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ABSTRACT 

Polymer-based composite strain gauges are a quickly expanding technology area that exhibits 
advantages such as large strain capacity and high sensitivity to changes in strain. These strain 
gauges use an inert matrix embedded with one or more conductive fillers to exploit the elasticity 
of the matrix and the electrical conducting properties of the filler materials. However, 
determining the optimal composition of the filler materials for a particular application can be a 
challenging and iterative process.  In the present work, the composition of a nano-nickel/silicone 
composite gauge was optimized based on four independent design parameters related to both 
mechanical and electrical performance of the gauge.  Specifically, the critical impedance, critical 
strain, strain to failure, and initial impedance of the gauges were optimized by varying the weight 
ratios of Libra Gloss silicone base material, nickel nanostrands, and nickel-coated carbon fibers.  
The approach leveraged a combination of black-box design space modeling and multi-objective 
Bayesian optimization algorithm. The data from tensile tests were analyzed and compositions for 
a new optimal combination of parameters were found. This methodology was used to find 
transducer compositions that were appropriate for high strain, low-cycle wearable applications in 
biomechanical measurement. 
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1. INTRODUCTION 
Characterizing a novel material, regardless of the intended application, can quickly become a 
process that is expensive in terms of time and/or money. The number of parameters and design 
objectives to consider can become prohibitively large depending on the complexity and accuracy 
needed in the models of the material. This work attempts to reduce the time and number of 
iterations needed to confidently find an optimal composition of a tri-phasic composite by 
systematically exploring the material’s design space efficiently using a multi-objective Bayesian 
optimization algorithm. 
Polymer-based composite strain gauges are desirable for biomechanical measurement 
applications because of their large strain capacity and their sensitivity to changes in strain [1, 2] . 
A variety of different composites have been developed [3-17]; the bulk of which use an inert 
matrix embedded with a conductive filler to exploit the elasticity of the matrix and the electrical 
conducting properties of the filler material. Currently there is a wide variety of high deflection 
strain gauges with a vast range of properties. This makes certain strain gauges more useful for 
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different applications. However, one does not necessarily have to use a different strain gauge to 
find the best sensor for their intended application. Most high deflection strain gauges are a 
composite material, and, therefore, the proportions of the materials can be altered to elicit a 
spectrum of mechanical and electrical properties. For example, a higher proportion of electrically 
conductive filler materials in the composition for a polymer strain gauge might simultaneously 
enhance the electrical sensitivity for a particular range of strain, decrease the sensitivity for other 
ranges of strain, increase the overall mechanical stiffness of the gauge, and decrease the strain to 
failure for the gauge.  Thus, a significant challenge in working with this category of sensors is to 
identify an optimal composition that achieves both the mechanical and electrical properties 
appropriate to a particular application [18, 19]. 
 

 
 

Figure 1. SEM of NiNs 

This work looks at a tri-phasic silicone/nickel composite [18, 20-23] and optimizes the 
proportions of two different nickel filler materials -nickel nanostrands (NiNs; Error! Reference 
source not found.) and nickel coated carbon fiber (NCCF, Error! Reference source not 
found.) based on four distinct electrical and mechanical design goals. The composition is 
iteratively optimized using a combination of black-box design space modeling and a multi-
objective Bayesian optimization algorithm. 
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Figure 2. SEM of NCCF 

The influence of the composition of a composite made up of a gloss clear silicone from Zodiac 
(____) matrix with NCCF and NiN filler materials on multiple mechanical/electrical properties 
are studied. This paper focuses on optimizing parameters using a statistical based approach that 
simultaneously optimizes multiple design spaces. To match the assumptions made by the multi-
objective Bayesian optimization algorithm, no assumptions about the local behavior of the 
objective spaces are made while estimating the objective functions. Therefore, a local surface 
estimation is used to develop the Gaussian processes used in the optimization. This work aims to 
optimize the critical impedance, critical strain, strain to failure, and initial impedance for a 
specific formulation of a polymer-based high-deflection strain gauge using a multi-objective 
Bayesian optimization algorithm. 
An approach based on Bayesian multi-objective optimization is flexible enough to take many 
inputs and create a Pareto front of solutions for numerous objective functions where there is no 
prior analytical knowledge of the objective spaces; this allows researchers to take a black-box 
approach that requires less objective space samplings than a grid search approach [24]. Objective 
functions in Bayesian multi-objective optimization may also be multimodal or non-convex [25, 
26]; no assumptions about the curvature of the objective spaces are made. 
 

2. EXPERIMENTATION 
Data from tensile tests are analyzed and compositions for an optimal combination of parameters 
are found using a Bayesian multi-objective optimization approach. This approach is flexible 
enough to take many inputs and create a Pareto front of solutions for numerous objective functions 
where there is no prior knowledge analytical knowledge. Objective functions in Bayesian multi-
objective optimization may also be multimodal or non-convex. 

2.1 Making Samples 
High-deflection strain gauges were made by mixing the requisite amount of NCCF and surfactant 
with the silicone. The NCCF were screened and mixed with a surfactant to increase their 
incorporation into the silicone. NiNs and catalyst were finally added to the mixture before forming 
the samples in an aluminum mold. The mold is vacuum sealed and the composite mixture is cured 
for 1 hour and 20 minutes at 74o C. To eliminate variation caused by different people 
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manufacturing the sensors, all sensors were manufactured by one individual throughout the study. 
Because nothing was known a priori about the objective functions, a pseudo-random set of five 
compositions was used to seed the optimization algorithm. These compositions were determined 
using Latin hypercube sampling 

2.2 Testing Samples 
For each test, a sample was mounted into an Instron 3340 Series single column tensile tester 
(Norwood, Massachusetts, USA) using a 500 N load cell and clamps with copper leads connecting 
the sensor into a voltage divider, seen in Error! Reference source not found.. The sensor was 
electrically isolated from the metallic tester by covering the clamp faces with a natural rubber 
padding prior to testing. The circuit was excited with a 1-volt square wave at 50 Hz.  The voltage 
source and measurement tool were provided through an Analog Discovery (Agilent, Inc., Pullman, 
Washington, USA). The voltage drop across the sample was sampled at 1000 Hz with a DAQ 9171 
(Texas Instruments, Dallas, Texas, USA). Displacement data was recorded by the Intron tensile 
tester sampling at 10 Hz. A minimum of five sensors of each composition were tested. Sensors 
were stretched to mechanical failure at a constant 4.23 mm/s. 

 

Figure 3. Experimental set up 

Data was then collected from the resulting electrical impedance versus mechanical strain plot of 
the test. Four data points were taken from each plot: initial impedance, ultimate strain, critical 
impedance, and critical strain. The critical impedance was defined as the characteristic peak in 
impedance of the impedance vs strain curve at low strains before the impedance decreased linearly 
(Figure 4a). The critical strain was defined as the strain at which the critical impedance occurs 
(Figure 4b). For this composite sensor, the initial impedance, critical impedance and strain to 
failure are to be maximized, and the critical strain is to be minimized. 
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Figure 4. Electrical impedance versus mechanical strain of strain gauge 

2.3 Bayesian Optimization 
The optimization process fit a surface to each parameter of interest separately and used a multi-
objective Bayesian optimization algorithm to estimate a 4-dimensional Pareto front of candidates 
for a new optimal composition. Each objective function was fit with a multivariate polynomial as 
a function of the weight percentages of NiNs and NCCF using Scikit-Learn (more info). A pipeline 
consisting of Scikit-Learn’s PolynomialFeatures, StandardScaler, and LinearRegression functions 
created and stored the models. Four objective function polynomials were then optimized using a 
Bayesian approach based on the Python class MOBOpt [27]. The algorithm maximizes the 
objective functions, therefore objective functions that were to be minimized were negated 
beforehand. This approach optimized surrogate functions instead of the true objective functions 
with a genetic algorithm, which greatly decreased the requisite number of objective function calls 
in the algorithm. The optimization algorithm used an expected hypervolume improvement metric 
in NGSA-II to find the Pareto front of a population of 100 members. NSGA-II uses an elitism 
based on non-dominated sorting method for ranking and sorting each individual. Also uses a 
crowding distance approach in its section operator for keeping the diversity among the obtained 
Pareto optimal solutionsThe surrogate functions used in the actual optimization were Gaussian 
processes. These sets of functions are exact distributions over functions that were characterized by 
their mean and covariance functions [28]. In other words, they were functions that returned the 
mean and variance of the Gaussian distribution of the function at any point in the design space. 
The Matern kernel was used in the Gaussian processes choosing 𝜐 = 1.5. 

Because the objective functions were iteratively approximated, this process quickly found an 
optimum while accurately estimating the curvature of the different objective spaces with 
polynomial approximations. Balancing exploration and exploitation, this approach increased the 
confidence of finding a true, global maximum while avoiding local maxima. 

In each iteration, researchers chose one to three compositions from the Pareto front to test and 
included its data in the next iteration in the optimization process. One composition was selected if 
the Pareto front was continuous and centered around one location in the design space. Additional 
compositions were selected if the Pareto front in the design space is noncontinuous. A constrained 
optimization technique was used to bound the search area to the ranges of weight percentages of 
NiNs and NCCF that had been previously tested. Compositions outside of these bounds have been 
experimentally found to result in gauges that produce no electrical output or are too brittle to use 
as strain gauges. 
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Figure 5. Representative impedance versus strain plot 

In each iteration, the genetic algorithm ran for 250 iterations. Due to the construction of the 
MOBOpt class, a convergence criterion is not required but a higher number of iterations is needed 
to ensure adequate convergence of the majority of the population. The algorithm’s convergence 
criterion is as follows: once the design space of the Pareto front consists entirely of compositions 
that have been tested an optimum has been found. 

3. 
RESULTS 

A total of 7 iterations were necessary for the Pareto front to meet the convergence criterion. A total 
of 21 different compositions were tested; this includes the four seeding compositions to start the 
algorithm and 16 additional compositions. The process included five noncontinuous Pareto fronts 
that were sampled multiple times. Iterations and 7 resulted in continuous Pareto fronts that required 
one sample. These two fronts were also localized to one composition with little variance within 
the population. In each iteration, the Pareto front consisted of the entire 100 member population 
after the 250 iterations were performed. 

Error! Reference source not found. shows the initial objective spaces after the seeding 
compositions were tested. The algorithm systematically explored the design space for the first 4 
iterations and approximated the optimal value for the remaining two iterations. Each objective 
function adequately described with a 2-degree polynomial. The curve fit was fitted with the lowest 
degree polynomial where the RMSE no longer decreased. All subsequent iterations were fitted in 
the same fashion. Five out of the seven iterations resulted in a noncontinuous Pareto front that was 
sampled in multiple locations.  
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The final objective functions are shown in Figure 7. All objectives were fitted with a 5-degree 
polynomial. Three additional compositions were tested after finding the optimal value to ensure 
the curve fitted objective functions’ accuracy across the design space. 

It was found that by optimizing the objective functions in 7 iterations, the parameters of interest 
were changed by the amounts shown in Error! Reference source not found.. Each of the four 
parameters of interest improve from the initial seeding compositions. With the additional 
compositions used to fit the models, the expected values from the model accurately predicted the 
experimental averages. The final models of the four objectives predicted the initial impedance, 
strain to failure, critical impedance, and critical strain as 769 Ohms, 0.794, 10239 Ohms, 0.0428, 
respectively. The error of the models’ for the initial impedance, strain to failure, critical impedance, 
and critical strain were 211%, 23%, 221%, 30%, respectively. The initial impedance improved an 
average of _____ over the 7 iterations. The strain to failure increased by ___%, the critical 
impedance increased by _____%, and the critical strain decreased by ___%. 

 

  

  
Figure 6. Initial objective functions 
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Figure 7. Final objective spaces 

 

4. CONCLUSIONS 
The optimum that was found adequately found values near the extrema of each objective 
function. The final value of the initial impedance was, from the shape of the final curve fit of the 
initial impedance’s objective function, a local maximum whereas the failure strain and critical 
impedance settled near the predicted global maximum. The critical strain, which was the only 
objective to be minimized, settled near the bottom of the lowest valley in the design space. 
The final state of the objective space models are mostly intuitive while some predictions will 
contain some error. For example, a sensor with 7% NiNs, and 37% NCCF intuitively will not 
have a high initial impedance yet the model predicts otherwise. Intuitively, more conductive 
filler material should result in a sensor with lower impedances because there is more material to 
help conduct a current. This shows that the model is still imperfect, but the aim of this work is to 
quickly determine an optimum with as few direct samplings (i.e. making and testing sensors) of 
the objective functions as possible by optimizing Gaussian processes of the fitted objective 
spaces. This means the final fitted models will contain some errors in their predictions; however, 
researchers can be confident in their solution. Further testing of the design space confirmed that 
the predicted initial impedance at this composition was incorrect. 
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Once the algorithm determined an optimal composition, three additional compositions were 
tested in areas that were not searched during the optimization process to ensure that the model 
accurately predicts those areas of the design space as well. The models did not change at the 
extrema as a result of these additional data. The additional data, however, strengthened the 
conclusions of the optimization process: a true global optimum was found using the algorithm 
outlined in this work. 
 

Table 1. Results of optimization experiment 

 
Composition Initial 

Impedance 
Critical 
Impedance 

Critical 
Strain 

Ultimate 
Strain NiNs wt% NCCF 

wt% 
 

35 4 Initial 77 249 0.055 0.83 
37 4 Initial 432 1127 0.052 1.30 
33 5 Initial 163 588 0.046 1.22 
30 6 Initial/Final 247 3194 0.033 1.03 
 
This procedure may save researchers valuable time due to the limited number of iterations and 
total number of compositions that were required to find the optimal composition. If a grid search 
approach was taken over the bounded design space (28-37 wt% NiNs, and 3-7 wt% NCCF) a 
total of 36 compositions would have to be tested for a resolution of 1.0 wt% in each parameter. 
With a resolution of 0.5 wt%, a total of 72 compositions would have to be tested. Compared to 
these two approaches, the multi-objective Bayesian optimization approach found an optimal 
value faster and with greater accuracy. If a grid of 1.0 wt% resolution is used, the researcher 
cannot confidently assume that the true optimal value lies on a point in the grid. Thus, additional 
compositions around the best candidate solution would have to be tested to ensure the true 
optimum is found. The multi-objective Bayesian optimization approach uses the objective 
functions as continua and thus inherently has a finer resolution over a grid search approach. 
 
A few limitations are noted for this study. Variance between sensors may be due to a nonuniform 
dispersion of nanoparticles either before or after deposition of the composite material. NCCF 
was seen to form into hardened balls if not sufficiently screened.  
 
A study of the influence of an electrically conductive polymer composite’s filler material on its 
performance was conducted. It was found that by optimizing the objective functions in 7 iterations, 
the parameters of interest were changed by the amounts shown in Error! Reference source not 
found.. Several objectives pertaining to the mechanical and electrical properties of this high-
deflection strain gauge were sufficiently optimized despite each objective space model being 
complex. 
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