CodedBulk: Inter-Datacenter Bulk Transfers using Network Coding

Shih-Hao Tseng
Cornell University

Hitesh Ballani
Microsoft Research

Abstract

This paper presents CodedBulk, a system for high-throughput
inter-datacenter bulk transfers. At its core, CodedBulk uses
network coding, a technique from the coding theory commu-
nity, that guarantees optimal throughput for individual bulk
transfers. Prior attempts to using network coding in wired
networks have faced several pragmatic and fundamental bar-
riers. CodedBulk resolves these barriers by exploiting the
unique properties of inter-datacenter networks, and by using
a custom-designed hop-by-hop flow control mechanism that
enables efficient realization of network coding atop existing
transport protocols. An end-to-end CodedBulk implementa-
tion running on a geo-distributed inter-datacenter network
improves bulk transfer throughput by 1.2 —2.5x compared to
state-of-the-art mechanisms that do not use network coding.

1 Introduction

Inter-datacenter wide-area network (WAN) traffic is estimated
to quadruple over the next five years, growing 1.3x faster
than global WAN traffic [2]. In the past, such an increase
in demand has been matched by physical-layer technologi-
cal advancements that allowed more data to be pumped on
top of WAN fibers, thus increasing the capacity of existing
inter-datacenter links [14]. However, we are now approaching
the fundamental non-linear Shannon limit on the number of
bits/Hz that can be practically carried across fibers [14]. This
leaves datacenter network providers with the expensive and
painfully slow proposition of deploying new fibers in order to
keep up with increasing demands.

Several studies have reported that inter-datacenter traffic
is dominated by geo-replication of large files (e.g., videos,
databases, etc.) for fault tolerance, availability, and improved
latency to the user [3, 6, 8, 23, 25, 26, 31, 39, 40, 47, 49].
We thus revisit the classical multicast question: given a fixed
network topology, what is the most throughput-efficient mech-
anism for transferring data from a source to multiple desti-
nations? The answer to this question is rooted in network
coding, a technique from the coding theory community that

Saksham Agarwal
Cornell University

Rachit Agarwal
Cornell University

Ao Tang
Cornell University

generalizes the classical max-flow min-cut theorem to the
case of (multicast) bulk transfers [9, 30, 33]. Network coding
guarantees optimal throughput for individual bulk transfers
by using in-network computations [9, 24, 30, 33]; in contrast,
achieving optimal throughput using mechanisms that do not
perform in-network computations is a long-standing open
problem [34]. We provide a primer on network coding in §2.2.
While network coding has been successful applied in wireless
networks [28, 29], its applications to wired networks have
faced several pragmatic and fundamental barriers.

On the practical front, there are three challenges. First,
network coding requires network routers to buffer and to
perform computations on data, which requires storage and
computation resources. Second, computing “network codes”
that define computations at routers not only requires a pri-
ori knowledge about the network topology and individual
transfers, but also does not scale to networks with millions of
routers and/or links. Finally, network coding requires a single
entity controlling the end-hosts as well as the network.

In traditional ISP networks, these challenges proved to be
insurmountable but the equation is quite different for inter-
datacenter WANSs. The structure of typical inter-datacenter
WAN topologies means that, instead of coding at all routers
in the network, coding can be done only at resource-rich
datacenters—either at border routers or on servers inside the
datacenter—without any reduction in coding gains (§2.1).
Inter-datacenter WAN operators already deploy custom border
routers, so increase in computation and storage resources at
these routers to achieve higher throughput using the available
WAN bandwidth (that is expensive and increasingly hard-to-
scale) is a good trade-off to make. The second and third chal-
lenges are also alleviated by unique characteristics [23, 25]
of inter-datacenter WANSs: (1) network sizes limited to hun-
dreds of routers and links enables efficient computation of
network codes and implementation of network coding; (2)
SDN-enabled routers combined with the fact that transfers are
known a-priori [39, 40] allow for centralized code computa-
tions which can, in turn, be programmed into routers; and (3)
a single entity controlling end-hosts as well as the network.

While inter-datacenter WAN features lower the pragmatic
barriers, one fundamental challenge still needs to be resolved.
Traditional network coding assumes that there is no other traf-
fic in the network, either foreground (e.g., interactive traffic)
or background (e.g., other bulk transfers). More generally,
network coding assumes that all links have the same latency
and bandwidth, and that link latencies and bandwidths remain
static over time. This assumption does not hold in practice,
e.g., due to sporadic high-priority interactive traffic, and due
to multiple concurrent bulk transfers atop inter-datacenter
WANS. We refer to this as the asymmetric link problem.

CodedBulk is an end-to-end system for high-throughput
inter-datacenter bulk transfers that resolves the asymmetric
link problem using a simple Hop-by-hop Flow Control (HFC)
mechanism. The core idea in HFC mechanisms is to partition
available buffer space at routers among active flows, so as to
avoid buffer overflow [41, 45]. HFC mechanisms have been
explored for traditional non-coded traffic [37, 41, 42, 51];
however, using HFC mechanisms for network coding imposes
an additional constraint: all flows that need to be coded at any
router must converge to the same rate. Simultaneously, routers
need to work with limited storage and compute resources in
the data plane. We show that any buffer partitioning scheme
that assigns non-zero buffers to each (coded) flow achieves
the following desirable properties: (i) for each individual bulk
transfer, all incoming flows that need to be coded at a router
converge to the same rate; (ii) for all bulk transfers sharing a
link, the rate for all their flows through the link converge to
the max-min fair rate; and (iii) the network is deadlock-free.

The use of network coding, coupled with HFC, also means
that flow control at a router is correlated across multiple flows.
While this could be implemented via modifications in the
network stack, we introduce a virtual link abstraction which
enables CodedBulk without any modifications to existing
flow control-enabled transport layer and multipath-enabled
network layer implementations. For instance, CodedBulk cur-
rently runs on top of unmodified TCP and MPLS-enabled net-
work layer mechanisms supported by existing inter-datacenter
WANSs. Our implementation requires no special traffic shaping
mechanism, allows co-existence of high-priority interactive
traffic, and handles failures transparently.

We envision two deployment scenarios for CodedBulk.
First, an infrastructure provider can provide CodedBulk as
a service to geo-distributed services (including its own).
In the second scenario, a geo-distributed service renting
compute, storage and inter-datacenter bandwidth resources
from an infrastructure provider can use CodedBulk to im-
prove bulk transfer throughput without any support from the
provider. We have implemented CodedBulk for both scenar-
ios — an overlay service, a software proxy and a hardware
proxy. The first two implementations currently run on geo-
distributed inter-datacenter WAN. All the three implemen-
tations, along with a CodedBulk simulator, are available at:
https://github.com/SynergyLab-Cornell/codedbulk.

The benefits of network coding depend on the underlying
network topology, the number of destinations in individual
bulk transfers, the source and set of destinations in each bulk
transfer, the number of concurrent transfers and interactive
traffic load. To understand the envelope of settings where
CodedBulk provides benefits, we evaluate CodedBulk over a
testbed comprising 13 geo-distributed datacenters organized
around the B4 [25] and Internet2 [5] inter-datacenter WAN
topologies, and perform sensitivity analysis of CodedBulk
performance against all of the above factors. Our evalua-
tion demonstrates that CodedBulk achieves 1.2 —2.5x higher
throughput for bulk transfers when compared to existing state-
of-the-art mechanisms that do not perform network coding.
All the results presented in this paper are for real implementa-
tions of CodedBulk; this paper uses no simulation results.

2 CodedBulk Overview

We begin by describing our model for inter-datacenter WANs
(§2.1). We then provide a primer for network coding (§2.2).
Next, we discuss several pragmatic challenges that have posed
a barrier to adoption of network coding in wired networks and
how unique characteristics of inter-datacenter WANSs enable
overcoming these barriers (§2.3). We close the section with a
high-level description of the CodedBulk design (§2.4).

2.1 Preliminaries

We follow the same terminology as in existing inter-datacenter
WAN literature [26, 27, 31, 32, 39, 40, 49, 52]. Specifically,
we model the inter-datacenter WAN as a directed graph G =
(V,E), where V is the set of nodes denoting datacenters and
E is the set of links between pairs of datacenters. To account
for the full-duplex nature of inter-datacenter WAN links, we
create two links u — v and v — u for each pair of nodes
(u,v) € V with a physical link between them. Each link has a
capacity equal to its bandwidth available for bulk transfers.

We discuss two important aspects of the network model.
First, while links in wired networks are full-duplex, the graph
in inter-datacenter literature is usually modeled as a directed
graph since links in two directions can have different avail-
able bandwidths at different times, e.g., due to high-priority
interactive traffic using (a fraction of) the bandwidth in one
direction. Second, in practice, geo-distributed datacenters are
often connected via intermediate routers operating at layer-1
or layer-3; these routers either operate exactly like a relay
(have degree two, with incoming bandwidth equal to outgo-
ing bandwidth), or have their bandwidth statically partitioned
across multiple outgoing links. Both these cases are equiva-
lent to having a direct link with a specific capacity in each
direction between each pair of datacenters with a physical
link between them.

We define bulk transfers as in prior work [23, 25, 26,
27,31, 32, 38, 39, 40, 49, 52]: transfers that are bandwidth-
intensive. A bulk transfer is a source s sending a file to a
subset of nodes T C V — {s}.

e

I s
e
(a) Inter-datacenter bulk transfer example

e e

(d) Steiner-tree solution (suboptimal)

/
\ - /v

(b) single-path solution (suboptimal)

(e) Optimal non-coded solution (computed by

&ed

ap

(f) CodedBulk solution (optimal).

hand; efficient algorithms to compute such an opti-

mal solution are not known).

Figure 1: Understanding benefits of network coding. (a) An instance of the inter-datacenter bulk transfer problem on the Internet2 topology [5],
with one source (marked by a circle with a) and three destinations (marked by circles). The network model is as described in §2.1. (b, c, d)
Existing solutions based on single-path, multi-path and Steiner arborescence packing can be suboptimal (detailed discussion in §2.2). (e) An
optimal solution with Steiner arborescence packing (computed by hand); today, computing such a solution requires brute force search which is
unlikely to scale to inter-datacenter deployment sizes (tens to hundreds of datacenters) [23, 25]. (f) CodedBulk, using network coding, not only
achieves optimal throughput but also admits efficient algorithms to compute the corresponding network codes. More discussion in §2.2.

2.2 Network coding background

Suppose a source wants to send a large file to a single desti-
nation, and that it is allowed to use as many paths as possible.
If there are no other flows in the network, the maximum
achievable throughput (the amount of data received by the
destination per unit time) is given by the well-known max-
flow min-cut theorem—the achievable throughput is equal to
the capacity of the min-cut between the source and the desti-
nation in the induced graph. The corresponding problem for
a source sending a file to multiple destinations was an open
problem for decades. In 2000, a now celebrated paper [9]
established that, for a multicast transfer, the maximum achiev-
able throughput is equal to the minimum of the min-cuts
between the source and individual destinations. This is also
optimal. For general directed graphs, achieving this through-
put is not possible using solutions where intermediate nodes
simply forward or mirror the incoming data—it necessarily
requires intermediate nodes to perform certain computations
over the incoming data before forwarding the data [9, 30, 33].

For our network model that captures full-duplex links, net-
work coding achieves optimal throughput (since it subsumes
solutions that do not perform coding); however, it is currently
not known whether optimal throughput can be achieved with-
out network coding [10, 34]. Figure 1 demonstrates the space
of existing solutions, using a bulk transfer instance from our
evaluation (§4) on the Internet2 topology. We present ad-

ditional discussion and examples in [46]. Single-path (also
referred to as multiple unicast) solutions, where the source
transfers data along a single path to each individual desti-
nation, can be suboptimal because they neither utilize all
the available network bandwidth, nor do they allow inter-
mediate nodes to forward/mirror data to other destinations.
Multi-path solutions, where the source transfers data along
all edge-disjoint paths to each individual destinations (paths
across destinations do not need to be edge disjoint), can be
suboptimal because they do not allow intermediate nodes to
forward/mirror data to other destinations.

The current state-of-the-art solutions for our network model
are based on Steiner tree (or, more precisely, Steiner arbores-
cence) packing [7, 18, 34]. These solutions use multiple paths,
and allow intermediate nodes to mirror and forward the data;
however, they can be suboptimal because the problem of
computing optimal Steiner tree (or arborescence) packing is
NP-hard, and approximation algorithms need to be used [12].
To demonstrate the limitations of existing Steiner packing so-
lutions, consider the example shown in Figure 1(d): here, once
the shown Steiner tree is constructed, no additional Steiner
trees can be packed in a manner that higher throughput can
be achieved. Figure 1(e) demonstrates the complexity of com-
puting an optimal solution (that we constructed by hand)—to
achieve the optimal solution shown in the figure, one must
explore intermediate solutions that use a suboptimal Steiner

tree (shown in blue color). Today, computing such an optimal
solution requires a brute force approach, which is unlikely to
scale to inter-datacenter network sizes. Thus, we must use ap-
proximate suboptimal solutions; to the best of our knowledge,
the state-of-the-art algorithms for computing approximate
Steiner packing solutions for our network model do not even
admit polylogarithmic approximation factors [11, 21].

Network coding avoids the aforementioned limitations of
existing solutions by allowing intermediate nodes to perform
certain computations, which subsume forwarding and mirror-
ing, on data (as shown in the Figure 1(f) example)—it utilizes
multiple paths, guarantees optimal throughput, and admits
efficient computation of network codes that achieve optimal
throughput [24]. Thus, while designing optimal non-coded
solutions for bulk transfers remains an open problem, we can
efficiently achieve throughput optimality for inter-datacenter
bulk transfers today using network coding.

2.3 Resolving pragmatic barriers

While network coding is a powerful technique, its applica-
tions to wired networks have been limited in the past due to
several pragmatic challenges. In this subsection, we use the
example in Figure 1(f) to discuss these challenges, and how
inter-datacenter WANSs allow overcoming these challenges.

Buffering and computation at intermediate nodes. Net-
work coding requires intermediate nodes to buffer data and
perform computations. For instance, the bottom-center node
in Figure 1(f) needs to perform XOR operations on packets
from two flows A and A & B. This requires the node to have
storage (to buffer packets from A and A @ B), and compu-
tation resources (to compute A ® (A @ B) = B) in the data
plane. While this was challenging in traditional ISP networks,
inter-datacenter WANSs allow overcoming this barrier easily:
as noted in prior studies [31], each node in an inter-datacenter
WAN is a datacenter with compute and storage resources that
are significantly cheaper, more scalable and faster to deploy
than inter-datacenter bandwidth.

Computing and installing network codes. Nodes in Fig-
ure 1(f) perform specific actions (forward, mirror, code-and-
forward and code-and-mirror). These actions are specified us-
ing network codes, computing which requires a priori knowl-
edge of the network topology, and the source and the set
of destinations for each bulk transfer. This information was
hard to get in ISP networks; however, inter-datacenter WAN's
already collect and use this information [23, 25, 31, 49]. Net-
work coding also requires transmissions from end-hosts to be
coordinated by the controller. In inter-datacenter WAN sce-
narios, this is feasible as a single entity controls the end-hosts
as well as the network. Existing SDN infrastructure [23, 25]
is also useful for this purpose—a centralized controller can
compute the code, and can populate the forwarding tables of
intermediate nodes (using existing support for MPLS tags and
multi-path routing) before the bulk transfer is initiated.

& [
A

(a) Forward. (b) Mirror.
Q O Q O
NN
[J []
(Lfl@“‘@fkfl@“'@fli/\fl@'“@fk
O O

(¢) Code-and-Forward. (d) Code-and-Mirror.

Figure 2: Four basic coding functions available at each intermediate
node to implement the network code generated by CodedBulk.

Existing algorithms [24] for computing network codes run
in polynomial time, but may not scale to networks with mil-
lions of nodes and edges; however, this is not a concern for
CodedBulk since inter-datacenter WANs comprise of only
hundreds of nodes and links. Computation and installation of
network codes, and buffering of data at intermediate nodes
may also lead to increased latency for bulk transfers. However,
since bulk transfers are not latency-sensitive [23, 25], a slight
increase in latency to achieve significantly higher throughput
for bulk transfers is a favorable tradeoff [31].

2.4 CodedBulk design overview

The high-level CodedBulk design for a single bulk transfer
case can be described using the following five steps:

1. The source node, upon receiving a bulk transfer request,
notifies the controller of the bulk transfer. The notifica-
tion contains the source identifier, the identifiers for each
destination, and an optional policy on the set of links or
intermediate nodes not to be used (e.g., for security and
isolation purposes).

2. The controller maintains a static topology of the inter-
datacenter network graph. While optimizations are possi-
ble to exploit real-time traffic information, the current Cod-
edBulk implementation does not use such optimizations.
The controller computes, for each destination, the set of
edge-disjoint paths between the source and the destination,
along with the bandwidth for each path. Using these paths,
the controller computes the network code for the bulk
transfer using the network coding algorithm from [24]'.
The network code comprises of the routing and forwarding

The network coding algorithm in [24] requires as input a directed acyclic
graph. However, the multipath set in our construction may lead to a cyclic
graph. We use an extension similar to the original network coding paper [9]
to generate network codes for cyclic graphs. Please see [46] for details.

e

A%
B 5
(fE

B — P
Eof G

Bes)

P N %
TR == 1001, (
e

100y

o]

(a) Reason: Interactive traffic.

- » e
/

(b) Reason: Non-uniform delay.

g

(c) Reason: Multiple bulk transfers.

Figure 3: Understanding asymmetric link problem. (a) Due to sporadic high-priority interactive traffic (e.g., the one shown in red), different
links may have different (time-varying) bandwidths; (b) If network links have significantly different round trip times, naively implementing
traditional network coding would require large amount of fast data plane storage to buffer data that arrives early at nodes; (c) multiple concurrent
bulk transfers, especially those that end up sharing links, make it hard to efficiently realize traditional network coding solutions that assume a

single bulk transfer at all times. Detailed discussion in §3.1.

information for each flow, and the computations done at
each intermediate node for the flows arriving at that node.
These codes can be expressed as a combination of four
basic functions shown in Figure 2.

3. Once the network code is computed, the controller installs
the network code on each node that participates in the
bulk transfer. We discuss, in §3.3, a mechanism to imple-
ment the forwarding and routing functions that requires no
changes in existing inter-datacenter WAN infrastructure.

4. Once the code is installed, the controller notifies the source.
The source partitions the bulk transfer file into multiple
subfiles (defined by the code) and then initiates the bulk
transfer using CodedBulk, as described in the remainder
of the paper. For instance, for the example of Figure 1(f),
the source divides the file into two subfiles (A and B) of
equal sizes and transmits them using the code shown in
the figure. Each intermediate node independently performs
CodedBulk’s hop-by-hop flow control mechanism. Impor-
tantly, a “hop” here refers to a datacenter on the network
topology graph. CodedBulk assumes that interactive traf-
fic is always sent with the highest priority, and needs two
additional priority levels.

5. Once the bulk transfer is complete, the source notifies
the controller. The controller periodically uninstalls the
inactive codes from all network nodes.

The core of CodedBulk’s mechanisms are to efficiently enable
the fourth step. We describe these in the next section.

3 CodedBulk Design

We describe the core techniques in CodedBulk design and
implementation. We start by building an in-depth understand-
ing of the asymmetric link problem (§3.1). We then describe
how CodedBulk resolves the asymmetric link problem using a
custom-designed hop-by-hop flow control mechanism (§3.2).
Finally, we discuss the virtual link abstraction that enables
implementation of CodedBulk without any modifications in
underlying transport- and network-layer protocols (§3.3).

3.1 Understanding fundamental barriers

We start by building an in-depth understanding of the asym-
metric link bandwidth problem, and how it renders techniques
in network coding literature infeasible in practice. We use
Figure 3 for the discussion in this subsection.

Asymmetric links due to sporadic interactive traffic. Inter-
datacenter WANS transfer both latency-sensitive interactive
traffic (e.g., user commits, like emails and documents) and
bandwidth-intensive bulk traffic [23, 25]. While interactive
traffic is low-volume, it is unpredictable and is assigned higher
priority. This leads to two main challenges. First, links may
have different bandwidths available at different times for bulk
transfers (as shown in Figure 3(a)). Second, the changes in
available bandwidth may be at much finer-grained timescales
than the round trip times between geo-distributed datacenters.

Traditional network coding literature does not consider the
case of interactive traffic. An obvious way to use traditional
network coding solutions for non-uniform link bandwidths is
to use traffic shaping to perform network coding on the mini-
mum of the available bandwidth across all links. For instance,
in the example of Figure 3(a), if the average load induced by
interactive traffic is 0.1 x link bandwidth, then one can use
network coded transfers only on 0.9 x bandwidth. However,
the two challenges discussed above make this solution hard,
if not infeasible: bandwidths are time-varying, making static
rate allocation hard; and, bandwidth changing at much fine-
grained timescales than geographic round trip times makes it
hard to do dynamic rate allocation.

Asymmetric links due to non-uniform delay. Traditional
network coding solutions, at least the practically feasible
ones [24], require computations on data arriving from mul-
tiple flows in a deterministic manner: packets that need to
be coded are pre-defined (during code construction) so as to
allow the destinations to decode the original data correctly.
To achieve this, existing network coding solutions make one
of the two assumptions: either the latency from the source
to each individual node is uniform; or, unbounded storage

Fi\

r—U()l ﬁ@u%

o’

N

U F1 © F2

A

Figure 4: Understanding hop-by-hop flow control for a single bulk transfer. (left) if the outgoing link has enough bandwidth to sustain the rate
of incoming traffic (flow F in this example), then all buffers will remain unfilled and flow control will not be instantiated; (center) the same
scenario as the left figure holds as long as the two conditions hold: (1) both flows that need to be coded at some node v send at the same rate;
and (2) the outgoing link has enough bandwidth to sustain the rate of incoming traffic; (right) If two flows need to be coded at some node v, and
one of the flows F1 is sending at higher rate, then the Rx buffer for F1 will fill up faster than it can be drained (due to v waiting for packets of
F2) and flow control to the downstream node of F1 will be triggered, resulting in rate reduction for flow F1. Detailed discussion in §3.2.

at intermediate nodes to buffer packets from multiple flows.
Neither of these assumptions may hold in practice. The delay
from the source to individual intermediate nodes can vary
by hundreds of milliseconds in a geo-distributed setting (Fig-
ure 3(b)). Keeping packets buffered during such delays would
require an impractical amount of high-speed storage for high-
bandwidth inter-datacenter WAN links: if links are operating
at terabits per second of bandwidth, each intermediate node
would require hundreds of gigabits or more of storage.

Asymmetric links due to simultaneous bulk transfers. Tra-
ditional network coding literature considers only the case of
a single bulk transfer. Designing throughput-optimal network
codes for multiple concurrent bulk transfers is a long-standing
open problem. We do not solve this problem; instead, we fo-
cus on optimizing throughput for individual bulk transfers
while ensuring that the network runs at high utilization.

Achieving the above two goals simultaneously turns out
to be hard, due to each individual bulk transfer observing
different delays (between respective source to intermediate
nodes) and available link bandwidths due to interactive traf-
fic. Essentially, as shown in Figure 3(c), supporting multiple
simultaneous bulk transfers requires additional mechanisms
for achieving high network utilization.

3.2 CodedBulk’s hop-by-hop flow control

Network coding, by its very nature, breaks the end-to-end
semantics of traffic between a source-destination pair, thus
necessitating treating the traffic as a set of flows between the
intermediate nodes or hops. Recall that a “hop” here refers to
a (resource-rich) datacenter on the network graph. To ensure
that we do not lose packets at intermediate nodes in spite
of the fact that they have limited storage, we rely on a hop-
by-hop flow control mechanism—a hop pushes back on the
previous hop when its buffers are full. This pushback can be
implicit (e.g., TCP flow control) or explicit.

Hop-by-hop flow control is an old idea, dating back to the
origins of congestion control [41, 45]. However, our problem
is different: traditional hop-by-hop flow control mechanisms
operate on individual flows—each downstream flow depends

on precisely one upstream flow; in contrast, CodedBulk op-
erates on “coded flows” that may require multiple upstream
flows to be encoded at intermediate nodes. Thus, a flow being
transmitted at a low rate can affect the overall performance of
the transfer (since other flows that need to be encoded with
this flow will need to lower their rate as well). This leads to a
correlated rate control problem. For instance, in Figure 2(c)
and Figure 2(d), flows f; to f; must converge to the same
rate so that the intermediate node can perform coding opera-
tions correctly without buffering large number of packets. To
that end, CodedBulk’s hop-by-hop flow control mechanism
maintains three invariants:

e All flows within the same bulk transfer that need to be
encoded at any node must converge to the same rate;

o All flows from different bulk transfers competing on the
congested link bandwidth must converge to a max-min fair
bandwidth allocation;

e The network is deadlock-free.

CodedBulk maintains these invariants using a simple idea:
careful partitioning of buffer space to flows within and across
bulk transfers. The key insight here, that follows from early
work on buffer sharing [45], is that for large enough buffers,
two flows congested on a downstream link will converge to a
rate that corresponds to the fair share of the downstream link
bandwidth. We describe the idea of CodedBulk’s hop-by-hop
flow control mechanism using two scenarios: single isolated
bulk transfer and multiple concurrent bulk transfers.

Single bulk transfer. First consider the two simpler cases of
forward (Figure 2(a)) and mirror (Figure 2(b)). These cases
are exactly similar to traditional congestion control protocols,
and hence do not require any special mechanism for buffer
sharing. The main challenge comes from Code-and-Forward
(Figure 2(c)) and Code-and-Mirror (Figure 2(d)). For these
cases, the invariant we require is that the flows being used to
compute the outgoing data converge to the same rate since
otherwise packets belonging to the flows sending at a higher
rate will need to be buffered at the node, requiring high storage.
This is demonstrated in Figure 4, center and right figures.

Fi1 Fi1
\‘U Fi1 @ F12 \U
F12 U/ F12 \‘U
F21 /LI/J U\ F21 /5u
F22

F21 @ F22

F22

Fi1
F12
H F11 @ F12 F11 @ F12
— —
F21 @ F22 u F21 ¢ F22

F21 //H
F22

Figure 5: If concurrent bulk transfers use completely different outgoing links (left) or use the same outgoing link but with enough bandwidth
(center), the hop-by-hop flow control mechanism does not get triggered. However, if the outgoing link is bandwidth-bottlenecked, and one of
the bulk transfers is sending at higher rate (say the red one), then the buffers for the red flows will fill up faster than the buffers for blue flows;
at this point, hop-by-hop flow control mechanism will send a pushback to the downstream nodes of the red flows, resulting in reduced rate for

the red flows. Detailed discussion in §3.2.

Our insight is that a buffer partitioning mechanism that
assigns non-zero buffers to each incoming flow maintains
the second and the third invariants. It is known that non-zero
buffer allocation to each flow at each link leads to deadlock-
freedom [45]. It is easy to see that the second invariant also
holds—if one of the flows sends at a rate higher than the other
(Figure 4(right)), the buffer for this flow will fill up faster than
the buffer for the other flow, the flow control mechanism will
be triggered, eventually reducing the rate of the flow.

Multiple simultaneous bulk transfers. CodedBulk handles
each bulk transfer independently using its hop-by-hop flow
control mechanism. Again, we provide intuition using an
example. Consider two simultaneous bulk transfers at some
intermediate node. If the two bulk transfers use different in-
coming and outgoing links, these transfers remain essentially
independent. So, consider the case when the two bulk trans-
fers compete on one of the incoming or outgoing links. We
first discuss when they compete on one of the outgoing links
(see Figure 5). If the sum of “coded rates” for individual bulk
transfers is less than the outgoing link bandwidth, no flow
control is triggered and hence max-min fairness is achieved.

The situation becomes more interesting when the sum of
coded rates for individual bulk transfers is greater than the
outgoing link bandwidth. In this case, suppose the coded rate
of the first bulk transfer is greater than the second one. Then,
since outgoing link is shared equally across the two bulk
transfers, the buffers for the flows in the first bulk transfer will
fill more quickly, leading to triggering the flow control. Thus,
flows in the second bulk transfer will reduce the transmission
rate finally converging to outgoing link being shared equally
across the two coded bulk transfers.

Multi-priority transfers to fill unfilled pipes. Asymmetric
link problem, despite our hop-by-hop flow control mecha-
nism, can lead to “unfilled pipes” (Figure 6). Essentially, due
to different bulk transfers bottlenecked at different links, no
more coded traffic can be pushed into the network despite
some links having available bandwidth. CodedBulk fills such
unfilled pipes by sending uncoded data; however, to ensure
minimal impact on the coded traffic, CodedBulk uses a lower

Figure 6: By sending non-coded flows at lower priority (the gray
traffic), CodedBulk exploits the “unfilled pipes” left by coded traffic.

priority level for the uncoded data. Thus, CodedBulk uses
three priority levels—the highest priority is for interactive
traffic, the medium priority for coded traffic, and a lower pri-
ority level for uncoded traffic.

3.3 Virtual links

CodedBulk’s hop-by-hop flow control mechanism from the
previous section addresses the asymmetric link problem, at a
design level. In this subsection, we first discuss a challenge
introduced by network coding in terms of efficiently imple-
menting the hop-by-hop flow control mechanism. We then
introduce the abstraction of virtual links, that enables an ef-
ficient realization of CodedBulk’s flow control mechanism
without any changes in the underlying transport protocol. For
this subsection, we use TCP as the underlying congestion con-
trol mechanism; however, the idea generalizes to any transport
protocol that supports flow control.

The challenge. In traditional store-and-forward networks, im-
plementing hop-by-hop flow control is simple: as data for a
flow is received in the Rx buffer, it can be directly copied
to the Tx buffer of the next hop, either using blocking or
non-blocking system calls. When implementing network cod-
ing, this becomes non-trivial—since data from multiple flows
needs to be coded together, neither blocking nor non-blocking
calls can be used since these calls fundamentally operate on
individual flows. For instance, consider the case of Figure 1(f),
where a node needs to compute (A @ B) ® A using packets

U F1 & F2

virtual links

UFQGBF36EF4

Figure 7: The figure demonstrates the virtual link abstraction used
by CodedBulk to implement its hop-by-hop flow control mechanism
without any modifications in the underlying network stack.

from the two flows. Blocking calls require expensive coordi-
nation between two buffers since the node requires data from
both flows to be available before it can make progress. Non-
blocking calls cannot be used either—the call will return the
data from one of the flows, but this data cannot be operated
upon until the data from the other flow(s) is also available.
The fundamental challenge here is that we need efficient ways
to block on multiple flows, and return the call only when data
is available in all flows that need to be coded.

It may be tempting to have a shared buffer across different
flows that need to be coded together. The problem, however, is
that shared buffers will lead to deadlocks [41]—if one of the
flows is sending data at much higher rate than the other flows,
it will end up saturating the buffer space, the other flows will
starve, and consequently the flow that filled up the buffer will
also not make progress since it waits to receive data from other
flows to be coded with. As discussed in §3.2, non-zero buffer
allocation to each individual flow is a necessary condition for
avoiding deadlocks in hop-by-hop flow control mechanisms.

Virtual links (see Figure 7). CodedBulk assigns each indi-
vidual bulk transfer a virtual link per outgoing physical link;
each virtual link has a single virtual transmit buffer vTx and
as many virtual receive buffers vRx as the number of flows to
be coded together for that outgoing link. For instance, con-
sider four incoming flows in a bulk transfer F1, F2, F3, F4
such that F1 @ F2 is forwarded on one of outgoing physical
links,and F2 @& F3 @ F4 is forwarded on another outgoing
physical link. Then, CodedBulk creates two virtual links each
having one vTx; the first virtual link has two vRx (one for F1
packets and another for F2 packets) and the second virtual
link has three vRx (one for each of F2, F3 and F4 packets).
Virtual links are created when the controller installs the net-
work codes, since the knowledge of the precise network code
to be used for the bulk transfer is necessary to create virtual
links. As new codes are installed, CodedBulk reallocates the
space to each vTx and vRx, within and across virtual links, to
ensure that all virtual buffers have non-zero size.

Using these virtual links resolves the aforementioned chal-
lenge with blocking and non-blocking calls. Indeed, either
of the calls can now be used since the “correlation” between
the flows is now captured at the virtual link rather than at the
flow control layer. Data from the incoming socket buffers for

individual flow is now copied to their respective vRx buffers,
either using blocking or non-blocking calls. A separate thread
asynchronously checks when the size of all the vRx buffers
is non-zero (each buffer has at least one packet); and when
this happens, performs the coding operations and copies the
resulting packet to the corresponding vTx.

4 Evaluation

We implement CodedBulk in C++ and use TCP Cubic as
the underlying transport protocol. We use default TCP socket
buffers, with interactive traffic sent at higher priority than bulk
transfers (using TCP differentiated services field) set using
standard Linux socket API. To enforce priority scheduling,
we use Linux tc at each network interface.

We now evaluate CodedBulk implementation over two real
geo-distributed cloud testbeds. We start by describing the ex-
periment setup (§4.1). We then discuss the results for Coded-
Bulk implementation over a variety of workloads with varying
choice of source and destination nodes for individual bulk
transfers, interactive traffic load, number of concurrent bulk
transfers, and number of destinations in individual bulk trans-
fers (§4.2). Finally, we present scalability of our CodedBulk
prototype implementation in software and hardware (§4.3).

4.1 Setup

Testbed details. To run our experiments, we use two testbeds
that are built as an overlay on geo-distributed datacenters from
Amazon AWS. Our testbeds use 13 and 9 geo-distributed data-
centers organized around B4 [25] and Internet2 [5] topologies,
respectively. The datacenter locations are chosen to closely
emulate the two topologies and the corresponding geographi-
cal distances and latencies. Within each datacenter, we take a
high-end server; for every link in the corresponding topology,
we establish a connection between the servers across various
datacenter using the inter-datacenter connectivity provided
by Amazon AWS. To reduce cost of experimentation, we
throttle the bandwidth between each pair of servers to 200
Mbps for our experiments. The precise details on the inter-
datacenter connectivity provided by Amazon AWS, whether
they use public Internet or dedicated inter-datacenter links,
is not publicly known. We run all the experiments for each
individual figure within a short period of time; while the inter-
datacenter links provided by Amazon AWS may be shared
and may cause interference, we observe fairly consistent inter-
datacenter bandwidth during our experiments. We use a server
in one of the datacenters to act as the centralized controller
(to compute and install network codes on all servers across
our testbed).

Workloads. As mentioned earlier, the benefits of network
coding depend on the underlying network topology, the num-
ber of destinations in individual bulk transfers, the location
of the source and the set of destinations in each bulk transfer,
the number of concurrent transfers and interactive traffic load.

While there are no publicly available datasets or workloads for
inter-datacenter bulk transfers, several details are known. For
instance, Facebook [43], Netflix [1], Azure SQL database [3]
and CloudBasic SQL server [4] perform replication to (dy-
namically) locate their datasets closer to the customers; for
such applications, the destinations for each replica are selected
based on the diurnal traffic patterns and customer access pat-
terns. Many other applications [13, 19, 23, 25, 31, 50] per-
form replication levels based on user needs, usually for fault
tolerance; for such applications, the choice of destinations
may be under the control of the service provider.

We perform experiments to understand the envelope of
workloads where CodedBulk provides benefits. Our evalua-
tion performs sensitivity analysis against all parameters—we
use two inter-datacenter network topologies, interactive traf-
fic load varying from 0.05 — 0.2 of the link bandwidth, the
number of destinations/replicas in individual bulk transfers
varying from 2 to maximum possible (depending on the topol-
ogy), and the number of concurrent bulk transfers varying
from 1 to the maximum possible (depending on the topology).
For each setting, we run five experiments; for individual bulk
transfers within each experiment, we choose a source uniform
randomly across all nodes, and choose the destinations from
the remaining nodes. Each node can be the source of only a
single bulk transfer but may serve as a destination for other
bulk transfers; furthermore, each node may serve as a des-
tination for multiple bulk transfers. We present the average
throughput across all experiments, as well as the variance
(due to different choices of the source and set of destination
across different experiments).

We generate interactive traffic between every pair of data-
centers, with arrival times such that the overall load induced
by the interactive traffic varies between 0.05 — 0.2x of the
link bandwidth; while 0.2 load is on the higher end in real-
world scenarios [23, 25], it allows us to evaluate extreme
workloads. Interactive traffic is always assigned the highest
priority and hence, all our evaluated schemes will get the same
interactive traffic throughput. Our results, thus, focus on bulk
traffic throughput.

As mentioned above, there are no publicly available
datasets or workloads for inter-datacenter bulk transfers. We
make what we believe are sensible choices, state these choices
explicitly, and to whatever extent possible, evaluate the sen-
sitivity of these choices on our results. Nonetheless, our re-
sults are dependent on these choices, and more experience is
needed to confirm whether our results generalize to workloads
observed in large-scale deployments.

Evaluated schemes. We compare CodedBulk with three
mechanisms for bulk data transfers discussed earlier in Fig-
ure 1—single-path, multi-path, and Steiner arborescence
packing—each of which take the graph described in §2.1
as an input. For the single-path mechanism, the bulk traf-
fic is transferred along the shortest path between the source

22277 Single-Path Multi-Path

o}
(=
(=}

T

|
o
S
(=}

T

|

(o))
(=3
(=]

T

|
D
(=}
S

T

400 |- 400 -

200 1] | 200 1| |

005 0.1 015 02
Interactive Traffic Load

0.05 0.1 0.15 0.2
Interactive Traffic Load

Aggregate Throughput (Mbps)
Aggregate Throughput (Mbps)

(a) B4 (b) Internet2

Figure 8: Performance of various bulk transfer mechanisms for vary-
ing interactive traffic load. For the B4 topology, CodedBulk improves
bulk transfer throughput by 1.9 —2.2x,1.4—1.6x and 1.5—1.6x
compared to single-path, multi-path, and Steiner arborescence based
mechanisms, respectively. For the Internet2 topology, corresponding
numbers are 1.9 —2.1x, 1.6, and 1.2 — 1.4 x (discussion in §4.2).

and each destination; when multiple choices are available,
the mechanism selectively picks paths that minimize total
bandwidth usage (e.g., to send bulk traffic to two destina-
tions dj,d;, the mechanism prefers the path s — d| — dy,
where d; can simply forward the data to d,, over two different
paths s — d; and s — v — d» for some other node v). The
multi-path mechanism selects edge-disjoint paths from the
source to each destination so as to greedily minimize the sum
of the path lengths. Our third baseline is a state-of-the-art
Steiner arborescence based multicast mechanism that allows
each node in the network (including the destinations) to for-
ward (Figure 2(a)) and mirror (Figure 2(b)) incoming data.
To compute the Steiner arborescence, we use the algorithm
in [48] that is also used in other Steiner arborescence based
inter-datacenter multicast proposals [38, 39, 40]. We take the
arborescence computed by the algorithm, and integrate it with
a store-and-forward model, along with TCP for transfers be-
tween every pair of nodes in the Steiner arborescence. For
concurrent bulk transfers, paths and Steiner arborescence are
computed independently for each individual bulk transfer.

For CodedBulk, we use a finite field size of 28, that is all
finite field operations are performed on individual bytes; this
finite field size is sufficient for inter-datacenter networks with
as many as 128 datacenters. We could have used a smaller
finite field size since our topologies are much smaller than real
inter-datacenter network topologies; however, this allow us to
keep the operations byte aligned, which simplifies CodedBulk
software and hardware implementation.

Performance metric. Our primary metric is the aggregate
throughput for bulk transfers. For each individual bulk trans-
fer, the throughput is computed as the maximum throughput at
which the source can send to al/ destinations. We then calcu-
late the aggregate throughput by summing up the throughput
of all bulk transfers.

o

(=3

f=}
T

(=)

(=3

(=]
T

400 A
“ 'y II II|| ll

353

[=3

f=}
T

Number of Multicast Sources

(a) B4

S
.._:

11

Aggregate Throughput (Mbps)

12

o
(=3
S
T
1

(=)

(=3

(=]
T

400 |-

200 -

5 6 7
Number of Multicast Sources

(b) Internet2

(=)

13

Aggregate Throughput (Mbps)

Figure 9: Performance of various bulk transfer mechanisms for varying number of concurrent bulk transfers. CodedBulk improves the bulk
transfer throughput by 1.6 —4x, 1.3 —2.8x and 1.2 —2.5x when compared to single-path, multi-path, and Steiner arborescence based

mechanisms, respectively (discussion in §4.2).

4.2 Geo-distributed Testbed Experiments

We compare CodedBulk with the three baselines for varying
interactive traffic loads, varying number of concurrent bulk
transfers and varying number of replicas per bulk transfer.

Varying interactive traffic load. Figure 8 presents the
achievable throughput for each scheme with varying interac-
tive traffic load. For this experiment, we use 3-way replication
and 6 concurrent transfers (to capture the case of Facebook,
Netflix, Azure SQL server and CloudBasic SQL server as
discussed above), and vary the interactive traffic load from
0.05 — 0.2 of the link bandwidth.

As expected, the throughput for all mechanisms decreases
as interactive traffic load increases. Note that, in corner-case
scenarios, the multi-path mechanism can perform slightly
worse than single-path mechanism for multiple concurrent
bulk transfers due to increased interference across multiple
flows sharing a link, which in turn results in increased conver-
gence time for TCP (see [46] for a concrete example). Overall,
CodedBulk improves the bulk traffic throughput over single-
path, multi-path and Steiner arborescence mechanisms by
1.9-2.2x%,14—1.6x and 1.2 — 1.6x, respectively, depend-
ing on the interactive traffic load and the network topology.
Single-path mechanisms perform poorly because they do not
exploit all the available bandwidth in the network. Both multi-
path and Steiner arborescence based mechanisms exploit the
available bandwidth as much as possible. However, multi-
path mechanisms suffer since they do not allow intermediate
nodes to mirror and forward to the destinations. Steiner ar-
borescence further improves upon multi-path mechanisms by
allowing intermediate nodes to mirror and forward data, but
they suffer due to approximation algorithm often leading to
suboptimal solutions. CodedBulk’s gains over multi-path and
Steiner arborescence mechanisms are, thus, primarily due to
CodedBulk’s efficient realization of network coding—it not
only uses all the available links, but also computes the optimal
coding strategy (unlike Steiner arborescence mechanism that
uses an approximation algorithm). The Steiner arborescence

mechanism performs better on Internet2 topology because of
its sparsity—fewer links in the network means a Steiner ar-
borescence solution is more likely to be the same as network
coding solution due to fewer opportunities to perform coding.
Nevertheless, CodedBulk outperforms Steiner arborescence
based mechanism by 1.4x.

Varying number of concurrent bulk transfers. Figure 9
shows the performance of the four mechanisms with varying
number of concurrent transfers. For this evaluation, we use
the same setup as earlier—3-way replication, multiple runs
with each run selecting different sources and set of destina-
tions, etc.—with the only difference being that we fix the
interactive traffic load to 0.1 and vary the number of concur-
rent bulk transfers. With larger number of concurrent bulk
transfers, Steiner arborescence mechanisms slightly outper-
form multi-path due to improved arborescence construction.
Nevertheless, CodedBulk provides benefits across all sets of
experiments, achieving 1.2 — 2.5 x improvements over Steiner
arborescence based mechanisms. The gains are more promi-
nent for B4 topology and for fewer number of concurrent
transfers, since CodedBulk gets more opportunities to per-
form network coding at intermediate nodes in these scenarios.

Varying number of destinations/replicas per bulk trans-
fer. Figure 10 shows the performance of the four mechanisms
with varying number of destinations/replicas for individual
bulk transfers. For this evaluation, we use the same setup as
Figure 8—6 concurrent bulk transfers, multiple runs with each
run selecting different sources and set of destinations, etc.—
with the only difference being that we fix the interactive traffic
load to 0.1 and vary the number of destinations/replicas per
bulk transfer from 2 to the maximum allowable replicas for
individual topologies. Notice the results show the aggregate
throughput per destination.

As the number of destinations per bulk transfer increases,
the per-destination throughput decreases for all schemes (al-
though, as expected, the sum of throughput of all destinations
increases). Note that multi-path outperforming single-path

o

(=3

(=}
T

(=)

=3

S
T

400 |-

200 7

(=)

Aggregate Throughput (Mbps)

Number of Destinations

(a) B4

o
(=3
(=}
T
1

(=)

(=3

(=]
T

400 |-

200

(=)

|
Aggregate Throughput (Mbps)

Number of Destinations

(b) Internet2

Figure 10: Performance of various bulk transfer mechanisms for varying number of destinations/replicas per bulk transfer. CodedBulk improves
the bulk transfer throughput over single-path and multi-path mechanisms by 1.8 —4.3x and 1.4 — 2.9 x, respectively, depending on the number
of destinations in each bulk transfer and depending on the topology. CodedBulk outperforms Steiner arborescence mechanisms by up to 1.7 x
when the number of destinations is not too large. When each bulk transfer creates as many replicas as the number of datacenters in the network,
CodedBulk performs comparably with Steiner arborescence. Note that the aggregate bulk throughput reduction is merely because each source
is transmitting to increasingly many destinations, but the metric only captures the average throughput per destination. Discussion in §4.2.

and Steiner arborescence based mechanism in Figure 10(a)
is primarily due to B4 topology being dense, thus providing
enough path diversity to offset the benefits of approximate
Steiner arborescence construction. Figure 10(a) and 10(b)
show that CodedBulk outperforms single-path and multi-path
mechanisms by 1.8 —4.3x and 1.4 —2.9x, depending on the
number of destinations and on the topology; moreover, the rel-
ative gains of CodedBulk improve as number of destinations
increases. The comparison with Steiner arborescence based
mechanism is more nuanced. CodedBulk achieves improved
performance when compared to Steiner arborescence based
mechanism when number of destinations is less than 10 for B4
topology, and less than 6 for Internet2 topology. The perfor-
mance difference is minimal for larger number of destination.
The reason is that for larger number of replicas/destinations,
each source is multicasting to almost all other nodes in the
network; in such cases, the benefits of coding reduce when
compared to forwarding and mirroring of data at intermediate
nodes and at the destination nodes as in Steiner arborescence
based mechanism. Thus, the benefits of CodedBulk may be
more prominent when the number of replicas is a bit smaller
than the total number of datacenters in the network.

4.3 Microbenchmarks

We now evaluate CodedBulk performance in terms of scala-
bility of its software and hardware implementations. Our goal
here is to demonstrate the feasibility of CodedBulk imple-
mentation; deployment of CodedBulk in large-scale systems
would typically require much more optimized implementation
since the traffic volume is expected to be much higher.

Software implementation. CodedBulk software implemen-
tation runs on commodity datacenter servers, performing net-
work coding as discussed in §3. Figure 11 shows the scalabil-
ity of CodedBulk software implementation. We observe that
CodedBulk implementation scales well with number of cores,

| ! | | | |
12 4 6 8 10 12 14 16

Coding Throughput (Gbps)

Number of Cores
Figure 11: CodedBulk implementation performs network coding
for as much as 31Gbps worth of traffic using a commodity 16 core
server, achieving roughly linearly coding throughput scalability with
number of cores.

Element | Used [Available | Utilization |

LUT 69052 | 433200 15.94%
BRAM | 1365 1470 92.86%

Table 1: Resource utilization of CodedBulk implementation on Xil-
inx Virtex-7 XC7VX690T FPGA (250 MHz clock). Our implemen-
tation provides up to 31.25 Gbps throughput with 15.94% LUTs and
92.86% BRAMSs. No DSP is needed in our design.

with a single 16-core server being able to perform network
coding at line rate for as much as 31Gbps worth of traffic.

Hardware implementation. We have synthesized an end-to-
end CodedBulk implementation on an FPGA. For our Coded-
Bulk hardware implementation, we had two choices. First, we
could implement a finite field engine that performs finite field
operations during the network coding process; or second, we
could precompute and store finite field operation results, and
use a simple look up table while performing network coding
operations. The first approach requires multiple clock cycles
to encode two bytes from two different packets; the second
approach trades off BRAM to save cycles during coding op-
erations. Since CodedBulk uses a small finite field size (2%),
the second approach offers a better tradeoff — it requires
just 256 x 256 byte look up table per 16 bytes for individual

operations to complete in one cycle. We replicate the lookup
table accordingly to perform network coding for all bytes in
an MTU-sized packet within a single clock cycle. Table 1
shows the results for CodedBulk hardware implementation
on Xilinx Virtex-7 XC7VX690T FPGA, which offers 100,
200, and 250 MHz fabric clocks. With respect to the clocks,
our FPGA-based codec can achieve throughput 12.5, 25, and
31.25 Gbps. Without needing any DSP, our hardware design
consumes 92.86% BRAMs and only 15.94% LUTs.

We believe that trading off compute and storage resources
to improve inter-datacenter bulk transfer throughput is a fa-
vorable tradeoff to make. However, more experience from
industry is needed to do a thorough cost/benefit analysis.

5 Related Work

We have already discussed the differences between Coded-
Bulk’s goals and the traditional multicast problem in ISP
networks; it would be futile to attempt to summarize the vast
amount of literature from ISP multicast problem. We com-
pare and contrast CodedBulk with two more closely related
key areas of research: inter-datacenter WAN transfers, and
network coding applications in computer networks.

Inter-datacenter bulk transfers. There has been significant
amount of recent work on optimizing inter-datacenter bulk
transfers [26, 27, 31, 32, 38, 39, 40, 49, 52]. These works
optimize inter-datacenter bulk transfers along a multitude
of performance metrics, including improving flow comple-
tion time [27, 38, 39, 40, 49, 52], and throughput for bulk
transfers [26, 31, 32]. CodedBulk’s goals are aligned more
closely with the latter, and are complementary to the former—
CodedBulk improves the throughput for bulk transfers; any
bulk transfer scheduling mechanism can be used on top of
CodedBulk to meet the needs for timely transfers.

As discussed earlier, the state-of-the-art approach for high-
throughput inter-datacenter bulk transfers are based on pack-
ing of Steiner arborescence: here, each intermediate node
as well as destination nodes are allowed to forward and
mirror data toward other destination nodes. Several recent
inter-datacenter bulk transfer proposals [38, 39, 40] are based
on this approach. Our evaluation in §4 shows that Coded-
Bulk achieves throughput improvements over state-of-the-art
Steiner arborescence based mechanisms in a wide variety of
scenarios. This is because all prior techniques are limited by
network capacity, and by limitations of existing non-coded
techniques to achieve this capacity.

CodedBulk, by using network coding, achieves improve-
ment in throughput for bulk transfers by trading off a small
amount of compute and storage resources.

Network coding in computer networks. Network coding
has successfully been applied to achieve higher throughput
in wireless networks [20, 29], in TCP-based networks [44],
in content distribution [17, 35, 36], in peer-to-peer communi-
cation [16], to name a few; please see [15] for additional ap-

plications of network coding. Our goals are complementary—
enabling network coding for high-throughput inter-datacenter
WAN bulk transfers by exploiting the unique characteristics
of these networks. Throughout the paper, we have outlined
the unique challenges introduced by applications of network
coding in wired networks, and how CodedBulk overcomes
these challenges. Our design can be applied to any of the
applications where network coding is useful.

Network code construction algorithms. Early incarnations
of network coding solutions used a technique referred to as
random linear network coding [9, 22]. These random linear
network codes have the benefit of being independent of the
network topology. However, they have high implementation
cost: they require complex operations at intermediate nodes
(due to computations over large finite field sizes and due to
requiring additional packet header processing). In addition, re-
alizing random linear network codes in practice also requires
changes in packet header format. Follow-up research has led
to efficient construction of network codes [24]—for a bulk
transfer to T destinations, it suffices for intermediate nodes to
perform computations over a finite field of size at most 2|T|;
if the min-cut is &, the complexity of computations at the
source and at the destination are O(h) and O(h?), respectively.
In §4.1, we discussed how at the inter-datacenter WAN scale,
these computations entail simple and efficient byte-level XOR
operations. Furthermore, these codes can be realized without
any changes in the packet header format. CodedBulk, thus,
uses the network code construction algorithm of [24].

6 Conclusion

We have presented the design, implementation and evalua-
tion of CodedBulk, an end-to-end system for high-throughput
inter-datacenter bulk transfers. CodedBulk uses network cod-
ing, a technique that guarantees optimal throughput for indi-
vidual bulk transfers. To achieve this, CodedBulk resolves
the many pragmatic and fundamental barriers faced in the
past in realizing the benefits of network coding in wired net-
works. Using an end-to-end implementation of CodedBulk
over a geo-distributed inter-datacenter network testbed, we
have shown that CodedBulk improves throughput for inter-
datacenter bulk transfers by 1.2 —2.5x when compared to
state-of-the-art mechanisms that do not perform coding.

Acknowledgments

We would like to thank our shepherd Keith Winstein, anony-
mous NSDI reviewers, Rashmi Vinayak and Robert Klein-
berg for their insightful feedback. We would also like to thank
the students in Cornell graduate computer networking class
(CS6450) for many helpful discussions during the early parts
of this project. This work was supported in part by a Google
PhD fellowship, NSF 1704742, ONR N00014-17-1-2419, and
gifts from Snowflake and Cornell-Princeton Network Pro-
gramming Initiative.

References

[1] [ARC 305] How Netflix leverages multiple regions to
increase availability. https://tinyurl.com/4mac28jy.

[2] Cisco annual Internet report (2018-2023) white
paper. https://www.cisco.com/c/en/us/
solutions / collateral / executive-perspectives /
annual-internet-report/white-paper-cl11-741490.
html.

[3] Creating and using active geo-replication —
Azure SQL database. https://docs.microsoft.
com / en-us / azure / azure-sql / database /
active-geo-replication-overview.

[4] Geo-replication/multi-AR. http://cloudbasic.net/
documentation/geo-replication-active/.

[5] The Internet2 network. https://internet2.edu/.

[6] Mapping Netflix: Content delivery network spans
233 sites.
mapping-netflix-content-delivery-network/.

http : //datacenterfrontier . com/

[7] Steiner tree problem. https://en.wikipedia.org/
wiki/Steiner_tree_problem.

[8] Using replication across multiple data centers.
https://docs.oracle.com/cd/E19528-01/819-0992/
6n3cn7p3l/index.html.

[9] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung.
Network information flow. IEEE Transactions on Infor-
mation Theory, 46(4):1204-1216, 2000.

[10] M. Braverman, S. Garg, and A. Schvartzman. Coding
in undirected graphs is either very helpful or not helpful
at all. In ITCS, 2017.

[11] M. Charikar, C. Chekuri, T.-Y. Cheung, Z. Dai, A. Goel,
S. Guha, and M. Li. Approximation algorithms for
directed steiner problems. Journal of Algorithms,
33(1):73-91, 1999.

[12] J. Cheriyan and M. R. Salavatipour. Hardness and ap-
proximation results for packing steiner trees. Algorith-
mica, 45(1):21-43, 2006.

[13] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, et al. Spanner: Google’s globally dis-
tributed database. ACM Transactions on Computer Sys-
tems, 31(3):8, 2013.

[14] R.-J. Essiambre and R. W. Tkach. Capacity trends and
limits of optical communication networks. Proc. IEEE,
100(5):1035-1055, 2012.

[15] C. Fragouli, J.-Y. Le Boudec, and J. Widmer. Network
coding: an instant primer. ACM SIGCOMM Computer
Communication Review, 36(1):63-68, 2006.

[16] C. Gkantsidis, J. Miller, and P. Rodriguez. Comprehen-
sive view of a live network coding p2p system. In IMC,
2006.

[17] C. Gkantsidis and P. R. Rodriguez. Network coding for
large scale content distribution. In INFOCOM, 2005.

[18] M. X. Goemans and Y.-S. Myung. A catalog of steiner
tree formulations. Networks, 23(1):19-28, 1993.

[19] A. Gupta, F. Yang, J. Govig, A. Kirsch, K. Chan, K. Lai,
S. Wu, S. G. Dhoot, A. R. Kumar, A. Agiwal, S. Bansali,
M. Hong, J. Cameron, M. Siddiqi, D. Jones, J. Shute,
A. Gubarey, S. Venkataraman, and D. Agrawal. Mesa:
Geo-replicated, near real-time, scalable data warehous-
ing. VLDB, 2014.

[20] J. Hansen, D. E. Lucani, J. Krigslund, M. Médard, and
F. H. Fitzek. Network coded software defined network-
ing: Enabling 5G transmission and storage networks.
IEEE Communications Magazine, 53(9):100-107, 2015.

[21] M. Hauptmann and M. Karpinski. A compendium on
Steiner tree problems. Inst. fiir Informatik, 2013.

[22] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros,
J. Shi, and B. Leong. A random linear network coding
approach to multicast. I[EEE Transactions on Informa-
tion Theory, 52(10):4413-4430, 2006.

[23] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill,
M. Nanduri, and R. Wattenhofer. Achieving high utiliza-
tion with software-driven WAN. In SIGCOMM, 2013.

[24] S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner,
K. Jain, and L. M. Tolhuizen. Polynomial time algo-
rithms for multicast network code construction. /EEE
Transactions on Information Theory, 51(6):1973-1982,
2005.

[25] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,
A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu,
J. Zolla, U. Holzle, S. Stuart, and A. Vahdat. B4: Expe-
rience with a globally-deployed software defined WAN.
In SIGCOMM, 2013.

[26] X.Jin, Y. Li, D. Wei, S. Li, J. Gao, L. Xu, G. Li, W. Xu,
and J. Rexford. Optimizing bulk transfers with software-
defined optical WAN. In SIGCOMM, 2016.

[27] S. Kandula, I. Menache, R. Schwartz, and S. R. Babbula.
Calendaring for wide area networks. In SIGCOMM,
2014.

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

S. Katti, S. Gollakota, and D. Katabi. Embracing wire-
less interference: Analog network coding. In SIG-
COMM, 2012.

S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and
J. Crowcroft. XORs in the air: Practical wireless net-
work coding. In SIGCOMM, 2006.

R. Koetter and M. Médard. An algebraic approach to
network coding. IEEE/ACM Transactions on Informa-
tion Theory, 11(5):782-795, 2003.

N. Laoutaris, M. Sirivianos, X. Yang, and P. Rodriguez.
Inter-datacenter bulk transfers with NetStitcher. In SIG-
COMM, 2011.

N. Laoutaris, G. Smaragdakis, R. Stanojevic, P. Ro-
driguez, and R. Sundaram. Delay tolerant bulk data
transfers on the Internet. IEEE/ACM Transactions on
Networking, 21(6):1852-1865, 2013.

S.-Y. R. Li, R. W. Yeung, and N. Cai. Linear network
coding. IEEE Transactions on Information Theory,
49(2):371-381, 2003.

Z.Li,B.Li,and L. C. Lau. A constant bound on through-
put improvement of multicast network coding in undi-
rected networks. IEEE Transactions on Information
Theory, 55(3):1016-1026, 2009.

Z. Liu, C. Wu, B. Li, and S. Zhao. UUSee: Large-scale
operational on-demand streaming with random network
coding. In INFOCOM, 2010.

E. Magli, M. Wang, P. Frossard, and A. Markopoulou.
Network coding meets multimedia: A review. [EEE
Transactions on Multimedia, 15(5):1195-1212, 2013.

P. P. Mishra and H. Kanakia. A hop by hop rate-based
congestion control scheme. In SIGCOMM, 1992.

M. Noormohammadpour, S. Kandula, C. S. Raghaven-
dra, and S. Rao. Efficient inter-datacenter bulk transfers
with mixed completion time objectives. Computer Net-
works, 164:106903, 2019.

M. Noormohammadpour, C. S. Raghavendra, S. Kan-
dula, and S. Rao. QuickCast: Fast and efficient inter-
datacenter transfers using forwarding tree cohorts. In
INFOCOM, 2018.

M. Noormohammadpour, C. S. Raghavendra, S. Rao,
and S. Kandula. DCCast: Efficient point to multipoint
transfers across datacenters. In HotCloud, 2017.

[41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

(50]

(51]

[52]

C. Ozveren, R. Simcoe, and G. Varghese. Reliable and
efficient hop-by-hop flow control. In SIGCOMM, 1994.

G. Ramamurthy and B. Sengupta. A predictive hop-by-
hop congestion control policy for high speed networks.
In INFOCOM, 1993.

A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren.
Inside the social network’s (datacenter) network. In
SIGCOMM, 2015.

J. K. Sundararajan, D. Shah, M. Médard, M. Mitzen-
macher, and J. Barros. Network coding meets TCP. In
INFOCOM, 2009.

A. S. Tanenbaum and D. Wetherall. Computer Networks,
5Sth Edition. Pearson, 2011.

S.-H. Tseng, S. Agarwal, R. Agarwal, H. Ballani, and
A. Tang. Codedbulk: Inter-datacenter bulk transfers us-
ing network coding. Technical report, https://github.
com/SynergyLab-Cornell/codedbulk.

M. Vuppalapati, J. Miron, R. Agarwal, D. Truong,
A. Motivala, and T. Cruanes. Building an elastic query
engine on disaggregated storage. In NSDI, 2020.

D. Watel and M.-A. Weisser. A practical greedy approx-
imation for the directed Steiner tree problem. Journal of
Combinatorial Optimization, 32(4):1327-1370, 2016.

Y. Wu, Z. Zhang, C. Wu, C. Guo, Z. Li, and F. C. Lau.
Orchestrating bulk data transfers across geo-distributed
datacenters. IEEE Transactions on Cloud Computing,
5(1):112-125, 2017.

Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and
H. V. Madhyastha. SPANStore: Cost-effective geo-
replicated storage spanning multiple cloud services. In
SOSP, 2013.

Y. Yi and S. Shakkottai. Hop-by-hop congestion control
over a wireless multi-hop network. /IEEE/ACM Trans-
actions on Networking, 15(1):133-144, 2007.

H. Zhang, K. Chen, W. Bai, D. Han, C. Tian, H. Wang,
H. Guan, and M. Zhang. Guaranteeing deadlines for
inter-data center transfers. IEEE/ACM Transactions on
Networking, 25(1):579-595, 2017.

	Introduction
	CodedBulk Overview
	Preliminaries
	Network coding background
	Resolving pragmatic barriers
	CodedBulk design overview

	CodedBulk Design
	Understanding fundamental barriers
	CodedBulk's hop-by-hop flow control
	Virtual links

	Evaluation
	Setup
	Geo-distributed Testbed Experiments
	Microbenchmarks

	Related Work
	Conclusion

