3.78s fail-over duration.

With Assise, the DB is restored in 0.71s, including recovery

of the log of the failed process and reacquisition of all leases.

Full-performance operations occur after an additional 0.16s,

for an aggregate 0.87s fail-over time. Assise recovers this case

4.34× faster than Ceph, showing that process-local caches do

not impede fast recovery.

OS fail-over. NVM’s performance allows for instant local re-

covery of an OS failure, rather than requiring a backup replica.

To demonstrate, we run the primary in a virtual machine (VM).

We kill the primary VM, then immediately start a new VM

from a snapshot stored in NVM. The snapshot starts in 1.66s.

We restart SharedFS within the new VM, which recovers the

file system within 0.23s. Finally, as in the process fail-over

experiment, LevelDB is restarted and resumes database op-

erations after another 0.68s. The aggregate fail-over time is

2.57s, 40× faster than Ceph’s fail-over to a backup replica

(evaluated next).

Fail-over to hot backup. All following experiments use 2

machines (primary and backup). The LevelDB client pro-

cesses poll the file system’s cluster manager for membership

state, using a standard primary-backup ZooKeeper design pat-

tern for node fail-over [47]. LevelDB initially runs on the

primary, where we inject failures. Failures are detected by

LevelDB clients using a 1s heartbeat timeout via the cluster

manager. Once a node failure is detected, LevelDB immedi-

ately restarts on the backup.

A time series of measured LevelDB operation latencies

during one experiment run is shown in Figure 9. Pre-failure,

we see bursts of low latency in between stretches of higher

latency. This is LevelDB’s steady-state. Bursts show LevelDB
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Figure 11: Postfix mail delivery throughput scalability.

To break down the benefit of local lease management in As-

sise, we progressively shard it, first by server (Assise-server),

then by socket (Assise-numa), and finally by process (Assise).

Assise-server outperforms Orion (emu) by 2.77× and Assise-

numa improves throughput by another 1.93×. Assise scales

linearly with the number of processes until it hits NVM write

bandwidth, improving throughput by another 12.86×. Assise

outperforms Orion by 69× and Ceph by 554× at scale.

5.5.2 Postfix

We use the unmodified Postfix mail server to measure the per-

formance of parallel mail delivery. A load balancer machine

forwards incoming email from as many client machines as

necessary to maximize throughput to Postfix queue daemons

running on 3 testbed machines, configured as replicas. On

each Postfix machine, a pool of delivery processes pull email

from the machine-local incoming mail queue and deliver it

to user Maildir directories on a cluster-shared distributed file

system. To ensure atomic mail delivery, a Postfix delivery

process writes each incoming email to a new file in a process-

private directory and then renames this file to the recipient’s

Maildir.

We send 80K emails from the Enron dataset [51], with each

email reaching an average of 4.5 recipients. This results in a

total of 360K email deliveries. Each email has an average size

of 200KB (including attachments) and the dataset occupies

70GB. We repeat each experiment 3 times and report average

mail delivery throughput and standard deviation (error bars)

in Figure 11 over an increasing number of delivery processes,

balanced over machines. We compare various Assise configu-

rations and Ceph with 2 MDSes (1 and 3 MDSes performed

similarly).

Round-robin. In the first configuration (Assise-rr) the load

balancer uses a round-robin policy to send emails to mail

queues. Due to a lack of locality, mails delivered to the same

Maildir often require synchronization across machines, caus-

ing CC-NVM to frequently delegate leases remotely, which

increases delivery latencies. Despite this, Assise-rr is able to

outperform Ceph by up to 5.6× at scale. Ceph cannot improve

throughput much further—even with 300 delivery processes,

its throughput improves by 8% versus 48 processes.

Sharded. We shard Maildirs by Enron suborganization over

machines [26]. The load balancer is configured to prefer the

recipient’s shard. For mail messages with multiple recipients,

it picks the shard with the most receivers. In case of mail

queue overload, the load balancer sends mail to a random

unloaded shard. Sharding users in this manner provides up to

20% better performance (Assise-sharded) due to the fact that

repeated deliveries to users of the same clique are likely to

occur on the same server, allowing CC-NVM to synchronize

delivery locally. At 15 processes, we are network-bound due

to replication. Sharding did not improve Ceph’s performance.

Private directories. We shard Maildirs by delivery process,

using process IDs for Maildir subdirectories, thereby elim-

inating the need for synchronization (Assise-private). This

change is not backward compatible with existing mail read-

ers, but it is the logical limit for sharding-based optimization.

Assise-private scales linearly until it is bottlenecked by net-

work bandwidth, but performance is similar to Assise-sharded.

This shows that local synchronization in Assise has minimal

overhead. Ceph performance continues to be gated by the

MDS.

Summary. Our results show that, with careful sharding of

the workload, Assise’s hierarchical coherence allows LibFS

processes to synchronize deliveries locally, providing almost

the same performance and scalability as private directories.

6 Conclusion

Assise is a distributed file system that provides low tail la-

tency, high throughput, scalability, and high availability with

a strong consistency model. To take advantage of low-latency

NVM, Assise demonstrates that filesystem metadata and data

should be colocated with applications. Colocation not only

enables high performance, but also fast recovery. Assise pro-

poses a novel, crash-consistent cache coherence protocol that

can leverage the performance of NVM, while providing lin-

earizability. Assise uses hot replicas in NVM to minimize

application recovery time and ensure data availability, while

leveraging a crash-consistent file system cache-coherence

layer (CC-NVM) to provide scalability. In comparing with

several state-of-the-art file systems, our results show that As-

sise improves write latency up to 22×, throughput up to 56×,

fail-over time up to 103×, and scalability up to 6× versus

Ceph, while providing stronger consistency semantics.

Assise is available at https://github.com/ut-osa/assise.
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