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Abstract

Persistent main memory (PM) dramatically improves 10
performance. We find that this results in file systems on PM
spending as much as 70% of the 1O path performing file map-
ping (mapping file offsets to physical locations on storage
media) on real workloads. However, even PM-optimized file
systems perform file mapping based on decades-old assump-
tions. It is now critical to revisit file mapping for PM.

We explore the design space for PM file mapping by build-
ing and evaluating several file-mapping designs, including dif-
ferent data structure, caching, as well as meta-data and block
allocation approaches, within the context of a PM-optimized
file system. Based on our findings, we design HashFS, a hash-
based file mapping approach. HashFS uses a single hash oper-
ation for all mapping and allocation operations, bypassing the
file system cache, instead prefetching mappings via SIMD
parallelism and caching translations explicitly. HashFS’s re-
sulting low latency provides superior performance compared
to alternatives. HashFS increases the throughput of YCSB on
LevelDB by up to 45% over page-cached extent trees in the
state-of-the-art Strata PM-optimized file system.

1 Introduction

Persistent main memory (PM, also known as non-volatile
main memory or NVM) is a new storage technology that
bridges the gap between traditionally-slow storage devices
(SSD, HDD) and fast, volatile random-access memories
(DRAM). Intel Optane DC persistent memory modules [20],
along with other PM variants [1,2,4,30,35,50], are anticipated
to become commonplace in DIMM slots alongside traditional
DRAM. PM offers byte-addressable persistence with only
2-3x higher latency than DRAM, which is highly appealing
to file-system designers. Indeed, prior work has re-designed
many file-system components specifically for PM, reducing
overhead in the IO path (e.g. by eliminating memory copies
and bypassing the kernel) [11, 14,24,29,48,52,56].
However, not all aspects of the IO path have been exam-
ined in detail. Surprisingly, file mapping has received little
attention in PM-optimized file systems to date. File mapping—
the translation from logical file offsets to physical locations
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on the underlying device—comprises up to 70% of the 10
path of real workloads in a PM-optimized file system (as we
show in §4.8). Even for memory-mapped files, file mapping is
still involved in file appends. Yet, existing PM-optimized file
systems either simply reuse mapping approaches [11, 14,24]
originally designed for slower block devices [29], or devise
new approaches without rigorous analysis [15,57].

PM presents a number of challenges to consider for file
mapping, such as dealing with fragmentation and concurrency
problems. Notably, the near-DRAM latency of PM requires
reconsidering many aspects of file mapping, such as mapping
structure layout, the role of the page cache in maintaining
volatile copies of file mapping structures, and the overhead of
physical space allocation. For example, some PM-optimized
file systems maintain copies of their block mapping structures
in a page cache in DRAM, as is traditional for file systems on
slower storage devices [11,24,29], but others do not [14, 15,
48] and instead rely on CPU caching. It is currently unclear if
maintaining a volatile copy of mapping structures in DRAM
is beneficial versus relying on CPU caches to cache mapping
structures, or designing specialized file map caches.

In this work, we build and rigorously evaluate a range of
file mapping approaches within the context of PM-optimized
file systems. PM’s random access byte addressability makes
designing fully random access mapping structures (i.e., hash
tables) possible, which expands the design space of possible
file mapping structures. To this end, we evaluate and PM-
optimize two classic per-file mapping approaches (i.e., where
each file has its own mapping structure) that use extent trees
and radix trees. We propose and evaluate two further, global
mapping approaches (i.e., where a single structure maps all
files in the entire file system). The first uses cuckoo hashing,
the second is HashFS, a combined global hash table and block
allocation approach that uses linear probing. We use these
approaches to evaluate a range of design points, from an
emphasis on sequential access performance to an emphasis
on minimizing memory references, cached and non-cached,
as well as the role of physical space allocation.

We evaluate these file-mapping approaches on a series
of benchmarks that test file system IO latency and through-
put under different workloads, access and storage patterns,
10 sizes, and structure sizes. We show how the usage of
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PM-optimized file mapping in a PM-optimized file system,

Strata [29], leads to a significant reduction in the latency of file

IO operations and large gains in application throughput. An

evaluation of Strata on YCSB [10] workloads running on Lev-

elDB [17] shows up to 45% improvement in throughput with

PM-optimized file mapping (§4). Our analysis indicates that

the performance of file-mapping is file system independent,

allowing our designs to be applied to other PM file systems.
Prior work investigates the design of PM-optimized stor-
age structures [31, 36, 54, 59] and indexing structures for

PM-optimized key-value stores [28,51,58]. These structures

operate on top of memory mapped files and rely on file map-

ping to abstract from physical memory concerns. Further, PM-
optimized storage and indexing structures are designed with

per-structure consistency (e.g., shadow paging) [31,54,59].

File systems already provide consistency across several meta-

data structures, making per-structure methods redundant and

expensive. In our evaluation, we show that storage structures
perform poorly for file mapping (§4.9).
In summary, we make the following contributions:

» We present the design and implementation of four file map-
ping approaches and explore various PM optimizations to
them (§3). We implement these approaches in the Strata
file system [29], which provides state-of-the-art PM perfor-
mance, particularly for small, random IO operations, where
file mapping matters most (§4.4). We perform extensive
experimental analyses on how the page cache, mapping
structure size, 1O size, storage device utilization, fragmen-
tation, isolation mechanisms, and file access patterns affect
the performance of these file mapping approaches (§4).

* We show that our PM-optimized HashFS is the best per-
forming mapping approach, due to its low memory over-
head and low latency (§4.1) during random reads and in-
sertions. We demonstrate that this approach can increase
throughput by up to 45% over Strata’s page-cached extent
trees in YCSB workloads (§4.8).

» We show that using a traditional page cache provides no ben-
efit for PM-optimized file mapping (§4.7). We also demon-
strate that PM-optimized storage structures are ill-suited
for use as file mapping structures and cannot be simply
dropped into PM-optimized file systems (§4.9).

2 File Mapping Background

What is file mapping? File mapping is the operation of map-
ping a logical offset in a file to a physical location on the
underlying device. File mapping is made possible by one or
more metadata structures (file mapping structures) maintained
by the file system. These file mapping structures map logical
locations (a file and offset) to physical locations (a device
offset) at a fixed granularity. File mapping structures have
three operations: lookups, caused by file reads and writes of
existing locations; insertions, caused by file appends or IO to

unallocated areas of a sparse file; and deletions, caused by file
truncation (including file deletion) or region de-allocation in
a sparse file. Inserts and deletions require the (de-)allocation
of physical locations, typically provided by a block allocator
maintaining a separate free block structure. PM file systems
generally map files at block granularity of at least 4KB in
order to constrain the amount of metadata required to track
file system space [15,29, 52]. Block sizes often correspond to
memory page sizes, allowing block-based PM file systems to
support memory-mapped IO more efficiently.

2.1 File Mapping Challenges

The following properties make designing efficient file map-
ping challenging. Careful consideration must be taken to find
points in the trade-off space presented by these properties
that maximize performance for a given workload and storage
device. PM intensifies the impact of many of these properties.

Fragmentation. Fragmentation occurs when a file’s data is
spread across non-contiguous physical locations on a storage
device. This happens when a file cannot be allocated in a
single contiguous region of the device, or when the file grows
and all adjacent blocks have been allocated to other files.
Fragmentation is inevitable as file systems age [42] and can
occur rapidly [9,23].

Fragmentation can magnify the overhead of certain file
mapping designs. Many traditional file systems use compact
file mapping structures, like extent trees (§3.1), which can
use a single extent entry to map a large range of contigu-
ous file locations. Fragmentation causes locations to become
non-contiguous and the mapping structure to become larger,
which can increase search and insert times (§4). This is re-
ferred to as logical fragmentation and is a major source of
overhead in file systems [19], especially on PM (as file map-
ping constitutes a larger fraction of the IO path on PM file
systems). Another consequence of fragmentation is the re-
duction in sequential accesses. Fragmentation results in the
separation of data structure locations across the device, which
causes additional, random IO on the device. This degrades 10
performance, particularly on PM devices [22].

Fragmentation must be considered as an inevitable occur-
rence during file mapping, since defragmentation is not al-
ways feasible or desirable. Defragmentation is an expensive
operation—it can incur many file writes, which can lower de-
vice lifespan by more than 10% in the case of SSDs [19]. Sim-
ilar concerns exist for PM, which may make defragmentation
undesirable for PM-optimized file systems as well [18,59].

Locality of reference. Locality of reference when accessing
a file can be used to reduce file mapping overhead. Accesses
with locality are typically accelerated by caching prior ac-
cesses and prefetching adjacent ones. OS page caches and
CPU caches can achieve this transparently and we discuss
the role of the OS page cache for PM file mapping in §2.2.
However, approaches specific to file mapping can yield fur-
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ther benefits. For example, we can hide part of the file map-
ping structure traversal overhead for accesses with locality,
by remembering the meta-data location of a prior lookup
and prefetching the location of the next lookup. Further, with
an efficient cache in place, the file mapping structure itself
should be optimized for random (i.e., non-local) lookups, as
the structure is referenced primarily for uncached mappings.

Mapping structure size. The aggregate size of the file map-
ping structures as a fraction of available file system space
is an important metric of file mapping efficiency. Ideally, a
file mapping structure consumes a small fraction of available
space, leaving room for actual file data storage. Furthermore,
the size of the mapping structure impacts the amount of data
that can remain cache-resident.

Traditional file mapping structures are designed to be elas-
tic—the size of the structure is proportional to the number of
locations allocated in the file system. This means that as the
number and size of files increase, the size of the file mapping
structure grows as well. However, elastic mapping structures
introduce overhead by requiring resizing, which incurs asso-
ciated space (de-)allocation and management cost.

Concurrency. Providing isolation (ensuring that concurrent
modifications do not affect consistency) can be an expensive
operation with limited scalability. This is a well-known prob-
lem for database mapping structures (called indexes) that sup-
port operations on arbitrary ranges. For example, insertions
and deletions of tree-based range index entries may require
updates to inner tree nodes that contend with operations on
unrelated keys [16,49].

Isolation is simpler in per-file mapping structures, where
the variety and distribution of operations that can occur con-
currently is limited. With the exception of sparse files, updates
only occur during a change in file size, i.e. when appending
new blocks or truncating to remove blocks. File reads and in-
place writes (writes to already allocated blocks) only incur file
mapping structure reads. For this reason, it is often sufficient
to protect per-file mapping structures with a coarse-grained
reader-writer lock that covers the entire structure [29].

The most common scenario for per-file mapping structure
concurrent access is presented by workloads with one writer
(updating the file mapping structure via appends or truncates),
with concurrent readers (file reads and writes to existing off-
sets). In this case, file mapping reads and writes can proceed
without contention in the common case. Other mapping struc-
ture operations can impact concurrency, but they generally
occur infrequently. For example, some file mapping structures
require occasional resizing. For consistency, this operation
occurs within a critical section but is required only when the
structure grows beyond a threshold. Extent trees may split or
merge extents and these operations require partial-tree locking
(locking inner nodes) but occur only on updates.

For global file mapping structures, the possibility of con-
tention is higher, as there can be concurrent writers (append-

ing/truncating different files). Global file mapping structures
have to be designed with concurrency in mind. In this case,
contention does not favor the use of tree-based indices, but
is tractable for hash table structures with per-bucket locks, as
contention among writers only occurs upon hash collision.

2.2 File Mapping Non-Challenges

Crash consistency. An overarching concern in file systems
is providing consistency—transitioning metadata structures
from one valid state to another, even across system crashes.
File systems have many metadata structures that often need
to be updated atomically across crashes, i.e. a free-list and a
file-mapping structure when a new location is allocated for a
file. File systems generally employ some form of journaling
to ensure these updates can be replayed and made atomic
and consistent, even in the case of a crash. This makes crash
consistency a non-challenge for file mapping. This is unlike
PM persistent data structures, which are typically designed to
provide crash consistency within the structure itself.

Page caching. Traditionally, file systems read data and meta-
data (including file-mapping structures) into a page cache in
DRAM before serving it to the user. The file system batches
updates using this page cache and writes back dirty pages.
This is a necessary optimization to reduce the overhead of
reading directly from a block device for each IO operation.
However, page caches have overheads. A pool of DRAM
pages must be managed and reallocated to new files as they
are opened, and the pages in the cache must be read and
written back to ensure updates are consistent.

For PM, an OS-managed page cache in DRAM may no
longer be required for file mapping structures. One analy-
sis [48] found that eschewing the page cache for inodes and
directories results in better performance in PM-optimized file
systems. Until now, there has been no such consensus on the
optimal design point for file mapping structures: some PM-file
systems maintain file mapping structures only in PM [15], oth-
ers maintain file mapping structures only in DRAM [52, 56],
still others manage a cache of PM-based file mapping struc-
tures in DRAM [11,29]. However, as we show in §4.7, page-
cache management turns out to be a non-challenge, as it is
always more efficient to bypass page-caching for file-mapping
structures on PM-optimized file systems.

3 PM File Mapping Design

Based on our discussion of the challenges (§2.1), we now
describe the design of four PM-optimized file mapping ap-
proaches, which we analyze in §4. We first describe two tra-
ditional, per-file mapping approaches and their PM optimiza-
tions, followed by two global mapping approaches. We dis-
cuss the unique challenges faced by each approach, followed
by a description of the approach’s mapping structure.
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Figure 1: An extent tree lookup example. Each indirect node lists
the range of logical blocks in the direct nodes it points to (shown
as <start block-end block>). Each direct block contains extents
that map ranges of logical blocks to physical blocks, represented
as <logical block start: physical block start (number
of blocks)>. Traversal of nodes is repeated until the direct map-
ping node is found.

(2_) Repeat until direct
node is searched

3.1 Traditional, Per-File Mapping

File mapping is done per-file in most traditional file systems.
Each file has its own elastic mapping structure which grows
and shrinks with the number of mappings the structure needs
to maintain. The mapping structure is found via a separate,
fixed-size inode table, indexed by a file’s inode number. Per-
file mapping generally provides high spatial locality, as all
mappings for a single file are grouped together in a single
structure, which is traditionally cached in the OS page cache.
Adjacent logical blocks are often represented as adjacent map-
pings in the mapping structure, leading to more efficient se-
quential file operations. Concurrent access is a minor problem
for per-file mapping approaches due to the restricted per-file
access pattern (§2.1). Physical block allocation is performed
via a separate block allocator, which is implemented using a
red-black tree in our testbed file system (§4).

Challenges. Per-file mapping structures must support resiz-
ing, which can be an expensive operation. Since they need to
grow and shrink, per-file mapping structures have multiple
levels of indirection, requiring more memory references for
each mapping operation. Fragmentation destroys the compact
layout of these structures and exacerbates overhead by in-
creasing the amount of indirection and thus memory accesses.

We now discuss two common mapping structures used for
per-file mapping.

3.1.1 Extent Trees

The extent tree is a classic per-file mapping structure, but
is still used in modern PM-optimized file systems [11,29].
Extent trees are B-trees that contain extents, which map file
logical blocks to physical blocks, along with a field that indi-
cates the number of blocks the mapping represents. Extents
can also be indirect, pointing to further extent tree nodes rather
than to file data blocks. In order to perform a lookup, a binary
search is performed on each node to determine which entry
holds the desired physical block. This search is performed on
each level of the extent tree, as shown in Fig. 1.

We create a PM-optimized variant of extent trees, based on
the implementation from the Linux kernel [33]. Traditionally,

. . 0
Logical Block: 21 1 /Pl |
2
3
0x00000015 00
0x00000015 o1
@Repeat at each level
02
@Perform offset until the bottom
Iculati
cateutation

Figure 2: An example radix tree performing a lookup. Each level is
indexed by using a portion of the logical block number as an offset.
The last level offset contains a single physical block number.

extent tree operations are performed on copies of tree blocks
in the page cache. As using a page cache for PM mapping
structures leads to unnecessary copy overhead (see §4.7),
we instead design our extent tree to operate directly on PM.
Consistency under concurrent extent access is guaranteed by a
per-extent entry valid bit, which is only enabled once an extent
is available to be read. Consistency for complex operations
(resizing, splitting extents, etc.) is provided by an undo log.
We also keep a cursor [5] in DRAM of the last accessed path,
improving performance for accesses with locality.

Design considerations. Extent trees have the most compact
representation of any of the mapping structures that we evalu-
ate, since multiple mappings can be coalesced into a single
extent, leading to small structure size. Extent trees, however,
require many memory accesses, as they must perform a binary
search at each level of the extent tree to find the final mapping.
Cursors can simplify the search, but only for sequential scans
through the structure and repeat block accesses.

3.1.2 Radix Trees

Radix trees are another popular per-file mapping struc-
ture [15], shown in Fig. 2. Each node in a radix tree occupies
a physical block on the device (typically 4KB), with the ex-
ception of a few entries that can be stored within the inode
directly. A lookup starts at the top level node resolving the
top N bits of the logical block number. With 8 byte pointers
and 4KB per node, we can resolve N = logz(%) =9 bits
per radix tree node. The second level node resolves the next
N bits, and so on. Radix trees grow and shrink dynamically
to use as many levels as required to contain the number of
mappings (e.g., a file with N < 9 would only need a single-
level tree). The last level node contains direct mappings to
physical blocks. To accelerate sequential scans, a cursor in
DRAM is typically used to cache the last place searched in
the tree. As each pointer is simply a 64-bit integer (a physical
block number), consistency can be guaranteed through atomic
instructions of the CPU. Consistency for resizing is provided
by first recording modifications in an undo log.

Design considerations. Radix trees are less compact than
extent trees, and typically require more indirection. Thus, tree
traversal will take longer on average, since radix trees grow
faster than the compact extent trees. However, radix trees have
the computationally simplest mapping operation—a series of
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offset calculations, which only require one memory access
per level of the tree. Hence, they often perform fewer memory
accesses than extent trees, as extent trees make O(log(N))
memory accesses per extent tree node (a binary search) to
find the next node to traverse.

3.2 PM-specific Global File Mapping

Based on our analysis of file mapping performance and the
challenges posed by per-file mapping approaches, we design
two PM-specific mapping approaches that, unlike the per-
file mapping approaches used in existing PM-optimized file
systems, are global. This means that, rather than having a
mapping structure per file, these approaches map both a file,
as represented by its inode number (inum), and a logical block
to a physical block. Hence, they do not require a separate
inode table.

Both of the global mapping structures we design are hash
tables. The intuition behind these designs is to leverage the
small number of memory accesses required by the hash ta-
ble structure, but to avoid the complexity of resizing per-file
mapping structures as files grow and shrink. We are able to
statically create these global structures, as the size of the file
system—the maximum number of physical blocks—is known
at file-system creation time. Hash tables are not affected by
fragmentation as they do not use a compact layout. Consis-
tency under concurrent access can frequently be resolved on
a per hash bucket basis due to the flat addressing scheme.

We employ a fixed-size translation cache in DRAM that
caches logical to physical block translations to accelerate
lookups with locality. It is indexed using the same hash value
as the full hash table for simplicity. The goal of the fixed-size
translation cache is to provide a mechanism for the hash table
structures that is similar to the constant-size cursor that the
extent and radix trees use to accelerate sequential reads [5].
This cache contains 8 entries and is embedded in an in-DRAM
inode structure maintained by Strata, our testbed file system
(8§4). This fixed-size translation cache is different from a
page cache, which caches the mapping structure, rather than
translations. The translation cache reduces the number of PM
reads required for sequential read operations, benefiting from
the cache locality of the in-DRAM inode structure, accessed
during file system operations (§4.1).

Global Structure Challenges. Since these global mapping
structures are hash tables, they exhibit lower locality due to the
random nature of the hashing scheme. These global hash ta-
bles potentially exhibit even lower locality than a per-file hash
table might experience, since a per-file hash table would only
contain mappings relevant to that file, where the mappings
in a global hash table may be randomly distributed across
a much larger region of memory. However, the translation
cache ameliorates this challenge and accelerates mappings
with locality.

We now discuss two global file mapping hash table designs.

3.2.1 Global Cuckoo Hash Table

We show a diagram for the first global hash table structure in
Fig. 3. In this hash table, each entry maps <inum>, <logical
block>: <physical block>(<# of blocks>). This hash table
uses cuckoo hashing [38], which means each entry is hashed
twice using two different hash functions. For lookups, at most
two locations have to be consulted. For insertions, if both
potential slots are full, the insertion algorithm picks one of
the existing entries and evicts it by moving it to its alternate
location, continuing transitively until there are no more con-
flicts. We use cuckoo hashing for this design instead of linear
probing to avoid having to traverse potentially long chains
of conflicts in pathological cases, bounding the number of
memory accesses required to find a single index to 2.

The hash table is set up as a con-
tiguous array, statically allocated at file-
system creation. Consistency is ensured
by first persisting the mapping informa- [—]_hashtO()
tion (physical block number, size) be- [ 11ah2 0
fore persisting the key (inum, logical
block), effectively using the key as a
valid indicator. Consistency for complex
inserts (i.e., inserts which cause shuf-
fling of previous entries) is maintained 1, 23: 102(1)
by first recording operations in the file- | _2.51:201(1)
system undo log. As complex updates
are too large for atomic compare-and-
swap operations, we use Intel TSX [21]
in place of a per-entry lock to provide
isolation. This isolation is required as
inserts may occur concurrently across
files—this is not a challenge for per-file mapping structures,
which can rely on per-file locking mechanisms for isolation.

File Number: 1
Logical Block: 21

1, 22: 101(2)

Ll 1,21: 1003

@Compute hash

@Seamh both locations
Figure 3: Global
hash table with
cuckoo hashing.

One issue with hash tables is that they generally present
a one-to-one mapping, which is not conducive to represent-
ing ranges of contiguously allocated blocks like traditional
mapping structures. To compensate, each entry in this hash
table also contains a field which includes the number of file
blocks that are contiguous with this entry. This mapping is
maintained for every block in a series of contiguous blocks;
for example, if logical blocks 21..23 are mapped contiguously
to device blocks 100..102, the hash table will have entries for
100 with size 3 (shown in Fig. 3 as 100(3)), 101 with size
2, and so on. Each entry also contains a reverse index field
which describes how many blocks come before it in a con-
tiguous range so that if a single block is removed from the
end of a contiguous block range, all entries in the group can
be updated accordingly. This hash table can also do parallel
lookups for multiple blocks (e.g., by using SIMD instructions
to compute hashes in parallel) to make lookup more efficient
for ranged accesses (i.e. reading multiple blocks at a time)
if fragmentation is high. Ranged nodes are crucial for the
performance of large 10 operations (we discuss this further in
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Figure 4: HashFS and an example lookup operation. Rather than
storing a physical block number in the hash entry, the offset in the
hash table is the physical block number.

§4.4). Ranged nodes are also cached in the translation cache
to accelerate small, sequential 10 operations.

Design considerations. There is a trade-off between
cuckoo hashing and linear probing. Cuckoo hashing accesses
at most 2 locations, but they are randomly located within the
hash table, resulting in poor spatial locality. Linear probing
may access more locations when there are conflicts, but they
are consecutive and therefore have high spatial locality with
respect to the first lookup. Therefore, a linear probing hash
table with a low load factor may access only 1 or 2 cache lines
on average, which would outperform a cuckoo hash table in
practice. We explore this trade-off by comparing this global
hash table scheme to a linear probing scheme (described in
§3.2.2) to determine which scheme has better performance
in practice—we measure the latency of lookups and modifi-
cations separately in our microbenchmarks (§4.1-§4.5) and
end-to-end performance in our application workloads (§4.8).

3.2.2 HashFS

We also design a second global hash table, with the idea of
specifically reducing the cost of the insert operation, which
normally involves interacting with the block allocator. To this
end, we build a single hash table that also provides block
allocation, which we call HashFFS. We present a diagram of
this structure in Fig. 4.

HashF'S is split into a metadata region and a file data re-
gion. Physical blocks are stored in the file data region, which
starts at fileDataStart. A lookup resolves first to the meta-
data region. The corresponding physical block location is
calculated from the offset of the entry in the metadata region.
For example, if the hash of <inum=1, 1blk=21> resolves to
offset i in the metadata region, the location of the correspond-
ing physical block is (fileDataStart + i x blockSize), with
blockSize = 4KB.

Unlike the cuckoo hash table (§3.2.1), this table does not
have any ranged nodes, instead providing a pure one-to-one
mapping between logical blocks and physical blocks. This
uses a constant space of 8 bytes per 4KB data block in the
file system, for a total space overhead of < 0.2% of PM. An-
other advantage to this scheme is that the hash table entries
are extremely simple—a combined inum and logical block,
which fits into a 64-bit integer. Consistency can therefore be
guaranteed simply with intrinsic atomic compare-and-swaps.

In order to efficiently implement large 10 and sequential

How is file mapping

affected by... Design Question §

Locality? Optimize for specific workloads? 4.1
Fragmentation? Make robust against file system aging? | 4.2
File size? Specialize for different file sizes? 43
10 size? Optimize for sequential access? 4.4
Space utilization? Make file mapping structure elastic? 4.5
Concurrency? Is ensuring isolation important? 4.6
Page caching? Is page caching necessary? 4.7
Real workloads? Are mapping optimizations impactful? | 4.8
Storage structures? Can we reuse PM storage structures? 4.9

Table 1: The questions we answer in our evaluation.

access, we perform vector hash operations using SIMD in-
structions. This is possible due to PM’s load/store addressabil-
ity and adequate bandwidth. If an IO operation does not use
the maximum SIMD bandwidth, the remaining bandwidth
is used to prefetch following entries, which are then cached
in the translation cache. The global hash table uses linear
probing, which inserts conflicting hash values into an off-
set slot in the same area [8]. This is in contrast to separate
chaining, which allocates separate memory for a linked list
to handle conflicts. An advantage of linear probing is that
conflicting entries are stored in adjacent locations, reducing
the overhead of searching conflicts by avoiding misses in the
PM buffer [43]. Additionally, unlike cuckoo hashing, linear
probing never relocates entries (i.e., rehashing), which pre-
serves the correspondence between the index of the metadata
entry and file data block. As discussed previously, we mea-
sure the trade-offs of linear probing and cuckoo hashing in
our evaluation (§4.1-84.5 and §4.8).

HashFS is not fundamentally limited to 8 byte entries.
Rather than performing atomic compare-and-swap operations
on an 8§ byte entry, other atomic update techniques can ensure
isolation (e.g., Intel TSX). The existing logging mechanisms
provide crash consistency regardless of the size of the HashFFS
entries. The overall space overhead is low, even with larger
entries (e.g., < 0.4% of the total file system capacity with 16
byte entries).

Design considerations. HashFS, like the global cuckoo
hash table, also has very low spatial locality, but improves
sequential access by prefetching via SIMD parallelism.
HashFFS’s computational overhead is low on average, as
HashFES only has to compute a single hash function per lookup.
However, conflicts are expensive, as they are resolved by lin-
early following chains of entries. This means that HashIFS
may perform worse at high load factors (i.e. as the file system
becomes more full).

4 Evaluation

We perform a detailed evaluation of the performance of our
PM file-mapping approaches over a series of microbench-
marks and application workloads and discuss the performance
characteristics of each mapping structure. We then demon-
strate that the non-challenges we discussed in §2.2 are indeed
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non-challenges in PM-optimized file systems. We summarize
the questions we answer in our analysis in Table 1.

Experimental setup. We run our experiments on an Intel Cas-
cade Lake-SP server with four 128GB Intel Optane DC PM
modules [20]. To perform our analysis, we integrate our map-
ping approaches into the Strata file system [29]. We choose
Strata for our analysis as it is one of the best performing open-
source PM-optimized file systems, which is actively used by
state-of-the-art research [39]. We configure Strata to only
use PM (i.e., without SSD or HDD layers). Our file-mapping
structures are integrated into both the user-space component
of Strata (LibF'S, which only reads mapping structures) and
the kernel-space component of Strata (KernEF'S, which reads
and updates mapping structures based on user update logs
“digested” [29] from LibFS). Each experiment starts with cold
caches and, unless noted, mapping structures are not page
cached.

Generating fragmentation. We modify the PM block alloca-
tor in Strata to accept a layout score parameter at file-system
initialization that controls the level of fragmentation encoun-
tered during our experiments. Layout score is a measure of
file-system fragmentation which represents the ratio of file
blocks that are contiguous to non-contiguous file blocks [42].
A layout score of 1.0 means all blocks are contiguous and
a layout score of 0.0 means no blocks are contiguous. We
allocate blocks in fragmented chunks such that the resulting
files have an average layout score that is specified by the
initialization parameter, which fragments both allocated file
data and free space. These fragmented chunks are randomly
distributed throughout the device to simulate the lack of lo-
cality experienced with real-world fragmentation. By making
this modification, we can effectively simulate fragmentation
without using high-overhead aging methods [25,42]. Unless
otherwise stated, we use a layout score of 0.85 for our experi-
ments, as this was determined to be an average layout score
for file systems in past studies [42].

Experimental results. Unless otherwise stated, we report
the average latency of the file mapping operation over 10
repeated measurements, including all overhead associated
with the mapping structure, such as hash computation and
undo logging. Error bars report 95% confidence intervals. For
insertion/truncation operations, the latency of the file map-
ping operation includes the overhead of the block allocator.
Note that HashFFS uses its own block allocation mechanisms
(§3.2.2). All other evaluated file mapping structures use the
block allocator already present in Strata.

4.1 Locality

We analyze how particular access patterns impact the perfor-
mance of file mapping. We perform an experiment using a
1GB file where we perform single-block reads and appends
in either a “cold cache” scenario (i.e., only perform one oper-
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Figure 5: Locality test, measuring the latency of the file mapping
operation in cycles (using rdtscp).

ation and then reset the experiment) or a “hot cache” scenario
(i.e., perform 100,000 operations). We perform reads and ap-
pends as they exercise file mapping structure reads and file
mapping structure writes, respectively. We measure the la-
tency of the file mapping operation and report the average (in
CPU cycles) in Fig. 5.

On average, hot cache operations result in low latency for
all file mapping approaches, especially for sequential reads,
for which the per-file cursor optimizations and global SIMD
prefetching were designed. The greatest difference is in the
cold cache case, where global file mapping is up to 15 x faster
than per-file mapping. This is due to the cost of tree opera-
tions when operating on a cold cache. Tree operations must
traverse multiple levels of indirection, making multiple mem-
ory accesses per level of indirection; the global file-mapping
structures, on the other hand, make fewer than two accesses
to PM on average. The exception to the performance benefits
of global file-mapping structures is the performance of cold
global cuckoo hash table inserts, which perform on par with
radix trees (within confidence intervals) and extent trees. The
main factor causing the high variability in cold cache insert
performance for these structures is the overhead of the block
allocator, which also has persistent and volatile metadata struc-
tures which incur last level cache misses (e.g., a persistent
bitmap, a volatile free-list maintained as a red-black tree, and
a mutex for providing exclusion between kernel threads [29]).
In contrast, HashFS, which does not use Strata’s block allo-
cator, is between 14-20x faster than all other file-mapping
structures in this case. Overall, this initial experiment shows
us that a global hash table structure can dramatically outper-
form per-file tree structures, particularly for access patterns
without locality.

4.2 Fragmentation

We now measure the effect that file-system fragmentation has
on file mapping. We perform this experiment on a single 1GB
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Figure 6: Fragmentation test, measuring the impact of high (0.7)
and low (1.0) fragmentation on file mapping latency.

file, and vary the fragmentation of the file from no fragmen-
tation (layout score 1.0) to heavily fragmented (layout score
0.7 represents a heavily-fragmented file system according to
prior work [42]). We measure the average “cold cache” file
mapping latency (i.e., one operation before reset, as described
in the previous experiment) over 10 trials of each operation
and present the results of our experiment in Fig. 6.

Between the different levels of fragmentation, the only
major difference is the performance of the extent trees. Intu-
itively, this difference arises from the way that extent trees
represent extents—if the file is not fragmented, the extent tree
can be much smaller and therefore much faster to traverse.
The other evaluated mapping approaches are unaffected by
fragmentation for reads. For insertions, the block allocator
takes longer on average to find free blocks, giving HashFFS
an advantage. We conclude that per-file mapping performs
poorly on fragmented file systems, while HashFI'S is unaf-
fected by fragmentation.

4.3 File Size

The per-file tree structures have a depth that is dependent on
the size of the file, whereas the global hash table structures
are flat. We therefore measure the latency of file mapping
across three file sizes: 4KB, 4MB, and 4GB, representing
small, medium, and large files. We report the average latency
(over 10 trials) for each file mapping operation in Fig. 7.

As expected, the per-file structures grow as the size of the
file increases, which results in more indirect traversal opera-
tions per file mapping, resulting in longer latency. The range
of this increase is naturally smaller for sequential reads (less
than 10% across extent trees and radix trees for sequential
reads, but 34% for random reads) due to the inherent locality
of the data structure). The mapping overhead for the hash ta-
bles, however, is static, showing that the hash table structures
do not suffer performance degradation across file sizes.
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Figure 7: Impact of file size on file mapping latency.

4.4 10 Size

Our previous experiments perform single block operations
(i.e., reading or writing to a single 4KB block). However,
many applications batch their IO to include multiple blocks.
We therefore measure the impact on file mapping as an appli-
cation operates on 4KB (a single block), 64KB (16 blocks),
and 1MB (256 blocks). We then measure the proportion of
the 10 path that comprises file mapping and report the aver-
age (over 10 trials) in FFig. 8. Since 1O latency increases with
IO size regardless of the mapping structure, we present the
results of this experiment as a ratio of 10 latency to normalize
this increase in latency and to specifically show the impact of
the file mapping operation on the overall latency.

As the number of blocks read in a group increases, the
gap between the tree structures and the hash table structures
closes. Radix and extent trees locate ranges of blocks together
in the same leaf node and thus accelerate larger 10 operations.
At the same time, as the number of blocks increases, the pro-
portion of the file system time spent on file mapping drops
dramatically. For example, for an 1O size of 1MB, radix tree
mapping takes only 3% of the IO path for reads. At this IO
size, radix trees perform best for both sequential and random
reads. However, the impact of this performance increase is not
seen at the application level (§4.8). We also note that without
the ranged node optimization introduced for the cuckoo hash
table (§3.2.1), the mapping latency ratio would remain con-
stant for the global cuckoo hash table, rather than decreasing
as the IO size increases.

We also see the advantage HashIFS has over the global
cuckoo hash table. Not only does HashI'S have lower file
mapping latency for all operations compared to cuckoo hash-
ing, it also has the lowest insertion time, since it is able to
bypass the traditional block allocation overhead.
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Figure 8: IO size test. We report the average proportion of the IO
path spent performing file mapping.

4.5 Space Utilization

A potential disadvantage of using a global hash table structure
is that collisions grow with the percentage of the structure
used, meaning that as file system utilization grows, file map-
ping latency may increase as the number of collisions increase.
We measure this effect by creating a file system with a to-
tal capacity of 128GB. We then measure the proportion of
the 1O path that comprises file mapping when the overall
space utilization ranges from moderately full (80%) to ex-
tremely full (95%). Our prior experiments demonstrate the
performance on a mostly empty file system. We perform this
microbenchmark using “cold cache” (i.e., one operation per
file), single-block file mapping operations as per previous
experiments. We report the average file mapping latency ra-
tio (over 10 trials) in Fig. 9. Since IO latency increases with
overall file system utilization, we present the results of this ex-
periment as a fraction of IO latency to account for the increase
in overall latency.

As expected, the latency of the mapping operation for per-
file tree structures is unchanged when comparing low utiliza-
tion to high utilization. The main difference is the latency of
the two global hash table structures. At low utilization, as seen
in previous experiments (§4.4), HashI'S outperforms global
cuckoo hashing. At 80% utilization, the performance of ran-
dom and sequential reads are very similar for HashFS and
the global cuckoo hash table (within £3%, or within error).
HashFS still outperforms the global cuckoo hashing table for
insertions. At 95% utilization, however, HashFS incurs be-
tween 12—-14% more latency for reads than the global cuckoo
hash table, and has equivalent performance for insertions.

We conclude that while higher utilization causes HashIF'S
to degrade in performance relative to global cuckoo hash-
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Figure 9: Space utilization test, measuring the proportion of the [O
path spent in file mapping versus the overall utilization of the file
system (in percent).
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Figure 10: Average file mapping latency, varying # of threads.

ing, both file mapping structures still outperform the per-file
mapping structures even at high utilization.

4.6 Concurrency

We now conduct an experiment to quantify how well our file-
mapping approaches perform under concurrent access. To sim-
ulate a high-contention scenario, we conduct an experiment
with multiple threads reading and writing the same file (every
thread reads and then appends to the same file). This causes
high read-write contention between Strata’s KernF'S compo-
nent which asynchronously updates the file-mapping struc-
tures and the user-space LibFFS which reads the file-mapping
structures, causing contention for both the per-file and global
file-mapping structures. Each file-mapping structure manages
its own synchronization—Strata manages the synchronization
of other file metadata via a per-file reader-writer lock.

We show the result of the experiment in FFig. 10. We see that,
as the number of threads increases, the latency of file map-
ping increases slightly (up to 13% for extent trees for an 8 x
increase in concurrency) across all file mapping approaches.
Furthermore, the ranking among approaches does not change
across any number of threads. This shows that common con-
current file access patterns allow per-file mapping approaches
to use coarse-grained consistency mechanisms without im-
pact on scalability, while the transactional memory and hash
bucket layout optimizations for our two global file mapping
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Figure 11: Page-cache experiment, measuring the average file-
mapping latency of PM-optimized extent trees and page-cached
extent trees (Strata Baseline).

Average # of 10 size R/W
file size files (R/W) ratio
fileserver 128KB 1,000 1MB/16KB 1:2
webproxy 16KB 1,000 | 16KB/16KB 5:1

Workload

Table 2: Filebench workload configurations.

approaches can effectively hide synchronization overheads.
In summary, we find that the isolation mechanisms used in

our PM-optimized file-mapping structures are not bottlenecks.

All structures are scalable for common file access patterns.

4.7 Page Caching

We now discuss why traditional page-caching should not be
employed for PM file-mapping structures. To demonstrate
why, we provide a microbenchmark that compares Strata’s
default mapping structure (page-cached extent trees) to our
implementation of extent trees (which is based on Strata’s
implementation, but bypasses the page cache and operates
directly on PM). In this experiment, we open a 1GB file and
perform 1,000,000 operations on it (single block reads or
inserts) and report the average file mapping latency in cycles.

We show the results in Fig. 11. We can see that, even
after many iterations, the dynamic allocation overhead of the
page cache is not amortized in the read case. The insertion
case is also slower due to the page cache overhead—the PM-
optimized extent trees write updates directly back to PM.

Based on the results of this experiment, it is clearly more
beneficial to perform file mapping directly on PM, as it re-
duces the number of bytes read and written to the device,
reduces DRAM overhead, and decreases the overall overhead
of the IO path. Therefore, we advocate for the use of lower
overhead caching methods, such as cursors, rather than relying
on the page cache.

4.8 Application Workloads

We provide two application benchmarks to measure the over-
all benefit our PM-optimized file-mapping structures have on
application throughput. We compare our file-mapping struc-
tures to the file-mapping structure present in Strata, which is
a per-file, page-cached extent tree. We use this file-mapping
structure as our baseline, as Strata is a state-of-the-art PM-
optimized file system [29, 39].

Filebench. We test our file mapping structures using
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Figure 12: Filebench results for one write-heavy workload (file-
server) and one read-heavy workload (webproxy).

Workload Characterization Example
A 50% reads, 50% updates | Session activity store
B 95% reads, 5% updates Photo tagging
C 100% reads User profile cache
D 95% reads, 5% inserts User status updates

(read latest)
E 95% scans, 5% inserts Threadf;d
conversations
50% reads,

F 50% read-modify-write User database

Table 3: Description of YCSB workload configurations.

filebench [45], a popular file-system-testing framework which
has been used to evaluate many PM-optimized file sys-
tems [29,52,56]. We select the fileserver (write-heavy) and
webproxy (read-heavy) workloads. These workloads test file
mapping structure reads, updates, and deletions, and emulate
the performance of mapping structures as they age under re-
peated modifications. We describe the characteristics of these
workloads in Table 2.

We show the results of the filebench experiments in Fig. 12.
In the fileserver workload, HashIFS outperforms the baseline
by 26%, while the other mapping structures perform simi-
larly to the baseline. This result is explained by the IO size
microbenchmark (§4.4). In this microbenchmark, HashFS
performs the best for insertions, which is the predominant
operation in this workload. In this workload, the radix trees
perform the worst, experiencing a 10% throughput drop ver-
sus the baseline. Insert performance of radix trees is the worst
among our file mapping approaches (Iig. 8). Extent trees
and the global cuckoo hash table both perform similarly for
large 10 reads and smaller block insertions, so they perform
similarly here and are not an improvement over the baseline.

The webproxy workload does not show any major differ-
ence in throughput across the file mapping approaches (all
within +2%, or within error). This is because this is a read-
heavy workload on relatively small files with hot caches, and
we show in §4.1 that the performance across file mapping
structures is very similar in this case.

YCSB. We also evaluate the end-to-end performance on key-
value workloads using YCSB [10] on LevelDB [17], a com-
mon benchmark to measure the performance of PM-optimized
file systems [29]. We measure the throughput for all standard
YCSB workloads (A-F). YCSB uses a Zipfian distribution
to select keys for operations. We report the characteristics of
these workloads in Table 3. We configure our YCSB tests to
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Figure 13: YCSB running on LevelDB. We report the average over-
all throughput (operations/second) on all workloads (A—F).

use a key-value database containing 1.6 million 1 KB key-
value pairs (a 1.5 GB database), using a maximum file size of
128 MB for the LevelDB backend running on 4 threads. Our
experiments perform 100,000 operations on the database, as
dictated by the YCSB workload.

We show the results of our YCSB tests in Fig. 13. Work-
loads A and E are primarily bounded by the in-memory op-
erations of LevelDB (e.g. performing read and scan opera-
tions), and not bounded by the file system, thus we see similar
throughput across all mapping approaches (within 3% of
the baseline). However, for the other workloads (B, C, D, F),
HashFS provides the best performance, providing between
10-45% increase in throughput on workload F versus the
other file mapping approaches. Radix trees and the global
cuckoo hash tables are both slower by 2—4% on average than
HashFS, but the PM-optimized extent trees perform worse
than HashFS by 13% in workloads C and F. This is due to
the generally poor performance of the extent tree structure
for random reads, which dominate these workloads. In these
workloads, the default file mapping structure in Strata spends
70% of the file 10 path in file mapping—this provides ample
opportunity for improvement, which is why HashFS is able to
increase the overall throughput by up to 45% in these cases.
We further discuss the performance of the baseline in our
discussion on concurrency (§4.6).

We also show how concurrency impacts file mapping in
real workloads by rerunning our YCSB benchmark using a
single thread (Fig. 14).This experiment differs from the multi-
threaded version (Fig. 13) other than the overall magnitude
of the throughput. Additionally, the increase in throughput
over the baseline is much higher (45%) in the multi-threaded
experiment than the single threaded experiment (23%). Upon
further investigation, we find that this is because the Strata
page cache is not scalable. Strata’s page cache maintains a
global list of pages, with a single shared lock for consistency.

Summary. We draw two conclusions from these experiments:
(1) HashFS results in the best overall throughput among our
PM-optimized mapping structures; and (2) HashFS always
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Figure 14: YCSB experiment using a single thread.

matches or exceeds the performance of Strata’s default map-
ping structure (page-cached extent trees). We therefore con-
clude that HashF'S file mapping provides the best overall
performance in real application workloads.

4.9 File Mapping via Level Hashing?

We examine whether PM storage structures can be efficiently
used for file mapping, thus enabling the reuse of prior work.
We select level hashing [7,59], a state-of-the-art hash-table
storage structure for PM, as a case study. Level hashing out-
performs RECIPE-converted structures [32] and, as a hash
table, is a good contender against our best-performing file
mapping structures, which are also hash tables. The goal of
this case study is to see if general-purpose PM data structures
proposed in prior work can be used as file mapping struc-
tures, as-is. Hence, we do not apply any file-system specific
optimizations to level hashing.

We evaluate how level hashing performs relative to our PM
file mapping structure in our filebench workloads, shown in
Fig. 12. In all cases, HashF'S outperforms level hashing. In
particular, for the fileserver workload (the most write heavy
workload), level hashing underperforms even Strata’s baseline.
In particular, even though level hashing provides an efficient
resizing operation, neither of our global hash table structures
require resizing, as their total size is known at file system
creation time. This experiment shows the importance of file-
system specific optimizations for PM file-mapping structures
and this suggests that PM storage structures should not be
directly used for file mapping.

5 Discussion

Generalizability of results. In our microbenchmarks, we re-
port the performance of file mapping operations in isolation
from the rest of the file system; these results are applicable to
other PM file systems that use persistent mapping structures
(e.g., ext4-DAX, SplitFS [24], NVES [40], and ZoFS [13]).
Strata batches file mapping updates via the application log
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in LibFS (SplitFS has a similar batching system), which is
measured in our macrobenchmark results. Batching amortizes
the update overhead of mapping structures. For this reason,
we predict that HashFS would outperform other mapping
structures by a larger margin on PM file systems that do not
batch updates (e.g., ext4-DAX, NFVS, and ZoFS).

Resilience. Resilience to crashes and data corruption is not
a challenge exclusive to file mapping structures and reliabil-
ity concerns are usually handled at a file-system level, rather
than specifically for file-mapping structures. As we use a log
for non-idempotent file-mapping structure operations (§3.1.1)
and Strata logs other file mapping operations, all of our file
mapping structures are equivalently crash-consistent. For re-
silience to data corruption and other device failures, our map-
ping structures can use existing approaches (e.g., TickTock
replication from NOVA-Fortis [53]).

6 Related Work

There is little prior work that specifically analyzes the per-
formance of file mapping structures. BetrFS [23] finds that
write-optimized, global directory and file mapping structures
are effective at optimizing write-heavy workloads. However,
this analysis is performed on SSDs.

File mapping in PM file systems. PMFS [15] uses B-trees,
allocating file data blocks in sizes of 4KB, 2MB, and 1GB
memory pages. The PMFES allocator is therefore similar to
an OS virtual memory allocator, albeit with different consis-
tency and durability requirements. PMFS contrasts itself with
systems that use extents for file mapping, but provides no
justification for its scheme other than the fact that it transpar-
ently supports large pages [21]. We therefore do not know
if its file mapping scheme is adequate for PM file systems.
This problem extends to DevFS, which re-uses the metadata
structures present in PMFS [27]. Strata and ext4-DAX both
use extent trees for file mapping, with Strata using extent trees
at all levels of its storage device hierarchy [11,29]. Both of
these systems use extent trees based on the legacy of ext4,
providing no analysis if extent trees are optimal for PM.

PM-optimized storage structures. Much work has proposed
PM optimized storage structures, both generic [6, 12,31,32,
37,46,47,54,58,59] and within the context of database appli-
cations, such as key-value stores [26,28,51]. These provide
in-place atomic updates whenever possible to avoid having
to keep a separate log. However, common file system opera-
tions typically require atomic update of multiple file-system
structures—e.g., when allocating blocks, the block bitmap
must also be modified. Enforcing consistency and atomicity
for a single data structure alone is therefore insufficient—we
need to analyze file mapping structures within PM file sys-
tems to achieve efficient metadata consistency and durability.
Memory mapping. Mapping virtual to physical memory lo-
cations is similar to file mapping. A large body of research

has improved virtual memory for decades [3,44,55] and has
devised similar structures; page tables are radix trees on many
platforms and recent work proposes cuckoo hashing as a more
scalable alternative [41]. The key differences are in caching
and consistency. File mapping caches are optimized for se-
quential access via cursors and SIMD prefetching; they are
shared across all threads, simplifying frequent concurrent up-
dates. MMUSs optimize for random read access via translation
lookaside buffers (TLBs) that are not shared across CPU cores,
requiring expensive TLB shootdowns for concurrent updates.
Additionally, since file-mapping structures are maintained in
software rather than hardware, they allow for a wider variety
of designs which may be difficult to efficiently implement in
hardware (i.e., extent trees or HashFS’s linear probing).

7 Conclusion

File mapping is now a significant part of the IO path overhead
on PM file systems that can no longer be mitigated by a page
cache. We designed four different PM-optimized mapping
structures to explore the different challenges associated with
file mapping on PM. Our analysis of these mapping structures
shows that our PM-optimized hash table structure, HashFS,
performs the best on average, providing up to 45% improve-
ment on real application workloads.
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