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ABSTRACT

Polymer-based composite strain gauges are a quickly expanding technology area that exhibits
advantages such as large strain capacity and high sensitivity to changes in strain. These strain
gauges use an inert matrix embedded with one or more conductive fillers to exploit the elasticity
of the matrix and the electrical conducting properties of the filler materials. However,
determining the optimal composition of the filler materials for a particular application can be a
challenging and iterative process. In the present work, the composition of a nano-nickel/silicone
composite gauge was optimized based on four independent design parameters related to both
mechanical and electrical performance of the gauge. Specifically, the critical impedance, critical
strain, strain to failure, and initial impedance of the gauges were optimized by varying the weight
ratios of Libra Gloss silicone base material, nickel nanostrands, and nickel-coated carbon fibers.
The approach leveraged a combination of black-box design space modeling and multi-objective
Bayesian optimization algorithm. The data from tensile tests were analyzed and compositions for
a new optimal combination of parameters were found. This methodology was used to find
transducer compositions that were appropriate for high strain, low-cycle wearable applications in
biomechanical measurement.
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1. INTRODUCTION

Characterizing a novel material, regardless of the intended application, can quickly become a
process that is expensive in terms of time and/or money. The number of parameters and design
objectives to consider can become prohibitively large depending on the complexity and accuracy
needed in the models of the material. This work attempts to reduce the time and number of
iterations needed to confidently find an optimal composition of a tri-phasic composite by
systematically exploring the material’s design space efficiently using a multi-objective Bayesian
optimization algorithm.
Polymer-based composite strain gauges are desirable for biomechanical measurement
applications because of their large strain capacity and their sensitivity to changes in strain [1, 2] .
A variety of different composites have been developed [3-17]; the bulk of which use an inert
matrix embedded with a conductive filler to exploit the elasticity of the matrix and the electrical
conducting properties of the filler material. Currently there is a wide variety of high deflection
strain gauges with a vast range of properties. This makes certain strain gauges more useful for
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different applications. However, one does not necessarily have to use a different strain gauge to
find the best sensor for their intended application. Most high deflection strain gauges are a
composite material, and, therefore, the proportions of the materials can be altered to elicit a
spectrum of mechanical and electrical properties. For example, a higher proportion of electrically
conductive filler materials in the composition for a polymer strain gauge might simultaneously
enhance the electrical sensitivity for a particular range of strain, decrease the sensitivity for other
ranges of strain, increase the overall mechanical stiffness of the gauge, and decrease the strain to
failure for the gauge. Thus, a significant challenge in working with this category of sensors is to
identify an optimal composition that achieves both the mechanical and electrical properties
appropriate to a particular application [18, 19].

Figure 1. SEM of NiNs

This work looks at a tri-phasic silicone/nickel composite [18, 20-23] and optimizes the
proportions of two different nickel filler materials -nickel nanostrands (NiNs; Error! Reference
source not found.) and nickel coated carbon fiber (NCCF, Error! Reference source not
found.) based on four distinct electrical and mechanical design goals. The composition is
iteratively optimized using a combination of black-box design space modeling and a multi-
objective Bayesian optimization algorithm.
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Figure 2. SEM of NCCF

The influence of the composition of a composite made up of a gloss clear silicone from Zodiac
(___ ) matrix with NCCF and NiN filler materials on multiple mechanical/electrical properties
are studied. This paper focuses on optimizing parameters using a statistical based approach that
simultaneously optimizes multiple design spaces. To match the assumptions made by the multi-
objective Bayesian optimization algorithm, no assumptions about the local behavior of the
objective spaces are made while estimating the objective functions. Therefore, a local surface
estimation is used to develop the Gaussian processes used in the optimization. This work aims to
optimize the critical impedance, critical strain, strain to failure, and initial impedance for a
specific formulation of a polymer-based high-deflection strain gauge using a multi-objective
Bayesian optimization algorithm.

An approach based on Bayesian multi-objective optimization is flexible enough to take many
inputs and create a Pareto front of solutions for numerous objective functions where there is no
prior analytical knowledge of the objective spaces; this allows researchers to take a black-box
approach that requires less objective space samplings than a grid search approach [24]. Objective
functions in Bayesian multi-objective optimization may also be multimodal or non-convex [25,
26]; no assumptions about the curvature of the objective spaces are made.

2. EXPERIMENTATION

Data from tensile tests are analyzed and compositions for an optimal combination of parameters
are found using a Bayesian multi-objective optimization approach. This approach is flexible
enough to take many inputs and create a Pareto front of solutions for numerous objective functions
where there is no prior knowledge analytical knowledge. Objective functions in Bayesian multi-
objective optimization may also be multimodal or non-convex.

2.1 Making Samples

High-deflection strain gauges were made by mixing the requisite amount of NCCF and surfactant
with the silicone. The NCCF were screened and mixed with a surfactant to increase their
incorporation into the silicone. NiNs and catalyst were finally added to the mixture before forming
the samples in an aluminum mold. The mold is vacuum sealed and the composite mixture is cured
for 1 hour and 20 minutes at 74° C. To eliminate variation caused by different people
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manufacturing the sensors, all sensors were manufactured by one individual throughout the study.
Because nothing was known a priori about the objective functions, a pseudo-random set of five
compositions was used to seed the optimization algorithm. These compositions were determined
using Latin hypercube sampling

2.2 Testing Samples

For each test, a sample was mounted into an Instron 3340 Series single column tensile tester
(Norwood, Massachusetts, USA) using a 500 N load cell and clamps with copper leads connecting
the sensor into a voltage divider, seen in Error! Reference source not found.. The sensor was
electrically isolated from the metallic tester by covering the clamp faces with a natural rubber
padding prior to testing. The circuit was excited with a 1-volt square wave at 50 Hz. The voltage
source and measurement tool were provided through an Analog Discovery (Agilent, Inc., Pullman,
Washington, USA). The voltage drop across the sample was sampled at 1000 Hz with a DAQ 9171
(Texas Instruments, Dallas, Texas, USA). Displacement data was recorded by the Intron tensile
tester sampling at 10 Hz. A minimum of five sensors of each composition were tested. Sensors
were stretched to mechanical failure at a constant 4.23 mm/s.

Figure 3. Experimental set up

Data was then collected from the resulting electrical impedance versus mechanical strain plot of
the test. Four data points were taken from each plot: initial impedance, ultimate strain, critical
impedance, and critical strain. The critical impedance was defined as the characteristic peak in
impedance of the impedance vs strain curve at low strains before the impedance decreased linearly
(Figure 4a). The critical strain was defined as the strain at which the critical impedance occurs
(Figure 4b). For this composite sensor, the initial impedance, critical impedance and strain to
failure are to be maximized, and the critical strain is to be minimized.
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Figure 4. Electrical impedance versus mechanical strain of strain gauge

2.3 Bayesian Optimization

The optimization process fit a surface to each parameter of interest separately and used a multi-
objective Bayesian optimization algorithm to estimate a 4-dimensional Pareto front of candidates
for a new optimal composition. Each objective function was fit with a multivariate polynomial as
a function of the weight percentages of NiNs and NCCF using Scikit-Learn (more info). A pipeline
consisting of Scikit-Learn’s PolynomialFeatures, StandardScaler, and LinearRegression functions
created and stored the models. Four objective function polynomials were then optimized using a
Bayesian approach based on the Python class MOBOpt [27]. The algorithm maximizes the
objective functions, therefore objective functions that were to be minimized were negated
beforehand. This approach optimized surrogate functions instead of the true objective functions
with a genetic algorithm, which greatly decreased the requisite number of objective function calls
in the algorithm. The optimization algorithm used an expected hypervolume improvement metric
in NGSA-II to find the Pareto front of a population of 100 members. NSGA-II uses an elitism
based on non-dominated sorting method for ranking and sorting each individual. Also uses a
crowding distance approach in its section operator for keeping the diversity among the obtained
Pareto optimal solutionsThe surrogate functions used in the actual optimization were Gaussian
processes. These sets of functions are exact distributions over functions that were characterized by
their mean and covariance functions [28]. In other words, they were functions that returned the
mean and variance of the Gaussian distribution of the function at any point in the design space.
The Matern kernel was used in the Gaussian processes choosing v = 1.5.

Because the objective functions were iteratively approximated, this process quickly found an
optimum while accurately estimating the curvature of the different objective spaces with
polynomial approximations. Balancing exploration and exploitation, this approach increased the
confidence of finding a true, global maximum while avoiding local maxima.

In each iteration, researchers chose one to three compositions from the Pareto front to test and
included its data in the next iteration in the optimization process. One composition was selected if
the Pareto front was continuous and centered around one location in the design space. Additional
compositions were selected if the Pareto front in the design space is noncontinuous. A constrained
optimization technique was used to bound the search area to the ranges of weight percentages of
NiNs and NCCF that had been previously tested. Compositions outside of these bounds have been
experimentally found to result in gauges that produce no electrical output or are too brittle to use
as strain gauges.
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Figure 5. Representative impedance versus strain plot

In each iteration, the genetic algorithm ran for 250 iterations. Due to the construction of the
MOBOpt class, a convergence criterion is not required but a higher number of iterations is needed
to ensure adequate convergence of the majority of the population. The algorithm’s convergence
criterion is as follows: once the design space of the Pareto front consists entirely of compositions
that have been tested an optimum has been found.
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A total of 7 iterations were necessary for the Pareto front to meet the convergence criterion. A total
of 21 different compositions were tested; this includes the four seeding compositions to start the
algorithm and 16 additional compositions. The process included five noncontinuous Pareto fronts
that were sampled multiple times. Iterations and 7 resulted in continuous Pareto fronts that required
one sample. These two fronts were also localized to one composition with little variance within
the population. In each iteration, the Pareto front consisted of the entire 100 member population
after the 250 iterations were performed.

Error! Reference source not found. shows the initial objective spaces after the seeding
compositions were tested. The algorithm systematically explored the design space for the first 4
iterations and approximated the optimal value for the remaining two iterations. Each objective
function adequately described with a 2-degree polynomial. The curve fit was fitted with the lowest
degree polynomial where the RMSE no longer decreased. All subsequent iterations were fitted in
the same fashion. Five out of the seven iterations resulted in a noncontinuous Pareto front that was
sampled in multiple locations.
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The final objective functions are shown in Figure 7. All objectives were fitted with a 5-degree
polynomial. Three additional compositions were tested after finding the optimal value to ensure
the curve fitted objective functions’ accuracy across the design space.

It was found that by optimizing the objective functions in 7 iterations, the parameters of interest
were changed by the amounts shown in Error! Reference source not found.. Each of the four
parameters of interest improve from the initial seeding compositions. With the additional
compositions used to fit the models, the expected values from the model accurately predicted the
experimental averages. The final models of the four objectives predicted the initial impedance,
strain to failure, critical impedance, and critical strain as 769 Ohms, 0.794, 10239 Ohms, 0.0428,
respectively. The error of the models’ for the initial impedance, strain to failure, critical impedance,
and critical strain were 211%, 23%, 221%, 30%, respectively. The initial impedance improved an

average of over the 7 iterations. The strain to failure increased by %, the critical
impedance increased by %, and the critical strain decreased by %.
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Figure 6. Initial objective functions
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Figure 7. Final objective spaces

4. CONCLUSIONS

The optimum that was found adequately found values near the extrema of each objective
function. The final value of the initial impedance was, from the shape of the final curve fit of the
initial impedance’s objective function, a local maximum whereas the failure strain and critical
impedance settled near the predicted global maximum. The critical strain, which was the only
objective to be minimized, settled near the bottom of the lowest valley in the design space.

The final state of the objective space models are mostly intuitive while some predictions will
contain some error. For example, a sensor with 7% NiNs, and 37% NCCEF intuitively will not
have a high initial impedance yet the model predicts otherwise. Intuitively, more conductive
filler material should result in a sensor with lower impedances because there is more material to
help conduct a current. This shows that the model is still imperfect, but the aim of this work is to
quickly determine an optimum with as few direct samplings (i.e. making and testing sensors) of
the objective functions as possible by optimizing Gaussian processes of the fitted objective
spaces. This means the final fitted models will contain some errors in their predictions; however,
researchers can be confident in their solution. Further testing of the design space confirmed that

the predicted initial impedance at this composition was incorrect.
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Once the algorithm determined an optimal composition, three additional compositions were
tested in areas that were not searched during the optimization process to ensure that the model
accurately predicts those areas of the design space as well. The models did not change at the
extrema as a result of these additional data. The additional data, however, strengthened the
conclusions of the optimization process: a true global optimum was found using the algorithm
outlined in this work.

Table 1. Results of optimization experiment

Composition Initial Critical Critical Ultimate
NiNs wt% NCCF Impedance | Impedance Strain Strain
wt%
35 4 Initial 77 249 0.055 0.83
37 4 Initial 432 1127 0.052 1.30
33 5 Initial 163 588 0.046 1.22
30 6 Initial/Final 247 3194 0.033 1.03

This procedure may save researchers valuable time due to the limited number of iterations and
total number of compositions that were required to find the optimal composition. If a grid search
approach was taken over the bounded design space (28-37 wt% NiNs, and 3-7 wt% NCCF) a
total of 36 compositions would have to be tested for a resolution of 1.0 wt% in each parameter.
With a resolution of 0.5 wt%, a total of 72 compositions would have to be tested. Compared to
these two approaches, the multi-objective Bayesian optimization approach found an optimal
value faster and with greater accuracy. If a grid of 1.0 wt% resolution is used, the researcher
cannot confidently assume that the true optimal value lies on a point in the grid. Thus, additional
compositions around the best candidate solution would have to be tested to ensure the true
optimum is found. The multi-objective Bayesian optimization approach uses the objective
functions as continua and thus inherently has a finer resolution over a grid search approach.

A few limitations are noted for this study. Variance between sensors may be due to a nonuniform
dispersion of nanoparticles either before or after deposition of the composite material. NCCF
was seen to form into hardened balls if not sufficiently screened.

A study of the influence of an electrically conductive polymer composite’s filler material on its
performance was conducted. It was found that by optimizing the objective functions in 7 iterations,
the parameters of interest were changed by the amounts shown in Error! Reference source not
found.. Several objectives pertaining to the mechanical and electrical properties of this high-
deflection strain gauge were sufficiently optimized despite each objective space model being
complex.
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