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Abstract

This paper demonstrates that it is possible to achieve us-scale
latency using Linux kernel storage stack, even when tens of
latency-sensitive applications compete for host resources with
throughput-bound applications that perform read/write opera-
tions at throughput close to hardware capacity. Furthermore,
such performance can be achieved without any modification
in applications, network hardware, kernel CPU schedulers
and/or kernel network stack.

We demonstrate the above using design, implementation
and evaluation of blk-switch, a new Linux kernel storage
stack architecture. The key insight in blk-switch is that
Linux’s multi-queue storage design, along with multi-queue
network and storage hardware, makes the storage stack con-
ceptually similar to a network switch. blk-switch uses this
insight to adapt techniques from the computer networking
literature (e.g., multiple egress queues, prioritized processing
of individual requests, load balancing, and switch scheduling)
to the Linux kernel storage stack.

blk-switch evaluation over a variety of scenarios shows
that it consistently achieves us-scale average and tail latency
(at both 99" and 99.9'" percentiles), while allowing applica-
tions to near-perfectly utilize the hardware capacity.

1 Introduction

There is a widespread belief in the community that it is not
possible to achieve us-scale tail latency when using the Linux
kernel stack. A frequently cited argument is that, due to its
high CPU overheads, Linux is struggling to keep up with
recent 10 — 100x performance improvements in storage and
network hardware [17,38]; the largely stagnant server CPU
capacity further adds to this argument. In addition, many in
the community argue that the resource multiplexing principle
is so firmly entrenched in Linux that its performance stumbles
in the common case of multi-tenant deployments [22,38,42]—
when latency-sensitive L-apps compete for host compute and
network resources with throughput-bound T-apps, Linux fails
to provide us-scale tail latencies. These arguments reflect a
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Figure 1: The key insight in blk-switch design: Linux’s per-
core block layer design, along with modern multi-queue storage
and network hardware, makes the storage stack conceptually
similar to a network switch.

broad belief that, despite Linux’s great success, it has emerged
as the core bottleneck for modern applications and hardware.

This paper focuses on storage stacks used by applications
to access data on local and/or remote servers. We show that it
is possible to achieve us-scale tail latency using Linux, even
when applications perform read/write operations at through-
put close to hardware capacity. Furthermore, low latency and
high throughput can be simultaneously maintained even when
tens of L-apps and T-apps compete for host resources at each
of the compute, storage and network layers of the kernel stack.
Finally, such performance can be achieved without any modifi-
cations in applications, network and storage hardware, kernel
CPU schedulers and/or kernel network stack; all that is needed
is to rearchitect the Linux storage stack.

blk-switch is a new Linux storage stack architecture for
us-scale applications. The key insight in blk-switch is that
Linux’s per-core block layer queues [19,27], combined with
modern multi-queue storage and network hardware [8], makes
the storage stack conceptually similar to network switches
(Figure 1). Building upon this insight, blk-switch adapts
classical techniques from the computer networking literature
(e.g., multiple egress queues, prioritized processing of indi-
vidual requests, load balancing along multiple network con-
nections, and switch scheduling) to the Linux storage stack.
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To realize the above insight, blk-switch introduces a
per-core, multi-egress queue block layer architecture for the
Linux storage stack (Figure 1). Applications use standard
Linux APISs to specify their performance goals, and to submit
read/write requests (§3). Underneath, for each application
class, blk-switch creates an “egress” queue on a per-core
basis that is mapped to a unique queue of the underlying
device driver (that is, storage driver for local storage access, or
remote storage driver for remote storage access). Such a multi-
egress queue design allows blk-switch to decouple ingress
(application-side block layer) queues from egress (device-side
driver) queues since requests submitted at an ingress queue
on a core can now be processed at an egress queue at any of
the cores. blk-switch merely acts like a “switch”—at each
individual core, blk-switch steers requests submitted at the
ingress queue of that core to one of the egress queues, based
on application performance goals and load across cores.

blk-switch integrates three ideas within such a switched
architecture to simultaneously enable us-scale tail latency for
L-apps and high throughput for T-apps. First, blk-switch
maps requests from L-apps to the egress queue on that core,
and processes the outstanding requests in a prioritized order;
that is, at each individual core, requests in L-app egress queues
are processed before requests in T-app egress queues. This
ensures that L-apps observe minimal latency inflation due to
head-of-line blocking from T-app requests. However, strict
prioritization at each core can lead to starvation of T-apps
due to transient load (bursts of requests from an L-app on
the same core) or due to persistent load (multiple contending
L-apps on the same core). To avoid starvation during transient
loads, blk-switch exploits the insight that decoupling the
application-side queues from device-side queues, and inter-
connecting them via a switched architecture enables efficient
realization of different load balancing strategies, even at the
granularity on individual application requests. blk-switch
thus uses request steering to load balance requests from T-
apps across corresponding egress queues at all available cores.
To avoid starvation due to persistent loads, blk-switch uses
application steering, that steers application threads across
available core at coarse-grained timescales with the goal of
minimizing persistent contention between L-apps and T-apps.
At its very core, the two steering mechanisms in blk-switch
highlight the conceptual idea that load balancing within the
Linux storage stack can be applied at two levels of abstraction:
individual requests and individual threads; and, both of these
are necessary to simultaneously achieve us-scale latency for
L-apps and high throughput for T-apps—the former enables
efficient handling of transient loads, and the latter enables
efficient handling of persistent loads on individual cores.

We have implemented blk-switch within the Linux
storage stack. Our implementation is available at: https:
//github.com/resource-disaggregation/blk-switch. We
evaluate blk-switch over a wide variety of settings and
workloads, including in-memory and on-disk storage, single-

threaded and multi-threaded applications, varying load in-
duced by L-apps and T-apps, varying read/write ratios, varying
number of cores, and with RocksDB [9], a widely-deployed
storage system. Across all evaluated scenarios (except for
sensitivity analysis against number of cores and T-app load),
we find that blk-switch achieves us-scale average and tail
latency (at both 99" and 99.9™ percentiles, or P99 and P99.9,
respectively), while allowing applications to nearly saturate
the 100Gbps link capacity, even when tens of applications con-
tend for host resources. In comparison to Linux, blk-switch
improves the average and the P99 latency by as much as
130x and 24 x, respectively, while maintaining 84 — 100%
of Linux’s throughput. We also compare blk-switch to
SPDK, a widely-deployed state-of-the-art userspace storage
stack. We find that SPDK achieves good tail latency and high
throughput when each application runs on a dedicated core;
in the more realistic scenario of applications sharing server
cores, in comparison to SPDK, blk-switch improves the
average and P99 tail latency by as much as 12x and 18X, re-
spectively, while achieving comparable or higher throughput;
as we will discuss, this is because polling-based userspace
stacks like SPDK do not interpolate very well with Linux
kernel CPU schedulers. When compared to both Linux and
SPDK, blk-switch achieves similar or higher improvements
for P99.9 tail latency. All these benefits of blk-switch can
be achieved without any modifications in the applications,
Linux CPU scheduler (blk-switch uses the default CFS
scheduler), Linux network stack (blk-switch uses Linux
kernel TCP/IP stack), and/or network hardware.

2 Understanding Existing Storage Stacks

This section presents a deep dive into the performance of
two state-of-the-art storage stacks—Linux (including remote
storage stack [29]) and SPDK (a widely-deployed userspace
stack). We first describe our setup (§2.1), and then discuss
several results and insights (§2.2). Our key findings are:

e Despite significant efforts in improvement of Linux storage
stack performance (per-core queues [19], per-core storage
and network processing [29], etc.), existing Linux-based
solutions suffer from high tail latencies due to head-of-line
blocking, especially in increasingly common multi-tenant
deployments [31, 52], that is, when L-apps compete for
host resources with T-apps that perform high-throughput
reads/writes to remote storage servers. Intuitively, such
scenarios result in a complex interference at three layers
of the stack—compute, storage, and network—requiring
careful orchestration of host resources to achieve us-scale
tail latency, while sustaining throughput close to hardware
capacity. Existing Linux-based solutions fail to efficiently
achieve such orchestration. For instance, even with one
L-app competing with one T-app, we observe tail latency
inflation of as much as 7x (when compared to isolated
case, where the L-app runs on a dedicated server).
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Table 1: The storage stack, network stack and CPU scheduler
used in the evaluated systems.

l System [ Storage stack [ Network stack [ CPU scheduler ‘

Linux kernel, 110 [29] kernel TCP kernel CFS
SPDK userspace kernel TCP kernel CFS

e Polling-based storage stacks (e.g., SPDK) can achieve low
latency and high throughput when each application is given
a dedicated core. However, when multiple applications
share a core, polling-based stacks that use kernel CPU
schedulers suffer from undesirable interactions between
the storage stack and the kernel CPU scheduler. Even when
one L-app shares a core with one T-app, we observe 5x tail
latency inflation and 2.4 x throughput degradation, when
compared to the respective isolated cases; both of these
get worse with increasing number of applications sharing
a core (108x tail latency inflation and 6.2x throughput
degradation for the case of four L-apps sharing a core with
one T-app). Prioritizing L-apps does not help—while tail
latency inflation can be avoided, throughput for T-apps
drops to near-zero with just one L-app.

2.1 Measurement Setup

The storage stack, the network stack and the CPU schedulers
used in evaluated systems are summarized in Table 1. Linux
uses block multi-queue design with per-core software queues
mapped to underlying device driver queues (NVMe driver for
local storage access, and 110 [29] queues for remote storage
access). SPDK is a polling-based system, where applications
poll on their I/O queues (for local storage access) and/or
on their respective TCP sockets (for remote storage access);
underneath, SPDK uses its own driver for accessing remote
storage devices over TCP.

In §5, we evaluate these systems over different storage
devices, workloads, and experimental setups. This section
focuses on a specific setting: a single-core setup where one T-
app contends with an increasing number of L-apps to execute
read requests on remote in-memory storage connected via a
100Gbps link. This setting allows us to both hide high NVMe
SSD access latencies, and dive deeper into factors contributing
to individual system performance. Latency-sensitive L-apps
generate 4KB requests and throughput-bound T-apps generate
large requests; to ensure a fair comparison, for each individual
system, we set the “ideal” load and request size for T-apps
using the knee point on the latency-throughput curve for that
system (see discussion in §5.1 for more details, including
information about network and storage hardware).

We measure average and P99 tail latency for L-apps and
throughput-per-core for T-apps for both isolated (where each
application has host resources to itself) and shared scenarios
(where all applications share host resources). An ideal system
would maintain the isolated-latency for L-apps, with minimal
impact on isolated throughput for T-apps.

2.2 Existing Storage Stacks: Low latency or
high throughput, but not both

We start by discussing the isolated performance for each of the
systems (shown in Figure 2 in the leftmost bars). Here, Linux
achieves P99 tail latency of 118us and throughput-per-core of
26Gbps; when compared to Linux, SPDK achieves 5x lower
latency, and 1.5 x higher throughput. While these results are
not surprising in comparison, some interesting numbers stand
out in an absolute sense. In particular, the absolute numbers
for Linux—118us P99 tail latency (comparable to our NVMe
SSD access latency) and > 25Gbps throughput-per-core—
may be surprising. We attribute these to several relatively
recent optimizations in the Linux storage stack (e.g., blk-
mq [19] and CPU-efficient remote storage stacks [29]).

High tail latencies due to lack of prioritization: head-of-
line (HoL) blocking. In early incarnations of Linux storage
stacks, requests submitted at all cores were processed at a
single queue, resulting in contention across cores as well as
HoL blocking due to requests submitted across cores. To-
day’s Linux alleviates these issues using per-core block layer
queues [19]; however, we find that HoL blocking can still
happen at the block layer queues (rare) or at the device driver
queues (more prominent). This is because the Linux storage
stack [19,29] uses a single per-core non-preemptive thread to
process all requests submitted on that core. When multiple ap-
plications contend on a core, this results in high tail latencies
for L-apps due to HoL blocking caused by large requests from
T-apps; we observe as much as 7x higher latencies in Fig-
ure 2. Figure 3(a) shows that, as expected, the impact of HoL.
blocking increases linearly with the request size of T-apps.

High tail latencies due to lack of prioritization: fair CPU
scheduling. We find that polling-based designs do not inter-
play well with the default kernel CPU scheduler—Completely
Fair Scheduler (CFS)—that allocates CPU resources equally
across applications sharing the core (albeit, at coarse-grained
millisecond timescales, referred to as “timeslices”). Polling
completely utilizes the core; thus, the scheduler deallocates
the core from an application only when the application has
used its share of the core. As a result, requests from L-apps
initiated at the boundary of L-app timeslices are the ones
whose latency is impacted the worst since these would not be
processed until the application’s next timeslice. As a result,
even when one L-app contends with one T-app, SPDK suffers
from 5 x inflation in tail latency when compared to the iso-
lated case; the latency inflation increases to 108 x and higher
when multiple L-apps share the core with a T-app. Since CPU
is fairly shared across contending applications, such polling-
based systems not only suffer from latency inflation but also
from degraded throughput for T-apps proportional to the num-
ber of applications contending at the core.

The impact on tail latency depends on two factors: (1)
length of individual timeslices; and (2) the time gap between
successive timeslices. The former determines the number of
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requests that can be processed within a single timeslice (these
requests will achieve near-optimal latency), and the latter de-
termines the amount of “waiting time” for requests that could
not be processed within the timeslice in which they were sub-
mitted. We measure these two factors in our experiments by
examining CFS scheduler traces. In Figure 3(b), the “Run”
bar shows the average length of the timeslice given to each
L-app, and the “Wait” bar shows the average time gap be-
tween consecutive timeslices of each L-app. We observe that
as the number of L-apps increases, the length of individual
L-app timeslices decreases, and the wait time increases. This
leads to (1) a larger latency impact for requests at the bound-
ary of timeslices, hence inflation in tail latency; and, (2) a
larger fraction of requests being impacted by the gap between
consecutive timeslices, hence inflation in average latency.

Near-zero throughput due to strict prioritization: starva-
tion in polling-based designs. Linux CPU scheduler allows
prioritization of L-apps. Unfortunately, polling-based designs
do not interplay well with prioritization either. We rerun
SPDK results above but with L-apps having higher priority
(niceness value —20) than T-app. The corresponding results,
referred to as “SPDK+priority” in figures, show that such
prioritization results in two undesirable effects: (1) complete
starvation of T-apps—since L-apps have higher priority and
are always active due to their polling-based design, the sched-
uler does not preempt these applications; and (2) if more than
a single L-app contend on a core, CPU resources are shared

fairly across these applications, resulting in increased average
latency. We note that tail latency is not impacted much when
the number of L-apps is increased. This is because, when
given higher priority, L-apps get longer timeslices, and are
able to process more requests in each timeslice, leaving only
a small fraction of requests to be impacted by the gap be-
tween consecutive timeslices. Hence, while the waiting time
between timeslices increases, the effect is not visible at P99
(higher percentiles see significant inflation). This is also the
reason for the case of four L-apps in Fig. 2: the tail latency
is worse than the average (since the latency distribution is
extremely skewed towards higher percentiles).

In Figure 3(c), we re-run the single L-app and T-app case,
this time making the L-app sleep for a certain interval after
submitting requests, and vary this interval. When the L-app
sleeps, it yields, allowing the T-app to get scheduled. As can
be seen, increasing the sleep interval leads to an increase in
T-app throughput. However, it comes at the cost of increasing
tail latency for L-apps. In Figure 3(d), we repeat the single
L-app and single T-app experiment, but with varying the L-
app priority by adapting the niceness value (lower niceness
implies higher priority): T-app’s niceness value is set to 0, and
we vary L-app niceness value from —20 (highest priority) to
0. CFS allocates timeslices to processes based on the niceness
value. Hence, with increasing niceness values, the L-app gets
a smaller share of CPU cycles, leading to an increase in the
T-app’s share. As a result, T-app’s throughput increases but
only at the cost of inflated latency for the L-app.
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3 blk-switch Design

As mentioned earlier, blk-switch builds upon the insight
that Linux’s per-core block layer queues [19,27], combined
with modern multi-queue storage and network hardware [8],
makes the storage stack conceptually similar to network
switches. To realize the above insight, blk-switch intro-
duces a “switched” architecture for the Linux storage stack
that allows requests submitted by an application to be steered
to and processed at any core in the system. In §3.1, we de-
scribe this switched architecture, and how it enables the key
technique in blk-switch to achieve low latency for L-apps—
prioritized processing of individual requests. In §3.2 and
in §3.3, we describe how decoupling the application-side
queues from device-side queues, and interconnecting them
via blk-switch’s switched architecture enables efficient re-
alization of different load balancing strategies to achieve high
throughput for T-apps.

Before diving deeper into blk-switch design details, we
make two important notes. First, we describe blk-switch de-
sign using a single target device (local and/or remote storage
server) since, similar to Linux, blk-switch treats each tar-
get device completely independently. Second, blk-switch
does not require modifications in applications and/or system
interface—applications submit I/O requests to the kernel via
standard APIs such as io_submit (). Similar to any other sys-
tem that provides differential service, blk-switch mustiden-
tify application goals. Being within the Linux kernel makes
this task easy for blk-switch: it uses the standard Linux
ionice interface [6] that allows setting a “scheduling class”
for individual applications/processes (without any changes
in applications and/or kernel request submission interface).
In the current implementation (§4), blk-switch uses two of
the ionice classes to differentiate L-apps from T-apps. It is
easy to extend blk-switch to support additional application
requirements—for instance, applications that require both low
latency and high throughput can use an additional application
class (using ionice) to specify their performance goal, and
blk-switch can be extended in a manner that each core not
only appropriately prioritizes but also performs load balanc-
ing for requests for such applications. In addition, the ion-
ice interface also allows applications to dynamically change
their class, if performance goals change over time (e.g., from
latency-sensitive to throughput-sensitive requests). Note that
ionice is only for the storage stack interpretation, and is dif-
ferent from CPU scheduling priority classes.

3.1 Block Layer is the New Switch

Linux storage stack architecture, in particular the block layer,
has evolved over time. In early incarnations of Linux storage
stacks, requests submitted at all cores were processed at a
single queue. In today’s Linux, block layer uses a per-core
queue (blk-mq [19]) where requests submitted by all appli-
cations running on that core are processed. We refer to these

per-core block layer queues as ingress queues. Today, these
ingress queues are directly mapped to the driver queues (stor-
age device driver for local storage access, or remote storage
driver [21,29] for remote storage access)l. Introduction of
per-core ingress queues in Linux storage stack resolved con-
tention across cores; however, since all requests submitted to
an ingress queue are processed at the same core, it can lead
to high tail latency due to head-of-line blocking at the driver
queues when L-apps and T-apps submit requests to the same
ingress queue (Figure 2). blk-switch’s architecture avoids
this using a multi-egress queue design, that we describe next.

Multiple egress queues. blk-switch introduces a per-core,
multi-egress queue block layer architecture for the Linux stor-
age stack. For each class of application running on the server,
blk-switch creates an “egress” queue on a per-core basis.
Each of these egress queues is mapped to a unique queue of
the underlying device driver—storage driver for local stor-
age access, and remote storage driver [29] with a dedicated
network connection for remote storage access. blk-switch
assigns a dedicated kernel thread for processing each individ-
ual egress queue and assigns priorities to these threads based
on application performance goals. For instance, in the case
of L-apps and T-apps, blk-switch assigns highest priority
to the thread processing L-app requests (both in transmit and
receive queues); thus, at each individual core, the kernel CPU
scheduler will prioritize the processing of L-app requests over
T-app requests, immediately preempting the T-app request
processing thread. As a result, the latency inflation observed
by L-app requests over the isolated case is minimal: in addi-
tion to the necessary overhead of a context switch, the only
source of latency is other L-app requests on that core.

Decoupling request processing from application cores.
Existing block layer multi-queue design tightly couples re-
quest processing to the core where the application submits the
request. While efficient when cores are underutilized, such
a design could result in suboptimal core utilization: if a core
C0 is overloaded and another core C1 is underloaded, current
storage stacks do not utilize C1 cycles to process requests
submitted at CO.

blk-switch exploits its multi-egress queue design to en-
able a switched architecture that alleviates this limitation
(Figure 4): it allows requests submitted at a core to be steered
from the ingress queue of that core to any of the other cores’
egress queues (for that application class), be processed on
that core, and responses returned on that core to be rerouted
back to the appropriate application core. Decoupling request
processing from application cores has some overheads (both
in terms of latency and CPU), but allows blk-switch to ef-

"Modern storage devices have multiple hardware queues and correspond-
ing drivers allow creating a large number of queues (e.g., NVMe standard
allows creating as many as 64k queues); in case of multiple hardware de-
vices, each device has its own set of queues. Similarly, modern remote storage
stacks [29] also create one driver queue per-core for each remote server.
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Figure 4: An illustration of blk-switch’s design. (left) multi-egress queue architecture: the first two and the last two queues on each device
are for the left and the right core, respectively (one for each application class); (center) request steering mechanism: upon transient congestion
on left core NIC queue, requests are steered on the queue corresponding to the right core ; (right) application steering mechanism: upon
persistent congestion on the left core NIC queue, T-app is steered to the right core. See §3 for discussion.

ficiently utilize all cores in the system. For instance, in the
case of L-apps and T-apps, blk-switch can steer requests to
and process them at lightly-loaded cores, improving through-
put for T-apps. Moreover, among requests processed on each
core, blk-switch continues to provide isolation: prioritized
processing of requests in L-app egress queues ensures that re-
quests from L-apps are always prioritized over other requests.

We will discuss in §4 how existing block layer infrastruc-
ture (e.g., bio and request data structures) enable efficient
implementation of such a switched architecture with minimal
modifications. The rest of the section describes blk-switch
mechanisms to efficiently exploit this switched architecture
to achieve high throughput for T-apps.

3.2 Request Steering

Decoupling processing of individual requests from applica-
tion cores via blk-switch’s switched architecture enables
efficient realization of different load balancing strategies.
In this subsection, we describe one such strategy used in
blk-switch for efficiently handling transient loads on indi-
vidual cores—request steering.

Transient loads can result in temporarily starving T-app
requests, e.g., when a burst of (high-priority) L-app requests
end up temporarily consuming all CPU cycles on a core, or
when multiple L-apps on a core end up generating requests
at the same time, or when large requests from one T-app
block requests from other T-apps on that core to be processed,
etc. Under such transient loads, blk-switch uses request
steering to load balance the load on the system across the
available cores—it steers T-app requests at ingress queues
of transiently overloaded cores to the corresponding egress
queues on other cores at the granularity of individual T-app
requests. Importantly, blk-switch performs request steer-
ing only for throughput-bound applications. Request steering
incurs some overheads (e.g., latency due to reduced data lo-
cality, and CPU overheads due to request steering processing
and due to contention among cores for accessing the same
egress queue), but it is a good tradeoff to make for T-apps:
during transient loads, blk-switch is able to efficiently uti-

Algorithm 1 : blk-switch request steering framework.
request processing on local core (for destination T):

1: if load on local core < threshold then

2 Move the request to local core’s egress queue
3: else

4 candidates < cores with egress queue to T
5: for each core € candidates do

6 if load on the core > threshold then

7 remove core from candidates

8 Randomly pick two cores in candidates

9 Move the request to the core with smaller load

lize available CPU cycles at other cores to maintain T-app
throughput. Figure 4(center) shows an example.

Making request steering decisions requires an estimate of
instantaneous load on individual cores in the system. For T-
apps where I/O is the main bottleneck, blk-switch’s multi-
egress queue design enables an efficient approach—using the
instantaneous sum of bytes of outstanding requests for the
T-app egress queue to determine instantaneous per-core load
and to steer requests to lightly-loaded cores. For such applica-
tions, instantaneous sum of bytes of outstanding requests is a
good indicator of the presence of congestion in the end-to-end
datapath, as congestion at any point will eventually build up
the amount of bytes of outstanding requests in T-app egress
queues. In our implementation for T-app requests that perform
data access to remote storage servers, we use a default thresh-
old of 16 x 64KB based on the latency-throughput curve for
T-apps [30]. However, without any additional mechanisms,
such an approach could lead to imperfect request steering
decisions since it does not take into account the many other
important factors (e.g., queueing delay, request type being
read/write, compute-1/O ratios, etc.); there is a large body of
research on estimating load on the cores [15,22,46], and any
of these mechanisms can be incorporated within blk-switch
decision making.

Algorithm 1 shows a general framework for blk-switch’s
request steering mechanism. blk-switch performs request
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steering at the granularity of individual requests. Upon a re-
quest submission, blk-switch first checks if the local core is
available: if the load on the local core is less than threshold,
the local core is considered available and the request is en-
queued in its egress queue. This is to ensure that blk-switch
only incurs the overhead of request steering when necessary.
If the local core is overloaded, blk-switch uses a mecha-
nism based on power-of-two choices [41] to select a core to
steer the request to. Among egress queues to the same des-
tination (as described in §3.1), it randomly chooses two of
these cores, and steers the request to the core with the lower
load. The power-of-two choices is efficient as (1) at most
two egress ports need to be examined when the local core is
overloaded; and (2) it reduces contention between cores on
queues since two cores are unlikely to write requests to the
same core at the same time.

We provide details about blk-switch’s request steering
implementation in §4. blk-switch does not implement re-
quest steering at the remote storage server side; if there is
transient congestion at the remote storage server, then corre-
sponding egress queues at the application side will build up.
In that case, our application-side request steering algorithm
will not pick this egress queue, and will forward the requests
to queues at other cores. Thus, application-side request steer-
ing alone is enough to deal with transient congestion at both
the application and the remote storage server.

3.3 Application Steering

The benefits of request steering at a per-request granularity
can be overshadowed if each request submitted at a core has
to be steered to other cores, e.g., due to persistent load on a
core due to multiple contending L-apps submitting requests
at that core. For instance, if L-apps generate requests at low
but consistent loads, frequent context switching between L-
app and T-app request processing threads leads to reduced
throughput. Similarly, if two high-load T-apps are contending
on a core, it is better to move one of them to a less utilized
core, avoiding long-term overheads of request steering.

To handle such persistent loads, b1lk-switch observes that
load balancing within the Linux storage stack can be done at
two levels of abstraction: individual requests and individual
threads—while the former enables efficient handling of tran-
sient loads, the latter enables efficient handling of persistent
loads. Thus, under such persistent loads, blk-switch per-
forms application steering, that is CPU allocation to individual
application threads by steering threads from persistently over-
loaded cores to one of the underutilized cores. Figure 4 shows
an example. blk-switch performs application steering at
coarse-grained timescales (in our implementation, default is
10 milliseconds) since it is required only for handling persis-
tent loads. Note that application steering is performed at the
granularity of individual application threads. Unlike request
steering, blk-switch implements a version of application
steering at both the application side and at the remote storage

Algorithm 2 : blk-switch application steering framework.

L.: weighted average load induced by L-apps at core c.
T.: weighted average load induced by T-apps at core c.
L*: threshold on weighted average load induced by L-apps

L-apps:
1: candidates « all cores with 0 < L. < L*
2: ¢* < core in candidates with minimum {Z.+ 7.}
3: Move the application to ¢*

T-apps:
1: candidates « all cores with L. less than local core
2. ¢ + core in candidates with minimum 7
3: Move the application to ¢

server; for the latter, it steers threads that perform processing
at blk-switch’s receive-side egress queues.

For application steering, blk-switch uses a frame-
work similar to request steering with minor modifications
(Algorithm 2). Unlike the request steering framework,
blk-switch’s application steering explicitly takes into ac-
count the weighted average load on the core induced by L-
apps. This is due to two reasons. First, application steering
is performed to reduce long-term contention between L-apps
and T-apps; thus, we want T-apps to be steered to the core
with low weighted average load induced by L-apps (with an
additional constraint that the weighted average of T-app load
on the new core is lower than the current core). Together, this
ensures that steering the T-app does not increase the num-
ber of context switches (the new core has lower L-app load),
and also that the new core’s T-app load is lower than that of
the current core, thus minimizing contention among T-apps.
Second, we also want to potentially place multiple L-apps on
the same core in order to further reduce interference between
L-apps and T-apps—colocating L-apps on a core will not neg-
atively impact their performance as long as L-apps generate
low weighted average load on the core. The second modifi-
cation is for the case of applications performing data access
on remote storage servers: we now use a default threshold of
L* = 100KB to ensure that only a small number of L-apps are
aggregated on the same core.

4 blk-switch Implementation Details

We have implemented blk-switch in Linux kernel 5.4.
Throughout the implementation, our focus was to reuse ex-
isting kernel storage stack infrastructure as much as possible.
To that end, our current implementation adds just 928 lines
of code—530 in blk-mq layer, 118 at device driver layer, and
280 for target-specific functions at remote storage layer. In
this section, we summarize the core components of Linux ker-
nel implementation that blk-switch uses, along with some
of the interesting blk-switch implementation details.
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forwarding back the response to the right application. blk-switch
uses the same infrastructure.
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Figure 6: Request datapath in blk-switch. (a) (w/ request steer-
ing): request is steered to the queue on corel viahctx(1,1) acquiring
a tag from the steered queue. The response comes back to the steered
queue on corel. (b) (w/ application steering): When an applica-
tion is moved from core0 to corel, the in-flight request, sent before
application steering, comes back on core0. blk-switch finds the
corresponding kioctx via the tag and wakes up the application.

Linux block layer overview. We describe how the Linux
storage stack works with the asynchronous I/O interface [4]
(see Figure 5, but ignore prioritization). Before creating I/O
requests, application needs to setup an I/O context using
io_setup(), which creates a kioctx structure at VES layer.
This kioctx includes (1) a ring buffer where request comple-
tion events are enqueued (so that the application pulls them up
later asynchronously); and, (2) application process informa-
tion to wake up the application whenever a new completion
event is ready. Each kioctx is associated with a context iden-
tifier. When application submits a request with the context
identifier, the VFS layer creates kiocb that represents the I/O
request and finds the corresponding kioctx using the iden-
tifier. kiocb has a pointer for the kioctx. The block layer
creates a bio instance, based on kiocb, and encapsulates it in
a request instance: this includes a hardware context (hctx)
that is associated with one of the device-driver I/O queues.

Before forwarding the request to the device-driver queue,
the block layer needs to get a tag number. tags is an array of
request pointers, and its size is the same as the queue depth of
the driver queue.The block layer maintains a bitmap to keep
track of the occupancy of the tags. When all tags are occupied
(i.e., the driver queue is full), then the block layer needs to
wait for a tag to be available. After getting the tag, the request
is sent to the driver queue associated with hctx.

After I/O processing at the device, the response is returned
to the kernel with the same tag number. The kernel finds the
corresponding request instance from the tags array using
the tag number. The tag number is released, and kiocb from
the bio instance is extracted to find the kioctx. Finally, the
completion event is enqueued into the ring buffer of kioctx
and a notification is sent to the application.

blk-switch request steering implementation. Since each
hctx is regarded as an egress queue, the main goal of the
request steering algorithm is to select a non-congested hctx
across cores if the local one is congested. blk-switch main-
tains the per-core load required for request steering (updating
on a per-request basis). After that, the request will obtain
a tag from the steered hctx. Once the request is enqueued
into the corresponding driver queue, the following driver-level
and block-layer receive processing will be done on the core
that is associated with the steered hctx. When the response
comes back to the kernel from the device, we are able to find
the steered request instance from the tags; thus, going back
to the original kioctx is straightforward as the kioctx can
be extracted from the request instance (Figure 6(a)). The
kernel sends a wake-up signal to the application running on
the core associated with the ingress port via the kioctx.

blk-switch application steering implementation. Upon
application steering deciding to move the application to a new
core, blk-switch invokes the sched_setaffinity kernel
function to execute the move. Once this is done, requests
generated by the steered application will be submitted to
the ingress queue on the new core. blk-switch maintains
the weighted average per-core load required for application
steering (updating on a per-request basis). It is easy to main-
tain application semantics even when there are “in-flight”
requests during application moving from one core to another.
blk-switch forwards the “in-flight” requests to the right
application by exploiting the tags (Figure 6(b)); similar to
the request steering, blk-switch is able to find the origi-
nal kioctx that keeps track of the application’s location and
thus can wake up the associated application. Therefore, the
responses can be delivered to the right application.

5 Evaluation

We now evaluate blk-switch performance, with the goal of
understanding the envelope of workloads where blk-switch
is able to provide us-scale average and tail latency, while
maintaining high throughput for T-apps. To do so, we evaluate
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blk-switch across a variety of scenarios and workloads with
varying amount of load induced by L-apps and T-apps, number
of cores, read/write sizes, read/write ratios and storage settings
(in-memory and SSD). In each evaluated scenario, a number
of latency-sensitive applications (#L-apps) compete for host
resources with a number of throughput-bound applications
(#T-apps) that perform large read/write requests on remote
storage servers. We describe the individual settings inline.
We describe our evaluation setup in §5.1, followed by a
detailed discussion of our results in §5.2 and §5.3. Finally, in
§5.4, we provide a detailed breakdown of how each design
aspect of blk-switch contributes to its overall performance.

5.1 Evaluation Setup

blk-switch focuses on rearchitecting the storage stack for
us-scale latency and high throughput. Thus, our evaluation
setup focuses on scenarios where performance bottlenecks
are pushed to the storage stack—that is, where systems are
bottlenecked by processing of storage requests, and not by
network bandwidth.

Evaluated Systems. We compare blk-switch performance
with Linux and widely-deployed userspace storage stack
(SPDK) [51] (the CPU scheduler, storage stack and TCP/IP
stack used for Linux and SPDK are shown in Table 1). For
accessing data in remote servers, we make one modification
in Linux: rather than using its native NVMe-over-TCP driver,
we use 110 [29], a state-of-the-art Linux-based remote stor-
age stack since it provides much higher throughput (using its
default parameters, at the cost of introducing ~50 — 100us la-
tency at low loads); for accessing data on remote servers with
SPDK, we use its native support for NVMe-over-TCP [13].
We apply core affinity to applications in Linux since that
provides best performance. SPDK pins threads to cores by
default since it makes use of DPDK’s Environment Abstrac-
tion Layer (EAL). For both Linux and SPDK, we evenly
distribute the applications across cores to the extent possible.
For blk-switch, we use its default parameters (§3).

Hardware setup. All our experiments are run on a testbed
with two servers directly connected via a 100Gbps link. The
servers have a 4-socket NUMA-enabled Intel Xeon Gold
6234 3.3GHz CPU with 8 cores per socket, 384GB RAM and
a 1.6TB Samsung PM1735 NVMe SSD. Both servers run
Ubuntu 20.04 (kernel 5.4.43). To achieve CPU-efficient net-
work processing for all evaluated systems (since all of them
use Linux kernel network stack), we enable TCP Segmenta-
tion Offload (TSO), Generic Receive Offload (GRO), packet
coalescing using Jumbo frames (9000B), and accelerated Re-
ceive Flow Steering (aRFS). To minimize experimental noise,
we disable irgbalance and dynamic interrupt moderation
(DIM) [10]. Finally, we disable hyper-threading since doing
so maximizes performance for all evaluated systems.

We present results for both in-memory storage (RAM block

device) and on-disk storage (NVMe SSD). Except for SSD
and RocksDB experiments, we use the former due to three rea-
sons. First, unlike on-disk storage, in-memory storage allows
us to evaluate scenarios where T-apps generate load close to
our network hardware capacity (100Gbps). Second, a single
NVMe SSD can be saturated using two cores [29]; in-memory
storage, on the other hand, allows us to evaluate scalability of
blk-switch (and other systems) with larger number of cores.
Finally, our NVMe SSDs have an access latency of ~80us,
which hides a lot of latency benefits of userspace stacks; we
find it a fairer comparison to use in-memory storage to hide
such high latencies.

Performance metrics. We evaluate system performance in
terms of average and tail latency for L-apps, total throughput
of all applications, and throughput-per-core calculated as “to-
tal throughput / core utilization” (we take the maximum of the
application-side and the storage server-side core utilization
when computing core utilization). Unless mentioned other-
wise, we present results for average latency (shown by bars)
and P99 tail latency (shown by top whiskers) since, as we will
show, SPDK has significantly worse P99.9 tail latency.

Default workload. To generate loads for L-apps and T-apps,
we use the standard methodology, where applications submit
storage requests to the underlying system in a closed-loop
(that is, the I/O depth of the application specifies a maximum
number of outstanding requests). For Linux, we use FIO [16]
that uses the lightweight 1ibaio interface. For SPDK, we
use its default benchmark application, perf (while FIO has
been ported to SPDK, it has higher overheads compared to the
lightweight perf application). These benchmarking applica-
tions are used to evaluate system performance to again push
the bottlenecks to the underlying system (since real-world
storage-based applications can have high overheads); never-
theless, we also evaluate blk-switch with RocksDB [9], a
prominently used storage system.

L-apps generate 4KB read/write requests with an I/O depth
of 1. To ensure that each system is running at its “knee-point”
in its latency-throughput curve, we use the optimal T-app op-
erating point for each system—for RAM block device, the op-
timal (request size, I/O depth) for T-apps is as follows: Linux
(64KB, 32), SPDK (128KB, 8), and blk-switch (64KB, 16).
While our default setup uses the above request sizes and I/O
depths, we also present sensitivity analysis against varying
I/0O depths and request sizes. Finally, we use the random read
workload in our default setup, and also present results for
varying read/write ratios.

Unless stated otherwise, we give each system 6 cores on
a single NUMA node. We use six cores for each system
because we observed that, when given more than 6 cores,
Linux ends up being bottlenecked by network bandwidth
(that is, it can saturate the 100Gbps link in our testbed) in
several of our experimental scenarios. Nevertheless, we also
show performance with varying number of cores.
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Figure 7: blk-switch achieves us-scale average and tail latency for L-apps and high throughput for T-apps even with tens of L-apps
competing for host compute and network resources with T-apps. As we increase the number of L-apps, both Linux and SPDK fail to
simultaneously achieve low latency and high throughput for reasons discussed in §2. Linux achieves high throughput, but at the cost of high
average and tail latencies; SPDK, on the other hand, suffers from both high tail latency and low throughput. Detailed discussion in §5.2.

5.2 Goal: Low-Latency and High-Throughput

Recall that an ideal system would ensure that both L-apps and
T-apps observe performance close to the respective isolated
performance (that is, when the application has all the host and
storage server resources to itself).

Impact of increasing number of L-apps competing for
host resources with T-apps (Figure 7 and Figure 8). For
this experiment, each system is given six cores, and executes
requests from six T-apps and varying number of L-apps.
Linux and SPDK performance trends are similar to Fig-
ure 2 in §2. Linux suffers from high average and tail latencies,
but maintains high throughput even with increasing number
of L-apps. SPDK achieves high throughput when number of
L-apps is less than the number of cores; however, it suffers
from inflated latency and degraded throughput with increasing
number of L-apps (significantly degraded performance with
just six L-apps). We already discussed the root cause for this
behavior for each system in §2; however, for both Linux and
SPDK, we observe slightly worse latency and throughput-per-
core relative to that observed in Figure 2. Digging deeper, we
found that both of these are due to increased L3 cache miss
rates. Specifically, since the cores used by the systems are on
the same NUMA node, they share a common L3 cache; the
resulting increased contention for L3 cache leads to higher
cache miss rate—for x = 1 in Figure 2, cache miss rates for
Linux and SPDK are 1.12% and 3.68%, respectively, but for
X = 6 in Figure 7, cache miss rates increase to 34% and 63%.
Higher cache miss rates lead to an increase in the per-byte
CPU overhead for kernel TCP processing (mainly due to data
copy), resulting in lower throughput-per-core. Interestingly,
for Linux, this also leads to higher latency inflation for L-apps
(when comparing x = 6 in Figure 7 to x = 1 in Figure 2), as
each T-app request takes a larger number of CPU cycles to
process, hence exacerbating the effect of HoL blocking. Fig-
ure § single-threaded case shows the P99.9 tail latency for all
systems for the x = 6 data point in Figure 7. Both Linux and
SPDK exhibit high P99.9 tail latency, but SPDK in particular
observes significantly worse P99.9 tail latency (33 x higher
than the P99). As discussed in §2, this is because L-app re-
quests processed at the boundary of time slices are impacted,
and this effect is prominently visible in higher percentiles.
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Figure 8: The P99.9 tail latency corresponding to x = 6 in Fig-
ure 7 and Figure 9.

blk-switch consistently achieves us-scale latency for L-
apps, even with 12 L-apps competing for host resources with
6 T-apps. In comparison to Linux, blk-switch achieves
28 — 110x better average latency, 10 — 25x better P99 tail
latency and 6 — 15x better P99.9 tail latency; in compar-
ison to SPDK, blk-switch achieves 2 — 12x better aver-
age latency, 2 — 15 x better P99 tail latency and 33 — 101 x
better P99.9 tail latency. blk-switch achieves all these la-
tency benefits while sacrificing 5 — 10% throughput relative
to Linux. blk-switch achieves such performance benefits
using a combination of its techniques: it first performs ap-
plication steering to isolate L-apps to a subset of cores, and
to distribute T-apps over the remaining cores. This results
in slightly increased tail latency for L-apps compared to a
single L-app case, but significantly reduces context switch-
ing overheads when compared to L-apps and T-apps shar-
ing individual cores. Further, blk-switch performs request
steering to utilize unused L-app cores for processing T-app
requests opportunistically. Finally, separation of I/O queues
along with prioritization enables maintaining low latency for
L-apps even when T-app requests are steered to the L-app
cores. Note that prioritization of I/O queue processing also
leads to blk-switch having slightly better average and tail
latencies when compared to the isolated Linux latency in
Figure 2; however, this is not fundamental.

We observe a somewhat surprising and counter-intuitive
benefit of blk-switch’s application steering mechanism that
steers L-apps onto a small number of cores—for example, in
Figure 7, blk-switch’s average latency reduces with increas-
ing number of L-apps. This is because of better packet aggre-
gation opportunities through TSO/GRO and Jumbo frames:
as more L-apps are steered on the same core, they begin to
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discussed in §2, Linux and SPDK fail to simultaneously achieve low latency and high throughput: Linux suffers from high latency due to HoLL
blocking; SPDK experiences increasingly higher latency and lower throughput as the load induced by T-apps increase.

share the same egress queue and hence the same underlying
TCP connection (recall that blk-switch maintains a single
per-core egress queue for each application class); as a result,
more L-app requests can be aggregated, resulting in lower per-
request processing overheads, and improved average latency.

Impact of increasing number of L-app threads competing
for host resources with T-app threads (Figure 9 and Fig-
ure 8). We now evaluate the performance of existing storage
stacks for multi-threaded applications. To do this, we slightly
modify the evaluation setup from Figure 7 experiment: we
now use one T-app with six T-threads and one L-app with
varying number of L-threads (varying from 1 to 12). Note
that, while the recent SPDK NVMe-oF target implementation
supports user-level threads [13], SPDK’s perf benchmark ap-
plication running on the host-side does not support user-level
threads; as a result, it does not support creating more threads
than the number of cores in the system (for each individual ap-
plication). As one would expect, Figure 9 and Figure 8 results
show exactly the same trend as single-threaded applications.

Impact of increasing the load induced by T-apps (Fig-
ure 10). We now evaluate the performance of each system
with varying load induced by T-apps. There are two ways
to vary the load induced by T-apps—by varying I/O depth,
and by varying request sizes. Since our setup uses TSO/GRO,
these two mechanisms to vary the load induced by T-apps
lead to essentially the same set of results. We present and
discuss results for the former here; the latter can be found
in [30]. For this experiment, we fix the number of L-apps and
T-apps to 6 each, and increase the I/O depth for T-apps. The
request size for T-apps is now fixed to 64KB for all systems.

Linux and SPDK show trends similar to previous results.
Average and tail latencies for L-apps increase with increased
contention for host resources (in these results, increased con-
tention is due to higher load induced by T-apps). As one
would expect, for both of these systems, total throughput and
throughput-per-core for T-apps increases with an increase
in load induced by T-apps. blk-switch handles contention
differently from both of these systems: by prioritizing L-app
requests, and using request and application steering to effi-
ciently load balance T-app requests across unused cores. Thus,
blk-switch continues to maintain us-scale latency with in-
crease in T-app load—in comparison to Linux, blk-switch
achieves 5 — 33 x lower average and 2 — 8 x lower tail latency;
in comparison to SPDK, blk-switch achieves 2 —7x lower
average and 1.3 — 6 lower tail latency. blk-switch’s mech-
anisms for handling contention results in a slightly different
tradeoff in terms of T-app performance. When the load in-
duced by T-apps is small, blk-switch reduces Linux latency
without any degradation in throughput (since it does not pay
the overheads of request steering at low loads); at higher loads,
blk-switch continues to achieve low latency, but observes
10% lower throughput than Linux due to the overheads of
request steering.

We note that blk-switch average latency improves with
load induced by T-apps. For smaller loads, blk-switch’s
application steering does not steer L-apps on to a subset of
cores (as in previous experiments), leaving L-apps evenly
distributed across available cores. As a result, blk-switch
does not get to exploit the benefits of reduced per-request
processing overheads (due to TSO/GRO and jumbo frames)
associated with aggregating multiple L-apps on the same core.
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Figure 11: blk-switch maintains its us-scale average and tail latency for L-apps with varying number of cores, even when scheduling
across NUMA nodes. For small number of cores, compared to Linux, blk-switch trades off improvements in latency with slightly reduced
throughput (due to request prioritization, and fewer opportunities for application and request steering). For smaller number of cores, SPDK
achieves low latency; as the number of cores are increased, SPDK starts suffering from inflated tail latency and degraded throughput.

Impact of number of cores (Figure 11). We now evaluate
the performance of all systems with varying number of cores,
including the case when the cores belong to different NUMA
nodes. The challenge with doing this evaluation is that, if
T-apps were to not interfere with L-apps, ~4 cores would be
sufficient to saturate the network bandwidth (as can be in-
ferred from the isolated case in Figure 2); thus, to understand
the performance with increasing number of cores, we have to
ensure that L-apps and T-apps continue to contend at host stor-
age and network processing resources rather than competing
for network bandwidth. Thus, we use the following evaluation
strategy. Our servers have eight cores on each NUMA node;
for each data point up to x = 8 on the x-axis (x = number
of cores used for that data point), we use the cores on the
same NUMA node and for the last two data points, we use
two additional cores from one of the other NUMA nodes. For
each data point, we run a total of x L-apps and x T-apps to en-
sure that the system is neither lightly-loaded nor overloaded.
With this setup, we are able to evaluate for larger number of
cores—Linux, blk-switch and SPDK now become network
bandwidth bottlenecked at 7,8 and 10 cores, respectively.

Linux and SPDK performance can be explained using our
prior insights. As the number of cores increase, Linux experi-
ences increasingly higher latency but is able to achieve high
throughput; SPDK, on the other hand, suffers from increas-
ingly higher latency, and relatively lower throughput.

For the single core case, blk-switch improves Linux’s
latency, but at the cost of 40% lower throughput (similar to
SPDK); this is due to lack of request steering and applica-
tion steering opportunities, and due to prioritization being
the dominant mechanism for isolation. As the number of
cores increase, blk-switch starts exploiting the benefits of
request and application steering—it achieves us-scale latency
as in earlier experiments, while getting throughput increas-
ingly closer to Linux (with 7 cores, it is only 4.2% worse
than Linux; for 8 or more cores, blk-switch’s throughput
matches Linux as the network link is saturated). For number of
cores between 3 and 8, we see a reduction in blk-switch’s
average latency due to higher opportunities to exploit the
benefits of TSO, GRO and jumbo frames (due to application
steering aggregating increasingly more L-apps on same subset
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Figure 12: blk-switch is able to maintain low average and tail
latencies even when applications operate at throughput close to
200Gbps. The experiment uses 16 L-apps and 16 T-apps running
across 16 cores from two NUMA nodes.

of cores). Beyond 8 cores, we see slight increase in average
and tail latency for blk-switch because of NUMA effects.

Besides latency results, there are several other interest-
ing observations to be made in Figure 11(center). First,
blk-switch is able to completely saturate a 100Gbps link
using 8 cores, at which point it is bottlenecked by network
bandwidth. Since the server has many more cores, we expect
that these cores will allow blk-switch to maintain its perfor-
mance with future NICs that have larger bandwidths (we show
this for 200Gbps network bandwidth setup below). Second,
while the total throughput of blk-switch scales well with
the number of cores, it has slightly lower total throughput
compared to Linux for smaller number of cores. This is due
to application steering resulting in T-apps being steered away
from L-apps, and the L-apps cores observing transient un-
derutilization when request steering decisions are imperfect.
Under such imperfect decisions, fewer number of cores are
available for T-app request processing. However, as the num-
ber of cores increase, the benefits of reduced context switching
(due to lower contention between L-app and T-app requests
after application steering) start to offset core underutilization
resulting in similar or even higher throughput when compared
to other systems. Finally, Figure 11(right) demonstrates that
all systems experience reduced throughput-per-core with in-
creasing number of cores. We found that this is due to an
increased number of L3 cache misses with increase in total
throughput as the number of cores is increased.

Performance beyond 100Gbps (Figure 12). We now eval-
uate the performance of all systems in the Terabit Ethernet
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Figure 13: For experiments with SSDs (corresponding to Figure 7), blk-switch latency is largely overshadowed by SSD access latency.

Rest of the trends are similar to those in Figure 7.
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Figure 14: Evaluation results with RocksDB: blk-switch performance benefits over Linux are similar to previous results.

regime (above 100Gbps). For this we installed an additional
NIC on each of the two servers in our setup, and connected
these NICs with an additional 100Gbps link, enabling a total
of 200Gbps network bandwidth between the servers. The two
NICs on each server are attached to separate NUMA nodes.
We use all of the cores on both of these NUMA nodes (total of
16), while running 16 L-apps and 16 T-apps. The performance
trends remain identical to previous results — blk-switch is
able to maintain us-scale average and tail latency (10us av-
erage, 143us P99 , and 296us P99.9), while nearly saturating
the 200Gbps network bandwidth (within 1% of Linux).

Performance with different storage access latency. We re-
peat the experiment shown in Figure 7, but with L-app requests
being executed on an NVMe SSD (T-app requests are still
executed in-memory). The access latency of our SSD (~80us)
causes increase in average latencies for all systems, but the
performance trends among the evaluated systems remain iden-
tical to earlier results. Importantly, blk-switch’s latency is
largely overshadowed by SSD access latency.

Additional results. We present several additional results
in [30], including performance with varying request sizes
for T-apps, varying read/write ratios, applications that access
data distributed between local and remote storage servers, and
bursty application workloads.

5.3 RocksDB with blk-switch

We now evaluate blk-switch with RocksDB [9], a widely-
deployed storage system, as the L-app. We mount a remote
SSD block device at the host-side with XFS file system (only
Linux and blk-switch support mounting a file system). We
setup RocksDB to use the mounted XFS file system backed
by remote SSD device and enable direct I/O. To generate
workload for RocksDB, we use the db_bench benchmarking

tool with ReadRandom workload and 4KB request sizes, with
an I/O depth of 1 for each thread. We colocate a T-app that
accesses remote RAM block device using FIO [16], as before.
We run this benchmark on 6 cores, with 6 T-app threads and
varying number of L-app threads.

Figure 14 shows that both Linux and blk-switch achieve
slightly higher latency compared to previous results due to
RocksDB’s higher application-layer overheads. However, in
comparison, blk-switch achieves over an order of magni-
tude latency reduction when compared to Linux, while sacri-
ficing throughput by at most 10%. Furthermore, blk-switch
maintains these benefits even with increasing number of L-app
threads competing for host resources with T-app threads.

5.4 Understanding blk-switch Performance

We now quantify the contribution of each of blk-switch’s
mechanisms to its overall performance. To do so, we run a
simple microbenchmark: we start the experiment with one L-
app and one T-app on core0, and set the I/O depth of T-app to
be 32. We then add blk-switch mechanisms (prioritization,
request steering and application steering) incrementally.
Figure 15 shows that each of blk-switch’s mechanism
contributes to its overall performance. Enabling prioritiza-
tion only reduces tail latency by an order of magnitude (Fig-
ure 15(a)), but at the cost of lower T-app throughput on core0
(Figure 15(b)); since request and application steering are dis-
abled, strictly prioritizing processing of L-app requests re-
sults in reduced throughput due to larger number of context
switches. As shown in Figure 15(c) and Figure 15(d), en-
abling request steering with prioritization allows the T-app
to achieve high T-app throughput by utilizing spare capacity
on less loaded cores (by steering T-app requests from heavily
loaded core0 and processing these requests at corel); how-
ever, this comes at the cost of slight increase in latency for
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Figure 15: Contribution of different techniques in blk-switch
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blk-switch with all mechanisms disabled; we then cumu-
latively enable prioritization (blk-switch-RS-AS), request
steering (blk-switch-AS), and application steering (b1lk-switch).
See discussion in §5.4.

L-apps (albeit, still us-scale)—due to non-trivial CPU over-
heads of request steering and non-real-time prioritization in
Linux kernel CPU schedulers, some of the L-app requests get
blocked by the thread doing request steering. This problem
is alleviated by blk-switch’s application steering algorithm
(Figure 15(e))—it steers the T-app away from the L-app, al-
lowing blk-switch to simultaneously achieve low latency
and high throughput.

6 Related Work

We have already compared blk-switch with state-of-the-art
Linux-based and widely-deployed userspace storage stacks.
We now compare and contrast blk-switch with other
closely-related systems.

Existing storage stacks. There is a large and active body
of research on designing storage stacks that target various
goals, including fairness [1,2,7,26], deadlines [5, 7], priori-
tization [3], and even policy-based storage provisioning and
management [24,39,47,49]. However, none of these stacks
target us-scale latency. Furthermore, many of them can have
high CPU overheads (for high-performance storage devices,
the standard recommendation in Linux is to use no sched-
uler [26]), especially for applications that perform operations
on remote storage servers [14,23,25,50]. Recent work on stor-
age stacks for remote data access [12,29] achieves high CPU
efficiency and throughput; however, as we have shown in our
evaluation, they fail to achieve low latency in multi-tenant
deployments when latency-sensitive and throughput-bound
applications compete for host resources.

User-space stacks. We have already performed evaluation
against SPDK, a widely-deployed state-of-the-art user-space
storage stack. Our evaluation focuses on using SPDK with
Linux kernel CPU scheduler and network stack, and highlights
the poor interplay with SPDK’s polling-based architecture and
Linux CPU scheduler. It is possible to overcome some of these
limitations by integrating SPDK with high-performance user-
space or RDMA-based network stacks [13, 18,32,35-37,40],
user-space CPU schedulers [34], or both [22,42-45]. How-
ever, with the exception of [22,42], these user-space network
stacks and CPU schedulers either do not provide us-scale iso-
lation in multi-tenant deployments, or require dedicated cores
for each individual L-app resulting in potentially high core
underutilization. The state-of-the-art among these user-space
stacks [22,42] demonstrate that by carefully orchestrating
compute resources across L-apps and T-apps, it is possible to
simultaneously achieve us-scale latency and high throughput.
However, they currently provide fewer features than Linux
and require modifications in applications. blk-switch shows
that it is possible to simultaneously achieve us-scale latency
and high throughput without any modifications in applica-
tions, Linux kernel CPU scheduler and/or network stack.

Hardware-level isolation. There has also been work on
achieving performance isolation by exploiting hardware-level
mechanisms in NVMe SSDs [20, 28, 48], including mech-
anism specification in the NVMe standard [11, 33]. These
are complementary to blk-switch’s goals that focuses on
software bottlenecks.

7 Conclusion

Using design, implementation and evaluation of blk-switch,
this paper demonstrates that it is possible to achieve us-scale
tail latency using Linux, even when tens of latency-sensitive
applications compete for host resources with throughput-
bound applications that access data at throughput close to
hardware capacity. The key insight in blk-switch is that
Linux’s multi-queue storage design, along with multi-queue
network and storage hardware, makes the storage stack con-
ceptually similar to a network switch. blk-switch uses this
connection to adapt techniques from the computer networking
literature (e.g., prioritized processing of individual requests,
load balancing, and switch scheduling) to the Linux kernel
storage stack. blk-switch is implemented entirely within
the Linux kernel storage stack, and requires no modification
in applications, network and storage hardware, kernel CPU
schedulers and/or kernel network stack.
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