
This paper is included in the Proceedings of the

19th USENIX Conference on File and Storage Technologies.
February 23–25, 2021

978-1-939133-20-5

Open access to the Proceedings

of the 19th USENIX Conference on

File and Storage Technologies

is sponsored by USENIX.

Rethinking File Mapping for Persistent Memory
Ian Neal, Gefei Zuo, Eric Shiple, and Tanvir Ahmed Khan, University of Michigan;

Youngjin Kwon, School of Computing, KAIST; Simon Peter, University of Texas at

Austin; Baris Kasikci, University of Michigan

https://www.usenix.org/conference/fast21/presentation/neal

Rethinking File Mapping for Persistent Memory

Ian Neal

University of Michigan

Gefei Zuo

University of Michigan

Eric Shiple

University of Michigan

Tanvir Ahmed Khan

University of Michigan

Youngjin Kwon

School of Computing, KAIST

Simon Peter

University of Texas at Austin

Baris Kasikci

University of Michigan

Abstract

Persistent main memory (PM) dramatically improves IO

performance. We find that this results in file systems on PM

spending as much as 70% of the IO path performing file map-

ping (mapping file offsets to physical locations on storage

media) on real workloads. However, even PM-optimized file

systems perform file mapping based on decades-old assump-

tions. It is now critical to revisit file mapping for PM.

We explore the design space for PM file mapping by build-

ing and evaluating several file-mapping designs, including dif-

ferent data structure, caching, as well as meta-data and block

allocation approaches, within the context of a PM-optimized

file system. Based on our findings, we design HashFS, a hash-

based file mapping approach. HashFS uses a single hash oper-

ation for all mapping and allocation operations, bypassing the

file system cache, instead prefetching mappings via SIMD

parallelism and caching translations explicitly. HashFS’s re-

sulting low latency provides superior performance compared

to alternatives. HashFS increases the throughput of YCSB on

LevelDB by up to 45% over page-cached extent trees in the

state-of-the-art Strata PM-optimized file system.

1 Introduction

Persistent main memory (PM, also known as non-volatile

main memory or NVM) is a new storage technology that

bridges the gap between traditionally-slow storage devices

(SSD, HDD) and fast, volatile random-access memories

(DRAM). Intel Optane DC persistent memory modules [20],

along with other PM variants [1,2,4,30,35,50], are anticipated

to become commonplace in DIMM slots alongside traditional

DRAM. PM offers byte-addressable persistence with only

2–3× higher latency than DRAM, which is highly appealing

to file-system designers. Indeed, prior work has re-designed

many file-system components specifically for PM, reducing

overhead in the IO path (e.g. by eliminating memory copies

and bypassing the kernel) [11, 14, 24, 29, 48, 52, 56].

However, not all aspects of the IO path have been exam-

ined in detail. Surprisingly, file mapping has received little

attention in PM-optimized file systems to date. File mapping—

the translation from logical file offsets to physical locations

on the underlying device—comprises up to 70% of the IO

path of real workloads in a PM-optimized file system (as we

show in §4.8). Even for memory-mapped files, file mapping is

still involved in file appends. Yet, existing PM-optimized file

systems either simply reuse mapping approaches [11, 14, 24]

originally designed for slower block devices [29], or devise

new approaches without rigorous analysis [15, 57].

PM presents a number of challenges to consider for file

mapping, such as dealing with fragmentation and concurrency

problems. Notably, the near-DRAM latency of PM requires

reconsidering many aspects of file mapping, such as mapping

structure layout, the role of the page cache in maintaining

volatile copies of file mapping structures, and the overhead of

physical space allocation. For example, some PM-optimized

file systems maintain copies of their block mapping structures

in a page cache in DRAM, as is traditional for file systems on

slower storage devices [11, 24, 29], but others do not [14, 15,

48] and instead rely on CPU caching. It is currently unclear if

maintaining a volatile copy of mapping structures in DRAM

is beneficial versus relying on CPU caches to cache mapping

structures, or designing specialized file map caches.

In this work, we build and rigorously evaluate a range of

file mapping approaches within the context of PM-optimized

file systems. PM’s random access byte addressability makes

designing fully random access mapping structures (i.e., hash

tables) possible, which expands the design space of possible

file mapping structures. To this end, we evaluate and PM-

optimize two classic per-file mapping approaches (i.e., where

each file has its own mapping structure) that use extent trees

and radix trees. We propose and evaluate two further, global

mapping approaches (i.e., where a single structure maps all

files in the entire file system). The first uses cuckoo hashing,

the second is HashFS, a combined global hash table and block

allocation approach that uses linear probing. We use these

approaches to evaluate a range of design points, from an

emphasis on sequential access performance to an emphasis

on minimizing memory references, cached and non-cached,

as well as the role of physical space allocation.

We evaluate these file-mapping approaches on a series

of benchmarks that test file system IO latency and through-

put under different workloads, access and storage patterns,

IO sizes, and structure sizes. We show how the usage of

USENIX Association 19th USENIX Conference on File and Storage Technologies 97

PM-optimized file mapping in a PM-optimized file system,

Strata [29], leads to a significant reduction in the latency of file

IO operations and large gains in application throughput. An

evaluation of Strata on YCSB [10] workloads running on Lev-

elDB [17] shows up to 45% improvement in throughput with

PM-optimized file mapping (§4). Our analysis indicates that

the performance of file-mapping is file system independent,

allowing our designs to be applied to other PM file systems.

Prior work investigates the design of PM-optimized stor-

age structures [31, 36, 54, 59] and indexing structures for

PM-optimized key-value stores [28, 51, 58]. These structures

operate on top of memory mapped files and rely on file map-

ping to abstract from physical memory concerns. Further, PM-

optimized storage and indexing structures are designed with

per-structure consistency (e.g., shadow paging) [31, 54, 59].

File systems already provide consistency across several meta-

data structures, making per-structure methods redundant and

expensive. In our evaluation, we show that storage structures

perform poorly for file mapping (§4.9).

In summary, we make the following contributions:

• We present the design and implementation of four file map-

ping approaches and explore various PM optimizations to

them (§3). We implement these approaches in the Strata

file system [29], which provides state-of-the-art PM perfor-

mance, particularly for small, random IO operations, where

file mapping matters most (§4.4). We perform extensive

experimental analyses on how the page cache, mapping

structure size, IO size, storage device utilization, fragmen-

tation, isolation mechanisms, and file access patterns affect

the performance of these file mapping approaches (§4).

• We show that our PM-optimized HashFS is the best per-

forming mapping approach, due to its low memory over-

head and low latency (§4.1) during random reads and in-

sertions. We demonstrate that this approach can increase

throughput by up to 45% over Strata’s page-cached extent

trees in YCSB workloads (§4.8).

• We show that using a traditional page cache provides no ben-

efit for PM-optimized file mapping (§4.7). We also demon-

strate that PM-optimized storage structures are ill-suited

for use as file mapping structures and cannot be simply

dropped into PM-optimized file systems (§4.9).

2 File Mapping Background

What is file mapping? File mapping is the operation of map-

ping a logical offset in a file to a physical location on the

underlying device. File mapping is made possible by one or

more metadata structures (file mapping structures) maintained

by the file system. These file mapping structures map logical

locations (a file and offset) to physical locations (a device

offset) at a fixed granularity. File mapping structures have

three operations: lookups, caused by file reads and writes of

existing locations; insertions, caused by file appends or IO to

unallocated areas of a sparse file; and deletions, caused by file

truncation (including file deletion) or region de-allocation in

a sparse file. Inserts and deletions require the (de-)allocation

of physical locations, typically provided by a block allocator

maintaining a separate free block structure. PM file systems

generally map files at block granularity of at least 4KB in

order to constrain the amount of metadata required to track

file system space [15, 29, 52]. Block sizes often correspond to

memory page sizes, allowing block-based PM file systems to

support memory-mapped IO more efficiently.

2.1 File Mapping Challenges

The following properties make designing efficient file map-

ping challenging. Careful consideration must be taken to find

points in the trade-off space presented by these properties

that maximize performance for a given workload and storage

device. PM intensifies the impact of many of these properties.

Fragmentation. Fragmentation occurs when a file’s data is

spread across non-contiguous physical locations on a storage

device. This happens when a file cannot be allocated in a

single contiguous region of the device, or when the file grows

and all adjacent blocks have been allocated to other files.

Fragmentation is inevitable as file systems age [42] and can

occur rapidly [9, 23].

Fragmentation can magnify the overhead of certain file

mapping designs. Many traditional file systems use compact

file mapping structures, like extent trees (§3.1), which can

use a single extent entry to map a large range of contigu-

ous file locations. Fragmentation causes locations to become

non-contiguous and the mapping structure to become larger,

which can increase search and insert times (§4). This is re-

ferred to as logical fragmentation and is a major source of

overhead in file systems [19], especially on PM (as file map-

ping constitutes a larger fraction of the IO path on PM file

systems). Another consequence of fragmentation is the re-

duction in sequential accesses. Fragmentation results in the

separation of data structure locations across the device, which

causes additional, random IO on the device. This degrades IO

performance, particularly on PM devices [22].

Fragmentation must be considered as an inevitable occur-

rence during file mapping, since defragmentation is not al-

ways feasible or desirable. Defragmentation is an expensive

operation—it can incur many file writes, which can lower de-

vice lifespan by more than 10% in the case of SSDs [19]. Sim-

ilar concerns exist for PM, which may make defragmentation

undesirable for PM-optimized file systems as well [18, 59].

Locality of reference. Locality of reference when accessing

a file can be used to reduce file mapping overhead. Accesses

with locality are typically accelerated by caching prior ac-

cesses and prefetching adjacent ones. OS page caches and

CPU caches can achieve this transparently and we discuss

the role of the OS page cache for PM file mapping in §2.2.

However, approaches specific to file mapping can yield fur-

98 19th USENIX Conference on File and Storage Technologies USENIX Association

ther benefits. For example, we can hide part of the file map-

ping structure traversal overhead for accesses with locality,

by remembering the meta-data location of a prior lookup

and prefetching the location of the next lookup. Further, with

an efficient cache in place, the file mapping structure itself

should be optimized for random (i.e., non-local) lookups, as

the structure is referenced primarily for uncached mappings.

Mapping structure size. The aggregate size of the file map-

ping structures as a fraction of available file system space

is an important metric of file mapping efficiency. Ideally, a

file mapping structure consumes a small fraction of available

space, leaving room for actual file data storage. Furthermore,

the size of the mapping structure impacts the amount of data

that can remain cache-resident.

Traditional file mapping structures are designed to be elas-

tic—the size of the structure is proportional to the number of

locations allocated in the file system. This means that as the

number and size of files increase, the size of the file mapping

structure grows as well. However, elastic mapping structures

introduce overhead by requiring resizing, which incurs asso-

ciated space (de-)allocation and management cost.

Concurrency. Providing isolation (ensuring that concurrent

modifications do not affect consistency) can be an expensive

operation with limited scalability. This is a well-known prob-

lem for database mapping structures (called indexes) that sup-

port operations on arbitrary ranges. For example, insertions

and deletions of tree-based range index entries may require

updates to inner tree nodes that contend with operations on

unrelated keys [16, 49].

Isolation is simpler in per-file mapping structures, where

the variety and distribution of operations that can occur con-

currently is limited. With the exception of sparse files, updates

only occur during a change in file size, i.e. when appending

new blocks or truncating to remove blocks. File reads and in-

place writes (writes to already allocated blocks) only incur file

mapping structure reads. For this reason, it is often sufficient

to protect per-file mapping structures with a coarse-grained

reader-writer lock that covers the entire structure [29].

The most common scenario for per-file mapping structure

concurrent access is presented by workloads with one writer

(updating the file mapping structure via appends or truncates),

with concurrent readers (file reads and writes to existing off-

sets). In this case, file mapping reads and writes can proceed

without contention in the common case. Other mapping struc-

ture operations can impact concurrency, but they generally

occur infrequently. For example, some file mapping structures

require occasional resizing. For consistency, this operation

occurs within a critical section but is required only when the

structure grows beyond a threshold. Extent trees may split or

merge extents and these operations require partial-tree locking

(locking inner nodes) but occur only on updates.

For global file mapping structures, the possibility of con-

tention is higher, as there can be concurrent writers (append-

ing/truncating different files). Global file mapping structures

have to be designed with concurrency in mind. In this case,

contention does not favor the use of tree-based indices, but

is tractable for hash table structures with per-bucket locks, as

contention among writers only occurs upon hash collision.

2.2 File Mapping Non-Challenges

Crash consistency. An overarching concern in file systems

is providing consistency—transitioning metadata structures

from one valid state to another, even across system crashes.

File systems have many metadata structures that often need

to be updated atomically across crashes, i.e. a free-list and a

file-mapping structure when a new location is allocated for a

file. File systems generally employ some form of journaling

to ensure these updates can be replayed and made atomic

and consistent, even in the case of a crash. This makes crash

consistency a non-challenge for file mapping. This is unlike

PM persistent data structures, which are typically designed to

provide crash consistency within the structure itself.

Page caching. Traditionally, file systems read data and meta-

data (including file-mapping structures) into a page cache in

DRAM before serving it to the user. The file system batches

updates using this page cache and writes back dirty pages.

This is a necessary optimization to reduce the overhead of

reading directly from a block device for each IO operation.

However, page caches have overheads. A pool of DRAM

pages must be managed and reallocated to new files as they

are opened, and the pages in the cache must be read and

written back to ensure updates are consistent.

For PM, an OS-managed page cache in DRAM may no

longer be required for file mapping structures. One analy-

sis [48] found that eschewing the page cache for inodes and

directories results in better performance in PM-optimized file

systems. Until now, there has been no such consensus on the

optimal design point for file mapping structures: some PM-file

systems maintain file mapping structures only in PM [15], oth-

ers maintain file mapping structures only in DRAM [52, 56],

still others manage a cache of PM-based file mapping struc-

tures in DRAM [11, 29]. However, as we show in §4.7, page-

cache management turns out to be a non-challenge, as it is

always more efficient to bypass page-caching for file-mapping

structures on PM-optimized file systems.

3 PM File Mapping Design

Based on our discussion of the challenges (§2.1), we now

describe the design of four PM-optimized file mapping ap-

proaches, which we analyze in §4. We first describe two tra-

ditional, per-file mapping approaches and their PM optimiza-

tions, followed by two global mapping approaches. We dis-

cuss the unique challenges faced by each approach, followed

by a description of the approach’s mapping structure.

USENIX Association 19th USENIX Conference on File and Storage Technologies 99

in LibFS (SplitFS has a similar batching system), which is

measured in our macrobenchmark results. Batching amortizes

the update overhead of mapping structures. For this reason,

we predict that HashFS would outperform other mapping

structures by a larger margin on PM file systems that do not

batch updates (e.g., ext4-DAX, NFVS, and ZoFS).

Resilience. Resilience to crashes and data corruption is not

a challenge exclusive to file mapping structures and reliabil-

ity concerns are usually handled at a file-system level, rather

than specifically for file-mapping structures. As we use a log

for non-idempotent file-mapping structure operations (§3.1.1)

and Strata logs other file mapping operations, all of our file

mapping structures are equivalently crash-consistent. For re-

silience to data corruption and other device failures, our map-

ping structures can use existing approaches (e.g., TickTock

replication from NOVA-Fortis [53]).

6 Related Work

There is little prior work that specifically analyzes the per-

formance of file mapping structures. BetrFS [23] finds that

write-optimized, global directory and file mapping structures

are effective at optimizing write-heavy workloads. However,

this analysis is performed on SSDs.

File mapping in PM file systems. PMFS [15] uses B-trees,

allocating file data blocks in sizes of 4KB, 2MB, and 1GB

memory pages. The PMFS allocator is therefore similar to

an OS virtual memory allocator, albeit with different consis-

tency and durability requirements. PMFS contrasts itself with

systems that use extents for file mapping, but provides no

justification for its scheme other than the fact that it transpar-

ently supports large pages [21]. We therefore do not know

if its file mapping scheme is adequate for PM file systems.

This problem extends to DevFS, which re-uses the metadata

structures present in PMFS [27]. Strata and ext4-DAX both

use extent trees for file mapping, with Strata using extent trees

at all levels of its storage device hierarchy [11, 29]. Both of

these systems use extent trees based on the legacy of ext4,

providing no analysis if extent trees are optimal for PM.

PM-optimized storage structures. Much work has proposed

PM optimized storage structures, both generic [6, 12, 31, 32,

37, 46, 47, 54, 58, 59] and within the context of database appli-

cations, such as key-value stores [26, 28, 51]. These provide

in-place atomic updates whenever possible to avoid having

to keep a separate log. However, common file system opera-

tions typically require atomic update of multiple file-system

structures—e.g., when allocating blocks, the block bitmap

must also be modified. Enforcing consistency and atomicity

for a single data structure alone is therefore insufficient—we

need to analyze file mapping structures within PM file sys-

tems to achieve efficient metadata consistency and durability.

Memory mapping. Mapping virtual to physical memory lo-

cations is similar to file mapping. A large body of research

has improved virtual memory for decades [3, 44, 55] and has

devised similar structures; page tables are radix trees on many

platforms and recent work proposes cuckoo hashing as a more

scalable alternative [41]. The key differences are in caching

and consistency. File mapping caches are optimized for se-

quential access via cursors and SIMD prefetching; they are

shared across all threads, simplifying frequent concurrent up-

dates. MMUs optimize for random read access via translation

lookaside buffers (TLBs) that are not shared across CPU cores,

requiring expensive TLB shootdowns for concurrent updates.

Additionally, since file-mapping structures are maintained in

software rather than hardware, they allow for a wider variety

of designs which may be difficult to efficiently implement in

hardware (i.e., extent trees or HashFS’s linear probing).

7 Conclusion

File mapping is now a significant part of the IO path overhead

on PM file systems that can no longer be mitigated by a page

cache. We designed four different PM-optimized mapping

structures to explore the different challenges associated with

file mapping on PM. Our analysis of these mapping structures

shows that our PM-optimized hash table structure, HashFS,

performs the best on average, providing up to 45% improve-

ment on real application workloads.

Acknowledgements

We thank the anonymous reviewers and our shepherd, Rob

Johnson, for their valuable feedback. This work is supported

by Applications Driving Architectures (ADA) Research Cen-

ter (a JUMP Center co-sponsored by SRC and DARPA), the

National Science Foundation under grants CNS-1900457 and

DGE-1256260, the Texas Systems Research Consortium, the

Institute for Information and Communications Technology

Planning and Evaluation (IITP) under a grant funded by the

Korea government (MSIT) (No. 2019-0-00118) and Samsung

Electronics. Any opinions, findings, conclusions, or recom-

mendations expressed in this material are those of the authors

and do not necessarily reflect the views of the funding agen-

cies.

References

[1] H. Akinaga and H. Shima. Resistive Random Access

Memory (ReRAM) Based on Metal Oxides. Proceed-

ings of the IEEE, 98(12):2237–2251, Dec 2010.

[2] Dmytro Apalkov, Alexey Khvalkovskiy, Steven Watts,

Vladimir Nikitin, Xueti Tang, Daniel Lottis, Kiseok

Moon, Xiao Luo, Eugene Chen, Adrian Ong, Alexan-

der Driskill-Smith, and Mohamad Krounbi. Spin-

transfer Torque Magnetic Random Access Memory

108 19th USENIX Conference on File and Storage Technologies USENIX Association

(STT-MRAM). ACM Journal on Emerging Technolo-

gies in Computing Systems (JETC), 9(2):13:1–13:35,

May 2013.

[3] Thomas W Barr, Alan L Cox, and Scott Rixner. Trans-

lation caching: skip, don’t walk (the page table). ACM

SIGARCH Computer Architecture News, 38(3):48–59,

2010.

[4] Jalil Boukhobza, Stéphane Rubini, Renhai Chen, and

Zili Shao. Emerging NVM: A survey on architectural

integration and research challenges. ACM Trans. Design

Autom. Electr. Syst., 23(2):14:1–14:32, 2018.

[5] Mingming Cao, Suparna Bhattacharya, and Ted Ts’o.

Ext4: The next generation of ext2/3 filesystem. In LSF,

2007.

[6] Shimin Chen and Qin Jin. Persistent B+-trees in Non-

volatile Main Memory. Proc. VLDB Endow., 8(7):786–

797, February 2015.

[7] Zhangyu Chen, Yu Huang, Bo Ding, and Pengfei Zuo.

Lock-free concurrent level hashing for persistent mem-

ory. In 2020 USENIX Annual Technical Conference

(USENIX ATC 20), pages 799–812. USENIX Associa-

tion, July 2020.

[8] JG Clerry. Compact hash tables using bidirectional

linear probing. IEEE Transactions on Computers,

100(9):828–834, 1984.

[9] Alex Conway, Ainesh Bakshi, Yizheng Jiao, William

Jannen, Yang Zhan, Jun Yuan, Michael A. Bender, Rob

Johnson, Bradley C. Kuszmaul, Donald E. Porter, and

Martin Farach-Colton. File Systems Fated for Senes-

cence? Nonsense, Says Science! In 15th USENIX Con-

ference on File and Storage Technologies (FAST 17),

pages 45–58, Santa Clara, CA, 2017. USENIX Associa-

tion.

[10] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu

Ramakrishnan, and Russell Sears. Benchmarking cloud

serving systems with ycsb. In Proceedings of the 1st

ACM symposium on Cloud computing, pages 143–154.

ACM, 2010.

[11] Jonathan Corbet. Supporting filesystems in persistent

memory, September 2014.

[12] Biplob Debnath, Alireza Haghdoost, Asim Kadav, Mo-

hammed G. Khatib, and Cristian Ungureanu. Revisiting

hash table design for phase change memory. Operating

Systems Review, 49(2):18–26, 2015.

[13] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and

Haibo Chen. Performance and protection in the zofs

user-space nvm file system. In Proceedings of the

27th ACM Symposium on Operating Systems Principles,

pages 478–493. ACM, 2019.

[14] Mingkai Dong, Qianqian Yu, Xiaozhou Zhou, Yang

Hong, Haibo Chen, and Binyu Zang. Rethinking bench-

marking for nvm-based file systems. In Proceedings

of the 7th ACM SIGOPS Asia-Pacific Workshop on Sys-

tems, page 20. ACM, 2016.

[15] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshava-

murthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran,

and Jeff Jackson. System Software for Persistent Mem-

ory. In Proceedings of the Ninth European Conference

on Computer Systems, EuroSys ’14, pages 15:1–15:15,

New York, NY, USA, 2014. ACM.

[16] Jose M. Faleiro and Daniel J. Abadi. Latch-free syn-

chronization in database systems: Silver bullet or fool’s

gold? In CIDR 2017, 8th Biennial Conference on In-

novative Data Systems Research, Chaminade, CA, USA,

January 8-11, 2017, Online Proceedings, page 9, 2017.

[17] Sanjay Ghemawat and Jeff Dean. Leveldb. http://

leveldb.org, 2011.

[18] Vaibhav Gogte, William Wang, Stephan Diestelhorst,

Aasheesh Kolli, Peter M. Chen, Satish Narayanasamy,

and Thomas F. Wenisch. Software wear management

for persistent memories. In 17th USENIX Conference on

File and Storage Technologies (FAST 19), pages 45–63,

Boston, MA, 2019. USENIX Association.

[19] Sangwook Shane Hahn, Sungjin Lee, Cheng Ji, Li-Pin

Chang, Inhyuk Yee, Liang Shi, Chun Jason Xue, and

Jihong Kim. Improving file system performance of mo-

bile storage systems using a decoupled defragmenter. In

2017 USENIX Annual Technical Conference (USENIX

ATC 17), pages 759–771, 2017.

[20] Intel. Intel® Optane™ DC Persistent Memory. http://

www.intel.com/optanedcpersistentmemory, 2019.

[21] Intel Corporation. Intel® 64 and IA-32 Architectures

Software Developer’s Manual, 2019.

[22] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao

Liu, Amirsaman Memaripour, Yun Joon Soh, Zixuan

Wang, Yi Xu, Subramanya R. Dulloor, Jishen Zhao, and

Steven Swanson. Basic Performance Measurements of

the Intel Optane DC Persistent Memory Module, 2019.

[23] William Jannen, Jun Yuan, Yang Zhan, Amogh Akshin-

tala, John Esmet, Yizheng Jiao, Ankur Mittal, Prashant

Pandey, Phaneendra Reddy, Leif Walsh, Michael Bender,

Martin Farach-Colton, Rob Johnson, Bradley C. Kusz-

maul, and Donald E. Porter. Betrfs: A right-optimized

write-optimized file system. In 13th USENIX Confer-

ence on File and Storage Technologies (FAST 15), pages

301–315, Santa Clara, CA, 2015. USENIX Association.

USENIX Association 19th USENIX Conference on File and Storage Technologies 109

[24] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap,

Taesoo Kim, Aasheesh Kolli, and Vijay Chidambaram.

Splitfs: reducing software overhead in file systems for

persistent memory. In Proceedings of the 27th ACM

Symposium on Operating Systems Principles, pages 494–

508. ACM, 2019.

[25] Saurabh Kadekodi, Vaishnavh Nagarajan, and Gre-

gory R. Ganger. Geriatrix: Aging what you see and

what you don’t see. A file system aging approach for

modern storage systems. In 2018 USENIX Annual Tech-

nical Conference, USENIX ATC 2018, Boston, MA, USA,

July 11-13, 2018., pages 691–704, 2018.

[26] Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam,

Sam H. Noh, and Young-ri Choi. SLM-DB: single-level

key-value store with persistent memory. In Merchant

and Weatherspoon [34], pages 191–205.

[27] Sudarsun Kannan, Andrea C Arpaci-Dusseau, Remzi H

Arpaci-Dusseau, Yuangang Wang, Jun Xu, and Gopinath

Palani. Designing a true direct-access file system with

devfs. In 16th USENIX Conference on File and Storage

Technologies (FAST 18), pages 241–256, 2018.

[28] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, An-

drea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. Re-

designing lsms for nonvolatile memory with novelsm. In

2018 USENIX Annual Technical Conference (USENIX-

ATC 18), pages 993–1005, 2018.

[29] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon

Peter, Emmett Witchel, and Thomas Anderson. Strata:

A Cross Media File System. In Proceedings of the 26th

Symposium on Operating Systems Principles, SOSP ’17,

pages 460–477, New York, NY, USA, 2017. ACM.

[30] E. Lee, H. Bahn, S. Yoo, and S. H. Noh. Empirical study

of nvm storage: An operating system’s perspective and

implications. In 2014 IEEE 22nd International Sympo-

sium on Modelling, Analysis Simulation of Computer

and Telecommunication Systems, pages 405–410, Sep.

2014.

[31] Se Kwon Lee, K. Hyun Lim, Hyunsub Song, Beomseok

Nam, and Sam H. Noh. WORT: Write Optimal Radix

Tree for Persistent Memory Storage Systems. In 15th

USENIX Conference on File and Storage Technologies

(FAST 17), pages 257–270, 2017.

[32] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap,

Taesoo Kim, and Vijay Chidambaram. RECIPE:

Converting Concurrent DRAM Indexes to Persistent-

Memory Indexes. In Proceedings of the 27th ACM Sym-

posium on Operating Systems Principles (SOSP ’19),

Ontario, Canada, October 2019.

[33] Avantika Mathur, Mingming Cao, Suparna Bhat-

tacharya, Andreas Dilger, Alex Tomas, and Laurent

Vivier. The new ext4 filesystem: current status and

future plans. In Proceedings of the Linux symposium,

volume 2, pages 21–33, 2007.

[34] Arif Merchant and Hakim Weatherspoon, editors. 17th

USENIX Conference on File and Storage Technolo-

gies, FAST 2019, Boston, MA, February 25-28, 2019.

USENIX Association, 2019.

[35] Micron. Battery-backed nvdimms, 2017.

[36] Moohyeon Nam, Hokeun Cha, Young-ri Choi, Sam H

Noh, and Beomseok Nam. Write-optimized dynamic

hashing for persistent memory. In 17th USENIX Confer-

ence on File and Storage Technologies (FAST 19), pages

31–44, 2019.

[37] Moohyeon Nam, Hokeun Cha, Youngri Choi, Sam H

Noh, and Beomseok Nam. Write-Optimized and

dynamic-hashing for Persistent Memory. In 17th

USENIX Conference on File and Storage Technologies

(FAST 19), 2019.

[38] Rasmus Pagh and Flemming Friche Rodler. Cuckoo

hashing. Journal of Algorithms, 51(2):122–144, 2004.

[39] Waleed Reda, Henry N. Schuh, Jongyul Kim, Youngjin

Kwon, Marco Canini, Dejan Kostić, Simon Peter, Em-

mett Witchel, and Thomas Anderson. Assise: Perfor-

mance and availability via NVM colocation in a dis-

tributed file system. In 14th USENIX Symposium on

Operating Systems Design and Implementation (OSDI

20), Banff, Alberta, November 2020. USENIX Associa-

tion.

[40] RedHat. NFVS documentation. https://

people.redhat.com/~mpatocka/nvfs/INTERNALS,

2020.

[41] Dimitrios Skarlatos, Apostolos Kokolis, Tianyin Xu, and

Josep Torrellas. Elastic cuckoo page tables: Rethinking

virtual memory translation for parallelism. In Proceed-

ings of the Twenty-Fifth International Conference on

Architectural Support for Programming Languages and

Operating Systems, pages 1093–1108, 2020.

[42] Keith A Smith and Margo I Seltzer. File system aging—

increasing the relevance of file system benchmarks. In

ACM SIGMETRICS Performance Evaluation Review,

volume 25, pages 203–213. ACM, 1997.

[43] Steven Swanson. Early measurements of intel’s 3dx-

point persistent memory dimms, Apr 2019.

[44] M. Talluri, M. D. Hill, and Y. A. Khalidi. A new page

table for 64-bit address spaces. In Proceedings of the

110 19th USENIX Conference on File and Storage Technologies USENIX Association

Fifteenth ACM Symposium on Operating Systems Prin-

ciples, SOSP ’95, page 184–200, New York, NY, USA,

1995. Association for Computing Machinery.

[45] Vasily Tarasov, Erez Zadok, and Spencer Shepler.

Filebench: A flexible framework for file system bench-

marking. USENIX; login, 41, 2016.

[46] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ran-

ganathan, and Roy H. Campbell. Consistent and Durable

Data Structures for Non-Volatile Byte-Addressable

Memory. In Proceedings of the 9th USENIX Conference

on File and Storage Technologies, pages 5–5. USENIX

Association, February 2011.

[47] Chundong Wang, Qingsong Wei, Lingkun Wu, Sibo

Wang, Cheng Chen, Xiaokui Xiao, Jun Yang, Mingdi

Xue, and Yechao Yang. Persisting rb-tree into NVM in

a consistency perspective. TOS, 14(1):6:1–6:27, 2018.

[48] Ying Wang, Dejun Jiang, and Jin Xiong. Caching or

not: Rethinking virtual file system for non-volatile main

memory. In 10th USENIX Workshop on Hot Topics in

Storage and File Systems (HotStorage 18), 2018.

[49] Ziqi Wang, Andrew Pavlo, Hyeontaek Lim, Viktor Leis,

Huanchen Zhang, Michael Kaminsky, and David G. An-

dersen. Building a bw-tree takes more than just buzz

words. In Proceedings of the 2018 ACM International

Conference on Management of Data, SIGMOD ’18,

pages 473–488, 2018.

[50] H-S Philip Wong, Simone Raoux, SangBum Kim, Jiale

Liang, John P Reifenberg, Bipin Rajendran, Mehdi

Asheghi, and Kenneth E Goodson. Phase Change Mem-

ory. Proceedings of the IEEE, 98(12):2201–2227, Dec

2010.

[51] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun.

HiKV: a hybrid index key-value store for DRAM-NVM

memory systems. In 2017 USENIX Annual Technical

Conference (USENIXATC 17), pages 349–362, 2017.

[52] Jian Xu and Steven Swanson. NOVA: A Log-structured

File System for Hybrid Volatile/Non-volatile Main

Memories. In Proceedings of the 14th Usenix Con-

ference on File and Storage Technologies, FAST’16,

pages 323–338, Berkeley, CA, USA, 2016. USENIX

Association.

[53] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha

Gangadharaiah, Amit Borase, Tamires Brito Da Silva,

Steven Swanson, and Andy Rudoff. NOVA-Fortis: A

fault-tolerant non-volatile main memory file system. In

Proceedings of the 26th Symposium on Operating Sys-

tems Principles, pages 478–496, 2017.

[54] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang,

Khai Leong Yong, and Bingsheng He. NV-Tree: Re-

ducing Consistency Cost for NVM-based Single Level

Systems. In 13th USENIX Conference on File and Stor-

age Technologies (FAST 15), pages 167–181, 2015.

[55] Idan Yaniv and Dan Tsafrir. Hash, don’t cache (the page

table). In Proceedings of the 2016 ACM SIGMETRICS

International Conference on Measurement and Mod-

eling of Computer Science, SIGMETRICS ’16, page

337–350, New York, NY, USA, 2016. Association for

Computing Machinery.

[56] Shengan Zheng, Morteza Hoseinzadeh, and Steven

Swanson. Ziggurat: A tiered file system for non-volatile

main memories and disks. In Merchant and Weather-

spoon [34], pages 207–219.

[57] Shengan Zheng, Hao Liu, Linpeng Huang, Yanyan Shen,

and Yanmin Zhu. HMVFS: A versioning file system

on DRAM/NVM hybrid memory. J. Parallel Distrib.

Comput., 120:355–368, 2018.

[58] Jie Zhou, Yanyan Shen, Sumin Li, and Linpeng Huang.

NVHT: An efficient key-value storage library for non-

volatile memory. In Proceedings of the 3rd IEEE/ACM

International Conference on Big Data Computing, Appli-

cations and Technologies, pages 227–236. ACM, 2016.

[59] Pengfei Zuo, Yu Hua, and Jie Wu. Write-Optimized and

High-Performance Hashing Index Scheme for Persistent

Memory. In 13th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 18), pages

461–476, 2018.

USENIX Association 19th USENIX Conference on File and Storage Technologies 111

