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Abstract. Shortest paths in complex networks play key roles in many
applications. Examples include routing packets in a computer network,
routing traffic on a transportation network, and inferring semantic dis-
tances between concepts on the World Wide Web. An adversary with the
capability to perturb the graph might make the shortest path between
two nodes route traffic through advantageous portions of the graph (e.g.,
a toll road he owns). In this paper, we introduce the Force Path Cut
problem, in which there is a specific route the adversary wants to promote
by removing a low-cost set of edges in the graph. We show that Force
Path Cut is NP-complete. It can be recast as an instance of the Weighted
Set Cover problem, enabling the use of approximation algorithms. The
size of the universe for the set cover problem is potentially factorial in the
number of nodes. To overcome this hurdle, we propose the PATHATTACK
algorithm, which via constraint generation considers only a small subset
of paths—at most 5% of the number of edges in 99% of our experiments.
Across a diverse set of synthetic and real networks, the linear program-
ming formulation of Weighted Set Cover yields the optimal solution in
over 98% of cases. We also demonstrate running time vs. cost tradeoff
using two approximation algorithms and greedy baseline methods. This
work expands the area of adversarial graph mining beyond recent work
on node classification and embedding.

Keywords: Adversarial graph perturbation - Shortest path - Constraint
generation.

1 Introduction

In a variety of applications, finding shortest paths among interconnected entities
is an important task. Whether routing traffic on a road network, packets in a
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computer network, ships in a maritime network, or identifying the “degrees of
separation” between two actors, locating the shortest path is often key to making
efficient use of the interconnected entities. By manipulating the shortest path
between two popular entities—e.g., people or locations—those along the altered
path could have much to gain from the increased exposure. Countering such
behavior is important, and understanding vulnerability to such manipulation is
a step toward more robust graph mining.

In this paper, we present the Force Path Cut problem in which an adversary
wants the shortest path between a source node and a target node in an edge-
weighted network to go through a preferred path. The adversary has a fixed budget
and achieves this goal by cutting edges, each of which has a cost for removal. We
show that this problem is NP-complete via a reduction from the 3-Terminal Cut
problem [5]. To solve Force Path Cut, we recast it as a Weighed Set Cover problem,
which allows us to use well-established approximation algorithms to minimize the
total edge removal cost. We propose the PATHATTACK algorithm, which combines
these algorithms with a constraint generation method to efficiently identify paths
to target for removal. While these algorithms only guarantee an approximately
optimal solution in general, PATHATTACK yields the lowest-cost solution in a large
majority of our experiments.

The main contributions of the paper are as follows: (1) We formally define
Force Path Cut and show that it is NP complete. (2) We demonstrate that
approximation algorithms for Weighted Set Cover can be leveraged to solve
the Force Path Cut problem. (3) We identify an oracle to judiciously select
paths to consider for removal, avoiding the combinatorial explosion inherent in
naively enumerating all paths. (4) We propose the PATHATTACK algorithm, which
integrates these elements into an attack strategy. (5) We summarize the results
of over 20,000 experiments on synthetic and real networks, in which PATHATTACK
identifies the optimal attack in over 98% of the time.

2 Problem Statement

We are given a graph G = (V, E), where the vertex set V is a set of N entities
and F is a set of M undirected edges representing the ability to move between the
entities. In addition, we have nonnegative edge weights w : E — R>( denoting
the expense of traversing edges (e.g., distance or time).

We are also given two nodes s,t € V. An adversary has the goal of routing
traffic from s to t along a given path p*. This adversary removes edges with full
knowledge of G’ and w, and each edge has a cost ¢ : E — R>( of being removed.
Given a budget b, the adversary’s objective is to remove a set of edges E' C E
such that } . c(e) < b and p* is the exclusive shortest path from s to ¢ in the
resulting graph G’ = (V, E'\ E’). We refer to this problem as Force Path Cut.

We show that this problem is computationally intractable in general by
reducing from the 3-Terminal Cut problem, which is known to be NP-complete [5].
In 3-Terminal Cut, we are given a graph G = (V, E) with weights w, a budget
b > 0, and three terminal nodes s, s2,s3 € V, and are asked whether a set of
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edges can be removed such that (1) the sum of the weights of the removed edges
is at most b and (2) s1, s2, and s3 are disconnected in the resulting graph (i.e.,
there is no path connecting any two terminals). Given that 3-Terminal Cut is
NP-complete, we prove the following theorem.

Theorem 1. Force Path Cut is NP-complete for undirected graphs.

Here we provide an intuitive sketch of the proof; the formal proof is included in
the supplementary material.

Proof Sketch. Suppose we want to solve 3-Terminal Cut for a graph G = (V, E)
with weights w, where the goal is to find £/ C E such that the terminals are
disconnected in G’ = (V,E\ E') and ) _p w(e) < b. We first consider the
terminal nodes: If any pair of terminals shares an edge, that edge must be
included in E’ regardless of its weight; the terminals would not be disconnected
if this edge remains. Note also that for 3-Terminal Cut, edge weights are edge
removal costs; there is no consideration of weights as distances. If we add new
edges between the terminals that are costly to both traverse and remove, then
forcing one of these new edges to be the shortest path requires removing any other
paths between the terminal nodes. This causes the nodes to be disconnected in
the original graph. We will use a large weight for this purpose: wan = . w(e),
the sum of all weights in the original graph.

We reduce 3-Terminal Cut to Force Path Cut as follows. Create a new graph
G = (V,E), where E = EU{{s1, s2}, {s1, 53}, {52, 3} }—i.e., G is the input graph
with edges between the terminals added if they did not already exist. In addition,
create new weights @ where, for some € > 0, w({s1,52}) = W({s2, 83}) = wan +2¢
and W({s1, s3}) = 2wan + 3¢, and w(e) = w(e) for all other edges. Let the edge
removal costs in the new graph be equal to the weights, i.e., ¢(e) = w(e) for all
ee k. Finally, let the target path consist only of the edge from s; to ss, i.e.,
s =81, t = s3, and p* = (s,t).

If we could solve Force Path Cut on G with weights w and costs ¢, it would
yield a solution to 3-Terminal Cut. We can assume the budget b is at most
wWayl, since this would allow the trivial solution of removing all edges and any
additional budget would be unnecessary. If any edges exist between terminals
in the original graph G, they must be included in the set of edges to remove,
and their weights must be removed from the budget, yielding a new budget b.
Using this new budget for Force Path Cut, we will find a solution E' C E if and
only if there is a solution E’ C E for 3-Terminal Cut. A brief explanation of the
reasoning is as follows:

— When we solve Force Path Cut, we are forcing an edge with a very large weight
to be on the shortest path. If any path from s; to s3 from the original graph
remained, it would be shorter than (s1, s3). In addition, if any path from G
between s; and ss remained, its length would be at most w,y, and thus a
path from s; to s3 that included s, would have length at most 2w,y + 2¢. This
would mean (s1, s3) is not the shortest path between s; and s3. A similar
argument holds for paths between so and s3. Thus, no paths can remain
between the terminals if we find a solution for Force Path Cut.
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Fig. 1. Conversion from input to 3-Terminal Cut to Force Path Cut. The initial graph
(left) includes 3 terminal nodes s1, s2, and s3, which are connected to the rest of the
graph by edges E1, E», and Fs, respectively. The dashed lines indicate the possibility of
edges between terminals. The input to Force Path Cut, G (center), includes the original
graph plus high-weight, high-cost edges between terminals. A single edge comprising
p* is indicated in red. The result of Force Path Cut (right) is that any existing paths
between the terminals have been removed, thus disconnecting them in the original
graph and solving 3-Terminal Cut.

— If a solution exists for 3-Terminal Cut in G, it will yield the solution for Force
Path Cut in G. Any edge added to the graph to create G would be more
costly to remove than removing all edges from the original G, so none will be
removed. With all original paths between terminals removed, the only ones
remaining from s; to s3 are (s1,s3) and (s1, S2, S3), the former of which is
shortest, thus yielding a solution to Force Path Cut.

Figure 1 illustrates the aforementioned procedure. Note that the procedure would
yield a solution to 3-Terminal Cut even if Force Path Cut allows for ties with p*,
so Force Path Cut is NP-complete in this case as well. a

3 Proposed Method: PATHATTACK

While solving Force Path Cut is computationally intractable, we formulate the
problem in a way that enables the use of established approximation algorithms.

3.1 Path Cutting as Set Cover

The success condition of Force Path Cut is that all paths from s to t aside from p*
must be strictly longer than p*. This is an example of the (Weighted) Set Cover
problem. In Weighted Set Cover, we are given a discrete universe U and a set of
subsets of the universe S, S C U for all S € S, where each set has a cost ¢(S5).
The goal is to choose those subsets whose aggregate cost is within a budget yet
whose union equals the universe. In Force Path Cut, the elements of the universe
to cover are the paths and the sets represent edges: each edge corresponds to a
set containing all paths from s to ¢ on which it lies. Including this set in the cover
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Edges (sets)

(s, v,): {p;}
(s, vy): {ps}
Paths (elements in universe) (s, v,): {p,}
P=(S, Yy, vy, D) (v v,): {p,}
P,=(S, vy, vy, B) Wy Vo) tpr}
(v v): {p,}

Py=(s. v, V7 ) (V5 0: {0, Pyy Py P}
P=(S. Vy Vg, Vi, Vi D) (Vs Vo) (P}
(Ve vo): {p,}

Fig. 2. The Force Path Cut problem is an example of the Weighted Set Cover problem.
In the bipartite graph on the right, the square nodes represent paths and the circle
nodes represent edges. Note that edges along p* are not included. When the red-colored
circle (i.e., edge (v7,t)) is removed, then the red-colored squares (i.e., paths p1, p2, ps,
and p4) are removed.

implies removing the edge, thus covering the elements (i.e., cutting the paths).
Figure 2 shows how Force Path Cut is an example of Weighted Set Cover.

While Set Cover is NP-complete, there are known approximation algorithms
to get a solution within a factor of O(log|U|) of the optimal cost. The challenge
in our case is that the universe may be extremely large. We address this challenge
over the remainder of this section.

3.2 Linear Programming Formulation

In this section, we focus on minimizing cost without explicitly considering a
budget. In practice, the adversary would run one of the optimization algorithms,
compare budget and cost, and decide whether the attack is possible given resource
constraints. Let c € R% be a vector of edge costs, where each entry in the vector
corresponds to an edge in the graph. We want to minimize the sum of the costs of
edges that are cut, which is the dot product of ¢ with a binary vector indicating
which edges are cut, denoted by A € {0,1}™. This means that we optimize over
values of A under constraints that (1) p* is not cut and (2) all other paths from
s to t not longer than p* are cut. We represent paths in this formulation by
binary indicator vectors—i.e., the vector x, € {0, 1} that represents path p
is 1 at entries corresponding to edges in p and 0 elsewhere. Since any edge can
only occur once, we only consider simple paths—those without cycles—which
is sufficient for our purposes. If there is one index that is one in both A and
Xp, the path p is cut. Let P, be the set of all paths in G from p’s source to its
destination that are no longer than p. The integer linear program formulation of
Force Path Cut is as follows:
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A =arg mAincTA

st. A e {0, 1}

x, A>1Vp € Py \ {p*}
x;*A =0.

Constraint (3) ensures that any path not longer than (thus competing with) p*
will be cut, and constraint (4) forbids cutting p*. As mentioned previously, P,
may be extremely large, which we address in Section 3.3.

The formulation (1)—(4) is analogous to the formulation of Set Cover as an
integer program [19]. The goal is to minimize the cost of covering the universe
— i.e., for each element x € U, at least one set S € § where z € S is included.
Letting g be a binary indicator of the inclusion of subset .S, the integer program
formulation of Set Cover is

6 =arg mﬁin Z c(S)ds (5)
Ses

st. 0s €{0,1} VS e S (6)

Y ds=1vzel. (7)

Se{sS’eS|zeS}

Equations (1), (2), and (3) are analogous to (5), (6), and (7), respectively. The
constraint (4) can be incorporated by not allowing some edges to be cut, which
manifests itself as removing some subsets from S.

With Force Path Cut formulated as Set Cover, we consider two approximation
algorithms. The first method, GreedyPathCover, iteratively adds the most cost-
effective subset: that with the largest number of uncovered elements per cost. In
Force Path Cut, this is equivalent to iteratively cutting the edge that removes the
most paths per cost. The pseudocode is shown in Algorithm 1. We have a fixed set
of paths P C P,-\{p*}. Note that this algorithm only uses costs, not weights: the
paths of interest have already been determined and we only need to determine the
cost of breaking them. GreedyPathCover performs a constant amount of work at
each edge in each path in the initialization loop and the edge and path removal.
We use lazy initialization to avoid initializing entries in the tables associated
with edges that do not appear in any paths. Thus, populating the tables and
removing paths takes time that is linear in the sum of the number of edges over
all paths, which in the worst case is O(|]P|N). Finding the most cost-effective
edge takes O(M) time with a naive implementation, and this portion is run
at most once per path, leading to an overall running time of O(|P|(N + M)).
Using a more sophisticated data structure, like a Fibonacci heap, to hold the
number of paths for each edge would enable finding the most cost effective edge
in constant time, but updating the counts when edges are removed would take
O(log M) time, for an overall running time of O(|P|N log M). The worst-case
approximation factor is the harmonic function of the size of the universe [19],
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ie., Hy = Z‘ﬂl 1/n, which implies that the GreedyPathCover algorithm has
a worst-case approximation factor of H|p|. As we discuss in Section 3.4, this
approximation factor extends to the overall Force Path Cut problem.

Input: Graph G = (V, E), costs ¢, target path p*, path set P
Output: Set E’ of edges to cut
Tp < empty hash table; // set of paths for each edge
T < empty hash table; // set of edges for each path
Np < empty hash table; // path count for each edge
foreach e € E do
Tple] + 0;
Nple] < 0;
end
foreach p € P do
Te(p] + 0;
foreach edges e in p and not p* do

Tple] < Tprle] U {p};

Te(p] + Telp| U {e};

Np[e] — Np[e] + 1
end

end
E 0
while maxccg Nple] > 0 do
€ + argmaxecr Nple]/c(e); // find most cost-effective edge
E' «+ E'u{e'};
foreach p € Tr[e'] do
foreach e; € Tg[p] do
Nplei] < Nplei] — 1; // decrement path count
Tplei] < Tplei] \ {p}; // remove path
end
Te[p] < 0; // clear edges
end

end

return E’
Algorithm 1: GreedyPathCover

The second approximation algorithm we consider involves relaxing the integer
constraint into the reals and rounding the resulting solution. We refer to this
algorithm as LP-PathCover. In this case, we replace (2) with the condition
A € [0,1]M and get a A that may contain non-integer entries. Following the
procedure in [19], we apply randomized rounding as follows for each edge e:

1. Treat the corresponding entry A, as a probability. .
2. Draw [In (4|P])] independent Bernoulli random variables w/ probability A,.
3. Cut e if and only if at least one random variable from step 2 is 1.

If the result either does not cut all paths or is too large—i.e., greater than
41n (4|P]) times the fractional (relaxed) cost—the procedure is repeated. These
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conditions are both satisfied with probability greater than 1/2, so the expected
number of attempts to get a valid solution is less than 2. By construction,
the approximation factor is 41n (4|P|) in the worst case. The running time is
dominated by running the linear program; the remainder of the algorithm is (with
high probability) linear in the number of edges and logarithmic in the number of
constraints | P|. Algorithm 2 provides the pseudocode for LP-PathCover.

Input: Graph G = (V, E), costs ¢, path p*, path set P
Output: Binary vector A denoting edges to cut
A « relaxed cut solution to (1)~(3) with paths P;
A+ 0;
E' 0
not_cut<— True;
while ¢ A > ¢ A(41n (4|P|)) or not_cut do
E' + 0;
for i < 1 to [In (4|P|)] do
// randomly select edges based on A
E) + {e € E with probability A.};
E « E'UE;
end
A < indicator vector for F’;
not_cut< (3p € P where p has no edge in E');
end
return A

Algorithm 2: LP-PathCover

3.3 Constraint Generation

In general, it is intractable to include every path from s to ¢. Take the example
of an N-vertex clique (a.k.a. complete graph) in which all edges have weight
1 except the edge from s to ¢, which has weight N, and let p* = (s,t). Since
all simple paths other than p* are shorter than NN, all of those paths will be
included as constraints in (3), including (N — 2)! paths of length N — 1. If we only
explicitly include constraints corresponding to the two- and three-hop paths (a
total of (N —2)2 + (N — 2) paths), then the optimal solution will be the same as
if we had included all constraints: cut the N — 2 edges around either s or ¢ that
do not directly link s and ¢. Optimizing using only necessary constraints is the
other technique we use to make an approximation of Force Path Cut tractable.

Constraint generation is a technique for automatically building a relatively
small set of constraints when the total number is extremely large or infinite [2,
12]. The method requires an oracle that, given a proposed solution, returns a
constraint that is being violated. This constraint is then explicitly incorporated
into the optimization, which is run again and a new solution is proposed. This
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procedure is repeated until the optimization returns a feasible point or determines
there is no feasible region.

Given a proposed solution to Force Path Cut—obtained by either approx-
imation algorithm from Section 3.2—we have an oracle to identify unsatisfied
constraints in polynomial time. We find the shortest path p in G’ = (V, E'\ E’)
aside from p*. If p is not longer than p*, then cutting p is added as a constraint.
We combine this constraint generation oracle with the approximation algorithms
to create our proposed method PATHATTACK.

3.4 PATHATTACK

Combining the above techniques, we propose the PATHATTACK algorithm, which
enables flexible computation of attacks to manipulate shortest paths. Starting
with an empty set of path constraints, PATHATTACK alternates between finding
edges to cut and determining whether removal of these edges results in p* being
the shortest path from s to t. Algorithm 3 provides PATHATTACK’s pseudocode.
Depending on time or budget considerations, an adversary can vary the underlying
approximation algorithm.

Input: Graph G = (V, E), cost function ¢, weights w, target path p*, flag
Output: Set E’ of edges to cut
E 0
P+ 0
¢ < vector from costs c(e) for e € E;
G+ (V,E\ E');
s,t < source and destination nodes of p*;
p < shortest path from s to ¢ in G’ (not including p*);
while p is not longer than p* do
P« PU{p}
if [ then
A «+ LP-PathCover(G, ¢, p*, P);
E' + edges from A;
end
else
‘ E’ < GreedyPathCover(G,c,p*, P);
end
G+ (V,E\E');
p < shortest path from s to ¢ in G’ (not including p*) using weights w;
end
return F’

Algorithm 3: PATHATTACK

While the approximation factor for Set Cover is a function of the size of the
universe (all paths that need to be cut), this is not the fundamental factor in the
approximation in our case. The approximation factor for PATHATTACK-Greedy
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is based only on the paths we consider explicitly. Using only a subset of con-
straints, the optimal solution could potentially be lower-cost than when using all
constraints. By the final iteration of PATHATTACK, however, we have a solution
to Force Path Cut that is within H p| of the optimum of the less constrained
problem, using |P| from the final iteration. This yields the following proposition:

Proposition 2. The approzimation factor of PATHATTACK-Greedy is at most
H\p| times the optimal solution to Force Path Cut.

A similar argument holds for PATHATTACK-LP, applying the results of [19]:

Proposition 3. PATHATTACK-LP yields a worst-case O(log |P|) approzimation
to Force Path Cut with high probability.

4 Experiments

This section presents baselines, datasets, experimental setup, and results.

4.1 Baseline Methods

We consider two simple greedy methods as baselines for assessing performance.
Each of these algorithms iteratively computes the shortest path p between s and
t; if p is not longer than p*, it uses some criterion to cut an edge from p. When
we cut the edge with minimum cost, we refer to the algorithm as GreedyCost.
We also consider a version where we cut the edge in p with the largest ratio of
eigenscore® to cost, since edges with high eigenscores are known to be important
in network flow [18]. This version of the algorithm is called GreedyEigenscore.
In both cases, edges from p* are not allowed to be cut.

4.2 Synthetic and Real Networks

Our experiments are on synthetic and real networks. All networks are undirected.

For the synthetic networks, we run five different random graph models to
generate 100 synthetic networks of each model. We pick parameters to yield
networks with similar numbers of edges (= 160K). We use 16,000-node Erd4s—
Rényi (ER) and Barabasi-Albert (BA) graphs, 2!4-node stochastic Kronecker
graphs, 285 x 285 lattices, and 565-node complete graphs.

We use seven weighted and unweighted networks. The unweighted networks
are Wikispeedia graph (WIKI) [21], Oregon autonomous system network (AS) [10],
and Pennsylvania road network (PA-ROAD) [11]. The weighted networks are
Central Chilean Power Grid (GRID) [9], Lawrence Berkeley National Laboratory
network data (LBL), the Northeast US Road Network (NEUS), and the DBLP
coauthorship graph (DBLP) [3]. The networks range from 444 edges on 347 nodes
to over 8.3M edges on over 1.8M nodes, with average degree ranging from over

5 The eigenscore of an edge is the product of the entries in the principal eigenvector of
the adjacency matrix corresponding to the edge’s vertices.
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2.5 to over 46.5 nodes and number of triangles ranging from 40 to close to 27M.
Further details on the real and synthetic networks—including URLs to the real
data—are provided in the supplementary material.

For synthetic networks and unweighted real networks, we try three different
edge-weight initialization schemes: Poisson, uniform random, or equal weights. For
Poisson weights, each edge e has an independently random weight w, = 1 + w/,
where w. is drawn from a Poisson distribution with rate parameter 20. For
uniform weights, each weight is drawn from a discrete uniform distribution of
integers from 1 to 41. This yields the same average weight as Poisson weights.

4.3 Experimental Setup

For each graph—considering graphs with different edge-weighting schemes as
distinct—we run 100 experiments unless otherwise noted. For each graph, we
select s and ¢ uniformly at random among all nodes, with the exception of LAT,
PA-ROAD, and NEUS, where we select s uniformly at random and select t at
random among nodes 50 hops away from s®. Given s and ¢, we identify the
shortest simple paths and use the 100th, 200th, 400th, and 800th shortest as
p* in four experiments. For the large grid-like networks (LAT, PA-ROAD, and
NEUS), this procedure is run using only the 60-hop neighborhood of s. We focus
on the case where the edge removal cost is equal to the weight (distance).

The experiments were run on Linux machines with 32 cores and 192 GB of
memory. The LP in PATHATTACK-LP was implemented using Gurobi 9.1.1, and
shortest paths were computed using shortest_simple_paths in NetworkX.”

4.4 Results

Across over 20,000 experiments, PATHATTACK-LP finds the optimal solution (where
the relaxed LP yields only integers) in over 98% of cases. In addition, the number
of constraints used by PATHATTACK is typically a small fraction of the number of
edges (M): at most 5% of M in 99% of our experiments. For brevity, we highlight
a few results in this section. See the supplementary material for more results on
each network and weighting scheme.

We treat the result of GreedyCost as our baseline cost and report the cost of
other algorithms’ solutions as a reduction from the baseline. With one exception®,
GreedyCost outperforms GreedyEigenscore in both running time and edge
removal cost, so we omit the GreedyEigenscore results for clarity of presentation.
Fig. 3 shows the results on synthetic networks, Fig. 4 shows the results on real
networks with synthetic edge weights, and Fig. 5 shows the results on real
weighted networks. In these figures, the 800th shortest path is used as p*; other
results were similar and omitted for brevity.

5 This alternative method of selecting the destination was used due to the computational
expense of identifying successive shortest paths in large grid-like networks.

" Gurobi is at https: //www.gurobi . com. NetworkX is at https://networkx.org. Code
from the experiments is at https://github.com/bamillel/PATHATTACK.

8 GreedyEigenscore only outperforms GreedyCost in COMP with uniform weights.
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Fig. 3. Results on synthetic networks. Shapes represent different algorithms and colors
represent different networks. The horizontal axis represents wall clock time in seconds
and the vertical axis represents edge removal cost as a proportion of the cost required
by the GreedyCost baseline. Lower cost reduction ratio and lower wall clock time is
better. PATHATTACK yields a substantial cost reduction for weighted ER, BA, and KR
graphs, while the baseline achieves nearly optimal performance for LAT.

Comparing the cost achieved by PATHATTACK to those obtained by the greedy
baseline, we observe some interesting phenomena. Across the synthetic networks
in Fig. 3, the real graphs with synthetic weights in Fig. 4, and the graphs with real
weights in Fig. 5, lattices and road networks have a similar tradeoff: PATHATTACK
provides a mild improvement in cost at the expense of an order of magnitude
additional processing time. Considering that PATHATTACK-LP typically results in
the optimal solution, this means that the baselines are achieving near-optimal
cost with a naive algorithm. On the other hand, ER, BA, and KR graphs follow
a trend more similar to the AS and WIKI networks, particularly in the randomly
weighted cases: The cost is cut by a substantial fraction—enabling the attack
with a smaller budget—for a similar or smaller time increase. This suggests that
the time/cost tradeoff is much less favorable for less clustered, grid-like networks.

Cliques (COMP, yellow in Fig. 3) are particularly interesting in this case,
showing a phase transition as the entropy of the weights increases. When edge
weights are equal, cliques behave like an extreme version of the road networks: an
order of magnitude increase in run time with no decrease in cost. With Poisson
weights, PATHATTACK yields a slight improvement in cost, whereas when uniform
random weights are used, the clique behaves much more like an ER or BA graph.
In the unweighted case, p* is a three-hop path, so all other two- and three-hop
paths from s to ¢ must be cut, which the baseline does efficiently. Adding Poisson
weights creates some randomness, but most edges have a weight that is about
average, so it is still similar to the unweighted scenario. With uniform random
weights, we get the potential for much different behavior (e.g., short paths with
many edges) for which the greedy baseline’s performance suffers.

There is an opposite, but milder, phenomenon with PA-ROAD and LAT:
using higher-entropy weights narrows the cost difference between the baseline
and PATHATTACK. This may be due to the source and destination being many
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Fig. 4. Results on unweighted real networks. Shapes represent different algorithms and
colors represent different networks. The horizontal axis represents wall clock time in
seconds and the vertical axis represents edge removal cost as a proportion of the cost
required by the GreedyCost baseline. Lower cost reduction ratio and lower wall clock
time is better. As with synthetic networks, PATHATTACK significantly reduces cost in
networks other than those that are grid-like, where the baseline is nearly optimal.

hops away. With the terminal nodes many hops apart, many shortest paths
between them could go through a few low-weight (thus low-cost) edges. A very
low weight edge between two nodes would be very likely to occur on many
of the shortest paths, and would be found in an early iteration of the greedy
algorithm and removed, while considering more shortest paths at once would
yield a similar result. We also note that, in the weighted graph data, LBL and
GRID behave similarly to road networks. Among our real datasets, these have a
low clustering coefficient (see supplementary material). This lack of overlap in
nodes’ neighborhoods may lead to better relative performance with the baseline,
since there may not be a great deal of overlap between candidate paths.

5 Related Work

Early work on attacking networks focused on disconnecting them [1]. This work
demonstrated that targeted removal of high-degree nodes was highly effective
against networks with powerlaw degree distributions (e.g., BA networks), but
far less so against random networks. This is due to the prevalence of hubs in
networks with such degree distributions. Other work has focused on disrupting
shortest paths via edge removal, but in a narrower context than ours. Work on
the most vital edge problem (e.g., [13]) attempts to efficiently find the single
edge whose removal most increases the distance between two nodes. In contrast,
we consider a devious adversary that wishes a certain path to be shortest.
There are several other adversarial contexts in which path-finding is highly rel-
evant. Some work is focused on traversing hostile territory, such as surreptitiously
planning the path of an unmanned aerial vehicle [7]. The complement of this is
work on network interdiction, where the goal is to intercept an adversary who is
attempting to traverse the graph while remaining hidden. This problem has been
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Fig. 5. Results on weighted real networks. Shapes represent different algorithms and
colors represent different networks. The horizontal axis represents wall clock time in
seconds and the vertical axis represents edge removal cost as a proportion of the cost
required by the GreedyCost baseline. Lower cost reduction ratio and lower wall clock
time is better. PATHATTACK reduces the cost of attacking the DBLP social network,
while the other networks (those with low clustering) achieve high performance with the
baselines. Note: the range of the time axis is lower than that of the previous plots.

studied in a game theoretic context for many years [20], and has expanded into
work on disrupting attacks, with the graph representing an attack plan [12]. In
this work, as in ours, oracles can be used to avoid enumerating an exponentially
large number of possible strategies [6].

Work on Stackelberg planning [17] is also relevant, though somewhat distinct
from our problem. This work adopts a leader-follower paradigm, where rather
than forcing the follower to make a specific set of actions, the leader’s goal is
to make whatever action the follower takes as costly as possible. This could be
placed in our context by having the leader (adversary) attempt to make the
follower take the longest path possible between the source and the destination,
though finding this path would be NP-hard in general.

Another related area is the common use of heuristics, such as using Euclidean
distances to approximate graph distances [16]. Exploiting deviations in the
heuristic enables an adversary to manipulate automated plans. Fuzzy matching
has been used to quickly solve large-scale problems [15]. Attacks and defenses in
this context is an interesting area for inquiry. A problem similar to Stackelberg
planning is the adversarial stochastic shortest path problem, where the goal is to
maximize reward while traversing over a highly uncertain state space [14].

There has recently been a great deal of work on attacking machine learning
methods where graphs are part of the input. Attacks against vertex classifica-
tion [22,23] and node embeddings [4] consider attackers that can manipulate
edges, node attributes, or both in order to affect the outcome of the learning
method. In addition, attacks against community detection have been proposed
where a node can create new edges to alter its group assignment from a commu-
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nity detection algorithm [8]. Our work complements these efforts, expanding the
space of adversarial graph analysis into another important graph mining task.

6 Conclusions

We introduce the Force Path Cut problem, in which an adversary’s aim is to force
a specified path to be the shortest between its endpoints by cutting edges within a
required budget. Many real-world applications use shortest-path algorithms (e.g.,
routing problems in computer, power, road, or shipping networks). We show that
an adversary can manipulate the network for his strategic advantage. While Force
Path Cut is NP-complete, we show how it can be translated into Weighted Set
Cover, thus enabling the use of established approximation algorithms to optimize
cost within a logarithmic factor of the true optimum. With this insight, we
propose the PATHATTACK algorithm, which uses a natural oracle to generate only
those constraints needed to execute the approximation algorithms. Across various
synthetic and real networks, we find that the PATHATTACK-LP variant identifies
the optimal solution in over 98% of more than 20,000 randomized experiments.
Another variant, PATHATTACK-Greedy, has very similar performance and typically
runs faster than PATHATTACK-LP, while a greedy baseline method is faster still
but with much higher cost.

Ethical Implications: This work demonstrates how an adversary can at-
tack shortest paths in complex networks. Appropriate defenses include building
resilient network structures (e.g., adding redundancy to form cliques around key
communication channels) and developing methods that not only detect attacks,
but also identify the most likely source of the attack (e.g., whether an edge failed
due to a random outage or a malicious destruction).
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