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Abstract

Despite the considerable success of neural net-

works in security settings such as malware de-

tection, such models have proved vulnerable to

evasion attacks, in which attackers make slight

changes to inputs (e.g., malware) to bypass de-

tection. We propose a novel approach, Fourier

stabilization, for designing evasion-robust neu-

ral networks with binary inputs. This approach,

which is complementary to other forms of de-

fense, replaces the weights of individual neurons

with robust analogs derived using Fourier analytic

tools. The choice of which neurons to stabilize in

a neural network is then a combinatorial optimiza-

tion problem, and we propose several methods for

approximately solving it. We provide a formal

bound on the per-neuron drop in accuracy due to

Fourier stabilization, and experimentally demon-

strate the effectiveness of the proposed approach

in boosting robustness of neural networks in sev-

eral detection settings. Moreover, we show that

our approach effectively composes with adversar-

ial training.

1. Introduction

Deep neural network models demonstrate human-

transcending capabilities in many applications, but are

often vulnerable to attacks that involve small (in `p-norm)

adversarial perturbations to inputs (Szegedy et al., 2014;

Goodfellow et al., 2015; Madry et al., 2017). This issue

is particularly acute in security applications, where a

common task is to determine whether a particular input

(e.g., executable, twitter post) is malicious or benign. In

these settings, malicious parties have a strong incentive

to redesign inputs (such as malware) in order to evade

detection by deep neural network-based detectors, and there

have now been a series of demonstrations of successful
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evasion attacks (Grosse et al., 2016; Li & Vorobeychik,

2018; Laskov et al., 2014; Xu et al., 2016). In response, a

number of approaches have been proposed to create models

that are more robust to evasion attacks (Cohen et al., 2019;

Lecuyer et al., 2019; Raghunathan et al., 2018; Wong

& Kolter, 2018; Wong et al., 2018), with methods using

adversarial training—where models are trained by replacing

regular training inputs with their adversarially perturbed

variants—remaining the state of the art (Goodfellow et al.,

2015; Madry et al., 2017; Tong et al., 2019; Vorobeychik

& Kantarcioglu, 2018). Nevertheless, despite considerable

advances, increasing robustness of deep neural networks to

evasion attacks typically entails a considerable decrease in

accuracy on unperturbed (clean) inputs (Madry et al., 2017;

Wu et al., 2020).

We propose a novel approach for enhancing robustness

of deep neural networks with binary inputs to adversarial

evasion that leverages Fourier analysis of Boolean func-

tions (O’Donnell, 2014). Unlike most prior approaches

for boosting robustness, which aim to refactor the entire

deep neural network, say, through adversarial training, our

approach is more fine-grained, applied at the level of indi-

vidual neurons. Specifically, we start by treating neurons as

linear classifiers over binary inputs, and considering their ro-

bustness as the problem of maximizing the average distance

of all inputs in the input space from the neuron’s decision

boundary. We then derive a closed-form solution to this

optimization problem; the process of replacing the original

weights by their more robust variants, given by this solution,

is called Fourier stabilization of neurons. Further, a bound

for the per-neuron drop in accuracy due to this process is

derived.

This idea applies to most common activation functions, such

as logistic, tanh, erf , and ReLU (treating activation as a

binary decision). Finally, we determine which subset of

neurons in a neural network to stabilize. While this is a

difficult combinatorial optimization problem, we develop

several effective algorithmic approaches for it.

Our full approach, which we call Fourier stabilization of a

neural network (abbrv. stabilization), applies only to neural

networks with binary inputs, and is targeted at security appli-

cations, where binary inputs are common and, indeed, it is

often the case that binarized inputs outperform real-valued
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alternatives (Šrndić & Laskov, 2016; Tong et al., 2019). We

emphasize that our approach is complementary to alterna-

tive defenses: it applies post-training, and can thus be easily

composed with any defense, such as adversarial example

detection (Xu et al., 2018) or adversarial training. Moreover,

as our approach does not require any training data (as it

stabilizes neurons directly), it can even apply to settings

where one has a neural network that needs to be made more

robust, but not training data, which is sensitive (e.g., in

medical and cybersecurity applications where data contains

sensitive or classified information). Access to training data,

however, enables the additional benefit of estimating robust-

ness and accuracy in practice; we use this approach in our

experiments to decide which subset of neurons to stabilize.

We experimentally evaluate the proposed Fourier stabiliza-

tion approach on several datasets involving detection of ma-

licious inputs, including malware detection and hate speech

detection. Our experiments show that our approach con-

siderably improves neural network robustness to evasion in

these domains, and effectively composes with adversarial

training defense.

Our contribution We begin in Section 2 by familiarizing

the reader with the formal definition of robustness (specif-

ically, prediction change by (Diochnos et al., 2018)), its

geometric interpretation, and provide some necessary back-

ground on Fourier analysis of Boolean functions. We pro-

ceed in Section 3 by formulating the stabilization of neurons

as an optimization problem, and solving it analytically for

the `1-metric in Section 3.1 (the solution for all other `p-

metrics is given inthe appendix). In Section 3.2 we employ

probabilistic tools from (O’Donnell, 2014; O’Donnell &

Servedio, 2011; Matulef et al., 2010) (among others) to

bound the loss of accuracy that results from stabilization of

a neuron, i.e., the fraction of inputs that would lie on the

“wrong” side of its original decision boundary.

In Section 4 the discussion is extended to neural networks.

It is observed that stabilizing the entire first layer might not

be effective for improving robustness while maintaining ac-

curacy. Instead, one should find an optimal subset of those,

whose stabilization increases robustness the most, while

maintaining bounded loss of accuracy. Since this combina-

torial optimization problem is hard to solve in general, we

suggest a few heuristics. The efficacy of these heuristics is

demonstrated in Section 5 by showing improved accuracy-

robustness tradeoff in classifying several commonly used

cybersecurity datasets under state-of-the-art attacks. Further,

it is also demonstrated that these techniques can be effec-

tively used in conjunction with adversarial training. Future

research directions are discussed in Section 6.

2. Preliminaries

For w ∈ R
n and θ ∈ R, denote the hyperplane H = {x ∈

R
n|xwᵀ = θ} by H(w, θ). Our fundamental technique

operates at the level of neurons in a neural network, which

we treat as (generalized) linear models. We start by con-

sidering linear models of the form h(x) = sign(xwᵀ − θ)
that map binary inputs x ∈ {±1}n to binary outputs; be-

low, we discuss how the machinery we develop applies

to a variety of activation functions. For 1 ≤ p ≤ ∞
let dp and ‖·‖p be the `p-distance and `p-norm, respec-

tively. That is, for vectors v = (vi)
n
i=1 and u = (ui)

n
i=1

let ‖v‖p = (
∑n

i=1 |vi|p)1/p (or max{|vi|}ni=1 if p = ∞)

and dp(v,u) = ‖v − u‖p. For real numbers q, p ≥ 1, the

norms `p and `q are called dual if 1
p + 1

q = 1. For example,

the dual norm of `2 is itself, and the dual norm of `1 is `∞.

In the remainder of this paper, `p and `q denote dual norms.

We will make use of the following theorem:

Theorem 1. (Melachrinoudis, 1997) (Sec. 5) For a hy-

perplane H(v, µ) ⊆ R
n, a point z ∈ R

n, and any p ≥
1, let dp(z,H(v, µ)) denote the `p-distance of H(v, µ)
from z, i.e., min{dp(u, z)|u ∈ H(v, µ)}. Then, we have

dp(z,H(v, µ)) = |z·vᵀ−µ|
‖v‖q

.

2.1. Definition of Robustness

We operate under the geometric interpretation of robustness,

in which the adversary is given a random x ∈ {±1}n, and

would like to apply minimum `p-change to induce misclas-

sification. Since we address binary inputs, we focus our

attention on p = 1, even though our techniques are also

applicable to 1 < p ≤ ∞. The case p = 1 simultaneously

captures bit flips, where the adversary changes a the sign of

an entry, and bit erasures, where the adversary changes an

entry to zero. Notice that a bit flip causes `1-perturbation

of 2, and a bit erasure causes `1-perturbation of 1.

We use one of the standard definitions of robustness of a

classifier h at an input x as the smallest distance of x to the

decision boundary (Diochnos et al., 2018). Formally, the

prediction change robustness (henceforth, simply robust-

ness) of a model h is defined as

Ex inf {r : ∃x′ ∈ Ballpr(x), h(x
′) 6= h(x)} , (1)

where Ballpr(x) is the set of all elements of R
n that are

of `p-distance at most r from x. Note that in our setting, (1)

is equivalent to the `p-distance from the decision boundary

(hyperplane), i.e., Exdp(x,H(w, θ)). A natural goal for

robustness is therefore to maximize the expected `p-distance

to the decision boundary. This problem will be the focus of

Fourier stabilization of neurons below.
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2.2. Fourier analysis of Boolean functions.

Since subsequent sections rely on notions from Fourier anal-

ysis of Boolean functions, we provide a brief introduction.

For a thorough treatment of the topic the reader if referred

to (O’Donnell, 2014). Let [n] denote the set {1, . . . , n}.

Every function f : {±1}n → R can be represented as a

linear combination over R of the functions {χS(x)}S⊆[n],

where χS(x) =
∏

j∈S xj for every S ⊆ [n]. The coefficient

of χS(x) in this linear combination is called the Fourier

coefficient of f at S , and it is denoted by f̂(S). Each Fourier

coefficient f̂(S) equals the inner product between f and χS ,

defined as Exf(x)χS(x), where x is chosen uniformly at

random. The inner product between functions f and g
equals the inner product (in the usual sense) between their re-

spective Fourier coefficients, a result known as Plancherel’s

identity: Exf(x)g(x) =
∑

S⊆[n] f̂(S)ĝ(S).

For brevity, we denote f̂({i}) = f̂i for every i ∈ [n]

and f̂∅ = f̂(∅). We also define the vector f̂ , (f̂1, . . . , f̂n).

The entries of f̂ , known as Chow parameters, play an impor-

tant role in the analysis of Boolean functions in general, and

of sign functions in particular (e.g., (O’Donnell & Servedio,

2011)). We also note that when the range of f is small (e.g.

f : {±1}n → [−1, 1], as in sigmoid functions), Hoeffd-

ing’s inequality implies that any Fourier coefficient f̂(S)
can be efficiently approximated by choosing many x’s uni-

formly at random from {±1}n, and averaging the expres-

sions f(x)χS(x). Finally, in the sequel we make use of the

following lemma, whose proof is given in Appendix A.

Lemma 1. For h(x) = sign(xwᵀ − θ) we have that

sign(ĥi) = sign(wi) for every i ∈ [n].

3. Increasing Robustness of Individual

Neurons

Recall that our goal is to increase robustness, quantified

as the expected distance from the decision boundary, of

individual neurons. Suppose for now that a neuron is a linear

classifier h(x) = sign(xwᵀ − θ). Then, by Theorem 1, the

distance from the decision boundary for a given input x is

dp(x,H(w, θ)) =
|xwᵀ − θ|
‖w‖q

=
xw

ᵀ − θ

‖w‖q
· h(x). (2)

In actuality, we wish to measure this distance with respect

to all inputs in the input space. We can formalize this as

the average distance over the input space (which is finite,

since inputs are binary), or, equivalently if ‖w‖q = 1, as

Ex(xw
ᵀ − θ) · h(x), where the expectation is with respect

to the uniform distribution over inputs.1

1One may be concerned about the use of a uniform distribution
over inputs. However, our experimental evaluation below demon-
strates effectiveness for several real datasets. Additionally, we note

Now, suppose that we are given a neuron parametrized by

(w, θ) as input, and we wish to transform it in order to

maximize its robustness—that is, average distance to the

hyperplane—by choosing new weights and bias, (v, µ). We

can formalize this as the following optimization problem:

The Neuron-Optimization Problem

Input: A neuron h(x) = sign(xwᵀ − θ).
Variables: v = (v1, . . . , vn) ∈ R

n.

Objective: Maximize Ex(xv
ᵀ − µ)h(x).

Constraints:

– If p > 1 (including p = ∞): ‖v‖qq = 1.

– If p = 1: ‖v‖∞ = 1.

However, an issue arises in finding the optimal bias µ∗: treat-

ing µ as an unbounded variable will result in an expression

that can be made arbitrarily large by taking µ to either ∞
(if
∑

x
h(x) > 0) or −∞ (otherwise). Therefore, in what

follows we treat µ as a constant, and discuss its optimal

value with respect to the loss of accuracy in Section 3.2.

We briefly note here a connection to support vector ma-

chines (SVMs), which are based on an analogous margin

maximization idea. The key distinction is that we aim to

maximize margin with respect to the entire input space given

a fixed trained model, whereas SVM maximizes margin with

respect to a given dataset in order to train a model. Thus, our

approach is about robust generalization rather than training.

3.1. Fourier Stabilization of Neurons

We now derive an analytic solution to the optimization prob-

lem above using Fourier analytic techniques. Since we use

a uniform distribution over x ∈ {±1}n, our objective func-

tion becomes

Ex(xv
ᵀ − µ)h(x) = ĥv

ᵀ − ĥ∅µ,

by a straightforward application of Plancherel’s identity.

Therefore, the optimization problem reduces to linear maxi-

mization under equality constraints. In what follows, this

maximization problem is solved analytically; we emphasize

once more that p = 1 is the focus of our attention, and yet

the solution is stated in greater generality for completeness.

Fourier stabilization for p 6= 1 is potentially useful in niche

applications such as neural computation in hardware and

adversarial noise in weights. We provide the proof for the

case p = 1, and the remaining cases (1 < p ≤ ∞) are

discussed in Appendix A.

Theorem 2. Let h(x) = sign(xwᵀ − θ), and ĥ =

(ĥ1, . . . , ĥn). The solution w
∗ = (w∗

1 , . . . , w
∗
n) to the

that in some cases, a simple uniformization mechanism can be
applied (see Appendix B) as part of feature extraction.
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neuron-optimization problem is

w∗
i =







sign(ĥi) ·
(

|ĥi|
‖ĥ‖p

)p−1

if 1 ≤ p < ∞
0 if p = ∞ and |ĥi| < ‖ĥ‖∞
|ĥi| if p = ∞ and |ĥi| = ‖ĥ‖∞

Further, the maximum value of the objective is ‖ĥ‖p − ĥ∅µ.

Proof for p = 1. Notice that the constraint ‖v‖∞ = 1 trans-

lates to the n constraints −1 ≤ vi ≤ 1, where at least one

of which must be attained with equality; this is guaran-

teed since the optimum of a linear function over a convex

polytope is always obtained on the boundary. Hence, the

optimization problem reduces to a linear objective function

under box constraints. Therefore, to maximize ĥvᵀ − ĥ∅µ,

it is readily verified that every vi must be sign(ĥi). The so-

lution in this case is w∗ = (sign(ĥi))
n
i=1, and the resulting

objective is ĥvᵀ − ĥ∅µ = ‖ĥ‖1 − ĥ∅µ.

We refer to the solution in Theorem 2 as Fourier stabiliza-

tion of neurons (or simply stabilization), and the associated

neuron as stabilized. If we fix µ = θ it is easily proved

(see Appendix A) that stabilization increases robustness.

Lemma 2. For every h(x) = sign(xwᵀ − θ), its stabilized

counterpart h′(x) = sign(xw∗ᵀ − θ) is at least as robust

as h(x). In particular:

Exdp(x,H(w, θ)) ≤ ‖ĥ‖p − ĥ∅θ ≤ Exdp(x,H(w∗, θ)).

Notice that thanks to Lemma 1, for p = 1 it is not nec-

essary to approximate the Fourier coefficients of h since

their sign is given by the sign of the respective entries of w.

Notice also that in this case the resulting model is binarized,

i.e., all its weights are {±1}. Such models are popular as

neurons in binarized neural networks (Hubara et al., 2016),

and our results shed some light on their apparent increased

robustness (Galloway et al., 2017).

Also notice that while our formal analysis pertains to sign(·),
similar reasoning can be applied as a heuristic to many other

activation functions, and in particular to sigmoid functions

(such as logistic(·), tanh(·), etc.). For example, one can

replace 1
1+e−(xw

ᵀ
−θ) by 1

1+e−(xw
∗ᵀ

−θ) , where w
∗ is the so-

lution of the neuron-optimization problem when applied

over sign(xwᵀ − θ). Since the outputs of sigmoid func-

tions are very close to ±1 for most inputs, adversarial at-

tacks attempt to push these inputs towards H(w, θ), a task

which is made harder by stabilization. Furthermore, one-

sided robustness is increased by stabilizing ReLU(x) =
max{0,xwᵀ − θ}; x’s for which xw

ᵀ < θ must be shifted

across H(w, θ) for the output of the neuron to change.

Hence, stabilizing ReLU(·), i.e., replacing max{0,xwᵀ −
θ} by max{0,xw∗ᵀ − θ}, increases the robustness of at-

tacking such inputs.

3.2. Bounding the Loss in Accuracy

In the above discussion we optimized for robustness, but

were oblivious to the loss of accuracy, and did not specify

the bias µ. In this section we again focus on p = 1, and the

remaining cases are given in Appendix C. We now quantify

the accuracy loss of a single neuron. Accuracy-loss of a neu-

ron h(x) is quantified in the following sense: we bound the

fraction of x’s such that h(x) 6= h′(x), i.e., they are on the

wrong side of the original decision boundary H(w, θ) due

to the stabilization. The bound is given as a function of the

Fourier coefficients of h, and of the bias µ that can be cho-

sen freely. The choice of µ manifests a robustness-accuracy

tradeoff which we discuss subsequently (Corollary 1). Prov-

ing the bound requires the following technical lemmas.

Lemma 3. Let `(x) =
∑n

i=1 aixi, with
∑n

i=1 a
2
i = 1

and |ai| ≤ ε. If the entries of x are chosen uniformly

at random, then there exist a constant C0 ≈ 0.47 such that

for every µ ≥ 0,

Pr[|`(x)− µ| ≤ u] ≤ u

√

2

π
+ 2C0ε for every u > 0.

Proof. Notice that

Pr[|`(x)− µ| ≤ u] = Pr[µ− u ≤ `(x) ≤ µ+ u]

(a)

≤ Pr[µ− u ≤ N(0, 1) ≤ µ+ u] + 2C0ε

=

∫ µ+u

µ−u

1√
2π

e−x2/2dx+ 2C0ε

(b)

≤ u

√

2

π
+ 2C0ε,

where (a) follows from The Berry-Esseen Theorem2,

and (b) follows since e−x2/2 ≤ 1.

Lemma 4. Let Z1, . . . , Zn be independent and uni-

form {± 1√
n
} random variables, let z = (Z1, . . . , Zn), and

let S =
∑n

i=1 Zi.

A. For every a ∈ {±1} the random variables S and az
ᵀ

are identically distributed.

B. For every µ we have E[|S − µ|] = α(µ), where

α(µ) =
1

2n
·

∑

i∈{−n,−n+2,...,n}

(
n

n−i
2

)

· |i
√
n− µ|

Proof.

A. Since each Zi is uniform over {± 1√
n
}, it follows that

the random variables Zi and −Zi are identically dis-

tributed for every i, which implies the claim since

the Zi’s are independent.

2A parametric variant of the central limit theorem; it is cited in
full in Appendix C, Theorem 4.
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B. Follows by a straightforward computation of the ex-

pectation.

We mention that the proof of the following theorem is

strongly inspired by a well-known p = 2 counterpart, that

appeares repeatedly in the theoretical computer science lit-

erature (e.g., (Matulef et al., 2010) (Thm. 26, Thm. 34,

Thm. 49), (O’Donnell & Servedio, 2011) (Thm. 8.1),

and (O’Donnell, 2014) ( 2
π -Thm.), among others).

Theorem 3. For h(x) = sign(xwᵀ − θ) let `(x) = 1√
n
·

xw
∗ᵀ, where w

∗ is given by Theorem 2, and for any µ let

γ = γ(µ) =
∣
∣
∣

1√
n
‖ĥ‖1 − ĥ∅µ− α(µ)

∣
∣
∣ , (3)

where α(µ) is defined in Lemma 4. Then,

Pr(sign(`(x)− µ) 6= h(x)) ≤ 3
2

(

C0√
n
+

√

C2
0

n +
√

2
π · γ

)

.

Proof. According to Plancherel’s identity, we have that

E[h(x)(`(x)− µ)] =
∑

S⊆[n],S6=∅

ĥ(S)ˆ̀(S)− ĥ∅µ

= 1√
n

n∑

i=1

ĥi sign(ĥi)− ĥ∅µ = 1√
n
‖ĥ‖1 − ĥ∅µ. (4)

Moreover, since Lemma 4 implies that

E[|`(x)− µ|] = α(µ), (5)

we have

E[(`(x)− µ) · (sign(`(x)− µ)− h(x))] =

= E[|`(x)− µ|]− E[h(x)(`(x)− µ)]

(4),(5)
= α(µ)− 1√

n
‖ĥ‖1 + ĥ∅µ ≤ γ. (6)

In what follows, we bound Pr(sign(`(x)− µ) 6= h(x)) by

studying the expectation in (6). According to Lemma 3

with ε = 1√
n

, it follows that for every u > 0 (a precise u

will be given shortly)

Pr(|`(x)− µ| ≤ u) < u
√

2
π + 2C0√

n
, η(u). (7)

Assume for contradiction that Pr(sign(`(x) − µ) 6=
h(x)) > 3

2η(u). Since Pr(|`(x) − µ| > u) ≥ 1 − η(u)
by (7), it follows that

Pr(sign(`(x)− µ) 6= h(x) and |`(x)− µ| > u) > η(u)
2 .

(8)

Also, observe that

E[(`(x)− µ)(sign(`(x)− µ)− h(x))] =

1
2n




∑

x| sign(`(x)−µ)>h(x)

2(`(x)− µ)−

∑

x| sign(`(x)−µ)<h(x)

2(`(x)− µ)



 . (9)

Since all summands in left summation in (9) are positive,

and all summands in the right one are negative, by keeping in

the left summation only summands for which `(x)−µ > u,

and in the right summation only those for which `(x)−µ <
−u, we get

(9) ≥ 2u ·

∣
∣
∣
∣

{

x

∣
∣
∣
sign(`(x)− µ) 6= h(x)

and |`(x)− µ| > u

}∣
∣
∣
∣

2n

(8)
> u · η(u). (10)

Combining (10) with (6), it follows that u ·η(u) < γ, which

by the definition in (7) implies that

√
2
π · u2 + 2C0√

n
· u− γ < 0. (11)

We wish to find the smallest positive value of u which con-

tradicts (11). By applying the textbook solution, we have

that any positive u which complies with (11) must satisfy

u <
− C0√

n
+

√

C2
0

n +
√

2
π · γ

√
2
π

(12)

and hence setting u to the right hand side of (12) leads to a

contradiction. Therefore,

Pr(sign(`(x)− µ) 6= h(x)) ≤ 3
2η(u)

(7)
= 3

2 (u
√

2
π + 2C0√

n
)

= 3
2

(

C0√
n
+

√

C2
0

n +
√

2
π · γ

)

.

Corollary 1. Theorem 3 complements Theorem 2 in terms

of the robustness-accuracy tradeoff in choosing the bias µ
of the stabilized neuron. Given h(x) = sign(xwᵀ − θ),
choosing µ = θ guarantees increased robustness of the

stabilized model h′(x) = sign(xw∗ᵀ−µ) by Lemma 2, and

the accuracy loss is quantified by setting3 µ = θ Theorem 3.

However, one is free to choose any other µ 6= θ, and obtain

different accuracy and robustness. For any such µ, the

robustness of the stabilized neuron is

Exdp(x,H(w∗, µ)) =
n∑

i=1

w∗
i ĥ

′
i − ĥ′

∅
µ

3More precisely, setting µ = θ/
√
n, due to the additional

normalization factor in Theorem 3.
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by Plancherel’s identity, and the resulting accuracy loss is

given similarly by Theorem 3. In any case, the resulting

accuracy and robustness should be contrasted with those

of the non-stabilized model, where the accuracy loss is

obviously zero, and the robustness is

Exdp(x,H(w, θ)) =

n∑

i=1

wiĥi − ĥ∅θ.

4. Fourier Stabilization of Deep Neural

Networks

Thus far, we were primarily focused on robustness and accu-

racy of individual neurons, modeled as linear classifiers. We

now consider the problem of increasing robustness of neural

networks, comprised of a collection of such neurons. The

general idea is that by stabilizing individual neurons in the

network we can increase the overall robustness. However,

increased robustness comes almost inevitably at some loss

in accuracy, and different neurons in a network will face

a somewhat different robustness-accuracy tradeoff. Conse-

quently, we will now consider the problem of stabilizing a

neural network by selecting a subset of neurons to stabilize

that best trades off robustness and accuracy.

To formalize this idea, let S denote the subset of neurons

that are chosen for stabilization. Define R(S) as robustness

(for example, measured empirically on a dataset using any

of the standard measures) and let A(S) be the accuracy

(again, measured empirically on unperturbed data) after we

stabilize the neurons in set S. Our goal is to maximize

robustness subject to a constraint that accuracy is no lower

than a predefined lower bound β:

The Network-Optimization Problem

Input: A neural network N with first-layer neu-

rons {hi(x) = sign(xwᵀ
i − θi)}ti=1, and accuracy

bound β.

Variable: S ⊆ {1, . . . , t}.

Objective: Maximize R(S)
Constraint: A(S) ≥ β.

Observe that while in principle we can stabilize any subset

of neurons, the tools we developed in Section 3.1 apply

only to neurons with binary inputs, which is, in general,

only true of the neurons in the first (hidden) layer of the

neural network. Consequently, both the formulation above,

and experiments below, focus on stabilizing a subset of the

first-layer neurons.

There are two principal challenges in solving the optimiza-

tion problem above. First, it is a combinatorial optimization

problem in which neither R(S) nor A(S) are guaranteed to

have any particular structure (e.g., they are not even neces-

sarily monotone). Second, using empirical robustness R(S)
is typically impractical, as computing `1 adversarial pertur-

bations on binary inputs is itself a difficult combinatorial

optimization problem for which even heuristic solutions are

slow (Papernot et al., 2016).

To address the first issue, we propose two algorithms. The

first is Greedy Marginal Benefit per Unit Cost (GMBC) al-

gorithm. Define ∆A(j|S) = A(S) − A(S ∪ {j}) for any

set of stabilized neurons S; this is the marginal decrease in

accuracy from stabilizing a neuron j in addition to those

in S. Similarly, define ∆R(j|S) = R(S ∪ {j}) − R(S),
the marginal increase in robustness from stabilizing j. We

can greedily choose neurons to stabilize in decreasing order

of
∆R(j|S)
∆A(j|S) , until the accuracy “budget” is saturated (that

is, as long as accuracy stays above the bound β). A second

alternative algorithm we propose is Greedy Marginal Ben-

efit (GMB), which stabilizes neurons solely in the order of

∆R(j|S). If A(S) is monotone decreasing in the number

of neurons, we can show that GMB requires only a logarith-

mic number of accuracy evaluations (seeAppendix E). In

practice, we can also run both in parallel and choose the

better solution of the two; indeed, if R(S) and A(S) are

both monotone and submodular, with A(S) having some ad-

ditional structure, the resulting algorithm exhibits a known

approximation guarantee (Zhang & Vorobeychik, 2016).

However, we must be careful since in fact A(S) is not nec-

essarily monotone, and consequently ∆A(j|S) can be neg-

ative. To address this, we maintain a positive lower bound

ā on this quantity, and if ∆A(j|S) < ā (including if it is

negative), we simply set it to ā.

To address the second issue, we propose using an analytic

proxy for R(S), defining it as the sum of the increase in

robustness from stabilizing the individual neurons in S (see

Section 3.1).

5. Experiments

Datasets and Computing Infrastructure We evaluated

the proposed approach using three security-related datasets:

PDFRate, Hidost, and Hate Speech. The PDFRate

dataset (Smutz & Stavrou, 2012) is a PDF malware dataset

which extracts features based on PDF file metadata and con-

tent. The metadata features include the size of a file, author

name, and creation date, while content-based features in-

clude position and counts of specific keywords. This dataset

includes 135 total features, which are then binarized if not

already binary. The Hidost dataset (Šrndić & Laskov, 2016)

is a PDF malware dataset which extracts features based on

the logical structure of a PDF document. Specifically, each

binary feature corresponds to the presence of a particular

structural path, which is a sequence of edges in the reduced

(tree) logical structure, starting from the catalog dictionary

and ending at this object (i.e., the shortest reference path to
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Figure 1: Robustness of original and stabilized neural network models (using GMB) on PDFRate, Hidost, and Hate Speech

datasets (columns) against the BB (top row) and JSMA (bottom row) attacks. The x-axis shows varying levels of `1
perturbation bound ε for the attacks.

a PDF object). This dataset is comprised of 658,763 PDF

files and 961 features.

The Hate Speech dataset (Qian et al., 2019), collected

from Gab, is comprised of conversation segments, with

hate speech labels collected from Amazon Mechanical Turk

workers. This dataset contains 33,776 posts, and we used

a bag-of-words binary representation with 200 most com-

monly occurring words (not including stop words).

All datasets were divided into training, validation, and test

subsets; the former two were used for training and parameter

tuning, while all the results below are using the test data. We

also used the validation set to select the subset of neurons

S to be stabilized. For each dataset, we learned a two-layer

sigmoidal fully connected neural network as a baseline.

Experiments were run on a research computer cluster with

over 2,500 CPUs and 60 GPUs.

Attacks The robustness-accuracy tradeoff is quantified by

the success rate of two state-of-the-art attacks, JSMA and `1-

BB, under limited budget. Jacobian-based Saliency Map

Attack (JSMA) (Papernot et al., 2016) (naturally adapted

to the {±1} domain rather than {0, 1}), employs a greedy

heuristic by which the bit with the highest impact is flipped.

`1 Brendel & Bethge (`1-BB) (Brendel et al., 2019) is an

attack that allows non-binary perturbations. It is radically

different from JSMA in the sense that it requires an already-

adversarial starting point which is then optimized. Given a

clean point to attack, we select the adversarial starting point

as the closest to it in `1-distance, among all points in the

training set.

Adversarial Training In addition to the conventional

baseline above, we also evaluated the use of neural net-

work stabilization after adversarial training (AT) (Vorobey-

chik & Kantarcioglu, 2018), which is still a state-of-the-art

general-purpose approach for defense against adversarial

example attacks. We performed AT with the JSMA attack

(`1-norm ε = 20), which we adapted as follows: instead of

minimizing the number of perturbed features to cause mis-

classification, we maximize loss subject to a constraint that

we change at most ε features, still choosing which features

to flip in the sorted order produced by JSMA.

5.1. Effectiveness of Neural Network Stabilization

We first evaluate the proposed Fourier stabilization approach

for neural network models on neural networks trained in

a regular way on the PDFRate, Hidost, and Hate Speech

datasets. The results are shown in Figure 1 for the GMB

algorithm, where the top three plots (one for each dataset)

are for the BB attack, and the bottom three are for the JSMA
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Figure 2: Robustness of adversarially trained neural networks and their stabilized variants (using GMB). Top row: PDFRate

dataset, after 1, 5, and 10 epochs of adversarial training (from left to right). Bottom row: Hidost dataset after 1 (left) and 4

(right) epochs of adversarial training. The x-axis shows varying levels of `1 perturbation bound ε for the attacks.

attack; results for GMBC are provided in the supplement.

The most significant impact on robustness is in the case

of the PDFRate dataset, where an essentially negligible

drop in accuracy is accompanied by a substantial increase

in robustness. For example, for BB attack `1 perturbation

of at most ε = 10 (the x-axis), robust accuracy (y-axis)

increases from nearly 0 to 70%, while clean data accuracy is

0.98. We can observe a similar impact for the JSMA attack,

with robust accuracy increasing from 0 to 60%. Fourier

stabilization has a similarly substantial impact on the Hidost

data: with accuracy still at 99%, robust accuracy is increased

from nearly 0 to 60% for both the BB and JSMA attacks.

On the other hand, the impact is markedly small on the

Hate Speech data, although even here we see an increase

in robust accuracy for BB attacks on the stabilized version

for β = 0.88 and ε = 1 from 30% (baseline) to nearly 70%

(Fourier stabilization).

5.2. Stabilizing Adversarially Trained Models

In addition to demonstrating the value of stabilization for

regularly trained neural networks (for example, when ad-

versarial training is not an option, such as when datasets

on which the original model was trained are sensitive), we

now show that the approach also effectively composes with

adversarial training (AT). Figure 2 presents the results of

stabilization (using GMB; see the supplement for GMBC)

performed after several epochs of AT. In all cases we see

some improvement, and in a number of them the improve-

ment over AT is considerable. For example, on the Hidost

dataset after 4 epochs of AT, robust accuracy is consider-

ably improved by AT compared to the original model in

Figure 1, but then further improved significantly by the

proposed stabilization approach. For example, for ε = 24,

robust accuracy increases from approximately 20% to 80%.

6. Discussion

We introduced Fourier stabilization, a harmonic-analysis

inspired post-training defense against adversarial pertur-

bations of randomly chosen binary inputs. It is natural to

consider extensions of this work in several fronts, e.g., worst-

case robustness, non-uniform binary inputs, and real-valued

inputs. In worst-case robustness, correct computation is

required for every input, i.e., Ex in (1) is replaced by minx.

While average-case robustness is more suited for applica-

tions such as malware detection, worst-case robustness is

relevant in critical applications such as neuromorphic com-

puting. It was recently shown in Raviv et al. (2020) that

worst-case robustness is impossible even against one bit

erasure (i.e., setting xi = 0 for some i), unless redundancy

is added, and a simple methods of adding such redundancy
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was given.

Extensions for non-uniform-binary or real-valued inputs

require developing new tools in harmonic analysis. In the

binary case, one needs to study the coefficients which come

up instead of the Fourier ones, and if Plancherel’s identity

holds. In the real-valued case, e.g., when the inputs are

distributed by a multivariate Gaussian, Hermite coefficients

can be used similarly, see (O’Donnell, 2014), Sec. 11.2.

However, in this case every neuron is already stabilized

(see (Matulef et al., 2010), Prop. 25.2), and hence we sug-

gest to consider other input distributions that are common

in the literature, such as Gaussian mixture, and study the

resulting coefficients.
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Šrndić, N. and Laskov, P. Hidost: a static machine-learning-

based detector of malicious files. EURASIP Journal on

Information Security, 2016(1):22, 2016.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,

D., Goodfellow, I., and Fergus, R. Intriguing proper-

ties of neural networks. In International Conference on

Learning Representations, 2014.

Tong, L., Li, B., Hajaj, C., Xiao, C., Zhang, N., and Vorob-

eychik, Y. Improving robustness of ml classifiers against

realizable evasion attacks using conserved features. In

USENIX Security Symposium, pp. 285–302, 2019.

Vorobeychik, Y. and Kantarcioglu, M. Adversarial machine

learning. Synthesis Lectures on Artificial Intelligence and

Machine Learning, 12(3):1–169, 2018.

Wong, E. and Kolter, J. Z. Provable defenses against adver-

sarial examples via the convex outer adversarial polytope.

In International Conference on Machine Learning, 2018.

Wong, E., Schmidt, F., Metzen, J. H., and Kolter, J. Z. Scal-

ing provable adversarial defenses. In Neural Information

Processing Systems, 2018.

Wu, T., Tong, L., and Vorobeychik, Y. Defending against

physically realizable attacks on image classification. In

International Conference on Learning Representations,

2020.

Xu, W., Qi, Y., and Evans, D. Automatically evading clas-

sifiers. In Network and Distributed Systems Security

Symposium, 2016.

Xu, W., Evans, D., and Qi, Y. Feature squeezing: Detecting

adversarial examples in deep neural networks. In Network

and Distributed System Security Symposium, 2018.

Zhang, H. and Vorobeychik, Y. Submodular optimization

with routing constraints. In AAAI Conference on Artificial

Intelligence, 2016.



Enhancing Robustness of Neural Networks through Fourier Stabilization

Supplement to Enhancing Robustness of

Neural Networks through Fourier Stabilization

A. Omitted Proofs

Proof of Lemma 1. We begin by introducing the notion of

influences (O’Donnell, 2014) (Def. 2.13). The influence

of coordinate i ∈ [n] is Infi[h] = Pr[h(x) 6= h(x⊕i)],
where x ∈ {±1}n is chosen uniformly at random, and x

⊕i

equals x with its i’th coordinate flipped. According

to (O’Donnell, 2014) (Ex. 2.5), we have that Infi[h] = |ĥi|
for every i since h is unate4. Therefore, for every i ∈ [n],

we have that h depends on xi if and only if ĥi 6= 0. Now,

observe that

ĥi = E[xih(x)] =
∑

x|xi=1

sign




∑

j 6=i

wjxj − (θ − wi)





︸ ︷︷ ︸

,A

−
∑

x|xi=−1

sign




∑

j 6=i

wjxj − (θ + wi)





︸ ︷︷ ︸

,B

,

and hence, if wi > 0, then θ+wi > θ−wi, and hence A ≥
B and ĥi ≥ 0. Similarly, if wi < 0, it follows that ĥi ≤ 0.

Since h depends on all its variables it follows that ĥ 6= 0,

and the claim follows.

Proof of Lemma 2. For simplicity, assume that ‖w‖q =
‖w∗‖q = 1; this can be assumed since scaling the weights

(including the bias) does not change the accuracy nor the

robustness. Also, let dsp be the signed variant of dp, i.e.,

dsp(x,H(w, θ)) =
xw

ᵀ − θ

‖w‖q
.

According to Theorem 1, and by the definition of robust-

ness (1) and of signed distance, it follows that

Exdp(x,H(w, θ)) = Exd
s
p(x,H(w, θ))h(x)

(a)

≤ Exd
s
p(x,H(w∗, θ))h(x)

=
∑

x|h(x)=h′(x)

Pr(x)dsp(x,H(w∗, θ))h′(x)−

∑

x|h(x) 6=h′(x)

Pr(x)dsp(x,H(w∗, θ))h′(x)

4A Boolean function f : {±1}n → {±1} is called unate if it
is monotone or anti-monotone in all n coordinates. The function f
is monotone in coordinate i if f(x) ≤ f(x⊕i) for every x such
that xi = −1. Similarly, it is anti-monotone in coordinate i if
f(x) ≥ f(x⊕i) for every x such that xi = −1. It is readily
verified that every sign function is unate.

=
∑

x|h(x)=h′(x)

Pr(x)dp(x,H(w∗, θ))−

∑

x|h(x) 6=h′(x)

Pr(x)dp(x,H(w∗, θ))

(b)

≤ Exdp(x,H(w∗, θ)),

where (a) follows from w
∗ being the maximizer of the cor-

responding expression, and (b) follows from the positivity

of distance. The “in particular” part follows from Theorem 2

since the expression after (a) is the objective function of

the optimization problem, evaluated at its maximizer w∗,

which results in ‖ĥ‖p − ĥ∅θ.

Proof of Theorem 2. The proof is split to the cases 1 < p <
∞ and p = ∞.

The case 1 < p < ∞: Since the objective function and the

constraint are differentiable, we use Lagrange multipliers.

Define an additional variable λ, and let

`(v, λ) = ĥv
ᵀ − ĥ∅µ− λ(‖v‖qq − 1)

To find the extrema of `(v, λ), we compute its gradient5

with respect to derivation by (v1, . . . , vn, λ),

∇v,λ`(v, λ) = (ĥ, 0)−
(λqv1|v1|q−2, . . . , λqvn|vn|q−2, ‖v‖qq − 1) = 0.

and hence ĥi = λqvi|vi|q−2 = λq · sign(vi) · |vi|q−1 for

every i ∈ [n]. Since the maximizer w
∗ of ĥv

ᵀ clearly

satisfies sign(ĥi) = sign(w∗
i ) for every i ∈ [n], it follows

that |ĥi| = λq · |w∗
i |q−1, i.e., |w∗

i | = (|ĥi|/λq)1/(q−1). By

plugging this into ‖v‖qq − 1 = 0, if λ 6= 0 then

n∑

i=1

(

|ĥi|
λq

) q

q−1

= 1

λ
q

q−1 =
n∑

i=1

(

|ĥi|
q

) q

q−1

,

and therefore

λ =





n∑

i=1

(

|ĥi|
q

) q

q−1





q−1
q

=

(
n∑

i=1

(

|ĥi|
q

)p) 1
p

=
1

q

(
n∑

i=1

|ĥi|p
) 1

p

=
‖ĥ‖p
q

.

5Since 1 < p < ∞, it follows that 1 < q < ∞, and hence the
function |x|q is differentiable everywhere (including x = 0), and
its derivative is qx|x|q−2.
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Hence, the solution satisfies

|w∗
i | =




|ĥi|

‖ĥ‖p

q · q





1
q−1

=

(

|ĥi|
‖ĥ‖p

) 1
q−1

=

(

|ĥi|
‖ĥ‖p

)p−1

. (13)

Again, since sign(w∗
i ) = sign(ĥi) for every i ∈ [n],

it follows from (13) that w∗
i = sign(ĥi)(|ĥi|/‖ĥ‖p)p−1.

If λ = 0 then ĥ = 0, and then h must be constant6. Finally,

the resulting objective can be easily computed.

The case p = ∞: For p = ∞ the constraint ‖v‖1 = 1 is

not differentiable. However, notice that ‖v‖1 ≤ 1 defines a

convex polytope whose vertices are {±ei}ni=1, where ei is

the i’th unit vector. Similar to the case p = 1, it is known

that the optimum of a linear function over a convex polytope

is obtained at a vertex. Therefore, it is readily verified

that the solution is w
∗ = sign(ĥimax

)eimax
, where imax ,

argmaxi∈[n] |ĥi|, for which the resulting objective is ĥvᵀ−
ĥ∅µ = ‖ĥ‖∞ − ĥ∅µ.

B. Uniform and Binary Feature Extraction

As mentioned earlier, our Fourier analytic methods are ap-

plicable only in settings where the inputs presented to the

adversary are binary, and uniformly distributed. While this

is not a standard setting in adversarial machine learning, we

point out cases in which this uniform binary distribution can

be attained with little additional effort. We focus on settings

where the extraction of features from real-world instances is

freely chosen by the learner, such as in cybersecurity. Fur-

thermore, it has been demonstrated in the past (Tong et al.,

2019) that binarization of features is beneficial to several

applications in cybersecurity, which all the more correlates

with our techniques.

Consider a setting of defending against adversarial evasion

attacks, in which the learner begins by extracting features

from malicious and benign instances. Since the extraction

of features from instances is up to the learner to decide, one

can imagine every instance as a (potentially infinite) vector

over the reals, out of which the learner focuses on a finitely

many. Therefore, the instance space can be seen as Rn for

some integer n, where instances are sampled according to

jointly Gaussian vector X .

To extract binary and uniform features from X , we begin

by calculating its covariance matrix C = E[XᵀX]; if not

6The famous Chow theorem (O’Donnell, 2014) (Thm. 5.1)
states that sign functions (also known as Linear Threshold Func-
tions) are uniquely determined by their Chow parameters (see
Section 2.2). Therefore, since the function c(x) = 1 clearly
has ĉ = 0, it follows that h(x) = c(x) = 1.

known a priori it can be approximated from the data. Then,

finding the diagonalization C = UDU
ᵀ, where D is diago-

nal and U is unitary, allows us to decorrelate the features—it

is an easy exercise to verify that the entries of XU are un-

correlated. Finally, we binarize XU by thresholding on the

mean of its individual entries:

bin(XU)j =

{

1 if (XU)j ≥ E[(XU)j ]

−1 if (XU)j < E[(XU)j ]
.

It is readily verified that the distribution bin(XU) is uni-

form over {±1}n.

C. Loss of Accuracy for 1 < p < ∞
In this section we extend Theorem 3 to other values of p.

All values 1 < p < ∞ are covered by the discussion in this

section. The case p = ∞, which is of lesser interest due to

drastic loss of accuracy, can be obtained by a variant of the

proof of Theorem 3, and the details are left to the reader. To

provide a bound similar to Theorem 3 for 1 < p < ∞, the

following lemma is required.

Lemma 5. Let `(x) =
∑n

i=1 aixi, with
∑n

i=1 a
2
i = 1

and |ai| ≤ ε. If the entries of x are chosen uniformly

at random, then there exist a C1 ≈ 21.82 such that for

every µ ≥ 0,

E[|`(x)− µ|] ≤ Eµ + ρε

where ρ , 4πC1

3
√
3

, and Eµ , E[|N(µ, 1)|] is the mean of a

folded Gaussian.

To prove Lemma 5, the following version of the Central

Limit Theorem is given.

Theorem 4. (Berry-Esseen Theorem) (O’Donnell, 2014)

(Ex. 5.16, 5.31(d)) Let X1, . . . , Xn be independent random

variables with E[Xi] = 0, |Xi| ≤ ε, and Var[Xi] = σ2
i

for every i ∈ [n], where
∑n

i=1 σ
2
i = 1. Then, for S =

∑n
i=1 Xi, for every interval I ⊆ R, and every u > 0, there

exist absolute constants C0, C1 such that

|Pr[S ∈ I]− Pr[N(0, 1) ∈ I]| ≤ 2C0ε, and

|Pr[S ≤ u]− Pr[(N(0, 1) ≤ u]| ≤ C1ε ·
1

1 + |u|3 .

Optimal values for C0 and C1 are not known, but current

best estimates are C0 ≈ 0.47 and C1 ≈ 21.82 (Pinelis,

2017; Shevtsova, 2017).

Proof of Lemma 5. Following the proof of (Matulef et al.,

2010) (Prop. 32), with minor adjustments, we have

E[|`(x)− µ|] =
∫ ∞

0

Pr[|`(x)− µ| > s]ds
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=

∫ ∞

0

Pr[`(x) > µ+ s] + Pr[`(x) < µ− s]ds

=

∫ ∞

0

Pr[N(0, 1) > µ+ s] + Pr[N(0, 1) < µ− s]ds

+ C1ε

∫ ∞

0

1

1 + |µ+ s|3 +
1

1 + |µ− s|3 ds

=

∫ ∞

0

Pr[|N(0, 1)− µ| > s]ds

+ C1ε

∫ ∞

0

1

1 + |µ+ s|3 ds+ C1ε

∫ ∞

0

1

1 + |µ− s|3 ds.

(14)

The leftmost integral in (14) equals Eµ by definition, and a

variable substitutions of x = µ + s and x = µ − s in the

remaining two, respectively, yields

(14) = Eµ + C1ε

∫ ∞

−∞

1

1 + |x|3 dx = Eµ +
4πC1ε

3
√
3

,

where the last equality is a known formula.

We now turn to bound the accuracy for `p-Fourier stabiliza-

tion with 1 < p < ∞.

Theorem 5. For h(x) = sign(xwᵀ − θ), let `(x) =

1
σxw

∗ᵀ, where w∗
i = sign(ĥi)

(
|ĥi|
‖ĥ‖p

) 1
q−1

and σ =

‖w∗‖2, and for any µ > 0 let

γ = γ(µ) =

∣
∣
∣
∣
∣

(

‖ĥ‖pp
‖ĥ 1

q−1 ‖2
− ĥ∅µ

)

− Eµ

∣
∣
∣
∣
∣
. (15)

Then,

Pr(sign(`(x)− µ) 6= h(x)) ≤

3
2

(

C0ε+

√

C2
0 ε

2 +
√

2
π · (γ + ρε)

)

,

(16)

where ρ = 4πC1

3
√
3

and ε = 1
σ max{|w∗

i |}ni=1.

Proof. First, notice that

σ =

√
√
√
√

n∑

i=1

(

|ĥi|
‖ĥ‖p

) 2
q−1

= ‖ĥ‖
1

1−q
p · ‖ĥ 1

q−1 ‖2. (17)

Second, according to Plancherel’s identity,

E[h(x)(`(x)− µ)] = 1
σ

n∑

i=1

ĥi sign(ĥi)

(

|ĥi|
‖ĥ‖p

) 1
q−1

− ĥ∅µ

=
1

σ‖ĥ‖
1

q−1
p

n∑

i=1

|ĥi|p − ĥ∅µ

(17)
=

‖ĥ‖pp
‖ĥ‖

1
1−q
p · ‖ĥ 1

q−1 ‖2 · ‖ĥ‖
1

q−1
p

− ĥ∅µ

=
‖ĥ‖pp

‖ĥ 1
q−1 ‖2

− ĥ∅µ. (18)

Third, we have that

E[h(x)(`(x)− µ)]
(a)

≤ E[|`(x)− µ|]
(b)

≤ Eµ + ρε. (19)

where (a) is since h(x) ≤ 1, and (b) is by Lemma 5. There-

fore, by the definition of γ, it follows that

E[(`(x)− µ) · (sign(`(x)− µ)− h(x))] =

= E[|`(x)− µ|]− E[h(x)(`(x)− µ)]

(c)

≤ Eµ −
‖ĥ‖pp

‖ĥ 1
q−1 ‖2

+ ĥ∅µ+ ρε
(d)

≤ γ + ρε, (20)

where (c) follows from (18) and (19), and (d) from the defi-

nition of γ (15). In what follows, we bound Pr(sign(`(x)−
µ) 6= h(x)) by studying the expectation in (20). To this

end, notice that for every u > 0 (a precise u will be given

shortly), Lemma 3 implies that

Pr(|`(x)− µ| ≤ u) ≤ u
√

2
π + 2C0ε , η(u). (21)

Assume for contradiction that Pr(sign(`(x)) 6= h(x)) >
3
2η(u). Since Pr(|`(x) − µ| > u) ≥ 1 − η(u) by (21), it

follows that

Pr(sign(`(x)− µ) 6= h(x) and |`(x)− µ| > u) > η(u)
2 .
(22)

Now observe that

E[(`(x)− µ)(sign(`(x)− µ)− h(x))] =

1
2n




∑

x| sign(`(x)−µ)>h(x)

2(`(x)− µ)−

∑

x| sign(`(x)−µ)<h(x)

2(`(x)− µ)



 . (23)

Since all summands in the left summation in (23) are

positive, and all summands in the right one are nega-

tive, by keeping in the left summation only summands for

which `(x)− µ > u, and in the right summation only those

for which `(x)− µ < −u, we get

(23) ≥ 2u · |{x| sign(`(x)− µ) 6= h(x) and |`(x)− µ| > u}|
2n

(22)
> u · η(u). (24)
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Figure 3: Robustness of original and stabilized neural network models with sigmoid (using GMBC) on PDFRate, Hidost,

and Hate Speech datasets (columns) against the BB (top row) and JSMA (bottom row) attacks. The x-axis shows varying

levels of `1 perturbation bound ε for the attacks.

Combining (24) with (20), it follows that

u · η(u) < γ + ρε

which by the definition in (21) implies that

√
2
π · u2 + 2C0ε · u− (γ + ρε) < 0. (25)

We wish to find the smallest positive value of u which contra-

dicts (25). Clearly, any positive u which complies with (25)

must satisfy

u <
−2C0ε+

√

4C2
0 ε

2 + 4
√

2
π · (γ + ρε)

2
√

2
π

=
−C0ε+

√

C2
0 ε

2 +
√

2
π · (γ + ρε)

√
2
π

, (26)

and hence setting u to the rightmost expression in (26) leads

to a contradiction. This implies that

Pr(sign(`(x)− µ) 6= h(x)) ≤ 3
2η(u)

(21)
= 3

2 (u
√

2
π + 2C0ε)

= 3
2

(

−C0ε+

√

C2
0 ε

2 +
√

2
π · (γ + ρε) + 2C0ε

)

= 3
2

(

C0ε+

√

C2
0 ε

2 +
√

2
π · (γ + ρε)

)

.

D. Additional Experiments

D.1. GMBC Algorithm

In Section 5, we presented the results of neural network

stabilization using the GMB algorithm which only uses ac-

curacy in assessing when the accuracy constraint has been vi-

olated. Here we present analogous results for using GMBC.

As we can see from Figure 3, overall the GMB algorithm is

considerably more effective. Indeed, if we use the blended

algorithm in which we always run both GMB and GMBC

and take the best solution of the two in terms of robustness,

the result is equivalent to running GMB in our setting.

D.2. ReLU Activation Function

Our experiments in Section 5 used the sigmoid activation

functions as neurons. Here, we present results for neural

networks that instead use the more prevalent ReLU activa-

tion functions. As we can see from Figure 4, the results are

qualitatively the same: stabilization considerably improves

robustness of the networks. However, the impact is some-

what smaller than for the sigmoidal neural networks, and

stabilization appears to have no effect on the Hate Speech
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Figure 4: Robustness of original and stabilized neural network models with ReLU activations (using GMBC) on PDFRate,

Hidost, and Hate Speech datasets (columns) against the BB (top row) and JSMA (bottom row) attacks. The x-axis shows

varying levels of `1 perturbation bound ε for the attacks.

dataset in this case.

E. Speeding up GMB

If we assume that accuracy decreases monotonically as more

neurons are stabilized, then GMB can be rephrased as a

search problem, which can be solvable via binary search.

The key insight is that our proxy for computing change in

robustness is based only on the weights of an individual neu-

ron. Therefore, the order in which neurons are stabilized is

computed before the algorithm begins. In GMB, computing

the accuracy of the model is the time-consuming step, and

here we reduce the number of accuracy evaluations from

O(k) to O(log k), where k is the size of the first layer of the

network (number of neurons). Runtime experiment results

can be found in Table 1.

In GMB, we aim to maximize our proxy for robustness while

keeping the accuracy above a threshold. At the beginning

of the algorithm, we compute ∆R for each neuron, the

increase in robustness caused by stabilizing that neuron, and

aim to maximize the sum of the ∆Rs. We do this greedily

by repeatedly stabilizing the next neuron with the largest

∆R. Then, we order neurons from h1, . . . , ht based on

decreasing ∆R, and GMB stabilizes h1, then h2, and so

forth, until we stabilize the largest hi such that the accuracy

is still above the β threshold.

It is evident that this problem is equivalent to the search

problem of finding the largest i such that the accuracy is

≥ β. By our monotonicity assumption, accuracy decreases

with increasing i, hence binary search is applicable. At

each step of this binary search, we evaluate a given index i.
We stabilize all neurons h1, . . . , hi and then evaluate the

accuracy of the model. If it is below β, we wish to stabilize

fewer neurons, and if it is above β, we wish to stabilize

more.

We implemented GMBC with binary search and tested its

runtime for networks classifying PDFRate with varying

numbers of neurons in their hidden layer. All tests were

run on a 2018 MacBook Pro. The results can be found in

Table 1. As expected, we observe that it had insignificant

effects on the run time. We additionally note that the trend

does not appear logarithmic. This is due to the fact that

accuracy evaluations take more time for large networks, in

spite of conducting O(log k) accuracy evaluations.
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β 16 neurons 64 neurons 256 neurons 1024 neurons 4096 neurons 16384 neurons

0.99 0.55 0.60 0.70 1.37 3.19 9.89
0.98 0.40 0.56 0.65 1.30 3.19 10.51
0.97 0.42 0.56 0.64 1.32 3.55 9.57

Table 1: The running time of the algorithm outlined in Appendix E on a 2018 MacBook Pro. The algorithm was tested on

networks classifying the PDFRate dataset with varying numbers of neurons on their first layer. For completeness, we also

varied the accuracy threshold β, but we observe this made no significant impact on the run time.


