


systems, most existing methods fail to address the aforemen-

tioned challenges due to the following reasons. First, current

efforts appeal to either white-box attacks or black-box at-

tacks to obtain a lower bound or upper bound of robustness.

These bounds indicate the vulnerability of face recognition

systems in adversarial settings but lack the understanding

of how each component of face recognition contributes to

such vulnerability. Second, while most existing approaches

focus on a specific type of attack (e.g., digital attacks that

incur imperceptible noise [8, 36]), they fail to explore the

different levels of robustness in response to various attacks

(e.g., physically realizable attacks).

To bridge this gap, we propose FACESEC, a fine-grained

robustness evaluation framework for face recognition sys-

tems. FACESEC incorporates four dimensions in evaluation:

the nature of adversarial perturbations (pixel-level or face

accessories), the attacker’s accurate knowledge about the

target face recognition system (training data and neural ar-

chitecture), goals (dodging or impersonation), and capability

(individual or universal attacks). Specifically, we implement

both digital and physically realizable attacks in FACESEC.

We leverage the PGD attack [18], the state-of-the-art digi-

tal attack paradigm, and the eyeglass frame attack [26] as

the representative of physically realizable attacks. Addi-

tionally, we propose two novel physically realizable attacks:

one involves pixel-level adversarial stickers on human faces,

and the other adds color grids on face masks. Moreover,

to facilitate universal attacks that produce image-agnostic

perturbations, we propose a systematic approach that works

on top of the attack paradigms described above.

In summary, this paper makes the following contributions:

(1) We propose FACESEC, the first robustness evaluation

framework that enables researchers to (i) identify the

vulnerability of each face recognition component to ad-

versarial examples, and (ii) assess different levels of

robustness under various adversarial circumstances.

(2) We propose two novel physically realizable attacks: the

pixel-level sticker attack and the grid-level face mask

attack. These allow us to explore adversarial robustness

against different types of physically realizable perturba-

tions. Particularly, the latter responds to the pressing

needs for security analysis of face recognition systems,

as face masks have become common face accessories

during the COVID-19 pandemic.

(3) We propose a general approach to produce universal

adversarial examples for a batch of face images. Com-

pared to previous works, our paradigm has a significant

speedup and is more efficient in evaluation.

(4) We perform a comprehensive evaluation on five publicly

available face recognition systems in various settings to

demonstrate the efficacy of FACESEC.
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Figure 1. Closed-set and open-set face recognition systems.

2. Background and Related Work

2.1. Face Recognition Systems

Generally, deep face recognition systems aim to solve the

following two tasks: 1) Face identification, which returns the

predicted identity of a test face image; 2) Face verification,

which indicates whether a test face image (also called probe

face image) and the face image stored in the gallery belong to

the same identity. Based on whether all testing identities are

predefined in the training set, face recognition systems can

be further categorized into closed-set systems and open-set

systems [15], as illustrated in Fig. 1.

In closed-set face recognition tasks, all the testing sam-

ples’ identities are enrolled in the training set. Specifically,

a face identification task is equivalent to a multi-class classi-

fication problem by using the standard softmax loss function

in the training phase [31, 28, 27]. And a face verification

task is a natural extension of face identification by first per-

forming the classification twice (one for the test image and

the other for the gallery) and then comparing the predicted

identities to see if they are identical.

In contrast, there are usually no overlaps between identi-

ties in the training and testing set for open-set tasks. In this

setting, a face verification task is essentially a metric learn-

ing problem, which aims to maximize intra-class distance

and minimize inter-class distance under a chosen metric

space by two steps [25, 23, 34, 16, 15, 6]. First, we train a

feature extractor that maps a face image into a discriminative

feature space by using a carefully designed loss function;

Then, we measure the distance between feature vectors of

the test and gallery face images to see if it is above a verifica-

tion threshold. As an extension of face verification, the face

identification task requires additional steps to compare the

distances between the feature vectors of the test image and

each gallery image, and then choose the gallery’s identity

corresponding to the shortest distance.

This paper focuses on face identification for closed-set

systems, as face verification is just an extension of identifica-

tion in this setting. Likewise, we focus on face verification
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Figure 2. Sticker attack: an example of physically realizable attacks

on face recognition systems. Left: original input image. Middle:

adversarial sticker on the face. Right: predicted identity. In practice,

the adversarial stickers can be printed and put on human faces.

for open-set systems.

2.2. Digital and Physical Adversarial Attacks

Recent studies have shown that deep neural networks are

vulnerable to adversarial attacks. These attacks produce im-

perceptible perturbations on images in the digital space to

mislead classification [30, 9, 4] (henceforth, digital attacks).

While a number of attacks on face recognition fall into this

category (e.g., by adding small ℓp bounded noise over the

entire input [8] or perceptible but semantically meaningful

perturbation on a restricted area of the input [24]), of partic-

ular interest in face recognition, are attacks in the physical

world (henceforth, physical attacks).

Generally, physical attacks have three characteristics [35].

First, the attackers directly modify the actual entity rather

than digital features. Second, the attacks can mislead state-

of-the-art face recognition systems. Third, the attacks have

low suspiciousness (i.e., by adding objects similar to com-

mon “noise” on a small part of human faces). For example,

an attacker can fool a face recognition system by wearing an

adversarial eyeglass frame [26], a standard face accessory in

the real world.

In this paper, we focus on both digital attacks and the

digital representation of physical attacks (henceforth, physi-

cally realizable attacks). Specifically, physically realizable

attacks are digital attacks that can produce adversarial per-

turbations with low suspiciousness, and these perturbations

can be realized in the physical world by using techniques

such as 3-D printing (e.g., Fig. 2 illustrates one example

of such attacks on face recognition systems). Compared

to physical attacks, physically realizable attacks can evalu-

ate robustness of face recognition systems more efficiently:

on the one hand, realizable attacks allow us to iteratively

modify digital images directly so the evaluation can signif-

icantly speedup compared to modifying real-world objects

and then photographing them; on the other hand, robustness

to physically realizable attacks provides the lower bound

of robustness to physical attacks, as the former has fewer

constraints and larger solution space.

Formally, both digital and physically realizable attacks

can be performed by solving the following general form of

an optimization problem (e.g., for closed-set identification

task):

argmax
δ

ℓ(S(x+Mδ), y) s.t. δ ∈ ∆, (1)

where S is the target face recognition model, ℓ is the adver-

sary’s utility function (e.g., the loss function used to train S),

x is the original input face image, y is the associated identity,

δ is the adversarial perturbation, and ∆ is the feasible space

of the perturbation. Here, M denotes the mask matrix that

constrains the area of perturbation; it has the same dimension

as δ and contains 1s where perturbation is allowed, and 0s

where there is no perturbation.

2.3. Adversarial Defense for Face Recognition

While there have been numerous defense approaches to

make face recognition robust to adversarial attacks, many

of them focus on digital attacks and have been proved to be

broken under adaptive attacks [4, 32]. Here, we describe one

representative defense approach, adversarial training [18],

that is scalable, not defeated by adaptive attacks, and has

been leveraged to defend against physically realizable attacks

on face recognition systems.

The main idea of adversarial training is to minimize pre-

diction loss of the training data, where an attacker tries to

maximize the loss. In practice, this can be done by iteratively

using the following two steps: 1) Use an attack method to

produce adversarial examples of the training data; 2) Use

any optimizer to minimize the loss of predictions on these

adversarial examples. Wu et al. [35] propose to use DOA—

adversarial training with the rectangular occlusion attacks—

to defend against physically realizable attacks on closed-set

face recognition systems. Specifically, the rectangular oc-

clusion attack included in DOA first heuristically locates a

rectangular area among a collection of possible regions in an

input face image, then fixes the position and adds adversarial

occlusion inside the rectangle. It has been shown that DOA

can significantly improve the robustness against the eyeglass

frame attack [26] for closed-set VGG-based face recognition

system [23] by 80%. However, as we will show in Section 4,

DOA would fail to defend against other types of attacks,

such as the face mask attack proposed in Section 3.1.

3. Methodology

In this section, we introduce FACESEC for fine-grained

robustness evaluation of face recognition systems. Our goal

is twofold: 1) identify vulnerability/robustness of each es-

sential component that comprises a face recognition system,

and 2) assess robustness in a variety of adversarial settings.

Fig. 3 illustrates an overview of FACESEC. Let S = f(h;D)
be a face recognition system with a neural architecture h that

is trained on a training set D by an algorithm f (e.g., stochas-

tic gradient descent), FACESEC evaluates the robustness of

S via a quadruplet:

Robustness = Evaluate(S,< P ,K ,G ,C >), (2)

where < P,K,G,C > represents an attacker who tries to

produce adversarial examples to fool S. P is the pertur-
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K: attacker’s knowledge about S
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§ Neural architecture
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C: attacker’s capability

§ Individual attack for each image

§ Batch-based universal attack

P: perturbation type

§ Digital 

§ Pixel-level physically realizable

§ Grid-level physically realizable 

G: attacker’s goal

§ Dodging
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Robustness = Evaluate(S, <P, K, G, C>)

Figure 3. An overview of FACESEC.
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Figure 4. Perturbation types in FACESEC.

bation type, such as perturbations produced by pixel-level

digital attacks and physically realizable attacks. K denotes

the attacker’s knowledge on the target system S, i.e., the

information about which sub-components of S are leaked

to the attacker. G is the goal of the attacker, such as the cir-

cumvention of detection and the misrecognition as a target

identity. C represents the attacker’s capability. For example,

an attacker can either individually perturb each input face

image, or produce universal perturbations for images batch-

wise. Next, we will describe each element of FACESEC in

details.

3.1. Perturbation Type (P)

In FACESEC, we consider three categories of attacks with

different perturbation types: digital attack, pixel-level physi-

cally realizable attack, and grid-level physically realizable

attack, as shown in Fig. 4.

Digital Attack. Digital attack produces small perturbations

on the entire input face image. We use the ℓ∞-norm version

of the PGD attack [18] as the representative of this category1.

Pixel-level Physically Realizable Attack. This category

of attack features pixel-level perturbations that can be real-

ized in the physical world (e.g., by printing them on glossy

photo papers). In this case, the attacker adds large pixel-

level perturbations on a small area of the input image (e.g.,

face accessories). In FACESEC, we use two attacks of this

category: eyeglass frame attack [26] and sticker attack. The

1We also tried other digital attacks (e.g., CW [4] and JSMA [22]), but

these were either less effective than PGD or unable to be extended to

universal attacks (see Section 3.4).
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Figure 5. Transformations for the grid-level face mask attack.

former allows large perturbations within an eyeglass frame,

and it can successfully mislead VGG-based face recognition

systems [23]. We propose the latter to produce pixel-level

perturbations that are added on less important face areas

than the eyeglass frame, i.e., the two cheeks and forehead

of human faces, as illustrated in Fig. 2 and 4. Typically, the

stickers are rectangular occlusions, which cover a total of

about 20% area of an input face image.

Grid-level Physically Realizable Attack. In practice,

pixel-level perturbations are not printable on face accessories

made of coarse materials, such as face masks using cloths

and non-woven fabrics. To address this issue, we propose the

grid-level physically realizable face mask attack, which adds

a color grid on face masks, as shown in Fig. 4. Formally,

the face mask attack on closed-set systems is formulated as

the following optimization problem as a variation of Eq. (1)

(formulations for other settings are presented in Appendix

A):
argmax

δ

ℓ(S(x+M · T (δ)), y), (3)

where δ ∈ R
a×b is a a× b color matrix; each element of δ

represents an RGB color. M is the matrix that constrains

the area of perturbations. T is a sequence of transformations

that convert δ to a face mask with a color grid in digital

space by the following steps, as shown in Fig. 5. First, we

use the interpolation transform to scale up the color matrix δ

into a color grid in a background image, which has the same

dimension as x and all pixel values set to be 0. Then, we

split the color grid into the left and right parts, each of which

has four corner points. Afterward, we use a perspective

transformation on each part of the grid for a 2-D alignment,

which is based on the position of its source and destination

corner points. Finally, we add the aligned color grid onto the

input face image x. Details of the perspective transformation

and the algorithm for solving the optimization problem in

Eq. (3) can be found in Appendix A.

3.2. Attacker’s System Knowledge (K)

The key components of a face recognition system S are

the training set D and neural architecture h. It is natural to

ask how do these two components contribute to the robust-

ness against adversarial attacks. From the attackers’ perspec-

tive, we propose several evaluation scenarios in FACESEC,

13257



which represent adversarial attacks performed under differ-

ent knowledge levels on D and h.

Zero Knowledge. Both D and h are invisible to the attacker,

i.e., K = ∅. This is the weakest adversarial setting, as no

critical information of S is leaked. Thus, it provides an

upper bound for robustness evaluation on S. In this scenario,

the attacks are referred to as black-box attacks, where the

attacker needs no internal details of S to compromise it.

There are two general ways towards black-box attacks,

query-based attack [5, 20] and transfer-based attack [21].

We employ the latter because the former attack requires a

large number of online probes to repeatedly estimate the

loss gradients of S on adversarial examples, which is less

practical than fully offline attacks when access to prediction

decisions is unavailable. The latter method is built upon the

transferability of adversarial examples [21, 7]. Specifically,

an attacker first collects a sufficient of training samples and

builds a surrogate training set D′. Then, a surrogate system

S′ is constructed by training a surrogate neural architecture

h′ on D′ for the same task as S, i.e., S′ = f(h′;D′). Af-

terward, the attacker obtains a set of adversarial examples

by performing white-box attacks on the surrogate system S′,

which constitutes the transferable adversarial examples for

evaluating the robustness of S.

Training Set. This scenario enables the assessment of the

robustness of the training set of S in adversarial settings.

Here, only the training set D is visible to the attacker, i.e.,

K = {D}. Without knowing h, an attacker constructs a sur-

rogate system S′ by training a surrogate neural architecture

h′ on D, i.e., S′ = f(h′;D). Then, the attacker performs

the transfer-based attack aforementioned on S′ and evaluates

S by using the transferred adversarial examples.

Neural Architecture. Similarly, the attacker may only know

the neural architecture h of S but has no access to the training

set D, i.e., K = {h}. This enables us to evaluate the robust-

ness of the neural architecture h of S. Without knowing D,

the attacker can build its surrogate system S′ = f(h;D′)
and conduct the transfer-based attack to evaluate S.

Full Knowledge. In the worst case, the attacker can have

an accurate knowledge of both the training set D and neural

architecture h (i.e., K = {D,h}). Thus, it provides a lower

bound for robustness evaluation on S. In this scenario, the

attacker can fully reproduce S in an offline setting and then

performs white-box attacks on S.

The evaluation method described above is based on the

assumption that the adversarial examples in response to a

surrogate system S′ can always mislead the target system

S. However, there is no theoretical guarantee, and recent

studies show that some transferred adversarial examples can

only fool the target system S with a low success rate [17].

To boost the transferability of adversarial examples pro-

duced on the surrogate system, we leverage two tech-

niques: momentum-based attack [7] and ensemble-based

attack [17, 7]. First, inspired by the momentum-based attack,

we integrate the momentum term into the iterative process of

the white-box attacks on the surrogate system S′ to stabilize

the update directions and avoid the local optima. Thus, the

resulting adversarial examples are more transferable. Sec-

ond, when the neural architecture h of the target system S is

unavailable, we construct the surrogate system S′ using an

ensemble of models with different neural architectures rather

than a single model, i.e., h′ = {h′

i}
k
i=1

, where {h′

i}
k
i=1

is an

ensemble of k models. Specifically, we aggregate the output

logits of hi(i ≤ k) in a similar way to [7]. The rationale

behind this is that if an adversarial example can fool multiple

models, it is more likely to mislead other models.

3.3. Attacker’s Goal (G)

In addition to the attacker’s system knowledge about S,

adversarial attacks can differ in specific goals. In FACESEC,

we are interested in the following two types of attacks with

different goals:

Dodging/Non-targeted. In a dodging attack, an attacker

aims to have his/her face misidentified as another arbitrary

face. e.g., the attacker can be a terrorist who wants to bypass

a face recognition system for biometric security checking.

As the dodging attack has no specific identity as which it

aims to predict an input face image, it is also called the

non-targeted attack.

Impersonation/Targeted. In an impersonation/targeted at-

tack, an attacker seeks to produce an adversarial example

that is misrecognized as a target identity. For example, the

attacker may try to camouflage his/her face to be identified

as an authorized user of a laptop, which uses face recognition

for authentication.

In FACESEC, we formulate the dodging attack and im-

personation attack as constrained optimization problems,

corresponding to different face recognition systems and the

attacker’s goals, as shown in Table 1. Here, ℓ denotes the

softmax cross-entropy loss used in closed-set systems, d
represents the distance metric for open-set systems (e.g., the

cosine distance obtained by subtracting cosine similarity

from one), (x, y) is the input face image and the associated

identity, δ is the adversarial perturbation, S represents a face

recognition system which is built on either a single model or

an ensemble of models with different neural architectures,

M denotes the mask matrix that constrains the area of pertur-

bation (similar to Eq. (1)), ǫ is the ℓp-norm bound of δ. For

closed-set systems, we use yt to represent the target identity

of impersonation attacks. For open-set systems, we use x∗

to denote the gallery face image that belongs to the identity

as x, and x∗

t as the gallery image for the target identity of

impersonation.

Note that the formulations listed in Table 1 work for both

digital attacks and physically realizable attacks: For the
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Table 1. Optimization formulations by the attacker’s goal.

Target System Attacker’s Goal Formulation

Closed-set Dodging maxδ ℓ(S(x+Mδ), y), s.t. ||δ||p ≤ ǫ
Closed-set Impersonation minδ ℓ(S(x+Mδ), yt), s.t. ||δ||p ≤ ǫ
Open-set Dodging maxδ d(S(x+Mδ), S(x∗)), s.t. ||δ||p ≤ ǫ
Open-set Impersonation minδ d(S(x+Mδ), S(x∗

t )), s.t. ||δ||p ≤ ǫ

former, we use a small value of ǫ and let M be an all-one

matrix to ensure imperceptible perturbations on the entire

image. For the latter, we use a large ǫ and let M to constrain

δ in a small area of x.

3.4. Attacker’s Capability (C)

In practice, even when the attackers share the same sys-

tem knowledge and goal, their capabilities can still be dif-

ferent due to the time and/or budget constraints, such as the

budget for printing adversarial eyeglass frames [26]. Thus,

in FACESEC, we consider two types of attacks correspond-

ing to different attacker’s capabilities: individual attack and

universal attack.

Individual Attack. The attacker has a strong capability with

enough time and budget to produce a specific perturbation

for each input face image. In this case, the optimization

formulations are the same as those shown in Table 1.

Universal Attack. The attacker has a time/budget constraint

such that he/she is only able to generate a face-agnostic

perturbation that fools a face recognition system on a batch

of face images instead of every input.

One common way to compute a universal perturbation is

to sequentially find the minimum perturbation of each data

point in the batch and then aggregate these perturbations [19].

However, this method requires orders of magnitude running

time: it processes only one image at each iteration, so a

large number of iterations are needed to obtain a satisfactory

universal perturbation. Moreover, it only focuses on digital

attacks and cannot be generalized to physically realizable

attacks, which seek large perturbations in a restricted area

rather than the minimum perturbations.

To address these issues, we formulate the universal attack

as a maxmin optimization as follows (using the dodging

attack on closed-set systems as an example):

max
δ

min{ℓ(S(xi +Mδ), yi)}
N
i=1

, s.t. ||δ||p ≤ ǫ, (4)

where {xi, yi}
N
i=1

is a batch of input images that share the

universal perturbation δ. Compared to [19], our approach

has several advantages: First, we can significantly improve

the efficiency by processing images batchwise. Second, our

formulation can explicitly control the universality of the per-

turbation by setting different values of N . Third, our method

can be generalized to both digital attacks and physically re-

alizable attacks. Details of our algorithm for solving the

optimization problem in Eq. (4) and the formulations for

other settings can be found in Appendix B.

Table 2. Open-set face recognition systems in our experiments.
Target Model Training Set Neural Architecture Loss

VGGFace [23] VGGFace [23] VGGFace [23] Triplet [23]

FaceNet [1] CASIA-WebFace [37] InceptionResNet [29] Triplet [25]

ArcFace18 [2] MS-Celeb-1M [10] IResNet18 [14] ArcFace [6]

ArcFace50 [2] MS-Celeb-1M [10] IResNet50 [14] ArcFace [6]

ArcFace101 [2] MS-Celeb-1M [10] IResNet101 [14] ArcFace [6]

4. Experiments

In this section, we evaluate a variety of face recognition

systems using FACESEC on both closed-set and open-set

tasks under different adversarial settings.

4.1. Experimental Setup

Datasets. For closed-set systems, we use a subset of the

VGGFace2 dataset [3]. Specifically, we select 100 classes,

each of which has 181 face images. For open-set systems,

we employ the VGGFace2, MS-Celeb-1M [10], CASIA-

WebFace [37] datasets for training surrogate models, and the

LFW dataset [11] for testing.

Neural Architectures. The face recognition systems

with five different neural networks are evaluated in our

experiments: VGGFace [23], InceptionResNet [29], IRes-

Net18 [14], IResNet50 [14], and IResNet101 [14].

Evaluation Metric. We use attack success rate = 1 -

accuracy as the evaluation metric. Specifically, a higher

attack success rate indicates that a face recognition system is

more fragile in adversarial settings, while a lower rate shows

higher robustness against adversarial attacks.

Implementation. For open-set face recognition, we di-

rectly applied five publicly available pre-trained face recogni-

tion models as the target models for attacks, as summarized

in Table 2. At prediction stage, we used 100 photos ran-

domly selected from frontal images in the LFW dataset [11],

each of which is aligned by using MTCNN [38] and cor-

responds to one identity. And we used another 100 photos

of the same identities as the test gallery. We computed the

cosine similarity between the feature vectors of the test and

gallery photos. If the score is above a threshold correspond-

ing to a False Acceptance Rate of 0.001, then the test photo

is predicted to have the same identity as the gallery photo.

For closed-set face recognition, we randomly split each

class of the VGGFace2 subset into three parts: 150 for train-

ing, 30 for validation, and 1 for testing. To train closed-set

models, we used standard transfer learning with the open-set

models listed in Table 2. Specifically, we initialized each

closed-set model with the corresponding open-set model,

and then added a final fully connected layer, which contains

100 neurons. Unless otherwise specified, each model was
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Figure 6. Mask matrices for physically realizable attacks in

FACESEC.

trained for 60 epochs with a training batch size of 64. We

used the Adam optimizer [13] with an initial learning rate of

0.0001, then dropped the learning rate by 0.1 at the 20th and

35th epochs.

For each physically realizable attack in FACESEC, we

used 255/255 as the ℓ∞ norm bound for perturbations al-

lowed, and ran each attack for 200 iterations. For the PGD

attack [18], we used an ℓ∞ bound 8/255 and 40 iterations.

The dimension of the color grid for face mask attacks is set

to 16 × 8. The mask matrices that constrain the areas of

perturbations for physically realizable attacks are visualized

in Fig. 6.

4.2. Robustness of Face Recognition Components

We begin by using FACESEC to assess the robustness of

face recognition components in various adversarial settings.

For a given target face recognition system S and a pertur-

bation type P , we evaluate the training set D and neural

architecture h of S with the four evaluation scenarios pre-

sented in Section 3.2. Specifically, when h is invisible to

the attacker, we construct the surrogate system S′ by ensem-

bling the models built on the other four neural architectures

shown in Table 2. In the scenarios where the attacker has

no access to D, we build the surrogate training set D′ with

another VGGFace2 subset that has the same classes as D in

closed-set settings, and use the other four training sets listed

in Table 2 for open-set tasks. We present the experimental

results for dodging attacks on closed-set face recognition

systems in Table 3, and the results for zero-knowledge dodg-

ing attacks on open-set VGGFace and FaceNet in Table 4.

The other results can be found in Appendix C. Additionally,

we evaluate the efficacy of using momentum and ensemble

methods to improve transferability of adversarial examples,

which is detailed in Appendix D.

It can be seen from Table 3 that: the neural architecture

is significantly more fragile than the training set in most

adversarial settings. For example, when only the neural

architecture is exposed to the attacker, the sticker attack has

a high success rate of 0.92 on FaceNet. In contrast, when

the attacker only knows the training set, the attack success

rate significantly drops to 0.01. In addition, by comparing

each row of Table 3 that corresponds to the same target sys-

tem, we observe that digital attacks (PGD) are considerably

more potent than their physically realizable counterparts on

closed-set systems, while grid-level perturbations on face

Table 3. Attack success rate of dodging attacks on closed-set face

recognition systems by the attacker’s system knowledge. Z repre-

sents zero knowledge, T is training set, A is neural architecture,

and F represents full knowledge.

Target System Attack Type
Attacker’s System Knowledge

Z T A F

VGGFace

PGD 0.40 0.51 0.93 0.94

Eyeglass Frame 0.23 0.28 0.70 0.99

Sticker 0.05 0.06 0.47 0.98

Face Mask 0.26 0.32 0.63 1.00

FaceNet

PGD 0.83 0.83 1.00 1.00

Eyeglass Frame 0.13 0.16 0.90 1.00

Sticker 0.01 0.01 0.92 1.00

Face Mask 0.30 0.42 0.83 1.00

ArcFace18

PGD 0.87 0.92 0.97 1.00

Eyeglass Frame 0.06 0.06 0.44 1.00

Sticker 0.01 0.01 0.37 1.00

Face Mask 0.27 0.33 0.71 1.00

ArcFace50

PGD 0.87 0.90 0.81 0.99

Eyeglass Frame 0.09 0.12 0.44 0.99

Sticker 0.00 0.01 0.14 0.94

Face Mask 0.29 0.36 0.67 0.99

ArcFace101

PGD 0.81 0.78 0.86 0.96

Eyeglass Frame 0.03 0.03 0.26 0.98

Sticker 0.04 0.04 0.08 0.95

Face Mask 0.26 0.36 0.54 0.99

Table 4. Attack success rate of dodging attacks on open-set face

recognition systems with zero knowledge.

Target Model
Attack Type

PGD Sticker Eyeglass Frame Face Mask

VGGFace 0.26 0.56 0.79 0.67

FaceNet 0.55 0.13 0.54 0.62

masks are noticeably more effective than pixel-level physi-

cally realizable perturbations (i.e., the eyeglass frame attack

and the sticker attack). Moreover, by comparing the zero

knowledge attacks in Table 3 and 4, we find that open-set

face recognition systems are more vulnerable than closed-

set systems such that nearly all perturbation types of attacks

(even the black-box sticker attack that often fails in closed-

set) tend to be more likely to successfully transfer across

different open-set systems (i.e., these are more susceptible to

black-box attacks), which should raise more concerns about

their security.

4.3. Robustness Under Universal Attacks

Next, we use FACESEC to evaluate the robustness of face

recognition systems with various extents of adversarial uni-

versality by setting the parameter N in Eq. (4) to different

values. For a given N , we split the testing set into mini-

batches of size N , and produce a specific perturbation for

each batch. Note that when N = 1, a universal attack is

reduced to an individual attack. Table 5 shows the experi-

mental results for universal dodging attacks on closed-set

systems. The other results are presented in Appendix E.

Our first observation is that face recognition systems are

significantly more vulnerable to the universal face masks

than other types of universal perturbations. Under a large
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