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Abstract

High development velocity is critical for modern systems.

This is especially true for Linux file systems which are seeing

increased pressure from new storage devices and new demands

on storage systems. However, high velocity Linux kernel

development is challenging due to the ease of introducing

bugs, the difficulty of testing and debugging, and the lack of

support for redeployment without service disruption. Existing

approaches to high-velocity development of file systems for

Linux have major downsides, such as the high performance

penalty for FUSE file systems, slowing the deployment cycle

for new file system functionality.

We propose Bento, a framework for high velocity devel-

opment of Linux kernel file systems. It enables file systems

written in safe Rust to be installed in the Linux kernel, with

errors largely sandboxed to the file system. Bento file systems

can be replaced with no disruption to running applications,

allowing daily or weekly upgrades in a cloud server setting.

Bento also supports userspace debugging. We implement a sim-

ple file system using Bento and show that it performs similarly

to VFS-native ext4 on a variety of benchmarks and outper-

forms a FUSE version by 7x on ‘git clone’. We also show that

we can dynamically add file provenance tracking to a running

kernel file system with only 15ms of service interruption.

1 INTRODUCTION

Development and deployment velocity is a critical aspect

of modern cloud software development. High velocity

delivers new features to customers more quickly, reduces

integration and debugging costs, and reacts quickly to security

vulnerabilities. However, this push for rapid development has

not fully caught up to operating systems, despite this being

a long-standing goal of OS research [1, 6, 16, 25, 44]. In Linux,

the most widely used cloud operating system, release cycles

are still measured in months and years. Elsewhere in the cloud,

new features are deployed weekly or even daily.

Slow Linux development can be attributed to several factors.

Linux has a large code base with relatively few guardrails,

with complicated internal interfaces that are easily misused.

Combined with the inherent difficulty of programming correct

concurrent code in C, this means that new code is very likely

to have bugs. The lack of isolation between kernel modules

means that these errors often have non-intuitive effects and

are difficult to track down. The difficulty of implementing

kernel-level debuggers and kernel testing frameworks makes

this worse. The restricted and different kernel programming

environment also limits the number of trained developers.

Finally, upgrading a kernel module requires either rebooting

the machine or restarting the relevant module, either way

rendering the machine unavailable during the upgrade. In the

cloud setting, this forces kernel upgrades to be batched to meet

cloud-level availability goals.

Slow development cycles are a particular problem for file

systems. Recent changes in storage hardware (e.g., low latency

SSDs and NVM, but also density-optimized QLC SSD and

shingle disks) have made it increasingly important to have an

agile storage stack. Likewise, application workload diversity

and system management requirements (e.g., the need for

container-level SLAs, or provenance tracking for security

forensics) make feature velocity essential. Indeed, the failure

of file systems to keep pace has led to perennial calls to replace

file systems with blob stores that would likely face many of

the same challenges despite having a simplified interface [2].

Existing alternatives for higher velocity file systems sac-

rifice either performance or generality. FUSE is a widely-used

system for user-space file system development and deploy-

ment [17]. However, FUSE can incur a significant performance

overhead, particularly for metadata-heavy workloads [48].

We show that the same file system runs a factor of 7x slower

on ‘git clone’ via FUSE than as a native kernel file system.

Another option is Linux’s extensibility architecture eBPF.

eBPF is designed for small extensions, such as to implement

a new performance counter, where every operation can be

statically verified to complete in bounded time. Thus, it is a

poor fit for implementing kernel modules like file systems

with complex concurrency and data structure requirements.

Our research hypothesis is that we can enable high-velocity

development of kernel file systems without sacrificing

performance or generality, for existing widely used kernels

like Linux. Our trust model is that of a slightly harried kernel

developer, rather than an untrusted application developer as

with FUSE and eBPF. This means supporting a user-friendly

development environment, safety both within the file system

and across external interfaces, effective testing mechanisms,

fast debugging, incremental live upgrade, high performance,

and generality of file system designs.

To this end, we built Bento, a framework for high-velocity

development of Linux kernel file systems. Bento hooks into

USENIX Association 19th USENIX Conference on File and Storage Technologies    65



Linux as a VFS file system, but allows file systems to be

dynamically loaded and replaced without unmounting or

affecting running applications except for a short performance

lag. As Bento runs in the kernel, it enables file systems to reuse

well-developed Linux features, such as VFS caching, buffer

management, and logging, as well as network communication.

File systems are written in Rust, a type-safe, performant,

non-garbage collected language. Bento interposes thin layers

around the Rust file system to provide safe interfaces for both

calling into the file system and calling out to other kernel

functions. Leveraging the existing Linux FUSE interface, a

Bento file system can be compiled to run in userspace by

changing a build flag. Thus, most testing and debugging

can take place at user-level, with type safety limiting the

frequency and scope of bugs when code is moved into the

kernel. Because of this interface, porting to a new Linux

version requires only changes to Bento and not the file system

itself. Bento additionally supports networked file systems

using the kernel TCP stack. The code for Bento is available

at https://gitlab.cs.washington.edu/sm237/bento.

We are using Bento for our own file system development,

specifically to develop a basic, flexible file system in Rust that

we call Bento-fs. Initially, we attempted to develop an equiv-

alent file system in C for VFS to allow a direct measurement

of Bento overhead. However, the debugging time for the VFS

C version was prohibitive. Instead, we quantitatively compare

Bento-fs with VFS-native ext4 with data journaling, to deter-

mine if Bento adds overhead or restricts certain performance

optimizations. We found no instances where Bento introduced

overhead – Bento-fs performed similarly to ext4 on most

benchmarks we tested and never performs significantly worse

while outperforming a FUSE version of Bento-fs by up to 90x

on Filebench workloads. Bento-fs achieves this performance

without sacrificing safety. We use CrashMonkey [34] to check

the correctness and crash consistency of Bento-fs; it passes

all depth two generated tests. With Bento, our file system

can be upgraded dynamically with only around 15ms of

delay for running applications, as well as run at user-level

for convenient debugging and testing. To demonstrate rapid

feature development within Bento, we add file provenance

tracking [26, 35] to Bento-fs and deploy it to a running system.

Bento’s design imposes some limitations. While Rust’s

compile-time analysis catches many common types of bugs,

it does not prevent deadlocks and or semantic guarantees such

as correct journal usage—those errors must be debugged at

runtime. While correctness testing is possible at user-level,

performance testing generally must be done in the kernel. Also,

like other live upgrade solutions, Bento upgrades also require

backward-compatibility of the new code with the previous

data layout on disk—though the file system itself can perform

disk layout changes. The current implementation of Bento

imposes some usability limitations similar to FUSE, such

as only supporting one mounted file system per inserted file

system module. And while we compare Bento-fs performance

to ext4, we should note that Bento-fs is a prototype and lacks

some of ext4’s more advanced features.

In this paper, we make the following contributions:

• We design and implement Bento, a framework that

enables high-velocity development of safe, performant

file systems in Linux.

• We develop an API that enables kernel file systems

written in a type-safe language with both user and kernel

execution and live upgrade.

• We demonstrate Bento’s benefits by implementing

and evaluating a file system developed atop Bento

with ext4-like performance, and show that we can add

provenance support without rebooting.

2 MOTIVATION

Development velocity is becoming increasingly important for

the Linux kernel to adapt to emerging use cases and address

security vulnerabilities. In this section, we describe several

approaches for extending Linux file systems, and outline the

properties of Bento.

2.1 High Velocity is Hard

Linux needs to adapt to support emerging workloads, address

newfound vulnerabilities, and manage new hardware. On

average 650,000 lines of Linux code are added and 350,000

removed every release cycle, resulting in a growth of roughly

1.5 million lines of code per year. Linux file systems are no

exception in needing to adapt — with rapid change in both

storage technologies and emerging application demands.

As a concrete example, consider what is needed to

add a feature like data provenance to a Linux file system.

Increasingly, enterprise customers want to track the source

data files used in producing each data analysis output file to

perform security forensics. While this might be implemented

with existing tools for system call tracking, that would

be incomplete — the file system has more comprehensive

information (e.g., whether two file paths are hard links to

the same inode); a distributed file system can further enable

cross-network forensics. To implement this as a new feature

in the file system, developers have to modify the file system,

test it, and push this modification to production clusters.

The most widely used approach is to directly modify the

kernel source code. Linux has standard kernel interfaces

for extending its key subsystems — e.g., virtual file systems

(VFS) for file systems, netfilter for networking, and Linux

Security Module (LSM) for security features. Sometimes,

it is also possible to add new features using loadable kernel

modules, which can be integrated at runtime without kernel

recompilation or reboot. Several VFS filesystems, including

ext4, overlayfs, and btrfs, are implemented in the kernel source

and can be inserted as loadable kernel modules.

However, high velocity kernel development (including

kernel file system development) is hard to come by. To start

with, kernel modifications are notoriously difficult to get right.

Kernel code paths are complex and easy to accidentally misuse.
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Bug Number Effect on Kernel

Use Before Allocate 6 Likely oops

Double Free 4 Undefined

NULLDereference 5 oops

Use After Free 3 Likely oops

Over Allocation 1 Overutilization

Out of Bounds 4 Likely oops

Dangling Pointer 1 Likely oops

Missing Free 18 Memory Leak

Reference Count Leak 7 Memory Leak

Other Memory 1 Variable

Deadlock 5 Deadlock

Race Condition 5 Variable

Other Concurrency 1 Variable

Unchecked Error Value 5 Variable

Other Type Error 8 Variable

Table 1: Low-level bugs in released versions of OverlayFS, AppAr-

mor, and Open vSwitch Datapath between 2014-2018, categorized as

memory bugs, concurrency bugs, or type errors, and the likely effect

of each bug on kernel operation.

Worse, debugging kernel source code is much harder than user-

level debugging. This is because a kernel debugger operates

below the kernel, typically remotely, and it cannot leverage

Posix APIs such as ptrace. Upgrading kernel modules is also

an intrusive operation. In the case of file systems, this requires

shutting down applications, unmounting the old file system

and remounting the new, and restarting the application. In a

multi-tenant cloud setting, most cloud services are upgraded

live on a daily or weekly basis. To meet four or five nine ap-

plication uptime service-level objectives [33] within a reboot

model, however, kernel changes need to be batched and applied

en masse every few months. Getting needed functionality

upstreamed into Linux, so that it is compatible with the 1.5M

lines of new code being added each year, takes even longer.

To provide intuition into the difficulty of developing and

deploying new kernel features, Table 1 shows an analysis

we conducted of bug-fix git commits from 2014-2018 for

three modules that modify core Linux functionality used by

Docker containers: OverlayFS, AppArmor, and Open vSwitch

Datapath. We divide bugs in these systems into two types. One

set are semantic bugs in the high-level correctness properties

of each module. These can range from mission critical to

configuration errors, but generally impair just the functionality

of the module. These accounted for 50% of the total bugs fixed

in these modules.

The second set concern low-level bugs that are apply to any

C language module, but when found in the kernel can poten-

tially undermine the correctness or operation of the rest of the

kernel. We categorized these as (1) memory bugs, such as NULL

pointer dereferences, out-of-bounds errors, and memory leaks;

(2) concurrency bugs, such as deadlocks and race conditions;

and (3) type errors, such as incorrect usage of kernel types (e.g.,

interpreting error values as valid data). Of the 50% of fixed

bugs that were low-level bugs, we found that 68% are memory

bugs. Of these, half are a type of memory leak. Many of the

bugs occur in error-handling code, e.g., incorrect checking of

return values, missing cleanup procedures. Such bugs are hard

to uncover by testing but can lead to serious impacts on the

integrity of the kernel. Of all identified low-level bugs, 26%

caused a kernel oopswhich either kills the offending process

or panics the kernel. An additional 34% of the analyzed bugs

result in a memory leak, potentially causing out-of-memory

problems or even DoS attack vectors. Many of these low-level

bugs, particularly memory and type errors, result from

inherent challenges of C code and could be prevented if the

programming language had more safety checks.

2.2 Existing Alternatives

Besides directly modifying the Linux kernel, there are two

other approaches to adding functionality to Linux, with their

respective pros and cons.

Upcall (FUSE [17]): One common technique, particularly

for file systems and I/O devices, is to implement new

functionality as a userspace server. A stub is left in the kernel

that converts system calls to upcalls into the server. Filesystem

in Userspace (FUSE) does this for file systems. As opposed

to implementing new file system functionality directly in the

kernel, this isolates low-level memory errors such as use-after-

free to the userspace process. (Low-level bugs can still affect

file system functionality, of course.) Development speed is

faster because engineers can use familiar debugging tools

like gdb. All this comes at a performance cost for metadata-

operations [48]. Our evaluation (§5.2) confirms this finding,

revealing even worse performance overheads than previously

reported, particularly for write-heavy workloads. Additionally,

FUSE file systems can’t reuse many existing kernel features,

such as disk accesses through the buffer cache. Userspace file

systems can mitigate the performance overhead by sharing

mapped memory with the kernel, but this neither fully removes

the performance overhead due to the extra kernel crossing nor

allows the file system to access existing kernel functionality.

In-Kernel Interpreter: Using an interpreter inside the

kernel for a dynamically loaded program in a safe language is

another approach to ensure safety of kernel extensions. Linux

supports eBPF (extended Berkeley Packed Filter) [32], an

in-kernel virtual machine that allows code to be dynamically

loaded and executed in the kernel at predefined points defined

by the kernel. eBPF is used heavily for packet filtering, system

call filtering, and kernel tracing. The idea is to allow kernel

customization in a safe manner. The Linux eBPF virtual

machine validates memory safety and execution termination

before it JIT compiles the virtual machine instructions into

native machine code. As such, eBPF can sandbox untrusted

extensions, but the restrictions placed on eBPF make it very

difficult to implement larger or more complex pieces of

functionality. We argue that untrusted eBPF extensions are not

the right model for kernel file system extensibility, as it is par-

ticularly difficult to imagine implementing mutable file system

operations using eBPF and still enforcing crash consistency.
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These represent about 7% of the low-level bugs found in our

analysis of popular kernel modules.

3 THE BENTO SYSTEM

In this section, we describe the architecture of Bento, explain

how it interfaces with VFS and the rest of the kernel, and detail

how it enables live upgrades and user-level debugging.

3.1 The System Architecture

Figure 1 shows the Bento architecture; the shaded portions

are the Bento framework. Bento is a thin layer that, to the rest

of Linux, operates like a normal VFS file system. The Linux

kernel is unmodified other than the introduction of Bento.

In turn, like VFS, Bento defines a set of function calls that

Bento file systems implement and provides a mechanism for

file systems to register themselves with the framework by

exposing the necessary function pointers. Unlike VFS, Bento

is designed to support file systems written in safe Rust.

Bento consists of three components. First, BentoFS

interposes between VFS and the file system module and acts as

a controller that manages registering and running file systems.

BentoFS is written in C and inserted as a separate kernel

module. The other two components are Rust libraries that are

compiled into the file system module. LibBentoFS translates

unsafe calls from BentoFS into the safe file operations API

that is implemented by the file system. LibBentoKS provides

a safe API for file systems to access kernel services, such as to

perform I/O. The file system itself is written in safe Rust and is

compiled as a Rust static library that includes libBentoFS and

libBentoKS. When a file system module is loaded, it registers it-

self with BentoFS which adds it to the list of active file systems.

3.2 Interacting with VFS

The VFS layer poses a fundamental challenge to memory

safety. For example, VFS file systems allocate a single inode

data structure to hold both VFS and file system-specific data.

When the kernel needs a new inode, it requests one from

the file system which allocates it from its own memory pool.

Both sides access their half of the data structure, and when

done, the kernel releases the inode to the file system so the

memory can be reclaimed. Independent of whether this is a

good design pattern for minimizing kernel memory errors, it

is inconsistent with Rust compile time analysis and therefore

would compromise our ability to prevent memory safety errors

within the file system code itself.

Instead, we define a new interface for safe kernel file

systems. A selection of this API is in Table 2; the rest in the

appendix. The BentoFS module receives all calls from the

VFS layer, determines which mounted file system is the target,

and handles any necessary operations on kernel data structures.

BentoFS then sends requests to the libBentoFS dispatch

function using a similar API to that of the file system, but with

unsafe pointers instead of Rust data structures. LibBentoFS

parses the request, converts pointers to safe data structures,

and calls the correct function in the file system. The key idea is

Bento File Operations API (partial)

bento_init(&mut self, req, devname, fc_info)

bento_destroy(&mut self, req)

bento_read(&self, req, ino, fh, offset, size, reply)

bento_write(&self, req, ino, fh, offset, data, flags, reply)

bento_update_prepare(&mut self) -> Option<TransferOut>

bento_update_transfer(&mut, Option<TransferIn>)

Table 2: A subset of the Bento File Operations API. req includes the

user application’s uid, gid, and pid. reply includes data or error values.

The full API is included in supplementary material.

that the file system’s compiler can statically verify its own data

accesses, including its inode. To create an inode, BentoFS calls

into the file system (via libBentoFS) and gets back an opaque

reference (the inode number). In turn, BentoFS allocates and

returns to VFS a separate kernel inode data structure. BentoFS

never touches the contents of the file system inode.

BentoFS and libBentoFS are responsible for ensuring that

Rust’s safety properties are maintained as memory is passed

across the File Operations API so the assumptions made by the

Rust compiler will be true. When passing references to kernel

memory to the file system, such as data for read and write calls,

BentoFS guarantees that the memory will remain valid until

the call completes and, if a mutable reference is passed, must

ensure that no other thread is modifying the memory. When

passing references to structured data, BentoFS and libBentoFS

also ensure that the memory is correctly structured and never

cast to an incompatible type. Passing ownership across the

File Operations API requires careful handling of the memory

in libBentoFS and is only done during live upgrade (§3.4).

3.3 Interacting with Kernel Services

Bento file systems need access to kernel functionality such as

block I/O for access to underlying storage devices. These ker-

nel interfaces, like those in the VFS layer, are not designed with

type safety in mind and so cannot be directly used by a Bento

file system. Instead, libBentoKS implements safe versions of

kernel data structures and functions needed by file systems.

As an example, we will focus on kernel block I/O. File

systems in Linux access block devices via the buffer cache.

To read from (or write to) a block device, a Linux file system

calls __bread_gfp, passing in a pointer to the block_device

data structure, a block number, the block size, and a page

allocation flag. This function returns a buffer_head data

structure representing the requested block. The block’s data

is represented as a pointer and size in the buffer_head. The

file system can then read and/or write to this memory region.

When the file system is done using the buffer_head, it must

call brelse or buffers can be leaked.

Like many kernel interfaces, kernel block I/O relies heavily

on pointers. However, as described in §2.4, raw pointers

cannot be deferenced in safe Rust, and directly exposing these

pointers to the file system results in safety errors. If the block

I/O functions exposed to the file system accept a pointer, the

block I/O functions cannot be marked safe and the file system
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as a whole cannot be safe.

Exposing kernel services safely. Bento provides wrapping

abstractions for kernel services so they can be used safely by

the file system. These abstractions can be used like any other

Rust data structures and functions. Several of the provided

abstractions are detailed in Table 3.

To be concrete, we address the example discussed above.

We provide a safe BlockDevice abstraction to represent a

kernel block device. A BlockDevice takes the name of the

block device file and the block size; it contains a pointer to

the kernel block device and the block size as fields. It provides

several methods, including a safe bread method that takes a

block number as an argument, performs safety checks, and

calls __bread_gfp using the correct page allocation flag. The

bread method returns a BufferHead that wraps the kernel

buffer_head. A BufferHead method converts the pointer

and size fields into a sized memory region that can be used

safely. That method must use unsafe code to make the sized

memory region out of the unsized pointer and size fields,

but the file system can call the method safely. To prevent

accidental memory leaks, we call the brelse function in the

drop method of the BufferHead wrapper. With this, buffer

management has the same properties as memory management

in Rust: memory leaks are possible but difficult.

LibBentoKS provides synchronization primitives includ-

ing RwLock<T>, a wrapper around the kernel read-write

semaphore. It has the same interface as the Rust standard

library RwLock<T>, a read-write lock that protects data of

type T. To obtain an immutable reference to the protected

data, the user must acquire the read lock; to obtain a mutable

reference, the user must acquire the write lock. ReadGuard

calls up_read in drop and WriteGuard calls up_write in

drop, preventing the user from forgetting to unlock.

In addition libBentoKS provides an implementation of

the Rust global allocator that uses kmalloc and kfree for

small regions (less than 8 pages) and uses vmalloc and vfree

for larger regions. In this way, file system developers can

use dynamically allocated types such as a growable array

(Rust’s alloc::vec::Vec) and collection types (from Rust’s

alloc::collections). LibBentoKS provides TcpStream

and TcpListener to support networked file systems.

These abstractions can, in some cases, add a small amount

of performance overhead. If a kernel function has requirements

on its arguments, the wrapping method likely will need to

perform a runtime check to ensure that the requirements hold.

3.4 File System Upgrade

To enable online upgrades that are transparent to applications

using the file system, we must first identify when it is safe to up-

grade the file system and how to handle long-lived file system

state. If an upgrade occurs while file system operations are still

pending, there may be race conditions where some operations

are executed on the old file system and others on the new, lead-

ing to correctness problems. In addition, any state that affects

the semantic behavior of the file system, such as in-progress

disk requests, file system journals, and TCP connections for

networked file systems, must be correctly preserved across

the upgrade. State that affects performance but not semantics,

such as clean data in caches, can be optionally preserved.

Bento addresses these challenges by ensuring that the old

file system is in a quiescent state and that semantic state is

transferred to the new file system. Bento quiesces the file

system by pausing new calls into the file system module

during the upgrade and waiting for in progress operations to

complete. To achieve this, Bento uses a read-write lock on the

file system connection. All calls into libBentoFS acquire the

read lock, while upgrades acquire the write lock. Therefore,

file system operations can be executed concurrently in normal

mode but will be blocked during an upgrade; the upgrade will

be blocked until previous operations complete.

Second, a constraint on the old file system is that it must

be able to transfer its semantic state to the new file system.

Of course, the specific content of this state will vary from

file system to file system. Each file system defines two data

structures: one that is returned when the file system is removed

and one that is expected when the file system is replacing a

previous live file system. This design pattern, of needing to

write code to support both past and future versions, is common

in cloud settings. During upgrade, ownership of the data struc-

ture is passed from the old file system to the new one. BentoFS

handles passing the data structure from the old file system to

the new file system. The detailed mechanisms involved for

live upgrades are shown in Figure 1 and described below:

1. A new file system upgrade instance is loaded into the

kernel. At module load, it calls into BentoFS to register

itself and indicate that it is an upgrade.

2. BentoFS identifies the file system that needs to be

unloaded and acquires the lock to pause new operations

and wait for existing operations to complete.

3. BentoFS sends a bento_update_prepare request to

the old file system through libBentoFS.

4. The old file system instance handles the

bento_update_prepare request, performing any neces-

sary cleanup and creating and returning its defined output

state transfer struct to BentoFS through libBentoFS.

5. BentoFS sends a bento_update_transfer request to

the new file system through libBentoFS, passing the state

transfer data structure to the new file system.

6. The new file system instance initializes itself using the

provided state and returns.

7. BentoFS modifies the connection state by replacing

the old file system reference with the new file system

reference and releases the write lock, allowing calls to

proceed to the new instance.

3.5 Userspace Debugging Support

Bento also introduces a feature that enables a new file system

to be seamlessly hoisted to userspace for debugging. This

enables developers to leverage gdb and other familiar utilities
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Object Type Method Kernel Equivalent Description

BlockDevice

bread(&self, ...) -> Result<BufferHead> __bread_gfp(...) Read a block from disk

getblk(&self, ...) -> Result<BufferHead> __getblk_gfp(...) Get access to a block

sync_all(&self) -> Result<i32> blkdev_issue_flush(...) Flush the block device

BufferHead

data(&self) -> &[u8] buffer_head->b_data Get read access to data

data_mut(&mut self) -> &mut [u8] buffer_head->b_data Get write access to data

drop(&mut self) brelse(...) Release the buffer

sync_dirty_buffer(&mut self) -> Result<c_int> sync_dirty_buffer(...) Sync a block

GlobalAllocator
alloc(&self, ...) -> *mut u8 __kmalloc(...)/vmalloc(...) Allocate memory

dealloc(&self, ...) kfree(...)/vfree(...) Free allocated memory

RwLock<T>

new(data:T) -> RwLock<T> init_rwsem(...) Create a RwLock of type T

read(&self) -> LockResult<ReadGuard<’_,T>> down_read(...) Acquire the read lock

write(&self) -> LockResult<WriteGuard<’_,T>> down_write(...) Acquire the write lock

TcpStream

connect(addr: SocketAddr) -> Result<TcpStream>

{

sock_create_kern(...)

kernel_connect(...)
Create and connect

read(&mut self, ...) -> Result<usize> kernel_recvmsg(...) Read a message

write(&mut self, ...) -> Result<usize> kernel_sendmsg(...) Send a message

drop(&mut self) sock_release(...) Cleanup the TcpStream

TcpListener
bind(addr: SocketAddr) -> Result<TcpListener>







sock_create_kern(...)

kernel_bind(...)

kernel_listen(...)

Create, bind, and listen

accept(&self) -> Result<(TcpStream, SocketAddr)> kernel_accept(...) Accept a connection

Table 3: Kernel Services API. These are some of the data structures and methods provided to the file system. Methods that take &mut self can

modify the object. Methods that take &self can access but not modify the object.

for higher velocity development. Debugged code can then be

dropped back into the kernel without any modification. Bento

supports this feature by exposing identical interfaces to both

the kernel version and the userspace version of a developed

file system. Whether the file system runs in the kernel or at

userspace is determined by a compilation configuration flag

which specifies which libraries will be linked and how the file

system should register itself during initialization.

Our solution leverages Linux kernel FUSE support to

forward file operations to userspace. By itself, this is not

sufficient — a FUSE file system is not runnable in the kernel.

At a high level, we design our kernel interfaces to mirror

existing userspace interfaces when possible, and implement

userspace libraries to expose additional abstractions otherwise.

Many kernel interfaces can be designed to expose the same

interfaces as userspace abstractions. For example, kernel

read-write semaphores are used the same way as Rust’s

std::sync::RwLock<T> and the kernel TCP stack provides

similar interfaces to Rust’s std::net::TcpStream and

std::net::TcpListener. In these cases, our kernel services

API provides interfaces that are identical to the analogous

userspace interface.

However, some kernel interfaces do not have obvious

userspace analogues. The File Operations API (Table 2),

for example, adds functions to implement state transfer and

passes immutable references to ensure correct concurrency

behavior. Additionally, operations on the backing storage

device are performed differently from the kernel and userspace.

FUSE file systems typically use file I/O to access the storage

device while kernel file systems directly interface with the

kernel buffer cache. Using a file I/O interface in the kernel

would significantly hinder performance and functionality,

adding extra data copies and preventing certain optimizations.

However, there is no standard userspace abstraction that

closely mirrors the kernel buffer cache.

To address this, we provide two additional libraries The

userspace version of libBentoFS translates calls from FUSE

into the File Operations API. The userspace version of

libBentoKS implements a basic buffer cache that uses file I/O

under the hood, providing the BlockDevice and BufferHead

abstractions to Bento file systems when running at user level.

4 IMPLEMENTATION & EXPERIENCES

We have developed Bento as a Linux kernel module for

BentoFS and a Rust library containing both libBentoKS and

libBentoFS in 5240 lines of C and 5072 lines of Rust. The

userspace versions of libBentoKS and libBentoFS are another

986 lines of Rust. The current implementation targets Linux

kernel version 4.15. The file system is compiled as a Rust a

static library, which can be linked with any required C code to

generate the .ko kernel module. Kernel code in Rust cannot use

standard libraries, but we do enable use of the Rust alloc crate.

4.1 BentoFS

We built BentoFS by modifying the existing Linux FUSE ker-

nel module. In place of upcalls, BentoFS communicates with

libBentoFS using function calls. A file system module registers

itself with BentoFS by providing a pointer to the dispatch

function when it is mounted. Like the VFS layer, BentoFS

maintains a list of active file systems, locking the list and adding

and removing entries when file systems are registered or unreg-

istered. This list is additionally locked during a live upgrade.
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Upgrade State Transfer. Ownership of state transfer data

structures must be moved between the Rust file system modules

during an upgrade to allow the new file system instance to take

ownership of state owned by the old file system instance. We

implement this ownership transfer in libBentoFS using the Rust

Box type. When the old file system instance returns its state to

libBentoFS, we create a Box to take ownership of the data and

pass the box as a raw pointer to BentoFS. The new libBentoFS

converts the pointer back to a Box, claiming ownership of the

data before passing it to the file system. Rust deletes the old file

system data structure when it goes out of scope at the end of the

transfer; the old file system is uninstalled in the background.

4.2 Experiences Using Bento

We began this project developing both a Bento version of a file

system and its VFS equivalent in C, as a way to quantify the

performance cost of Bento. However, we eventually stopped

development on the VFS version because implementing

and debugging new features were significantly more time

consuming and difficult than for the Bento version. In VFS, we

were much more likely to accidentally write memory errors,

such as NULL pointer dereferences and memory leaks. These

bugs took much longer to diagnose and fix than bugs in the

Bento version because they would crash the kernel, forcing

us to reboot between tests, and they were difficult to isolate.

We further illustrate our experience developing with Bento

on three axes: functionality, performance, and correctness.

Functionality. Using Bento, we implemented Bento-fs,

a file system designed to have ext4-like performance, in

3038 lines of safe Rust code. Bento-fs is structurally similar

to the xv6 file system, a simple file system included in

MIT’s teaching operating system xv6 [12]. This simplicity

made the xv6 file system an attractive starting point for

our prototype. Bento-fs includes several modifications for

improved functionality and performance. For example, xv6

does not fully support the functionality necessary to run our

benchmarks. Likewise, we added double indirect blocks to

support files up to 4GB, instead of 4MB in xv6.

We also added a provenance feature to Bento-fs. The

architecture of provenance tracking is borrowed from existing

work [26, 35]. It consists of two pieces: a) a file system com-

ponent that tracks file creations, deletions, and opens; and b) a

syscall-level component that tracks the process hierarchy and

operations on open file descriptors, such as dup and sendmsg.

The file system-level component is implemented by logging

information to a special file. To track existing files, ‘create’, ‘re-

name’, ‘symlink’, and ‘unlink’ operations log the user process

ID of the request, the names and inode numbers of relevant

files, any request flags, and, for ‘unlink’, whether or not the file

was deleted. The current implementation does not track hard

links, but adding such support could follow a similar strategy.

Since Bento-fs is not called for every read or write operation

due to kernel caching, we track file accesses by logging ‘open’

and ‘close’ calls, recording the read/write mode of the open call

along with the process ID of the request and the inode number

of the file. If a file is opened as writable while another file

is opened as readable, provenance tracking assumes that the

writable file’s contents depends on the readable file’s contents.

The syscall-level component tracks process creation

through ‘fork’/‘exec’ and operations on open file descriptors

so the provenance system can correctly handle instances

where a process gains access to a file without using the open

syscall. This component is implemented as a collection of

eBPF programs that log the relevant system calls, namely

‘clone’, ‘exec’, ‘pipe’, ‘dup’, ‘dup2’, and ‘sendmsg’. ‘Open’

calls are also logged so the file descriptors used in the system

calls can be matched to the file system tracking on file names.

Overall, these features were added to Bento-fs in 145 lines

of code in two weeks of development. In our development pro-

cess, we never caused a crash of the operating system and were

able to test and debug code within minutes of making changes.

In fact, many of our changes worked correctly once they com-

piled, something that has not been true of our C development.

Performance. To be able to bound the overhead imposed by

Bento by comparing it to ext4, we added various optimizations

to Bento-fs to match ext4 behavior. We particularly noticed

overhead on multi-threaded and metadata intensive bench-

marks. The xv6 free inode and free block implementations, for

example, are needlessly inefficient. The journal used by xv6 is

small by default and assumes that each operation will use the

maximum number of blocks, limiting it to only three concur-

rent operations at once. It also commits operations to the device

synchronously when transactions are completed. We increased

the size of the log and leveraged the Linux journal module

JBD2 (also used by ext4). In JBD2, transactions request the

required number of blocks and commit in the background. 1

Similarly, xv6 uses an inefficient list structure for directories.

We added tree-structured directories that use the hash of the

file name to locate directory entries.

Most of the code changes for the journal modifications were

in libBentoKS and mkfs. Tree structured directories were

implemented within Bento-fs in around 800 lines of code, split

across utility functions for the hash tree and directory lookup,

linking, and reading. Having access to dynamically allocated

data structures from Rust’s alloc crate simplified this imple-

mentation. The tree structure uses the B-tree implementation

provided by the crate and the directory lookup, linking, and

reading code use Rust’s dynamically allocated array Vec.

Correctness. We tested the correctness of our file system

using CrashMonkey [34]. It generates workloads based on

operations supported by the file system, and exhaustively

tests all combinations up to a defined sequence length. We

ran the seq-2 benchmarks [34], which test sequences of two

operations, using the operations supported by Bento-fs. This

resulted in 47314 benchmarks in total. CrashMonkey did

1Although we implemented a log manager for the userspace version, it

is likely less optimized than the kernel version, and there may be additional

ways to improve userspace write performance that we have not yet discovered.

72    19th USENIX Conference on File and Storage Technologies USENIX Association



not find any crash consistency bugs in Bento-fs. It found a

known bug from the FUSE kernel module in the C code used

in BentoFS where opening a directory then calling rmdir

followed by mkdir on the directory name before closing it

resulted in an unusable directory due to inode reuse. We fixed

this by always allocating a new inode during directory creation.

The provenance extension to Bento-fs was also used by

two groups of students to create two applications in the

context of a class. One of these applications automatically

recreated derived files when input files changed, specifically

recompiling an executable based on the input C files, inspired

by past work on transparent make [47]. The other application

performed automatic directory synchronization, syncing files

in a local directory to remote storage. In these student projects,

we found that Bento was robust enough to support a smooth

development experience.

5 EVALUATION

Our evaluation of Bento aims to answer several questions: a)

How well does Bento-fs perform on different workloads? b)

How robust is the file system under crash consistency testing?

and c) How expensive are live upgrades?

5.1 Experimental setup

Baselines. We compare: a) ext4-o: ext4, the default file system

on most Linux versions, using the default data=ordered

option with metadata journaling, b) ext4-j: ext4 with data

journaling (data=journalmode) c) Bento-fs, and d) Bento-fs

running in userspace. We focus our evaluation on ext4 with

journaling because Bento-fs also implements data journaling.

Note that Bento-fs has implemented only a subset of ext4’s

optimizations. The userspace version of Bento interacts with

the storage device by opening it with the O_DIRECT flag.

Environment. All experiments were run on a machine with

Intel Xeon Gold 6138CPU (2 sockets, each with 20 cores, 40

hyperthreads), 96 GB DDR4 RAM, and a 480 GB Intel Optane

SSD 900P Series with 2.5 GB/s sequential read speed and

2 GB/s sequential write speed. All benchmarks were run using

the SSD as the backing device using the cores and memory

on the socket connected to the SSD.

5.2 Microbenchmarks

We ran microbenchmarks from the Filebench benchmarking

suite. The workloads included sequential read, random

read, sequential write, random write, and create and delete

benchmarks. All workloads except for sequential write are run

with both 1 thread and 40 threads. Read and write benchmarks

were executed on a 4GB file using four different operation

sizes: 4, 32, 128, and 1024KB. The create workloads create

800,000 16KB files in the same directory, allocating half

before the start of the benchmark. The delete workloads delete

300,000 16KB files across many directories, with an average

of 100 files per directory. All benchmarks were run 10 times,

and averages and standard deviation were calculated. Table 4

shows the results on ext4 with both the default metadata

journaling and data journaling, Bento-fs, and Bento-user, the

userspace version of Bento-fs. Results are colored based on

the performance compared to ext4.

Reads. Reads on all three file systems have similar

performance for all sizes and both single-threaded and

40-threaded, and large reads achieve greater bandwidth than

provided by the device. This is because data is cached quickly

after the first read, and all subsequent reads hit in the page

cache. The userspace version uses the kernel cache in the

FUSE kernel module before forwarding requests to userspace,

so it performs similarly to direct kernel implementations.

Writes. For small write benchmarks, Bento-fs and ext4-j

have fairly similar write performance. Bento-fs has higher

performance than ext4-j and similar performance to ext4-o

on large write benchmarks due to slight implementation

differences. Whereas ext4-j logs blocks to the journal on

the write syscall path, Bento-fs logs asynchronously in the

writeback cache when data is flushed. This performance

difference is more prominent for single-threaded benchmarks

with large writes because these are more likely to stress the

journal in ext4-j without stressing the writeback cache. For all

cases, the user-level implementation is much slower because

it incurs additional kernel crossings and issues block I/O from

userspace. Each operation must first pass from the kernel back

to the userspace, which will then be translated into several

read/write operations on the storage device. Each system call to

the device file must in turn pass through the VFS layer to reach

the kernel block cache; this is much slower than direct accesses

to the kernel block cache by a kernel file system. Additionally,

Bento-user does not have access to the JBD2 module, so it uses

a simpler journal that is less efficient on large write workloads.

This journal is also affected by slow userspace block I/O.

Creates+Deletes. On the create and delete benchmarks,

ext4-j and Bento-fs have similar performance. Bento-fs outper-

forms ext4-j on single-threaded creates, likely due to the write

speedup. Ext4-o outperforms Bento-fs on multi-threaded cre-

ates. Both ext4 modes and Bento-fs outperform the user-level

file system for the same reason as the write benchmarks.

5.3 Application Workloads

Next, we run three application-style workloads from

Filebench, four applications, and two workloads each on two

different key-value stores. All workloads were run 10 times

and averages and standard deviation were calculated. From

Filebench, we ran ‘varmail’, ‘fileserver’, and ‘webserver’. (1)

The ‘varmail’ mail-serving workload uses 16 threads to create

and delete 1000 files in one directory and performs reads and

writes followed by fsyncs to these files. (2) The ‘fileserver’ file-

serving workload uses 50 threads to create and delete 10,000

files across 500 directories and executes reads and appends

to these files. (3) The ‘webserver’ web-serving workload

uses 100 threads to read from 1000 small (16KB average size)

files across around 50 directories and append to an operation

log. All benchmarks execute for one minute. For application
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Benchmark ext4-o ext4-j Bento-fs Bento:ext4-j Bento-user user:ext4-j

seq. read, 1-t, 4k 286 (±2) 287 (±2) 289 (±4) 1.01 290 (±2) 1.01

seq. read, 1-t, 32k 1811 (±20) 1796 (±21) 1817 (±18) 1.01 1807 (±18) 1.00

seq. read, 1-t, 128k 4170 (±55) 4071 (±75) 4119 (±82) 1.01 4112 (±50) 1.01

seq. read, 1-t, 1024k 6434 (±129) 6580 (±197) 6730 (±197) 1.02 6510 (±160) 0.99

seq. read, 40-t, 4k 429 (±7) 433 (±9) 436 (±7) 1.00 429 (±9) 0.99

seq. read, 40-t, 32k 3372 (±65) 3561 (±332) 3488 (±184) 0.98 3417 (±56) 0.96

seq. read, 40-t, 128k 17668 (±143) 17878 (±162) 17784 (±132) 0.99 17833 (±168) 1.00

seq. read, 40-t, 1024k 21407(±1774) 22024 (±101) 22082 (±339) 1.00 22136 (±101) 1.00

rand. read, 1-t, 4k 150 (±1) 149 (±2) 149 (±2) 1.01 149 (±3) 1.00

rand. read, 1-t, 32k 1037 (±6) 1044 (±6) 1049 (±8) 1.00 1041 (±6) 0.99

rand. read, 1-t, 128k 2901 (±20) 2955 (±36) 2957 (±33) 1.00 2908 (±31) 0.98

rand. read, 1-t, 1024k 5836 (±68) 5961 (±152) 5967 (±116) 1.00 5890 (±131) 0.99

rand. read, 40-t, 4k 223 (±24) 211 (±2) 217 (±5) 1.02 218 (±5) 1.02

rand. read, 40-t, 32k 1717 (±34) 1712 (±34) 1737 (±37) 1.01 1738 (±31) 1.02

rand. read, 40-t, 128k 9265 (±104) 9232 (±70) 9206 (±132) 1.00 9224 (±55) 1.00

rand. read, 40-t, 1024k 21635 (±46) 21650 (±49) 21637 (±50) 1.00 21569 (±54) 1.00

seq. write, 1-t, 4k 234 (±7) 172 (±3) 252 (±6) 1.46 3.7 (±0.0) 0.02

seq. write, 1-t, 32k 860 (±86) 409 (±1) 1003 (±65) 2.45 4.0 (±0.1) 0.01

seq. write, 1-t, 128k 1058 (±109) 430 (±44) 1774 (±352) 4.12 4.0 (±0.1) 0.01

seq. write, 1-t, 1024k 1365 (±0) 469 (±62) 1843 (±329) 3.93 4.0 (±0.0) 0.01

rand. write, 1-t, 4k 142 (±3) 120 (±1) 139 (±2) 1.16 8.5(±0.14) 0.07

rand. write, 1-t, 32k 875 (±7) 395 (±22) 898 (±9) 2.27 10.1 (±0.0) 0.03

rand. write, 1-t, 128k 1952 (±16) 330 (±18) 2167 (±62) 6.55 10.3 (±0.1) 0.03

rand. write, 1-t, 1024k 3051 (±35) 309 (±8) 3789 (±56) 12.24 10.1 (±0.3) 0.03

rand. write, 40-t, 4k 230 (±3) 208 (±4) 241 (±14) 1.15 9.2 (±0.1) 0.04

rand. write, 40-t, 32k 1237 (±46) 357 (±61) 1500 (±34) 4.20 10.0 (±0.2) 0.03

rand. write, 40-t, 128k 1414 (±43) 303 (±10) 1894 (±39) 6.24 10.4 (±0.1) 0.03

rand. write, 40-t, 1024k 1391 (±49) 296 (±13) 1924 (±78) 6.50 11.0 (±0.0) 0.04

create, 1-t, ops/s 12510 (±418) 8564 (±186) 12087 (±390) 1.41 194 (±5) 0.02

create, 40-t, ops/s 34377(±2157) 17858 (±0) 18819 (±663) 1.05 216 (±2) 0.01

delete, 1-t, ops/s 23331 (±878) 22913 (±0.3) 24997 (±0) 1.09 827 (±11) 0.03

delete, 40-t, ops/s 60493(±7088) 63253(±7101) 57253(±6258) 0.91 808 (±27) 0.01

Table 4: Performance results for ext4 in data=ordered mode (ext4-o), and data=journal mode (ext4-j), Bentofs, and a userspace version

of Bento-fs (Bento-user) on Filebench microbenchmarks using varying operation sizes and 1 and 40 threads. Reads and writes are measured

in MBps. Reads and writes are cached in the kernel and so can outperform the 2.5 GBps and 2.0 GBps device read and write speed. Results

are averaged over 10 runs and standard deviations are included in parentheses. Color indicates performance relative to ext4-j. Bento-fs performs

similarly to ext4-j for most benchmarks. Both significantly outperform Bento-user.

workloads, we used ‘tar’, ‘untar’, and ‘grep’ on the Linux

kernel source code and ‘git clone’ on the xv6 source repository.

We also evaluate read and write workloads on the Redis [41]

and RocksDB [43] key-value stores. Redis is an in memory

key-value store used in distributed environments. By default, it

periodically dumps the database to a file but can be configured

to also log all operations to an append-only-file (AOF) for

persistence. In our evaluation, we use the AOF and configure

it to sync every second. We run the ‘set’ and ‘get’ workloads

from redis-benchmark, the provided benchmarking utility,

for 1,000,000 operations using 100B values. RocksDB is a

persistent key-value store developed by Facebook based on

Google’s LevelDB [14]. Using db_bench, the included bench-

marking utility, we evaluate the ‘fillrandom’ and ‘readrandom’

workloads each for 1,000,000 operations using 100B values.

Filebench: Figure 2 presents the application-style

Filebench results for the three file systems described earlier,

plus Bento-fs with file provenance (Bento-prov). Across all

benchmarks, Bento-fs (with or without provenance) outper-

forms Bento-user by 10-400x due to the reasons discussed

earlier. For varmail and webserver, ext4-j and Bento-fs exhibit

similar performance, but for fileserver, Bento-fs significantly

outperforms ext4-j due to an unintentional quirk in the

benchmark. Filebench ‘fileserver’ executes many sequences

of create-write-delete operations, but it does not sync the

file before the file is deleted. With writeback caching, Bento

recognizes that the pages belong to files that no longer exist,

and drops the writes. In ext4-j, on the other hand, writes are

associated with the appropriate location on the storage device

during the write syscall path by mapping the written page

to the appropriate buffer head. This writeback code path

therefore has no need to identify the written file and executes

the block I/O regardless of whether the file exists or not. Like

Bento-fs, ext4-o is able to drop the writes to the deleted files

so both file systems show similar performance.

Applications: Figure 3 shows the results for application
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(a) Create+delete operations in ops/s. (b) Synced writes with 10-threads in MBps.

Figure 5: Performance during an upgrade from Bento-fs to Bento-prov, a provenance-tracking version of Bento-fs. At 0.5 seconds, Bento-fs

is upgraded to Bento-prov. The system experiences around 15ms of downtime.

drivers. We chose to use Rust instead as it has lower runtime

overhead and provides the additional benefit of bug prevention

in addition to sandboxing errors. Software verification is a

powerful tool for producing bug-free kernel code, and it has

been shown that a simple, single-threaded file system can be

verified [45]. Extending that work to handle concurrency and

high performance file systems is still ongoing.

Moving kernel features to userspace. Microkernel design,

where kernel services run in userspace, is another way to

speed operating system development [1, 25] especially when

safety and/or development velocity are more important than

raw performance. Filesystem in Userspace (FUSE) is a good

example in the Linux file system context. Many file systems

have been developed in FUSE; when people need performance,

they often re-implement the system inside the kernel [10, 19]

using VFS. With Bento, developers no longer need to choose

between performance and development velocity.

A related approach is to run the userspace OS service on

dedicated processor cores, where applications communicate

with the service via asynchronous message queues in shared

memory [4,7,22,31]. To date, this approach has only been pro-

posed and not implemented for file systems [28]. Performance

can often be competitive with an equivalent kernel implemen-

tation, except when processors need to busy wait or when the

system needs page remapping for efficient zero copy I/O.

Rump kernels (or anykernels) enable running unmodified

kernel code as userspace libraries by hijacking system calls

and providing userspace implementations of necessary kernel

internals. They are used for untrusted execution of kernel code,

e.g., when mounting an untrusted file system, or userspace

debugging. Implementations exist for NetBSD as a rump

kernel [21] and Linux as the libOS [46] and Linux Kernel

Library [39] projects; similarly, User Mode Linux [15] enables

running a Linux kernel as a userspace process.

OS live upgrade. There are three main commercially avail-

able tools for live upgrade of Linux systems: ksplice [3, 36],

kpatch [38], or kGraft [37]. All three perform live upgrade of

Linux kernel diffs and focus on security patches that do not

modify data structure layout. The internals of each approach

differ, but all three reroute calls from modified functions to new

functions. Some research systems provide support for upgrade

of more complex components. Most similar to Bento’s design

is K42 [5], a research operating system that enables upgrade of

modular components by quiescing the component then trans-

ferring state to the new instance and updating references. PRO-

TEOS [18], another research operating system, also supports

live upgrade of modular components. DynAMOS [29] and LU-

COS [11] enable live upgrade of complex components in Linux

without the need for state quiescence by using shadow data

structures and virtualization, respectively, to maintain state.

Stackable file systems. Stackable designs construct com-

plex file systems by stacking layers of functionality on top of

simple base file systems, enabling high velocity development.

File system stacking is natively supported by VFS and is used

by the overlay file system and eCryptfs, but these file systems

still suffer from the velocity problems caused by kernel C

code. FiST [50] proposed a framework for development of

portable stackable file systems written in a new high-level

language, augmented with C code. This improves velocity

by reducing the complexity of code written by developer, but

cannot support complex file system data structures and cannot

provide safety guarantees about the C code.

7 CONCLUSION

Bento is a framework for high velocity development of

Linux kernel file systems that enables several goals: safety,

performance, generality, compatibility with existing operating

systems, ability to do live upgrade, and support for easy debug-

ging. Bento provides these properties for file systems written

in Rust, by translating Linux interfaces into safe interfaces

with restricted memory sharing, supporting live upgrade with

state transfer, and exposing identical interfaces to kernel and

userspace file systems for userspace debugging. We implement

Bento-fs, a simple file system using Bento and show that it has

similar performance to ext4 and significantly outperforms the

version of Bento-fs compiled to run in userspace. We develop

a provenance tracking version of Bento-fs, and show that we

can transparently upgrade Bento-fs to it with only 15 ms of

service interruption to running applications.
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API Function Description

bento_init(&mut self, req, devname, fc_info) Initialize the file system.

bento_destroy(&mut self, req) Destroy the file system.

bento_lookup(&self, req, parent, name, reply) Lookup a file

bento_forget(&self, req, ino, nlookup) Forget lookups of a file

bento_getattr(&self, req, ino, reply) Get attributes

bento_setattr(&self, req, args..., reply) Set attributes

bento_readlink(&self, req, ino, reply) Read a symbolic link

bento_mknod(&self, req, parent, name, mode, rdev, reply) Create a file node

bento_mkdir(&self, req, parent, name, mode, reply) Create a directory

bento_unlink(&self, req, parent, name, reply) Unlink a file

bento_rmdir(&self, req, parent, name, reply) Remove a directory

bento_symlink(&self, req, parent, name, link, reply) Create a symbolic link

bento_rename(&self, req, parent, name, newparent, newname, flags) Rename a file

bento_link(&self, req, ino, newparent, newname, reply) Create a hard link

bento_open(&self, req, ino, flags, reply) Open a file

bento_read(&self, req, ino, fh, offset, size, reply) Read data from a file

bento_write(&self, req, ino, fh, offset, data, flags, reply) Write data to a file

bento_flush(&self, req, ino, fh, lock_owner, reply) Called on each close of a file

bento_release(&self, req, ino, fh, flags, lock_owner, flush, reply) Called on the last close of an open file

bento_fsync(&self, req, ino, fh, datasync, reply) Sync a file

bento_opendir(&self, req, ino, flags, reply) Open a directory

bento_readdir(&self, req, ino, fh, offset, reply) Read a directory

bento_releasedir(&self, req, ino, fh, flags, reply) Called on the last close of a directory

bento_fsyncdir(&self, req, ino, fh, datasync, reply) Sync a directory

bento_statfs(&self, req, ino, reply) Get file system statistics

bento_setxattr(&self, req, ino, name, value, flags, position, reply) Set extended attributes of a file

bento_getxattr(&self, req, ino, name, size, reply) Get extended attributes of a file

bento_listxattr(&self, req, ino, size, reply) List extended attributes of a file

bento_removexattr(&self, req, ino, name, reply) Remove an extended attribute of a file

bento_access(&self, req, ino, mask, reply) Check file permissions

bento_create(&self, req, parent, name, mode, flags, reply) Create and open a file

bento_getlk(&self, req, ino, fh, lock_owner, start, end, typ, pid, reply) Test for a file lock

bento_setlk(&self, req, ino, fh, lock_owner, start, end, typ, pid, sleep, reply) Acquire a file lock

bento_bmap(&self, req, ino, blocksize, idx, reply) Map a block index within a file

bento_update_prepare(&mut self) -> Option<TransferOut> Prepare to be removed during a live upgrade

bento_update_transfer(&mut, Option<TransferIn>) Initialize during a live upgrade

Table 5: The full File Operations API, based on the FUSE lowlevel API with bento_update_prepare and bento_update_transfer added for live

upgrade. File systems implement a subset of the provided functions. The req includes the requesting application’s user id, group id, and process

id. The reply data structures are used to return data or error values.
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