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ABSTRACT

Traditional end-host network stacks are struggling to keep up with

rapidly increasing datacenter access link bandwidths due to their

unsustainable CPU overheads. Motivated by this, our community is

exploring a multitude of solutions for future network stacks: from

Linux kernel optimizations to partial hardware o�oad to clean-slate

userspace stacks to specialized host network hardware. The design

space explored by these solutions would bene�t from a detailed

understanding of CPU ine�ciencies in existing network stacks.

This paper presents measurement and insights for Linux kernel

network stack performance for 100Gbps access link bandwidths.

Our study reveals that such high bandwidth links, coupled with

relatively stagnant technology trends for other host resources (e.g.,

core speeds and count, cache sizes, NIC bu�er sizes, etc.), mark a

fundamental shift in host network stack bottlenecks. For instance,

we �nd that a single core is no longer able to process packets at line

rate, with data copy from kernel to application bu�ers at the receiver

becoming the core performance bottleneck. In addition, increase in

bandwidth-delay products have outpaced the increase in cache sizes,

resulting in ine�cient DMA pipeline between the NIC and the CPU.

Finally, we �nd that traditional loosely-coupled design of network

stack and CPU schedulers in existing operating systems becomes a

limiting factor in scaling network stack performance across cores.

Based on insights from our study, we discuss implications to design

of future operating systems, network protocols, and host hardware.
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1 INTRODUCTION

The slowdown of Moore’s Law, the end of Dennard’s scaling, and

the rapid adoption of high-bandwidth links have brought tradi-

tional host network stacks at the brink of a breakdown—while

datacenter access link bandwidths (and resulting computing needs

for packet processing) have increased by 4 − 10× over the past few

years, technology trends for essentially all other host resources

(including core speeds and counts, cache sizes, NIC bu�er sizes,

etc.) have largely been stagnant. As a result, the problem of design-

ing CPU-e�cient host network stacks has come to the forefront,

and our community is exploring a variety of solutions, including

Linux network stack optimizations [11, 12, 21, 24, 32, 41], hardware

o�oads [3, 6, 9, 16], RDMA [31, 34, 43], clean-slate userspace net-

work stacks [4, 27, 30, 33, 36], and even specialized host network

hardware [2]. The design space explored by these solutions would

bene�t from a detailed understanding of CPU ine�ciencies of tradi-

tional Linux network stack. Building such an understanding is hard

because the Linux network stack is not only large and complex, but

also comprises of many components that are tightly integrated into

an end-to-end packet processing pipeline.

Several recent papers present a preliminary analysis of Linux

network stack overheads for short �ows [21, 30, 32, 38, 40]. This

fails to provide a complete picture due to two reasons. First, for

datacenter networks, it is well-known that an overwhelmingly large

fraction of data is contained in long �ows [1, 5, 28]; thus, even if

there are many short �ows, most of the CPU cycles may be spent in

processing packets from long �ows. Second, datacenter workloads

contain not just short �ows or long �ows in exclusion, but a mixture

of di�erent �ow sizes composed in a variety of tra�c patterns; as

we will demonstrate, CPU characteristics change signi�cantly with

varying tra�c patterns and mixture of �ow sizes.

This paper presents measurement and insights for Linux kernel

network stack performance for 100Gbps access link bandwidths.

Our key �ndings are:

High-bandwidth links result in performance bottlenecks

shifting from protocol processing to data copy.Modern Linux

network stack can achieve ∼42Gbps throughput-per-core by ex-

ploiting all commonly available features in commodity NICs, e.g.,

segmentation and receive o�oad, jumbo frames, and packet steer-

ing. While this throughput is for the best-case scenario of a single

long �ow, the dominant overhead is consistent across a variety of

scenarios—data copy from kernel bu�ers to application bu�ers (e.g.,

> 50% of total CPU cycles for a single long �ow). This is in sharp

contrast to previous studies on short �ows and/or low-bandwidth

links, where protocol processing was shown to be the main bottle-

neck. We also observe receiver-side packet processing to become a

bottleneck much earlier than the sender-side.



• Implications. Emerging zero-copy mechanisms from the Linux

networking community [11, 12] may alleviate data copy over-

heads, and may soon allow the Linux network stack to process as

much as 100Gbps worth of data using a single core. Integration

of other hardware o�oads like I/OAT [37] that transparently

mitigate data copy overheads could also lead to performance

improvements. Hardware o�oads of transport protocols [3, 43]

and userspace network stacks [21, 27, 30] that do not provide

zero-copy interfaces may improve throughput in microbench-

marks, but will require additional mechanisms to achieve CPU

e�ciency when integrated into an end-to-end system.

The reducing gap between bandwidth-delay product (BDP)

and cache sizes leads to suboptimal throughput.Modern CPU

support for Direct Cache Access (DCA) (e.g., Intel DDIO [25]) allows

NICs to DMA packets directly into L3 cache, reducing data copy

overheads; given its promise, DDIO is enabled by default in most

systems. While DDIO is expected to improve performance during

data copy, rather surprisingly, we observe that it su�ers from high

cache miss rates (49%) even for a single �ow, thus providing limited

performance gains. Our investigation revealed that the reason for

this is quite subtle: host processing becoming a bottleneck results

in increased host latencies; combined with increased access link

bandwidths, BDP values increase. This increase outpaces increase

in L3 cache sizes—data is DMAed from the NIC to the cache, and

for larger BDP values, cache is rapidly overwritten before the ap-

plication performs data copy of the cached data. As a result, we

observe as much as 24% drop in throughput-per-core.

• Implications. We need better orchestration of host resources

among contending connections to minimize latency incurred

at the host, and to minimize cache miss rates during data copy. In

addition, window size tuning should take into account not only

traditional metrics like latency and throughput, but also L3 sizes.

Host resource sharing considered harmful. We observe as

much as 66% di�erence in throughput-per-core across di�erent traf-

�c patterns (single �ow, one-to-one, incast, outcast, and all-to-all)

due to undesirable e�ects of multiple �ows sharing host resources.

For instance, multiple �ows on the same NUMA node (thus, sharing

the same L3 cache) make the cache performance even worse—the

data DMAed by the NIC into the cache for one �ow is polluted by

the data DMAed by the NIC for other �ows, before application for

the �rst �ow could perform data copy. Multiple �ows sharing host

resources also results in packets arriving at the NIC belonging to

di�erent �ows; this, in turn, results in packet processing overheads

getting worse since existing optimizations (e.g., coalescing packets

using generic receive o�oad) lose a chance to aggregate larger

number of packets. This increases per-byte processing overhead,

and eventually scheduling overheads.

• Implications. In the Internet and in early-generation datacenter

networks, performance bottlenecks were in the network core;

thus, multiple �ows “sharing” host resources did not have per-

formance implications. However, for high-bandwidth networks,

such is no longer the case—if the goal is to design CPU-e�cient

network stacks, one must carefully orchestrate host resources so

as to minimize contention between active �ows. Recent receiver-

driven transport protocols [18, 35] can be extended to reduce the

number of concurrently scheduled �ows, potentially enabling

high CPU e�ciency for future network stacks.

The need to revisit host layering and packet processing

pipelines. We observe as much as ∼43% reduction in throughput-

per-core compared to the single �ow case when applications gen-

erating long �ows share CPU cores with those generating short

�ows. This is both due to increased scheduling overheads, and also

due to high CPU overheads for short �ow processing. In addition,

short �ows and long �ows su�er from very di�erent performance

bottlenecks—the former have high packet processing overheads

while the latter have high data copy overheads; however, today’s

network stacks use the same packet processing pipeline indepen-

dent of the type of the �ow. Finally, we observe ∼20% additional

drop in throughput-per-core when applications generating long

�ows are running on CPU cores that are not in the same NUMA

domain as the NIC (due to additional data copy overheads).

• Implications. Design of CPU schedulers independent of the net-

work layer was bene�cial for independent evolution of the two

layers; however, with performance bottlenecks shifting to hosts,

we need to revisit such a separation. For instance, application-

aware CPU scheduling (e.g., scheduling applications that generate

long �ows on NIC-local NUMA node, scheduling long-�ow and

short-�ow applications on separate CPU cores, etc.) are required

to improve CPU e�ciency. We should also rethink host packet

processing pipelines—unlike today’s designs that use the same

pipeline for short and long �ows, achieving CPU e�ciency re-

quires application-aware packet processing pipelines.

Our study1 not only corroborates many exciting ongoing activities

in systems, networking and architecture communities on designing

CPU-e�cient host network stacks, but also highlights several inter-

esting avenues for research in designing future operating systems,

network protocols and network hardware. We discuss them in §4.

Before diving deeper, we outline several caveats of our study.

First, our study uses one particular host network stack (the Linux

kernel) running atop one particular host hardware. While we fo-

cus on identifying trends and drawing general principles rather

than individual data points, other combinations of host network

stacks and hardware may exhibit di�erent performance characteris-

tics. Second, our study focuses on CPU utilization and throughput;

host network stack latency is another important metric, but re-

quires exploring many additional bottlenecks in end-to-end system

(e.g., network topology, switches, congestion, etc.); a study that

establishes latency bottlenecks in host network stacks, and their

contribution to end-to-end latency remains an important and rel-

atively less explored space. Third, kernel network stacks evolve

rapidly; any study of our form must �x a version to ensure consis-

tency across results and observations; nevertheless, our preliminary

exploration [7] suggests that the most recent Linux kernel exhibits

performance very similar to our results. Finally, our goal is not to

take a position on how future network stacks will evolve (in-kernel,

userspace, hardware), but rather to obtain a deeper understanding

of a highly mature and widely deployed network stack.

1All Linux instrumentation code and scripts along with all the documentation
needed to reproduce our results are available at https://github.com/
Terabit-Ethernet/terabit-network-stack-profiling.
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Figure 3: Linuxnetwork stack performance for the case of a single�ow. (a) Each column shows throughput-per-core achieved for di�erent combinations

of optimizations. Within each column, optimizations are enabled incrementally, with each colored bar showing the incremental impact of enabling the

corresponding optimization. (b) Sender and Receiver total CPU utilization as all optimizations are enabled incrementally. Independent of the optimizations

enabled, receiver-side CPU is the bottleneck. (c, d)With all optimizations enabled, data copy is the dominant consumer of CPU cycles. (e) Increase in NIC ring

bu�er size and increase in TCP Rx bu�er size result in increased cache miss rates and reduced throughput. (f) Network stack processing latency from NAPI to

start of data copy increases rapidly beyond certain TCP Rx bu�er sizes. See §3.1 for description.

improves throughput by enabling applications on the NIC-local

NUMA node cores to perform data copy directly from L3 cache.

Receiver-side CPU is the bottleneck. Fig. 3(b) shows the overall

CPU utilization at sender and receiver sides. Independent of the

optimizations enabled, receiver-side CPU is the bottleneck. There

are two dominant overheads that create the gap between sender and

receiver CPU utilization: (1) data copy and (2) skb allocation. First,

when aRFS is disabled, frames are DMAed to remote NUMA mem-

ory at the receiver; thus, data copy is performed across di�erent

NUMA nodes, increasing per-byte data copy overhead. This is not

an issue on the sender-side since the local L3 cache is warm with

the application send bu�er data. Enabling aRFS alleviates this issue

reducing receiver-side CPU utilization by as much as 2× (right-most

bar in Fig. 3(b)) compared to the case when no optimizations are

enabled; however, CPU utilization at the receiver is still higher than

the sender. Second, when TSO is enabled, the sender is able to allo-

cate large-sized skbs. The receiver, however, allocates MTU-sized

skbs at device driver and then the skbs are merged at GRO layer.

Therefore, the receiver incurs higher overheads for skb allocation.

Where are the CPU cycles going? Figs. 3(c) and 3(d) show the

CPU usage breakdowns of sender- and receiver-side for each com-

bination of optimizations. With none of the optimizations, CPU

overheads mainly come from TCP/IP processing as per-skb pro-

cessing overhead is high (here, skb size is 1500B at both sides5).

When aRFS is disabled, lock overhead is high at the receiver-side

because of the socket contention due to the application context

thread (recv system call) and the interrupt context thread (softirq)

attempting to access the same socket instance.

5Linux kernel 4.17 onwards, GSO is enabled by default. We modi�ed the kernel to
disable GSO in “no optimization” experiments to evaluate bene�ts of skb aggregation.

These packet processing overheads are mitigated with several

optimizations: TSO allows using large-sized skb at the sender-

side, reducing both TCP/IP processing and Netdevice subsystem

overheads as segmentation is o�oaded to the NIC (Fig. 3(c)). On

the receiver-side, GRO reduces the CPU usage by reducing the

number of skbs, passed to the upper layer, so TCP/IP processing

and lock/unlock overheads are reduced dramatically, at the cost of

increasing the overhead of the network device subsystem where

GRO is performed (Fig. 3(d)). This GRO cost can be reduced by

66% by enabling Jumbo frames as explained above. These reduced

packet processing overheads lead to throughput improvement, and

the main overhead is now shifted to data copy, which takes almost

49% of total CPU utilization at the receiver-side when GRO and

Jumbo frames are enabled.

Once aRFS is enabled, co-location of the application context

thread and the IRQ context thread at the receiver leads to improved

cache and NUMA locality. The e�ects of this are two-fold:

(1) Since the application thread runs on the same NUMA node as

the NIC, it can now perform data copy directly from the L3

cache (DMAed by the NIC via DCA). This reduces the per-byte

data copy overhead, resulting in higher throughput-per-core.

(2) skbs are allocated in the softirq thread and freed in the appli-

cation context thread (once data copy is done). Since the two

are co-located, memory deallocation overhead reduces. This

is because page free operations to local NUMA memory are

signi�cantly cheaper than those for remote NUMA memory.

Even a single �ow experiences high cache misses. Although

aRFS allows applications to perform data copy from local L3 cache,

we observe as much as 49% cache miss rate in this experiment.

This is surprising since, for a single �ow, there is no contention



for L3 cache capacity. To investigate this further, we varied various

parameters to understand their e�ect on cache miss rate. Among

our experiments, varying the maximum TCP receive window size,

and the number of NIC Rx descriptors revealed an interesting trend.

Fig. 3(e) shows the variation of throughput and L3 cachemiss rate

with varying number of NIC Rx descriptors and varying TCP Rx

bu�er size6. We observe that, with increase in either of the number

of NIC Rx descriptors or the TCP bu�er size, the L3 cache miss

increases and correspondingly, the throughput decreases. We have

found two reasons for this phenomenon: (1) BDP values being larger

than the L3 cache capacity; and (2) suboptimal cache utilization.

To understand the �rst one, consider an extreme case of large

TCP Rx bu�er sizes. In such a case, TCP will keep BDP worth of

data in �ight, where BDP is de�ned as the product of access link

bandwidth and latency (both network and host latency). It turns

out that large TCP bu�ers can cause a signi�cant increase in host

latency, especially when the core processing packets becomes a

bottleneck. In addition to scheduling delay of IRQ context and

application threads, we observe that each packet observe large

queueing behind previous packets. We measure the delay between

frame reception and start of data copy by logging the timestamp

when NAPI processing for an skb happens, and the timestamp

when the data copy of it starts, and measure the di�erence between

the two. Fig. 3(f) shows the average and 99th percentile delays

observed with varying TCP Rx bu�er size. As can be seen, the delays

rise rapidly with increasing TCP Rx bu�er size beyond 1600KB.

Given that DCA cache size is limited7, this increase in latency has

signi�cant impact: since TCP bu�ers and BDP values are large, NIC

always has data to DMA; thus, since the data DMAed by the NIC

is not promptly copied to userspace bu�ers, it is evicted from the

cache when NIC performs subsequent DMAs (if the NIC runs out of

Rx descriptors, the driver replenishes the NIC Rx descriptors during

NAPI polling). As a result, cache misses increase and throughput

reduces. When TCP bu�er sizes are large enough, this problem

persists independent of NIC ring bu�er sizes.

To understand the second reason, consider the other extreme

where TCP bu�er sizes are small but NIC ring bu�er sizes are large.

We believe cache misses in this case might be due to an imperfect

cache replacement policy and/or cache’s complex addressing, re-

sulting in suboptimal cache utilization; recent work has observed

similar phenomena, although in a di�erent context [15, 39]. When

there are a large number of NIC Rx descriptors, there is a corre-

spondingly larger number of memory addresses available for the

NIC to DMA the data. Thus, even though the total amount of in-

�ight data is smaller than the cache capacity, the likelihood of a

DCA write evicting some previously written data increases with

the number of NIC Rx descriptors. This limits the e�ective utiliza-

tion of cache capacity, resulting in high cache miss rates and low

throughput-per-core.

Between these two extremes, both of the factors contribute to the

observed performance in Fig. 3(e). Indeed, in our setup, DCA cache

capacity is ∼3MB and hence TCP bu�er size of 3200KB and fewer

than 512 NIC Rx descriptors (512 × 9000 bytes ≈ 4MB) delivers

6The kernel uses an auto-tuning mechanism for the TCP Rx socket bu�er size with the
goal of maximizing throughput. In this experiment, we override the default auto-tuning
mechanism by specifying an Rx bu�er size.
7DCA can only use 18% (∼3MB) of the L3 cache capacity in our setup.

 0

 10

 20

 30

 40

 50

 60

 NIC-local NUMA NIC-remote NUMA
 0

 20

 40

 60

 80

 100

 120

T
h
ro

u
gh

p
u
t 

Pe
r 

C
o

re
(G

b
p

s)

C
ac

h
e
 M

is
s 

R
at

e
(%

)

Throughput Per Core
Receiver: Cache Miss Rate

Figure 4: Linux network stack performance for the case of a single

�ow on NIC-remote NUMA node. When compared to the NIC-local

NUMA node case, single �ow throughput-per-core drops by ∼20%.

the optimal single-core throughput of ∼55Gpbs. An interesting

observation here is that the default auto-tuning mechanism used

in the Linux kernel network stack today is unaware of DCA e�ects,

and ends up overshooting beyond the optimal operating point.

DCA limited to NIC-local NUMA nodes. In our analysis so far,

the application was run on a CPU core on the NIC-local NUMA

node. We now examine the impact of running the application on

a NIC-remote NUMA node for the same single �ow experiment.

Fig. 4 shows the resulting throughput-per-core and L3 cache miss

rate relative to the NIC-local case (with all optimizations enabled in

both cases). When the application runs on NIC-remote NUMA node,

we see a signi�cant increase in L3 cache miss rate and ∼20% drop in

throughput-per-core. Since aRFS is enabled, the NIC DMAs frames

to the target CPU’s NUMA node memory. However, because the

target CPU core is on a NIC-remote NUMA node, DCA is unable to

push the DMAed frame data into the corresponding L3 cache [25].

As a result, cache misses increase and throughput-per-core drops.

3.2 Increasing Contention via One-to-one

We now evaluate the Linux network stack with higher contention

for the network bandwidth. Here, each sender core sends a �ow to

one unique receiver core, and we increase the number of core/�ows

from 1 to 24. While each �ow still has the entire host core for itself,

this scenario introduces two new challenges compared to the single-

�ow case: (1) network bandwidth becomes saturated as multiple

cores are used; and (2) �ows run on both NIC-local and NIC-remote

NUMA nodes (our servers have 6 cores on each NUMA node).

Similar to §3.1, to obtain deterministic measurements when aRFS

is disabled, we explicitly map IRQs for individual applications to a

unique core on a di�erent NUMA node.

Host optimizations become less e�ective with increasing

number of �ows. Fig. 5(a) shows that, as the number of �ows

increases, throughput-per-core decreases by 64% (i.e., 15Gbps at

24 �ows), despite each core processing only a single �ow. This is

because of reduced e�ectiveness of all optimizations. In particular,

when compared to the single �ow case, the e�ectiveness of aRFS

reduces by as much as 75% for the 24-�ow case; this is due to re-

duced L3 cache locality for data copy for NIC-local NUMA node

cores (all cores share L3 cache), and also due to some of the �ows

running on NIC-remote NUMA nodes (that cannot exploit DCA, see

§3.1, Fig. 4). The e�ectiveness of GRO also reduces: since packets

at the receiver are now interleaved across �ows, there are fewer

opportunities for aggregation; this will become far more prominent

in the all-to-all case, and is discussed in more depth in §3.5.
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Figure 5: Linux network stack performance for one-to-one tra�c pattern. (a) Each column shows throughput-per-core achieved for di�erent number

of �ows. At 8 �ows, the network is saturated, however, throughput-per-core decreases with more �ows. (b, c) With all optimizations enabled, as the number

of �ows increase, the fraction of CPU cycles spent in data copy decreases. On the receiver-side, network saturation leads to lower memory management

overhead (due to better page recycling) and higher scheduling overhead (due to frequent idling). The overall receiver-side CPU utilizations for x= 1, 8, 16 and

24 cases are, 1, 3.75, 5.21 and 6.58 cores, respectively. See §3.2 for description.
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Figure 6: Linux network stack performance for incast tra�c pattern. (a) Each column shows throughput-per-core for di�erent number of �ows

(receiver core is bottlenecked in all cases). Total throughput decreases with increase in the number of �ows. (b) With all optimizations enabled, the fraction of

CPU cycles used by each component does not change signi�cantly with number of �ows. See [7] for sender-side CPU breakdown. (c) Receiver-side cache miss

rate increases with number of �ows, resulting in higher per-byte data copy overhead, and reduced throughput-per-core. See §3.3 for description.

Processing overheads shift with network saturation. As

shown in Fig. 5(a), at 8 �ows, the network link becomes the bottle-

neck, and throughput ends up getting fairly shared among all cores.

Fig. 5(c) shows that bottlenecks shift in this regime: scheduling

overhead increases and memory management overhead decreases.

Intuitively, when the network is saturated, the receiver cores start

to become idle at certain times—threads repeatedly go to sleep while

waiting for data, and wake up when new data arrives; this results in

increased context switching and scheduling overheads. This e�ect

becomes increasingly prominent with increase in number of �ows

(Fig. 5(b), Fig. 5(c)), as the CPU utilization per-core decreases.

To understand reduction in memory alloc/dealloc overheads, we

observe that the kernel page allocator maintains per-core pageset

that includes a certain number of free pages. Upon an allocation re-

quest, pages can be fetched directly from the pageset, if available;

otherwise the global free-list needs to be accessed (which is a more

expensive operation). When multiple �ows share the access link

bandwidth, each core serves relatively less amount of tra�c com-

pared to the single �ow case. This allows used pages to be recycled

back to the pageset before it becomes empty, hence reducing the

memory allocation overhead (Fig. 5(c)).

3.3 Increasing Receiver Contention via Incast

We now create additional contention at the receiver core using an

incast tra�c pattern, varying number of �ows from 1 to 24 (each

using a unique core at the sender). Compared to previous scenarios,

this scenario induces higher contention for (1) CPU resources such

as L3 cache and (2) CPU scheduling among application threads. We

discuss how these changes a�ect the network processing overheads.

Per-byte data copy overhead increases with increasing�ows

per-core. Fig. 6(a) shows that throughput-per-core decreases with

increase in number of �ows, observing as much as ∼19% drop with

8 �ows when compare to the single-�ow case. Fig. 6(b) shows that

the CPU breakdown does not change signi�cantly with increasing

number of �ows, implying that there is no evident shift in CPU

overheads. Fig. 6(c) provides some intuition for the root cause of

the throughput-per-core degradation. As number of �ows per core

increases at the receiver side, applications for di�erent �ows com-

pete for the same L3 cache space resulting in increased cache miss

rate (the miss rate increases from 48% to 78%, as the number of

�ows goes from 1 to 8.). Among other things, this leads to increased

per-byte data copy overhead and reduced throughput-per-core. As

shown in Fig. 6(c), the increase in L3 cache miss rate with increasing

�ows correlates well with degradation in throughput-per-core.

Sender-driven nature of TCP precludes receiver-side sched-

uling. Higher cache contention observed above is the result of

multiple active �ows on the same core. While senders could po-

tentially reduce such contention using careful �ow scheduling, the

issue at the receiver side is fundamental: the sender-driven nature

of the TCP protocol precludes the receiver to control the number of

active �ows per core, resulting in unavoidable CPU ine�ciency. We

believe receiver-driven protocols [18, 35] can provide such control

to the receiver, thus enabling CPU-e�cient transport designs.
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Figure 7: Linux network stack performance for outcast tra�c pattern. (a) Each column shows throughput-per-sender-core achieved for di�erent

number of �ows, that is the maximum throughput sustainable using a single sender core (we ignore receiver core utilization here). Throughput-per-sender-core

increases from 1 to 8 �ows, and then decreases as the number of �ows increases. (b) With all optimizations enabled, as the number of �ows increases from 1

to 8, data copy overhead increases but does not change much when the number of �ows is increased further. Refer to [7] for receiver-side CPU breakdown. (c)

For 1 �ow, sender-side CPU is underutilised. Sender-side cache miss rate increases slightly as the number of �ows increases from 8 to 24, increasing the

per-byte data copy overhead, and there is a corresponsing decrease in throughput-per-core. See §3.4 for description.

3.4 Increasing Sender Contention via Outcast

All our experiments so far result in receiver being the bottleneck.

To evaluate sender-side processing pipeline, we now use an outcast

scenario where a single sender core transmits an increasing number

of �ows (1 to 24), each to a unique receiver core. To understand the

e�ciency of sender-side processing pipeline, this subsection focuses

on throughput-per-sender-core: that is, the maximum throughput

achievable by a single sender core.

Sender-side processing pipeline can achieve up to 89Gbps

per core. Fig. 7(a) shows that, with increase in number of �ows from

1 to 8, throughput-per-sender-core increases signi�cantly enabling

total throughput as high as ∼89Gbps; in particular, throughput-per-

sender-core is 2.1× when compared to throughput-per-receiver-

core in the incast scenario (§3.3). This demonstrates that, in today’s

Linux network stack, sender-side processing pipeline is much more

CPU-e�cient when compared to receiver-side processing pipeline.

We brie�y discuss some insights below.

The �rst insight is related to the e�ciency of TSO. As shown

in Fig. 7(a), TSO in the outcast scenario contributes more to

throughput-per-core improvements, when compared to GRO in

the incast scenario (§3.3). This is due to two reasons. First, TSO is a

hardware o�oad mechanism supported by the NIC; thus, unlike

GRO which is software-based, there are no CPU overheads associ-

ated with TSO processing. Second, unlike GRO, the e�ectiveness

of TSO does not degrade noticeably with increasing number of

�ows since data from applications is always put into 64KB size

skbs independent of the number of �ows. Note that Jumbo frames

do not help over TSO that much compared to the previous cases as

segmentation is now performed in the NIC.

Second, aRFS continues to provide signi�cant bene�ts, contribut-

ing as much as ∼46% of the total throughput-per-sender-core. This

is because, as discussed earlier, L3 cache at the sender is always

warm: while cache miss rate increases slightly with larger number

of �ows, the absolute number remains low (∼11% even with 24

�ows); furthermore, outcast scenario ensures that not too many

�ows compete for the same L3 cache at the receiver (due to receiver

cores distributed across multiple NUMA nodes). Fig. 7(b) shows

that data copy continues to be the dominant CPU consumer, even

when sender is the bottleneck.

3.5 Maximizing Contention with All-to-All

We now evaluate Linux network stack performance for all-to-all

tra�c patterns, where each of x sender cores transmit a �ow to each

of the x receiver cores, for x varying from 1 to 24. In this scenario,

we were unable to explicitly map IRQs to speci�c cores because,

for the largest number of �ows (576), the number of �ow steering

entries requires is larger than what can be installed on our NIC.

Nevertheless, even without explicit mapping, we observed reason-

ably deterministic results for this scenario since the randomness

across a large number of �ows averages out.

Fig. 8(a) shows that throughput-per-core reduces by ∼67% going

from 1 × 1 to 24 × 24 �ows, due to reduced e�ectiveness of all

optimizations. The bene�ts of aRFS drop by ∼64%, almost the same

as observed in the one-to-one scenario (§3.2). This is unsurprising,

given the lack of cache locality for cores in non-NIC-local NUMA

nodes, and given that cache miss rate is already abysmal (as dis-

cussed in §3.2). Increasing the number of �ows per core on top of

this does not make things worse in terms of cache miss rate.

Per-�ow batching opportunities reduce due to large number

of �ows. Similar to the one-to-one case, the network link becomes

the bottleneck in this scenario, resulting in fair-sharing of band-

width among �ows. Since there are a large number of �ows (e.g.,

24×24with 24 cores), each �ow achieves very small throughput (or

alternatively, the number of packets received for any �ow in a given

time window is very small). This results in reduced e�ectiveness of

optimizations like GRO (that operate on a per-�ow basis) since they

do not have enough packets in each �ow to aggregate. As a result,

upper layers receive a larger number of smaller skbs, increasing

packet processing overheads.

Fig. 8(c) shows the distribution of skb sizes (post-GRO) for vary-

ing number of �ows. We see that as the number of �ows increase,

the average skb size reduces, leading to our argument above about

the reduced e�ectiveness of GRO. We note that the above phenom-

enon is not unique to the all-to-all scenario: the number of �ows

sharing a bottleneck resource also increase in the incast and one-

to-one scenarios. Indeed, this e�ect would also be present in those

scenarios, however the total number of �ows in those cases is not

large enough to make these e�ects noticeable (max of 24 �ows in

incast and one-to-one versus 24 × 24 �ows in all-to-all).
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Figure 8: Linux network stack performance for all-to-all tra�c pattern. (a) Each column shows throughput-per-core achieved for di�erent number of

�ows. With 8 × 8 �ows, the network is fully saturated. Throughput-per-core decreases as the number of �ows increases. (b) With all optimizations enabled,

as the number of �ows increase, the fraction of CPU cycles spent in data copy decreases. On the receiver-side, network saturation leads to lower memory

management overhead (due to better page recycling) and higher scheduling overhead (due to frequent idling and greater number of threads per core.). TCP/IP

processing overhead increases due to smaller skb sizes. The overall receiver-side CPU utilizations for x= 1 × 1, 8 × 8, 16 × 16 and 24 × 24 are 1, 4.07, 5.56 and

6.98 cores, respectively. See [7] for sender-side CPU breakdown. (c) The fraction of 64KB skbs after GRO decreases as the number of �ows increases because

the larger number of �ows prevent e�ective aggregation of received packets. See §3.5 for description.
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Figure 9: Linux network stack performance for the case of a single �ow, with varying packet drop rates. (a) Each column shows throughput-per-

core achieved for a speci�c packet drop rate. Throughput-per-core decreases as the packet drop rate increases. (b) As the packet drop rate increases, the gap

between sender and receiver CPU utilisation decreases because the sender spends more cycles for retransmissions. (c, d)With all optimizations enabled, as

the packet drop rate increases, the overhead of TCP/IP processing and netdevice subsystem increases. See §3.6 for description.

3.6 Impact of In-network Congestion

In-network congestion may lead to packet drops at switches, which

in turn impacts both the sender and receiver side packet processing.

In this subsection, we study the impact of such packet drops on

CPU e�ciency. To this end, we add a network switch between the

two servers, and program the switch to drop packets randomly. We

increase the loss rate from 0 to 0.015 in the single �ow scenario

from §3.1, and observe the e�ect on throughput and CPU utilization

at both sender and receiver.

Impact on throughput-per-core is minimal. As shown in

Fig. 9(a) the throughput-per-core decreases by∼24% as the drop rate

is increased from 0 to 0.015. Fig. 9(b) shows that the receiver-side

CPU utilization decreases with increasing loss rate. As a result, the

total throughput becomes lower than throughput-per-core, and the

gap between the two increases. Interestingly, the throughput-per-

core slightly increases when the loss rate goes from 0 to 0.00015.

We observe that the corresponding receiver-side cache miss rate

is reduced from 48% to 37%. This is because packet loss essentially

reduces TCP sending rate, thus resulting in better cache hit rates at

the receiver-side.

Figs. 9(c) and 9(d) show CPU pro�ling breakdowns for di�erent

loss rates. With increasing loss rate, at both sender and receiver,

we see that the fraction of CPU cycles spent in TCP, netdevice

subsystem, and other (etc.) processing increases, hence leading to

fewer available cycles for data copy.

The minimal impact is due to increased ACK processing.

Upon detailed CPU pro�ling, we found increased ACK process-

ing and packet retransmissions to be the main causes for increased

overheads. In particular:

• At the receiver, the fraction of CPU cycles spent in generating

and sending ACKs increases by 4.87× (1.52% → 7.4%) as the

loss rate goes from 0 to 0.015. This is because, when a packet is

dropped, the receiver gets out-of-order TCP segments, and ends

up sending duplicate ACKs to the sender. This contributes to an

increase in both TCP and netdevice subsystem overheads.

• At the sender, the fraction of CPU cycles spent in processing

ACKs increases by 1.45× (5.79%→ 8.41%) as the loss rate goes

from 0 to 0.015. This is because the sender has to process ad-

ditional duplicate ACKs. Further, the fraction of CPU spent in

packet retransmission operations increases by 1.34%. Both of

these contribute to an increase in TCP and netdevice subsys-

tem overheads, while the former contributes to increased IRQ

handling (which is classi�ed under “etc.” in our taxonomy).

Sender observes higher impact of packet drops. Fig. 9(b)

shows the CPU utilization at the sender and the receiver. As drop

rates increase, the gap between sender and receiver utilization de-

creases, indicating that the increase in CPU overheads is higher

at the sender side. This is due to the fact that, upon a packet drop,

the sender is responsible for doing the bulk of the heavy lifting in

terms of congestion control and retransmission of the lost packet.
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Figure 10: Linux network stack performance for short �ow, 16:1 incast tra�c pattern, with varying RPC sizes. (a) Each column shows throughput-

per-core achieved for a speci�c RPC size. Throughput-per-core increases with increasing RPC size. For small RPCs, optimizations like GRO do not provide

much bene�t due to fewer aggregation opportunities. (b) With all optimizations enabled, data copy quickly becomes the bottleneck. The server-side CPU was

completely utilized for all scenarios. See [7] for client-side CPU breakdown. (c) Unlike long �ows, no signi�cant throughput-per-core drop is observed even

when application runs on NIC-remote NUMA node core at the server. See §3.7 for description.

3.7 Impact of Flow Sizes

We now study the impact of �ow sizes on the Linux network stack

performance. We start with the case of short �ows: a ping-pong

style RPC workload, with message sizes for both request/response

being equal, and varying from 4KB to 64KB. Since a single short �ow

is unable to bottleneck CPU at either the sender or the receiver,

we consider the incast scenario—16 applications on the sender

send ping-pong RPCs to a single application on the receiver (the

latter becoming the bottleneck). Following the common deployment

scenario, each application uses a long-running TCP connection.

We also evaluate the impact of workloads that comprise of a mix

of both long and short �ows. For this scenario, we use a single core

at both the sender and the receiver. We run a single long �ow, and

mix it with a variable number of short �ows. We set the RPC size

of short �ows to 4KB.

DCA does not help much when workloads comprise of

extremely short �ows. Fig. 10(a) shows that, as expected,

throughput-per-core increases with increase in �ow sizes. We make

several observations. First, as shown in Fig. 10(b), data copy is no

longer the prominent consumer of CPU cycles for extremely small

�ows (e.g., 4KB)—TCP/IP processing overhead is higher due to low

GRO e�ectiveness (small �ow sizes make it hard to batch skbs),

and scheduling overhead is higher due to ping-pong nature of the

workload causing applications to repeatedly block while waiting

for data. Second, data copy not being the dominant consumer of

CPU cycles for extremely short �ows results in DCA not contribut-

ing to the overall performance as much as it did in the long-�ow

case: as shown in Fig. 10(c), while NIC-local NUMA nodes achieve

signi�cantly lower cache miss rates when compared to NIC-remote

NUMA nodes, the di�erence in throughput-per-core is only mar-

ginal. Third, while DCA bene�ts reduce for extremely short �ows,

other cache locality bene�ts of aRFS still apply: for example, skb

accesses during packet processing bene�t from cache hits. However,

these bene�ts are independent of the NUMA node on which the

applications runs. The above three observations suggest interesting

opportunities for orchestrating host resources between long and

short �ows: while executing on NIC-local NUMA nodes helps long

�ows signi�cantly, short �ows can be scheduled on NIC-remote

NUMA nodes without any signi�cant impact on performance; in

addition, carefully scheduling the core across short �ows sharing

the core can lead to further improvements in throughput-per-core.
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Figure 11: Linux network stack performance for workloads that

mix long and short �ows on a single core. (a) Each column shows

throughput-per-core achieved for di�erent number of short �ows colocated

with a long �ow. Throughput-per-core decreases with increasing number of

short �ows. (b) Even with 16 �ows colocated with a long �ows, data copy

overheads dominate, but TCP/IP processing and scheduling overheads start

to consume signi�cant CPU cycles. The server-side CPU was completely

utilized for all scenarios.; refer to [7] for client-side CPU breakdown. See

§3.7 for description.

We note that all the observations above become relatively obso-

lete even with slight increase in �ow sizes—with just 16KB RPCs,

data copy becomes the dominant factor and with 64KB RPCs, the

CPU breakdown becomes very similar to the case of long �ows.

Mixing long and short �ows considered harmful. Fig. 11(a)

shows that, as expected, the overall throughput-per-core drops by

∼43% as the number of short �ows colocated with the long �ow is

increased from 0 to 16. More importantly, while throughput-per-

core for a single long �ow and 16 short �ows is ∼42Gbps (§3.1) and

∼6.15Gbps in isolation (no mixing), it drops to ∼20Gbps and ∼2.6

Gbps, respectively when the two are mixed (48% and 42% reduction

for long and short �ows). This suggests that CPU-e�cient network

stacks should avoid mixing long and short �ows on the same core.
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Figure 12: Impact of DCA and IOMMU on Linux network stack performance. (a) Each column shows throughput-per-core achieved for di�erent

DCA and IOMMU con�gurations: Default has DCA enabled and IOMMU disabled. Either of disabling DCA or enabling IOMMU leads to decrease in

throughput-per-core. (b, c) Disabling DCA does not cause a signi�cant shift in CPU breakdown. Enabling IOMMU causes a signi�cant increase in memory

management overheads at both the sender and the recever. See §3.8 and §3.9 for description.
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Figure 13: Impact of congestion control protocols on Linux network stack performance. (a) Each column shows throughput-per-core achieved for

di�erent congestion control protocols. There is no signi�cant change in throughput-per-core across protocols. (b, c) BBR causes a higher scheduling overhead

on the sender-side. On the receiver-side, the CPU utilization breakdowns are largely similar. For all cases, receiver-side core is fully utilized for all protocols.

See §3.10 for description.

3.8 Impact of DCA

All our experiments so far were runwith DCA enabled (as is the case

by default on Intel Xeon processors). To understand the bene�ts of

DCA, we now rerun the single �ow scenario from §3.1, but with

DCA disabled. Fig. 12(a) shows the throughput-per-core without

DCA relative to the scenario with DCA enabled (Default), as each

of the optimizations are incrementally enabled. Unsurprisingly,

with all optimizations enabled, we observe a 19% degradation in

throughput-per-core when DCA is disabled. In particular, we see a

∼50% reduction in the e�ectiveness of aRFS; this is expected since

disabling DCA reduces the data copy bene�ts of NIC DMAing the

data directly into the L3 cache. The other bene�ts of aRFS (§3.1)

still apply. Without DCA, the receiver-side remains the bottleneck,

and we do not observe any signi�cant shift in the CPU breakdowns

at sender and receiver (Figs. 12(b) and 12(c)).

3.9 Impact of IOMMU

IOMMU (IO Memory Management Unit) is used in virtualized en-

vironments to e�ciently virtualize fast IO devices. Even for non-

virtualized environments, they are useful for memory protection.

With IOMMU, devices specify virtual addresses in DMA requests

which the IOMMU subsequently translates into physical addresses

while implementing memory protection checks. By default, the

IOMMU is disabled in our setup. In this subsection, we study the

impact of IOMMU on Linux network stack performance for the

single �ow scenario (§3.1).

The key take-away from this subsection is that IOMMU, due to

increased memory management overheads, results in signi�cant

degradation in network stack performance. As seen in Fig. 12(a),

enabling IOMMU reduces throughput-per-core by 26% (compared

to Default). Figs. 12(b) and 12(c) show the core reason for this

degradation: memory alloc/dealloc becoming more prominent in

CPU consumption at both sender and receiver (now consuming

30% of CPU cycles at the receiver). This is because of two additional

per-page operations required by IOMMU: (1) when the NIC driver

allocates new pages for DMA, it has to also insert these pages into

the device’s pagetable (domain) on the IOMMU; (2) once DMA is

done, the driver has to unmap those pages. These two additional

per-page operations result in increased overheads.

3.10 Impact of Congestion control protocols

Our experiments so far use TCP CUBIC, the default congestion

control algorithm in Linux. We now study the impact of congestion

control algorithms on network stack performance using two other

popular algorithms implemented in Linux, BBR [8] and DCTCP [1],

again for the single �ow scenario (§3.1). Fig. 13(a) shows that choice

of congestion control algorithm has minimal impact on throughput-

per-core. This is because, as discussed earlier, receiver-side is the

core throughput bottleneck in high-speed networks; all these al-

gorithms being “sender-driven”, have minimal di�erence in the

receiver-side logic. Indeed, the receiver-side CPU breakdowns are

largely the same for all protocols (Fig. 13(c)). BBR has relatively

higher scheduling overheads on the sender-side (Fig. 13(b)); this

is because BBR uses pacing for rate control (with qdisc) [42], and

repeated thread wakeups when packets are released by the pacer

result in increased scheduling overhead.



4 FUTURE DIRECTIONS

We have already discussed several immediate avenues of future

research in individual subsections—e.g., optimizations to today’s

Linux network stack (e.g., independent scaling of each process-

ing layer in the stack, rethinking TCP auto-tuning mechanisms

for receive bu�er sizing, window/rate mechanisms incorporating

host bottlenecks, etc.), extensions to DCA (e.g., revisiting L3 cache

management, support for NIC-remote NUMA nodes, etc.) and, in

general, the idea of considering host bottlenecks when designing

network stacks for high-speed networks. In this section, we outline

a few more forward-looking avenues of future research.

Zero-copy mechanisms. The Linux kernel has recently intro-

duced new mechanisms to achieve zero-copy transmission and

reception on top of the TCP/IP stack:

• For zero-copy on the sender-side, the kernel now has

MSG_ZEROCOPY feature [11] (since kernel 4.14), which pins

application bu�ers upon a send system call, allowing the NIC to

directly fetch this data through DMA reads.

• For zero-copy on the receiver-side, the kernel now supports a

special mmap overload for TCP sockets [12] (since kernel 4.18).

This implementation enables applications to obtain a virtual

address that is mapped by the kernel to the physical address

where the NIC DMAs the data.

Some specialized applications [13, 26] have demonstrated achieving

∼100Gbps of throughput-per-core using the sender-side zero-copy

mechanism. However, as we showed in §3, receiver is likely to be

the throughput bottleneck for many applications in today’s Linux

network stack. Hence, it is more crucial to eliminate data copy over-

heads on the receiver-side. Unfortunately, the above receiver-side

zero-copy mechanism requires changes in the memory manage-

ment semantics, and thus requires non-trivial application-layer

modi�cations. Linux eXpress Data Path (XDP) [23] o�ers zero copy

operations for applications that use AF_XDP socket [29] (intro-

duced in kernel 4.18), but requires reimplementation of the entire

network and transport protocols in the userspace. It would be in-

teresting to explore zero-copy mechanisms that do not require

application modi�cations and/or reimplementation of network pro-

tocols; if feasible, such mechanisms will allow today’s Linux net-

work stack to achieve 100Gbps throughput-per-core with minimal

or no modi�cations.

CPU-e�cient transport protocol design. The problem of trans-

port design has traditionally focused on designing congestion and

�ow control algorithms to achieve a multi-objective optimization

goal (e.g., a combination of objectives like low latency, high through-

put, etc.). This state of a�airs is because, for the Internet and for

early incarnations of datacenter networks, performance bottlenecks

were primarily in the core of the network. Our study suggests that

this is no longer the case: adoption of high-bandwidth links shifts

performance bottlenecks to the host. Thus, future protocol designs

should explicitly orchestrate host resources (just like they orches-

trate network resources today), e.g., by taking not just traditional

metrics like latency and throughput into account, but also available

cores, cache sizes and DCA capabilities. Recent receiver-driven

protocols [18, 35] have the potential to enable such �ne-grained

orchestration of both the sender and the receiver resources.

Rearchitecting the host stack. We discuss two directions in rel-

atively clean-slate design for future network stacks. First, today’s

network stacks use a fairly static packet processing pipeline for

each connection—the entire pipeline (bu�ers, protocol processing,

host resource provisioning, etc.) is determined at the time of socket

creation, and remains unchanged during the socket lifetime, inde-

pendent of other connections and their host resource requirements.

This is one of the core reasons for the many bottlenecks identi�ed

in our study: when the core performing data copy becomes the

bottleneck for long �ows, there is no way to dynamically scale

the number of cores performing data copy; even if short �ows and

long �ows have di�erent bottlenecks, the stack uses a completely

application-agnostic processing pipeline; and, there is no way to

dynamically allocate host resources to account for changes in con-

tention upon new �ow arrivals. As performance bottlenecks shift

to hosts, we should rearchitect the host network stack to achieve a

design that is both more dynamic (allows transparent and indepen-

dent scaling of host resources to individual connections), and more

application-aware (exploits characteristics of applications colocated

on a server to achieve improved host resource orchestration).

The second direction relates to co-designing CPU schedulers

with the underlying network stack. Speci�cally, CPU schedulers in

operating systems have traditionally been designed independent of

the network stack. This was bene�cial for independent evolution

of the two layers. However, with increasingly many distributed

applications and with performance bottlenecks shifting to hosts,

we need to revisit such a separation. For instance, our study shows

that network-aware CPU scheduling (e.g., scheduling applications

that generate long �ows on NIC-local NUMA node, scheduling

long-�ow and short-�ow applications on separate CPU cores, etc.)

has the potential to lead to e�cient host stacks.

5 CONCLUSION

We have demonstrated that recent adoption of high-bandwidth

links in datacenter networks, coupled with relatively stagnant tech-

nology trends for other host resources (e.g., core speeds and count,

cache sizes, etc.), mark a fundamental shift in host network stack

bottlenecks. Using measurements and insights for Linux network

stack performance for 100Gbps links, our study highlights several

avenues for future research in designing CPU-e�cient host network

stacks. These are exciting times for networked systems research—

with emergence of Terabit Ethernet, the bottlenecks outlined in

this study are going to become even more prominent, and it is only

by bringing together operating systems, computer networking and

computer architecture communities that we will be able to design

host network stacks that overcome these bottlenecks. We hope our

work will enable a deeper understanding of today’s host network

stacks, and will guide the design of not just future Linux kernel

network stack, but also future network and host hardware.
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