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Abstract
We study image inverse problems with a normaliz-
ing flow prior. Our formulation views the solution
as the maximum a posteriori estimate of the image
conditioned on the measurements. This formula-
tion allows us to use noise models with arbitrary
dependencies as well as non-linear forward op-
erators. We empirically validate the efficacy of
our method on various inverse problems, includ-
ing compressed sensing with quantized measure-
ments and denoising with highly structured noise
patterns. We also present initial theoretical recov-
ery guarantees for solving inverse problems with
a flow prior.

1. Introduction
Inverse problems seek to reconstruct an unknown signal
from observations (or measurements), which are produced
by some process that transforms the original signal. Because
such processes are often lossy and noisy, inverse problems
are typically formulated as reconstructing x from its mea-
surements

y = f(x) + δ (1)

where f is a known deterministic forward operator and δ
is an additive noise which may have a complex structure
itself. An impressively wide range of applications can be
posed under this formulation with an appropriate choice of
f and δ, such as compressed sensing (Candes et al., 2006;
Donoho, 2006), computed tomography (Chen et al., 2008),
magnetic resonance imaging (MRI) (Lustig et al., 2007),
and phase retrieval (Candes et al., 2015a;b).

In general, for a non-invertible forward operator f , there can
be potentially infinitely many signals that match given obser-
vations. Thus the recovery algorithm must critically rely on
a priori knowledge about the original signal to find the most
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plausible solution among them. Sparsity has classically
been a very influential structural prior for various inverse
problems (Candes et al., 2006; Donoho, 2006; Baraniuk
et al., 2010). Alternatively, recent approaches introduced
deep generative models as a powerful signal prior, showing
significant gains in reconstruction quality compared to spar-
sity priors (Bora et al., 2017; Asim et al., 2019; Van Veen
et al., 2018; Menon et al., 2020).

However, most existing methods assume the setting of Gaus-
sian noise model and are unsuitable for structured and corre-
lated noise, making them less applicable in many real-world
scenarios. For instance, when an image is ruined by hand-
drawn scribbles or a piece of audio track is overlayed with
human whispering, the noise to be removed follows a very
complex distribution. These settings deviate significantly
from Gaussian noise settings, yet they are much more realis-
tic and deserve more attention. In this paper, we propose to
use a normalizing flow model to represent the noise distri-
bution and derive principled methods for solving inference
problems under this general noise model.

Contributions.

• We present a general formulation for obtaining maxi-
mum a posteriori (MAP) reconstructions for dependent
noise and general forward operators. Notably, our
method can leverage deep generative models for both

Noisy Ours Asim
et al.

Bora
et al. BM3D

Figure 1. Result of denoising MNIST digits. The first column
contains noisy observations, and subsequent columns contain re-
constructions.
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the original image and the noise.

• We extend our framework to the general setting where
the signal prior is given as a latent-variable model,
for which likelihood evaluation is intractable. The re-
sulting formulation presents a unified view of existing
approaches based on GAN, VAE, and flow priors.

• We empirically show that our method achieves excel-
lent reconstruction in the presence of noise with var-
ious complex and dependent structures. Specifically,
we demonstrate the efficacy of our method on various
inverse problems with structured noise and non-linear
forward operators.

• We provide the initial theoretical characterization of
likelihood-based priors for image denoising. Specif-
ically, we show a reconstruction error bound that de-
pends on the local concavity of the log-likelihood func-
tion.

2. Background
2.1. Normalizing Flow Models

Normalizing flow models are a class of likelihood-based
generative models that represent complex distributions by
transforming a simple distribution (such as standard Gaus-
sian) through an invertible mapping (Tabak & Turner, 2013).
Compared to other types of generative models, flow models
are computationally flexible in that they provide efficient
sampling, inversion, and likelihood estimation (Papamakar-
ios et al., 2019, and references therein).

Concretely, given a differentiable invertible mapping G :
Rn → Rn, the samples x from this model are generated
via z ∼ pG(z),x = G(z). Since G is invertible, change of
variables formula allows us to compute the log-density of
x:

log p(x) = log p(z) + log |det JG−1(x)| , (2)

where JG−1(x) is the Jacobian ofG−1 evaluated at x. Since
log p(z) is a simple distribution, computing the likelihood
at any point x is straightforward as long as G−1 and the
log-determinant term can be efficiently evaluated.

Notably, when a flow model is used as the prior for an
inverse problem, the invertibility of G guarantees that it
has an unrestricted range. Thus the recovered signal can
represent images that are out-of-distribution, albeit at lower
probability. This is a key distinction from a GAN-based
prior, whose generator has a restricted range and can only
generate samples from the distribution it was trained on. As
pointed out by Asim et al. (2019) and also shown below
in our experiments, this leads to performance benefits on
out-of-distribution examples.

2.2. Inverse Problems with a Generative Prior

We briefly review the existing literature on the application
of deep generative models to inverse problems. While vast
literature exists on compressed sensing and other inverse
problems, the idea of replacing the classical sparsity-based
prior (Candes et al., 2006; Donoho, 2006) with a neural
network was introduced relatively recently. In their pioneer-
ing work, Bora et al. (2017) proposed to use the generator
from a pre-trained GAN or a VAE (Goodfellow et al., 2014;
Kingma & Welling, 2013) as the prior for compressed sens-
ing. This led to a substantial gain in reconstruction quality
compared to classical methods, particularly at a small num-
ber of measurements.

Following this work, numerous studies have investigated
different ways to utilize various neural network architectures
for inverse problems (Mardani et al., 2018; Heckel & Hand,
2019; Mixon & Villar, 2018; Pandit et al., 2019; Lucas et al.,
2018; Shah & Hegde, 2018; Liu & Scarlett, 2020; Kabkab
et al., 2018; Lei et al., 2019; Mousavi et al., 2018; Raj et al.,
2019; Sun et al., 2019). One straightforward extension of
(Bora et al., 2017) proposes to expand the range of the
pre-trained generator by allowing sparse deviations (Dhar
et al., 2018). Similarly, Shah & Hegde (2018) proposed
another algorithm based on projected gradient descent with
convergence guarantees. Van Veen et al. (2018) showed
that an untrained convolutional neural network can be used
as a prior for imaging tasks based on Deep Image Prior by
Ulyanov et al. (2018).

More recently, Wu et al. (2019) applied techniques from
meta-learning to improve the reconstruction speed, and
Ardizzone et al. (2018) showed that by modeling the for-
ward process with a flow model, one can implicitly learn
the inverse process through the invertibility of the model.
Asim et al. (2019) proposed to replace the GAN prior of
(Bora et al., 2017) with a normalizing flow model and re-
ported excellent reconstruction performance, especially on
out-of-distribution images.

3. Our Method
3.1. Notations and Setup

We use bold lower-case variables to denote vectors, ‖ · ‖
to denote `2 norm, and � to denote element-wise multi-
plication. We also assume that we are given a pre-trained
latent-variable generative model pG(x) that we can effi-
ciently sample from. Importantly, we assume the access to
a noise distribution p∆ parametrized as a normalizing flow,
which itself can be an arbitrarily complex, pre-trained distri-
bution. We let f denote the deterministic and differentiable
forward operator for our measurement process. Thus an ob-
servation is generated via y = f(x) + δ where x ∼ pG(x)
and δ ∼ p∆(δ).
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Note that while f and p∆ are known, they cannot be treated
as fixed across different examples, e.g., in compressed sens-
ing, the measurement matrix is random and thus only known
at the time of observation. This precludes the use of end-
to-end training methods that require having a fixed forward
operator.

3.2. MAP Formulation

When the likelihood under the prior pG(x) can be computed
efficiently (e.g. when it is a flow model), we can pose the
inverse problem as a MAP estimation task. Concretely, for
a given observation y, we wish to recover x as the MAP
estimate of the conditional distribution pG(x|y):

arg max
x

log p(x|y)

= arg max
x

[log p(y|x) + log pG(x)− log p(y)]

(1)
= arg max

x
[log p∆(y − f(x)) + log pG(x)]

, arg min
x

LMAP(x;y),

where

LMAP(x;y) = − log p∆(y − f(x))− log pG(x). (3)

Note that in (1) we drop the marginal density log p(y) as it
is constant and rewrite p(y|x) as p∆(y − f(x)).

Recalling that the generative procedure for the flow model
is z ∼ N (0, I),x = G(z), we arrive at the following loss:

LMAP(z;y) , − log p∆(y − f(G(z)))− log pG(G(z))
(4)

The invertibility of G allows us to minimize the above loss
with respect to either z or x:

arg min
z

LMAP(z;y)

= arg min
z

[− log p∆ (y − f(G(z)))− log pG(G(z))]

= arg min
x

[− log p∆ (y − f(x))− log pG(x))]

= arg min
x

LMAP(x;y)

We have experimented with optimizing the loss both in
image space x and latent space z, and found that the latter
achieved better performance across almost all experiments.
Since the above optimization objective is differentiable, any
gradient-based optimizer can be used to find the minimizer
approximately. In practice, even with an imperfect model
and approximate optimization, we observe that our approach
performs well across a wide range of tasks, as shown in the
experimental results below.

3.3. MLE Formulation

When the signal prior does not provide tractable likelihood
evaluation (e.g. for the case of GAN and VAE), we view
the problem as a maximum-likelihood estimation under
the noise model. Thus we attempt to find the signal that
maximizes noise likelihood within the support of pG(x) and
arrive at a similar, but different loss:

arg max
x∈supp p(x)

log p∆(y − f(x))

= arg max
z

log p∆(y − f(G(z)))

, arg min
z

LMLE(z;y),

where

LMLE(z;y) , − log p∆(y − f(G(z))). (5)

3.4. Prior Work

In (Bora et al., 2017), the authors proposed to use a deep
generative prior for the inverse problem, but the choice of
models was restricted to GANs and VAEs with explicit
low-dimensional prior. Subsequently Asim et al. (2019)
generalized this paradigm using Flow-based models. We
describe here the methods proposed in those papers in de-
tail. Importantly, we show that their approaches are special
cases of our MAP/MLE formulations under Gaussian noise
assumptions. Furthermore, note that both papers consid-
ered linear inverse problems, so they correspond to the case
where f(x) = Ax under our notation.

GAN Prior: (Bora et al., 2017) considers the following
loss:

LBora(z;y) = ‖y −AG(z)‖2 + λ ‖z‖2 , (6)

which tries to project the input y onto the range of the
generator G with `2 regularization on the latent variable.
Aside from the regularization term, this corresponds exactly
to our MLE loss for a Gaussian p∆. While (Bora et al.,
2017) motivated this objective as a projection on the range
of G, our approach reveals a probabilistic interpretation
based on the MLE objective for the noise.

Flow Prior: (Asim et al., 2019) replaces the GAN prior
of (Bora et al., 2017) with a flow model. In that paper, the
authors consider the objective below that tries to simultane-
ously match the observation and maximize the likelihood of
the reconstruction under the model:

L(z;y) = ‖y −AG(z)‖2 − γ log pG(x), (7)

for some hyperparameter γ > 0. This loss is a special
case of our MAP loss for isotropic Gaussian noise δ ∼
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N (0, γ I), since the log-density of δ becomes log p∆(δ) =

− 1
2γ ‖δ‖

2 − C for a constant C. However, Asim et al.
(2019) report that due to optimization difficulty, they found
the following proxy loss to perform better in experiments:

LAsim(z;y) = ‖y −AG(z)‖2 + γ ‖z‖ . (8)

This is again related to a specific instance of our loss
when the flow model is volume-preserving (i.e., the log-
determinant term is constant). Continuing from eq. (2): This
allows us to recover the `2-regularized version of LAsim:

We reiterate that both of the aforementioned objectives are
special cases of our formulation for the case of zero-mean
isotropic Gaussian noise. Thus, we expect our method to
handle non-Gaussian noise better and experimentally con-
firm that our approach leads to better reconstruction perfor-
mance for noises with nonzero mean or conditional depen-
dence across different pixel locations.

Connections to Blind Source Separation: Here we focus
on the connection between our formulation and blind source
separation. For the denoising case where the forward opera-
tor is identity, we see that our observation is simply the sum
of two random variables y = x+ δ. Given two flow-based
priors (one for each of x and δ), the task of extracting x
from y thus becomes a blind source separation problem
with two sources. While rich literature exists for various
source separation problems (Hu et al., 2017; Subakan &
Smaragdis, 2018; Wang & Chen, 2018; Hoshen, 2019), two
recent studies are particularly relevant to our setting as they
make use of a neural network prior.

In Double-DIP, Gandelsman et al. (2019) utilize Deep Image
Prior (Ulyanov et al., 2018) as a signal prior to performing
blind source separation from multiple mixtures. This work
differs from ours in that we focus on a single-mixture setting
with pre-trained signal priors. Our use of pre-trained priors
is a key distinction since DIP is untrained and may not apply
to other modalities and datasets. In contrast, our method is
applicable as long as we are able to train a deep generative
prior for the signal and the noise.

In (Jayaram & Thickstun, 2020), the authors use a flow-
based prior (Kingma & Dhariwal, 2018) for blind source
separation. Unlike our approach, however, they sample
from the posterior using Langevin dynamics (Welling &
Teh, 2011; Neal et al., 2011). The authors use simulated
annealing to speed up mixing, and this approach would in
theory be able to sample from the correct posterior asymptot-
ically. The advantage of our approach is that it is generally
faster (as it avoids costly MCMC procedure), and it can be
applied to non-likelihood-based priors for the signal x.

4. Theoretical Analysis
This section provides some theoretical analysis of our ap-
proach in denoising problems with a flow-based prior. Un-
like most prior work, we take a probabilistic approach and
avoid making specific structural assumptions on the signal
we want to recover, such as sparsity or being generated from
a low-dimensional Gaussian prior.

For denoising, we show that better likelihood estimates
lead to lower reconstruction error. Note that while our
experiments employed flow models, our results apply to any
likelihood-based generative model. The detailed proof is
included in the appendix.

4.1. Recovery Guarantee for Denoising

Suppose we observe y = x∗ + δ with Gaussian noise
δ ∼ N (0, σ2I) with ‖δ‖ = r. We perform MAP inference
by minimizing the following loss with gradient descent:

LMAP(x) =− log p∆(y − x)− log p(x)

=
1

2σ2
‖y − x‖2 + q(x), (9)

where we write q(x) , − log p(x) for notational conve-
nience. Notice that the image we wish to recover is a natural
image with high probability rather than an arbitrary one, and
reconstruction is not expected to succeed for the latter case.
Thus we consider the case where the ground truth image x∗

is a local maximum of p.

Theorem 4.1. Let x∗ be a local optimum of the model p(x)
and y = x∗ + δ be the noisy observation. Assume that q
satisfies local strong convexity within the ball around x∗

defined as Bdr (x∗) ,
{
x ∈ Rd : ‖x− x∗‖ ≤ r

}
, i.e. the

Hessian of q satisfies Hq(x) � µI ∀x ∈ Bdr (x∗) for for
some µ > 0. Then gradient descent starting from y on
the loss function (9) converges to x̄, a local minimizer of
LMAP(x), that satisfies:

‖x̄− x∗‖ ≤ 1

µσ2 + 1
‖δ‖

Even though the theorem is relatively straightforward, it still
serves as some initial understanding of the denoising task
under a likelihood-based prior. It sheds light on how the
reconstruction is affected by the structure of the probabilistic
model, and the likelihood of the natural signal one wants to
recover. This theorem shows that a well-conditioned model
with large µ leads to better denoising and confirms that
our MAP formulation encourages reconstructions with high
density. Thus, the maximum-likelihood training objective is
directly aligned with better denoising performance.
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Figure 2. Result of removing MNIST noise from CelebA-HQ faces. Notice that without any understanding of the complex noise structure,
baseline methods fail to produce good reconstructions.

5. Experiments
Our experiments are designed to test how well our
MAP/MLE formulation performs in practice as we devi-
ate from the commonly studied setting of linear inverse
problems with Gaussian noise. Specifically, we focus on
two aspects: (1) complex noise with dependencies and
(2) non-linear forward operator. For all our experiments,
we quantitatively evaluate each method by reporting peak
signal-to-noise ratio (PSNR). We also visually inspect sam-
ple reconstructions for qualitative assessment.

Models: We trained multi-scale RealNVP models on two
image datasets MNIST and CelebA-HQ (LeCun et al., 1998;
Liu et al., 2015). Due to computational constraints, all exper-
iments were done on 100 randomly-selected images (1000
for MNIST) from the test set, as well as out-of-distribution
images. We additionally train a DCGAN on the CelebA-
HQ dataset for MLE experiments as well as (Bora et al.,
2017). A detailed description of the datasets, models, and
hyperparameters are provided in the appendix.

Baseline Methods: We compare our approach to the meth-
ods of (Bora et al., 2017) and (Asim et al., 2019), as they
are two recently proposed approaches that use deep genera-

tive prior on inverse problems. Depending on the task, we
also compare against BM3D (Dabov et al., 2006), a popular
off-the-shelf image denoising algorithm, and LASSO (Tib-
shirani, 1996) with Discrete Cosine Transform (DCT) basis
as appropriate. Note that for the 1-bit compressed sensing
experiment, most existing techniques do not apply, since our
task involves quantization as well as non-Gaussian noise.

We point out that the baselines methods are not designed to
make use of the noise distribution, whereas our method does
utilize it. Thus, the experiments are not meant to be taken
as direct comparisons, but rather as empirical evidence that
the MAP formulation indeed benefits from the knowledge
of noise structure.

Smoothing Parameter: Since our objective Equation (4)
depends on the density pG(x) given by the flow model, our
recovery of x depends heavily on the quality of density esti-
mates from the model. Unfortunately, likelihood-based mod-
els exhibit counter-intuitive properties, such as assigning
higher density on out-of-distribution examples or random
noise over in-distribution examples. (Nalisnick et al., 2018;
Choi et al., 2018; Hendrycks & Dietterich, 2018; Nalisnick
et al., 2019). We empirically observe such behavior from
our models as well. To remedy this, we use a smoothed
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version of the model density pG(x)β where β ≥ 0 is the
smoothing parameter. Since the two extremes β = 0 and
β =∞ correspond to only using the noise density and the
model density, respectively, β controls the degree to which
we rely on pG. Thus the loss we minimize becomes

LMAP(z;y, β) = − log p∆(y−f(G(z)))−β log pG(G(z))
(10)

5.1. Results

We tested our methods on denoising and compressed sensing
tasks that involve various structured, non-Gaussian noises
as well as a non-linear forward operator. Note that many
existing methods cannot be applied in this setting as they
are designed for linear inverse problems and a specific noise
model. While specialized algorithms do exist (e.g., for
quantized compressed sensing), we note that our method
is general and can be applied in a wide range of settings
without modification.

5.1.1. DENOISING MNIST DIGITS

The measurement process is y = 0.5 · x+ δMNIST, where
δMNIST represents MNIST digits added at different locations
and color channels. Each digit itself comes from a flow
model trained on the MNIST dataset. As shown in Figure 2,
our method successfully removes MNIST noise in both
MAP and MLE settings. Recall that we use the same GAN-
based prior for “Ours (MLE)” and (Bora et al., 2017). The
difference in the reconstruction quality between these two
methods in Figure 3 confirms that even for non-likelihood-
based priors (e.g., GAN and VAE), an accurate noise model
is critical to accurate signal recovery. While the method of
Bora et al. (2017) manages to remove MNIST digits, we
note that this is because its outputs are forced to be in the
range of the DCGAN.

Figure 3. Reconstruction PSNR on the MNIST denoising task.

For the rest of the experiments, we focus on the MAP formu-
lation as it generally outperforms the MLE formulation. We
posit that this is due to the restricted range of our DCGAN
used for experiments.

5.1.2. NOISY COMPRESSED SENSING

Now we consider the measurement process y = Ax +
δsine where A ∈ Rm×d is a random Gaussian measurement
matrix and δ has positive mean with variance that follows a
sinusoidal pattern. Specifically, the k-th pixel of the noise
has standard deviation σk ∝ exp

(
sin( 2πk

16 )
)

normalized to
have the maximum variance of 1.

Figure 4a shows that our method is able to make better use
of additional measurements. Interestingly in Figure 4b, all
three methods with deep generative prior produced plausible
human faces. However, the reconstructions from Asim et al.
(2019) and Bora et al. (2017) significantly differ from the
ground truth images. We posit that this is due to the im-
plicit Gaussian noise assumption made by the two methods,
again showing the benefits of explicitly incorporating the
knowledge of noise distribution.

5.1.3. REMOVING SINUSOIDAL NOISE

We consider another denoising task with observation y =
x + δsine. This is the 2-dimensional version of periodic
noise, where the noise variance for all pixels within the k-th
row follows σk from above.

From Figure 5 and Figure 6a, we see that baseline methods
do not perform well even though the noise is simply Gaus-
sian at each pixel. This reemphasizes an important point:
without an understanding of the structure of the noise, al-
gorithms designed to handle Gaussian noise have difficulty
removing them when we introduce variability across differ-
ent pixel locations.

5.1.4. NOISY 1-BIT COMPRESSED SENSING

This task considers a combination of a non-linear forward
operator as well as a non-Gaussian noise. The measure-
ment process is y = sign(Ax) + δsine, identical to noisy
compressed sensing except with the sign function. This is
the most extreme case of quantized compressed sensing,
since y only contains the (noisy) sign {+1,−1} of the mea-
surements. Because the gradient of sign function is zero
everywhere, we use Straight-Through Estimator (Bengio
et al., 2013) for backpropagation. See Figure 7a and Fig-
ure 7b for a comparison of our method to the baselines at
varying numbers of measurements.

5.1.5. SENSITIVITY TO HYPERPARAMETERS

We also observe that our method is more robust to hy-
perparameter choices than (Asim et al., 2019), as shown
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(a) PSNR at different measurement counts (best viewed in
color). The approaches by Asim et al. (2019) and Bora et al.
(2017) show little improvements from having more measure-
ments due to their inability to utilize the noise model.
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(b) Reconstructions at 2500 measurements. Notice that
even though existing approaches produce reconstructions
that resemble human faces, they do not match the ground
truth as well as our method.

Figure 4. Experiment results for noisy compressed sensing on CelebA-HQ images.
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Figure 5. Result of denoising SINUSOIDAL noise on CelebA-HQ faces and out-of-distribution images.

in Figure 6b. This may come as a surprise, given that
our objective has an additional log-determinant term. We
speculate that this is due to the regularization term in
LAsim(z;y) = ‖y − f(G(z))‖2 + γ ‖z‖.

It is known that samples from d-dimensional isotropic Gaus-
sian concentrate around a thin “shell” around the sphere
of radius

√
d. This suggests that the range of ‖z‖ corre-

sponding to natural images may be small. Thus, forcing the
latent variable z to have a small norm without taking the
log-determinant term into account could lead to a sudden
drop in the reconstruction quality.
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(a) Result for SINUSOIDAL denoising on CelebA-HQ images at
various noise rates. Our method achieves the same reconstruction
performance even when the noise has up to 3× higher average
standard deviation compared to the best baseline method (BM3D).
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(b) Compressed sensing performance of our method and (Asim
et al., 2019) at different hyperparameter values. For our method,
we vary the smoothing parameter β in LMAP. For Asim et al.
(2019), we vary the regularization coefficient γ in LAsim.

Figure 6. SINUSOIDAL denoising results (left) and hyperparameter sensitivity plot (right).
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(a) Result of 1-bit noisy compressed sensing at different measurement
counts. Our method achieves the same reconstruction performance
using up to 2× fewer measurements compared to the best baseline
method (Asim et al., 2019).
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(b) Reconstructions from noisy 1-bit compressed sensing
with 3000 binary measurements. Notice that our method fails
more gracefully compared to other methods, i.e. even when
the reconstructions differ from the ground truth, substantial
parts of the reconstructions are still correct. On the other
hand, other methods predict a completely different digit.

Figure 7. Results of 1-bit compressed sensing experiments.

6. Conclusion
We propose a novel method to solve inverse problems
for general differentiable forward operators and structured
noise. Our method generalizes that of (Asim et al., 2019) to
arbitrary differentiable forward operators and non-Gaussian
noise distributions. The power of our approach stems from
the flexibility of invertible generative models, which can be
combined in a modular way to solve MAP inverse problems

in very general settings, as we demonstrate.

For future work, it would be interesting to consider extend-
ing our method to blind source separation problems (Amari
et al., 1996), as the noise and signal considered in our setting
are actually exchangeable for the MAP case. Furthermore,
one may investigate the applicability of the MLE formula-
tion with an even more general family of generative models
such as energy-based models (Gao et al., 2020) and score
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networks (Song & Ermon, 2019). On the theoretical side,
one central question that remains open is to analyze the
optimization problem we formulated. In this paper, we em-
pirically minimize this loss using gradient descent, but some
theoretical guarantees would be desirable, possibly under
assumptions, e.g. random weights following the framework
of (Hand & Voroninski, 2020).
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A. Omitted Proof
A.1. Proof for Denoising

Proof of Theorem 4.1. We first show that gradient descent
with sufficiently small learning rate will converge to x̄, the
locally-optimal solution of Equation (9). Recall the loss
function L(x) := q(x) + 1

2σ2 ‖x − y‖2 (we subsume the
scaling 1

2 into 1
σ2 without loss of generality). Notice in the

ball Bdr (x∗) :=
{
x ∈ Rd | ‖x− x∗‖ ≤ r

}
, L is

(
µ+ 1

σ2

)
strongly-convex. We next show there is a stationary point
x̄ ∈ Bdr (x∗) of L(x).

∇L(x̄) = 0 =⇒ ∇q(x̄) +
1

σ2
(x̄− y) = 0

=⇒ ∇q(x̄)−∇q(x∗) =
1

σ2
(y − x̄)

=⇒ 〈∇q(x̄)−∇q(x∗), x̄− x∗〉

=
1

σ2
〈y − x̄, x̄− x∗〉

From strong convexity of q,

〈∇q(x̄)−∇q(x∗), x̄− x∗〉 ≥ µ‖x̄− x∗‖2.

Thus,

1

σ2
〈y − x∗, x̄− x∗〉

=
1

σ2
〈(y − x̄) + (x̄− x∗) , x̄− x∗〉

=
1

σ2
〈y − x̄, x̄− x∗〉+

1

σ2
〈x̄− x∗, x̄− x∗〉

= 〈∇q(x̄)−∇q(x∗), x̄− x∗〉+
1

σ2
‖x̄− x∗‖2

≥ µ‖x̄− x∗‖2 +
1

σ2
‖x̄− x∗‖2

=

(
µ+

1

σ2

)
‖x̄− x∗‖2

Finally, by Cauchy-Schwartz inequality,

〈y − x∗, x̄− x∗〉 ≤ ‖y − x∗‖ · ‖x̄− x∗‖.

So we get ‖x̄ − x∗‖ ≤ 1
1+µσ2 ‖y − x∗‖ ≤ ‖δ‖ ≤ r, in

other words, x̄ ∈ Bdr (x∗).

Notice L is
(
µ+ 1

σ2

)
strongly-convex in Bdr (x∗), which

contains the stationary point x̄. Therefore x̄ is a local min-
imizer of L(x). Also note that we implicitly require q to
be twice differentiable, meaning in a compact set Bdr (x∗)
its smoothness is upper bounded by a constant M . Thus
gradient descent starting from y ∈ Bdr (x∗) with learning
rate smaller than 1

M will converge to x̄ without leaving the
(convex) set Bdr (x∗).

B. Additional Experimental Results
Here we include experimental results and details not in-
cluded in the main text. Across all the experiments, we
individually tuned the hyperparameters for each method.

B.1. Experimental Details

Dataset. For MNIST, we used the default split of 60,000
training images and 10,000 test images of (LeCun et al.,
1998). For CelebA-HQ, we used the split of 27,000 training
images and 3,000 test images as provided by (Kingma &
Dhariwal, 2018).

During evaluation, the following Python script was used to
select 1000 MNIST images and 100 CelebA-HQ images
from their respective test sets:

np.random.seed(0)
indices_mnist = np.random.choice(

10000, 1000, False)
np.random.seed(0)
indices_celeba = np.random.choice(

3000, 100, False)

Note that CelebA-HQ images were further resized to 64×64
resolution.

Noise Distributions. For the sinusoidal noise used in the
experiments, the standard deviation of the k-th pixel/row is
calculated as:

σk = 0.1 ·
(

exp

(
sin(2π · k

16
)

)
− 1

)
/(e− 1),

clamped to be in range [0.001, 1]. For Figure 9b,
we used vary the coefficient 0.1 to values in
{0.05, 0.1, 0.2, 0.3, 0.4}.

For the radial noise used in the additional experiment below,
the standard deviation of each pixel with `2 distance is
d from the center pixel (31, 31) is computed as: σk =
0.1 ·exp(−0.005 ·d2), clamped to be in range [0.001, 1000].

B.2. Additional Result: Removing RADIAL Noise

Consider the measurement process y = x+ δradial, where
each pixel follows a Gaussian distribution, but with variance
that decays exponentially in distance to the center point. For
a pixel whose `2 distance to the center pixel is d, the stan-
dard deviation is computed as σ(d) = exp

(
−0.005 · d2

)
.

See Figure 8 and Figure 9a for reconstructions as well as
PSNR plot comparing the methods considered.

B.3. Additional Result: 1-bit Compressed Sensing

Figure 9b shows the performance of each method at differ-
ent noise scales for a fixed number of measurements. We
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Figure 8. Result of denoising RADIAL noise on CelebA-HQ faces and out-of-distribution images.
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(a) Result on denoising RADIAL noise at varying noise rates. Our
method achieves the same reconstruction performance even when
the noise has approximately 1.5× higher noise scale compared to
the best baseline method which is BM3D for this setting.
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(b) Result of 1-bit compressed sensing at different noise scale. Our
method obtains the best reconstructions, achieving similar PSNR
as (Asim et al., 2019) when the noise scale is 8× higher.

Figure 9. RADIAL denoising results (left) and 1-bit compressed sensing results at different noise levels (right).

observe that our method performs consistently better at all
noise levels.

C. Model Architecture and Hyperparameters
For the RealNVP models we trained, we used multiscale
architecture as was done in (Dinh et al., 2016), with residual

networks and regularized weight normalization on convolu-
tional layers. Following (Kingma & Dhariwal, 2018), we
used 5-bit color depth for the CelebA-HQ model. Hyper-
parameters and samples from the models can be found in
Table 1 and Figure 10.
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Hyperparameter CelebA-HQ MNIST
Learning rate 5e−4 1e−3
Batch size 16 128
Image size 64× 64× 3 28× 28× 1
Pixel depth 5 bits 8 bits
Number of epochs 300 200
Number of scales 6 3
Residual blocks per scale 10 6
Learning rate halved every 60 epochs 40 epochs
Max gradient norm 500 100
Weightnorm regularization 1e−5 5e−5

Table 1. Hyperparameters used for RealNVP models.

Figure 10. Samples from the RealNVP models used in our experi-
ments.

Figure 11. Out-of-distribution images used in our experiments. We
included different types of out-of-distribution instances including
grayscale images and cartoons with flat image areas.

D. Experiment Hyperparameters
Here we list the hyperparameters used for each experiment.
We used the Adam optimizer (Kingma & Ba, 2014) for all
appropriate methods below.

Denoising MNIST Digits.

• Learning rate: 0.02

• Optimization steps for Ours (MAP) and (Asim et al.,
2019): 400

• Optimization steps for Ours (MLE) and (Bora et al.,
2017): 1000

• Smoothing parameter for Ours (MAP & MLE): β = 1.0

• Regularization for (Asim et al., 2019): γ = 0.0

• Regularization for (Bora et al., 2017): λ = 0.01

Noisy Compressed Sensing.

• Learning rate: 0.02

• Optimization steps for Ours (MAP) and (Asim et al.,
2019): 300

• Optimization steps for (Bora et al., 2017): 1000

• Smoothing parameter for Ours (MAP): β = 100

• Regularization for (Asim et al., 2019): γ = 10

• Regularization for (Bora et al., 2017): λ = 0.001

• Regularization for LASSO: λ = 0.01

Denoising Sinusoidal Noise.

• Learning rate: 0.02

• Optimization steps for Ours (MAP) and (Asim et al.,
2019): 150

• Optimization steps for (Bora et al., 2017): 1000

• Smoothing parameter for Ours (MAP): β = 0.5

• Regularization for (Asim et al., 2019): γ = 2.0

• Regularization for (Bora et al., 2017): λ = 0.01

Noisy 1-bit Compressed Sensing.

• Learning rate: 0.02

• Optimization steps for Ours (MAP) and (Asim et al.,
2019): 200

• Optimization steps for (Bora et al., 2017): 1000

• Smoothing parameter for Ours (MAP): β = 1.0

• Regularization for (Asim et al., 2019): γ = 1.0

• Regularization for (Bora et al., 2017): λ = 0.01


