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Abstract

As more and more people are expected to work with complex
Al-systems, it becomes more important than ever that such
systems provide intuitive explanations for their decisions. A
prerequisite for holding such explanatory dialogue is the abil-
ity of the systems to present their proposed decisions to the
user in an easy-to-understand form. Unfortunately, such di-
alogues could become hard to facilitate in real-world prob-
lems where the system may be planning for multiple eventu-
alities in stochastic environments. This means for the system
to be effective, it needs to be able to present the policy at a
high-level of abstraction and delve into details as required.
Towards this end, we investigate the utility of temporal ab-
stractions derived through analytically computed landmarks
and their relative ordering to build a summarization of poli-
cies for Stochastic Shortest Path Problems. We formalize the
concept of policy landmarks and show how it can be used
to provide a high level overview of a given policy. Addition-
ally, we establish the connections between the type of hier-
archy we generate and previous works in temporal abstrac-
tions, specifically MaxQ hierarchies. Our approach is evalu-
ated through user studies as well as empirical metrics that es-
tablish that people tend to choose landmarks facts as subgoals
to summarize policies and demonstrates the performance of
our approach on standard benchmarks.

1 Introduction

Recent successes in Al have helped fuel an increasing in-
terest in developing Al-based systems that can assist us in
our daily lives. As more and more users start working with
these systems, it becomes essential that these systems can fa-
cilitate intuitive and fluent interaction with their end-users.
A prerequisite for allowing such interaction would be the
agent’s ability to hold easy to follow explanatory dialogue
that helps users understand the rationale behind agent deci-
sions. Unfortunately, such explanatory dialogue is compli-
cated by the fact that in real-world scenarios the agent is ex-
pected to plan its actions over long time horizons while tak-
ing into account the stochasticity of the environment. This
means the agent would have to compute contingencies for
each possible eventualities and its decisions may be best rep-
resented as a policy. Large policies are extremely hard for
lay users to understand and the very act of presenting the
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agent policy can hinder the deployment and adoption of Al
systems.

Our proposed strategy for handling such scenarios is to
equip the system with mechanisms that allow the users to
view a high-level summary of the policy that the agent may
have chosen to follow. Our choice of summarization tech-
niques were motivated by three main factors (1) People tend
to decompose long horizon planning into sequences of sub-
goals. This is a well-known fact in psychological literature
and has been validated by number of studies (c.f. (Don-
narumma, Maisto, and Pezzulo 2016; Cooper and Shallice
2006; Simon and Newell 1971)); (2) The approach shouldn’t
assume that the user is an expert in the domain or has prior
knowledge about the dynamics of the domain, since the
method is a preceding step for explanations; and (3) The ap-
proach shouldn‘t assume it is summarizing optimal policies.

With these design principles in mind we introduce
our approach: Temporal Abstraction Through Landmark
Recognition or TLdR. TLdR hypothesizes that one way to
extract useful temporal abstractions for a given policy is
to identify sets of bottleneck or landmarks facts and their
relative ordering that needs to be satisfied by any valid
execution of the given policy. We believe our work rep-
resents the first formalization of landmarks for stochastic
domains. We also introduce the idea of policy landmarks
along with compilation-based methods to generate these
landmarks with formal guarantees. This paper will focus on
Stochastic Shortest Path problems (SSPs) since their goal-
directed nature is more natural for everyday users (Newell,
Simon, and others 1972) as well as being more general
than infinite horizon discounted MDPs. Once identified, end
users can use these landmarks as the basis for generating
their explanatory queries (of the form discussed in (Miller
2018)) or can further drill down by focusing on specific land-
marks to get more details.

The rest of the paper is structured as follows: Section 2
starts with a brief overview of related works in this space
and then Section 3 introduces the setting and some of the
formalisms we will be using throughout the paper. Section 4
introduces a simple illustrative scenario that will act as our
running example and Section 5 will delve into the details
of our methods. Through Section 6 we will further investi-
gate the specifics of the hierarchy we are generating and we
discuss the evaluations we performed in Section 7. Finally,



Section 8 concludes the paper with a discussion of future
directions.

2 Related Work

In recent years there has been increasing interest in the
problem of explainable Al in general and also specifically
for explaining/summarizing policies. While many of these
works focus on policies learned through neural networks
(c.f. (Greydanus et al. 2017)), there are a few works that
have considered factored MDP settings as well (c.f. (Khan,
Poupart, and Black 2009)).

In the context of policy summarization, (Lage et al. 2019)
presents an approach that tries to identify a subset of state
action tuples that can help users guess the rest of the pol-
icy. The tuple is selected under some assumptions about
the computational model the user may be making. Unfor-
tunately, such works that aims to generate summaries opti-
mized for policy completion assume the user has some prior
knowledge about the task. Our motivation in this work is to
provide summaries that could act as a first step before pro-
viding more explanations about the task. Consequently, we
address scenarios where the user may be unaware of task
details or may misunderstand the the task (similar to ex-
planatory settings studied in (Chakraborti et al. 2017) and
(Sreedharan, Srivastava, and Kambhampati 2018)).

Topin and Veloso (2019), utilize state abstractions to sim-
plify policies. This is completely complementary to our ap-
proach and we can use methods described in that paper along
with ours to identify landmarks in abstract state spaces (c.f.
(Sreedharan et al. 2019) for similar strategies applied to clas-
sical planning setting). Hayes and Shah (2017) have also
looked at producing summaries specific to user questions.

In MDP literature, people have previously used land-
marks in different contexts, for example (Ramesh, Tomar,
and Ravindran 2019) uses the term landmark as a way to
denote prototypical state and (Kaelbling 1993) uses land-
marks to refer to centers of a region of the environment.
Options learning literature (c.f (McGovern and Barto 2001;
Stolle and Precup 2002)) have also used the term bottleneck
states to refer to states that appear frequently in valid exe-
cution traces. They utilize such states as a basis for learning
options and as we will see this is closely related to the tech-
niques discussed in the paper. The idea of bottleneck states
are also related to landmarks as discussed in classical plan-
ning literature (Hoffmann, Porteous, and Sebastia 2004).

3 Background

We will focus on cases where the planning problem corre-
sponds to an S\SP;, i.e a stochastic shortest path problem
with a single initial state (Kolobov 2012). In the rest of the
paper when we refer to MDPs we will be in fact referring
to an SSPs,. Such models can be formally defined by the
tuple M = (S, A, T,C, G, sp), where S is the set of states,
A is the set of actions, T : S x A — [0, 1] defines the tran-
sition function corresponding to the MDP, while C' captures
the cost function, GG the set of goal states, and s the initial
state. For this setting, we are generally interested in poli-
cies that guarantee that any history sampled from the policy
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will eventually lead to a goal state with probability one, such
policies are generally referred to as proper policies. More-
over, the fact that we are given an initial state means that
we only need to identify actions for states that are reachable
from from sg under 7y, hence we can restrict our attention
to partial proper policies (Kolobov 2012).

We will assume that the state space .S can be specified by
a set of propositional fluents F, where |S| = 2!7| and each
state can be uniquely identified by the set of propositional
fluents that are true in that given state. Additionally, we as-
sume the set of goal states G can be concisely described by a
subset of propositions G. For example, if we are considering
a travel planning task, G might just include the proposition
onboard_plane and the corresponding goal state set G con-
sists of all states where the fluent onboard_plane will be true.

The expected cost of a state is defined here similarly to
the standard undiscounted indefinite horizon SSPs and the
Bellman optimality equation is provided as

V(s)=C(s,a) + BeesT(s,a,8) * V(s)

and all goal states are absorbing states.

A partial policy 7 is defined to be optimal if there exists
no other partial policy whose expected cost for the initial
state is smaller than 7 (i.e. V™0 < V™ for all proper poli-
cies 7).

We will consider a setting where the underlying MDP M
is known to the explainer and it is tasked with explaining a
given policy 7. Note that we don’t assume 7 to be optimal,
but rather it can be any partial proper policy. To be succinct
in the rest of the paper we will use policy in place of partial
proper policies and we will specifically note any exceptions
to the case. Before we delve further into the problem, let us
take a quick look at a travel planning domain that will act as
our illustrative example for the rest of the paper.

4 Motivating Example: Travel Planning
Domain

Consider an intelligent personal assistant that is being used
to track and plan various daily activities of its users. The per-
sonal assistant is capable of gathering information from mul-
tiple sources and generating probabilistic models for vari-
ous events like weather, vehicle delays, traffic, etc.. Many
of these models may be too complex for the user to easily
understand or the information sources too rapidly changing
for the user to keep track off. Now if the user was to ask the
agent to come up with a plan that allows them to get to their
flight from their home, the agent could easily use the models
it generated for various sources to create an MDP and com-
pute a policy that is guaranteed to take the user from their
home to the designated flight.

Even in this setting, challenges will arise when the user
wants to actually make sense of the policy suggested by the
system. The policy could be extremely large, with many
branches to handle various contingencies (Figure 1 (A)
presents a simplified version of such a policy). The system
could hardly expect the user to make sense of the policy if it
merely dumped the entire policy-graph. Given the fact that
the intelligent assistant is almost always available to the user
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Figure 1: The subfigure (A) presents policy graph corresponding to example detailed in the illustrative domain. Here the edges
with boxes represents actions with stochastic effects and the goal is to board the plane. Subfigure (B) presents one possible
summarization that describes a sequence of subgoals that needs to achieved under the given policy.

on various devices, the agent could decide to give the user
the policy one step at a time, always coming back to the user
with the next action to perform given where the user is. This
approach could also be extremely unsatisfying as the user
would want to know if the policy as a whole aligns with their
preferences; being fed the decisions one at a time, prevents
them from getting an overall idea about the policy.

A more reasonable strategy would involve first presenting
the user with a summary of the policy that highlights some
of the important waypoints on the way to the airport, along
with the order in which they should be crossed. Figure 1
(B) presents one possible set of such waypoints and their
order in which they are to be achieved. If the agent were to
follow this summarization scheme, the system could report
that: you would first need to get to “the station #1”* and then
get to “airport shuttle station”, then get to the “airport”, then
to “gate 10” and finally “board the flight”.

Now given these abstract subgoals, the user can the pos-
sibly raise contrastive questions (c.f (Miller 2018)) in terms
of these subgoals, for example, “What if you try to avoid the
shuttle staion?” or the user could further drill down further
to get more information. In the next sections, we will discuss
how for a given model and policy, we can automatically gen-
erate such subgoals and their relative ordering to summarize
the policy.

5 Ouwur Approach: TLdR

As hinted in earlier sections, we will use partially ordered
landmarks as our summary. Since we are not aware of any
earlier works that have formalized landmarks for MDPs, we
will start by introducing and formalizing the notion of land-
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marks in this setting. With the basic notions of landmarks in
place, we can define policy landmarks and establish some
basic properties. To generate these policy landmarks, we
will propose compilation based methods with soundness and
completeness guarantees.

5.1 Landmarks in MDPs

In the simplest terms, a landmark can be understood as for-
mulas over propositional fluents that need to be satisfied by
all paths from the initial state to goal states. More formally
we can define landmarks as as

Definition 1. For a given model M whose state space is de-
fined over a set of factors F, let’s define a tuple L = (@, <),
where ® is a set of formulas specified over F' and < defines
some ordering over them. Now L is said to be a landmark
set for M, if all transition sequences from start state to goal
state of non-zero probability in M satisfy the formulas in ®
and their relative ordering, i.e.,

Let T = (sg, ao, ....., S¢) be a transition sequence from s to
sq € G, if L specifies landmarks for M then for all ¢ € ®
there exists s; € T such that s; |= ¢ and for all other for-
mulas o1, 2 in ® such that p1 < @ and ¢ < @9 there must
exist s;, 8, € T (1 < j < k) suchthat s; = @1 and s, = @o.

So when identifying landmarks, we expect not
only to identify a single formula, but rather a par-
tially ordered set of formulas. For example the set
{(at-airport) A (has_ticket), (onboard_plane)} along with the
ordering (at_airport) A (has_ticket) < (onboard_plane) would
constitute landmarks for the aforementioned travel task.
This definition of landmarks parallels their usage in classical
planning literature (c.f (Hoffmann, Porteous, and Sebastia



2004)) where they have been identified as an extremely
useful information for guiding the planner during plan
generation. Throughout the text we will use ‘landmark’ in
singular to denote individual formulas while we will reserve
the use of ‘landmarks’ to denote the partially ordered set of
formulas.

While such landmarks on their own could still act as use-
ful subgoals for policy summarization, they may be too few
and far between and may not capture the specifics of the
policy being pursued (unless the user choose to focus on
specific intermediate states). Instead, we will consider land-
marks that are specific to the policy at hand, which would
lead us to define policy landmarks

Definition 2. For a given model M, fluent set F' and a pol-
icy, atuple LT o = (®, <) is a policy landmarks from sg
to the goal set G if and only if, the formulas in ® and their
corresponding ordering can be satisfied by every execution
trace T ~ (o) from sq to G.

Note that while any landmarks for the model as a whole
will also be a policy landmark, but the reverse is not true.
For example, in the travel scenario in_taxi might be a land-
mark for some policy but may not be a landmark for the task
as a whole since it may be possible to get to the flight with-
out ever boarding a taxi. We include the initial state and goal
state set in the definition to allow for the possibility of recur-
sively generating landmarks from any two reachable states
for the given policy.

Landmarks as defined above are quite expressive and
extensible. By leveraging disjunctive formulas we can
even generate subgoals in cases where there are no state
facts that are shared by all the paths. For example, in
the case of the travel domain described in Figure 1
at_shuttle_north_gate V at_shuttle_north_gate is a landmark.
In fact, we can show that there exists a landmark set that can
capture the entirety of any given policy.

Proposition 1. For a given model M, fluent set F' and a
policy m, there exists a policy landmark L3 o = (P, <)
such that for every reachable state s from sq under 7, there
exists a non-trivial formula ¢ € © such that s = ¢.

Proof Sketch. We will show that the property is true by con-
structing such a landmark set. Let’s start with the policy
graph corresponding to the given policy and partition the
states in the graph to levels based on number of hops from
the initial state (in case of policies with loops we assign each
state the level corresponding to the shortest number of steps
in which it can be reached by an execution of the policy).
Now we will generate a DNF formula ¢ for each level, such
that formula for level [ contains a clause corresponding to
each state reachable within [ steps. Now we can create land-
marks by ordering these DNF formulas according to the lev-
els (and limit ordering to < starting from the level where
the first goal state is reached). Such a landmark set should
satisfy the requirements based on their construction. 0

The above property merely demonstrates the extensibil-
ity of landmarks as a concept and is not an endorsement for
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using more complex landmark formulas for generating sum-
maries. In fact, in this paper we will focus on fact land-
marks, where each formula corresponding to a landmark
consists of a single proposition. So when viewing these land-
marks as subgoals, they can be thought of as achieving the
fact corresponding to that proposition.

Now that we have defined partially ordered landmarks for
a policy, our next step would be to identify methods that
allow us to generate such landmarks.

5.2 Generating Landmarks

Our proposed algorithm for generating landmarks would
rely on compilation into a corresponding classical planning
problem, so we will start with a quick definition of classi-
cal planning problem (Geftner and Bonet 2013). Classical
planning problems are generally describe by a tuple of the
form M€ = (F¢, A, Z¢ G°), where F'° provides the set of
propositional fluents, A¢ the list of deterministic actions, Z
the initial state and G¢ is the goal specification (similar to
how we defined G for the MDP). Each action is defined by
a tuple < prec™, prec™, add, del >, where prec™ and prec™
respectively provides the set of facts that must be true and
false for the applicability of actions, add specifies the flu-
ents it will set true on execution and del specifies the fluents
that it will set false. For our purposes we will assume all the
individual components of the action definition can be repre-
sented as sets.

It is well known that one way we can approximate MDPs
is to determinize the MDP to an equivalent classical plan-
ning problem (Yoon, Fern, and Givan 2007). One of the pop-
ular forms of determinization is what’s called an all outcome
determinization (Yoon, Fern, and Givan 2007) where for ev-
ery possible effect of the original MDP action, the classical
planning problem would include a separate action with that
specific effect, i.e. if for a given state s executing an action
a could either result in s or in so, then the determinization
should produce two actions, one which will result in s; and
another action that result in so. Such determinization proce-
dures become simpler when the original MDP is specified in
a factored form such as PPDDL (Younes and Littman 2004).
While a naive all outcome determinization could result in an
exponential sized planning model, we can get more concise
models by relying on more expressive representations (c.f
(Keller and Eyerich 2011)). As we will see in our particular
setting if we relax the need for generating all landmarks we
can still rely on simple models.

Now given such an all outcome determinization of our
MDP M we can see that planning landmarks in the deter-
minized model should be valid landmarks for M. This prop-
erty holds since landmarks for classical planning models are
defined over all possible plans and plans in the determinized
model have a one to one correspondence with traces in the
original model. Unfortunately, we aren’t interested in just
generating landmarks for the model as a whole, but rather for
the specific policy. One way to get there would be to restrict
the model only to produce plans that correspond to traces we
can sample from the given policy. We can create a compiled
version of the classical planning problem which meets the
above requirement if the policy is specified as a finite state



machine (see (Sreedharan et al. 2019) or (Baier, Fritz, and
Mcllraith 2007) for possible compilation). More often than
not, many of the popular offline planners for MDPs gener-
ate policies in tabular form, i.e., they explicitly enumerate
the reachable states and their corresponding actions. So in
this paper we will focus on cases where the policy is pro-
vided in this form. Instead of relying on a compilation of
policies to FSAs and then to planning problem, we will de-
velop a method to create a compiled classical planning prob-
lems from the given policy, such that, the landmarks for that
model aligns with policy landmarks of the given tabular pol-
icy.

Specifically, given our original MDP M and a policy 7
with a reachable state set R(sg,7) let’s consider the fol-
lowing classical planning model, D(M) = (F, AP I G).
Here the new classical planning model makes use of the
same fluent set, initial state (I = sp) and goal as the
MDP M. The new model contains one action a® for each
reachable state s, such that the precondition of the action
is prec. = s (assuming set representation for the state),
the negative preconditions and delete effects is empty (i.e
prec,: = del,s = {}), and finally the add effect is the set
of all new fluents that can be set true by the corresponding
policy action, i.e.,

addas = (

U

s'e{s'|seSNT (s,m(s),s")>0}

s\ s

The above model is polynomial in the size of the given
policy even for factored model representation, and the rea-
son why we do not need to worry about delete effects is
because most established methods for landmark generation
in classical planning rely on approximations that ignore
deletes. We will restrict ourselves to landmark generation
methods that focus on generating causal landmarks (Zhu
and Givan 2003), where causal landmarks are defined to be
facts that are required as preconditions for every possible
plan. All that remains to be shown is that the causal land-
marks derived from this model are sound policy landmarks
for original model.

Theorem 1. If f is a causal fact landmark extracted from
D(M) then f must be a policy landmark for M, m, initial
state sg and goal set G. Also for another landmark fo (also
causal in D(M)), if the precedence f < fo holds for D(M)
then it must also hold for the original MDP policy.

Proof Sketch. We will basically establish this fact by show-
ing that for every trace possible in the policy there must
be a corresponding trace in D(M) (it may contain more).
This means that causal landmarks for D(M) must satisfy
all traces possible in the original policy. We will prove this
through contradiction. First off, it is easy to see that for
any trace 7 ~ 7, where 7 is of the form (sg,ag, ..., Sk),
there exists a corresponding executable plan trace in D(M),
T = (s0,ay", ...., $). Since for any prefix of the trace, the
result of executing the actions in the sequence in D(M)
must be a superset of the resulting state in the trace, i.e.,
(ag,...ar)(so) = 8r 2 si. This means the action a;* in
D(M) whose precondition was s; must now be executable
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in 8. This is because D(M) is a delete relaxed model and
any fact established by any action in the original trace is con-
served through the plan in D(M). If the causal landmark f
in D(M) was not a policy landmark for the original MDP,
then there must exist at least a trace from sy to some state
in G we can sample from 7 where f never appears in any of
the states. This means that in the corresponding valid plan
for D(M) (where it goes from I to some state that satisfy
G), f can’t appear in the precondition of any of the actions
which contradicts the definition of causal landmark. Thereby
proving our initial assertion. The soundness of ordering can
be established following a similar line of reasoning. O

Another interesting property with this setting is the fact
that we can exhaustively generate all policy landmarks from
delete relaxation of the determinized model. Though this re-
quires us to move away from the relatively concise repre-
sentation used for D(M) to a more traditional all outcome
determinization where we have a separate action for each
possible transition in M. That is, for a reachable state s, we
add an action a**" for every s’ such that T'(s, 7(s), s') > 0,
where the action is defined as

a®¥ = (prec™ = s,prec” = F\s,add = s\ s, del = s\ ')
We will call this encoding D(M )¢

Theorem 2. If f is a policy landmark for M, policy w, ini-
tial state so and goal set G then f must be a causal fact
landmark for D(M)©.

Proof Sketch. We can again show this through contradic-
tion. Since D(M )¢ is a standard all outcome determiniza-
tion there should be a one to one correspondence between all
possible traces from 7 and plans in D(A)°. Assume that f is
a policy landmark that is not a causal landmark for D(M ).
This means that there must be a valid plan for D(M )¢, where
f won’t appear in any of the preconditions. This means that
there must be a trace from sg to a state in G that doesn’t re-
sult in the generation of the fact f. This means that f can’t be
a policy landmark, hence resulting in a contradiction. This
proves our assertion. O

Since we are not as focused on ensuring completeness for
our evaluation we will just use the more concise compila-
tion. While our formulation was based on proper policies
to simplify formulation, the methods proposed in this paper
do not require the policy itself to be proper. In fact, all we
require is that there exists at least one possible trace from
initial state to goal to generate the possible landmarks.

6 Formal Semantics for Hierarchies
Generated Using TLdR

While in the earlier sections we alluded to the fact that the
landmarks can be viewed as providing a form of temporal
abstraction, we have yet to discuss specifics of the abstrac-
tion hierarchy induced by the landmarks. One way to un-
derstand the abstraction induced is to map it to a MaxQ hi-
erarchy and a related hierarchical policy (Dietterich 2000)



(we consider a slightly modified version to allow applica-
tion to SSP as opposed to just an infinite horizon discounted
MDPs).

MaxQ is a particular method for specifying temporal ab-
stractions for MDPs that involve specifying a task hierarchy
for the given MDP. Usual MaxQ task hierarchies start with a
root task and each task is recursively composed of subtasks.
While the general MaxQ framework allows for parameter-
ized tasks, we will just focus on a non-parameterized ver-
sion where each subtask can be defined by the tuple (T, A;)
where T specifies the termination predicate or condition and
A; specifies the set of subtasks (including primitive actions)
that can be performed as part of the execution of the sub-
task. Since we do not concern ourselves with learning the
policies for these subtasks, we can easily skip the pseudo re-
ward component that is usually also included in the subtask
definition.

One of the main challenges of mapping landmarks we
generate to a MaxQ task hierarchy is the fact that they may
be partially ordered. So let us start from a partially ordered
set of landmarks £ = (®, <) (where partial ordering are not
reflecting conjunctive landmarks) and construct a totally or-
dered set £ = (P <) such that " is the maximal
subset of ® that allows for total ordering and still contains
the goal.

The root task itself would be a task corresponding to
achieving the goal, and we can add a subtask corresponding
to each fact in ®%°! to the root task. The termination con-
dition of each subtask is specified by the landmark formula
(which for our case is just the individual fact), the action set
consists of all the individual atomic actions. Now for each
formula dropped (i.e formulas in ® \ ®%°%) we will add a
subtask node to:

1. that are it’s closest remaining successor, i.e., add a sub-
task to the node corresponding to ¢', such that ¢/ € ®°¢,

¢ < ¢ and Ap € d and p < ¢ < &'

2. to any node in £'°* that is not comparable (as per £) with
the dropped node.

Addition of these new subtasks follows from the fact
that when there are partial ordering among landmarks, each
of their possible linearizations could occur under different
traces. To formally describe this, let’s introduce the concept
of a completion of a landmark. We can define the comple-
tions of a landmark ¢ (denoted as C(¢)) as the set of states
where the formula is satisfied for the first time ,i.e.,

C(¢p) = {sklsk € R(so, ™) A sk = ¢A I ~ 7(s0), sk €
TAVsjeT,(s; ¢ = k<j)}
Now given this concept, we will assert

Proposition 2. Let fq, f1, f> and f3 be landmarks such
that fo < fi, fo < fo. i < fzand fo < f3. If
IC(f1) NC(f2)] > 0 and the ordering is complete, then for
any state s¢, € C(f2) (where sy, (%= f1), there either exists a
states sy, € C(fo) such that f; is a landmark for paths from
s, to sy, or there exists a completion for f3 such that f; is
a landmark for paths from the completion of f5 to fs.

The above proposition states that if f; and f2 are not fact
landmark representations of a larger conjunctive landmark
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Figure 2: (A) Graph (with arrow directions presenting the
ordering) corresponding to a partially ordered landmark set
and (B) an equivalent MaxQ hierarchy.

(thus |C(f1) N C(f2)] > 0) and the ordering is complete
(i.e partial ordering is not due to missing ordering), then for
any state corresponding to achievement of f5, the landmark
f1 needs to be achieved before reaching the current state
or needs to be achieved before the successor subgoal (after
crossing the current state). This proposition trivially follows
from the nature of ordering between landmarks and shows
the landmarks excluded from the original total-ordering can
still be used as a subtask to achieving the landmarks listed
in L. For conjunctive landmarks, the dropping of one of
the facts shouldn’t result in any information loss since the
completion set of one fact contains all the states where the
other fact is also established. Moreover such partial order-
ing should disappear once we start generating conjunctive
landmarks.

The landmarks also allow us to convert the current policy
into a hierarchical one that can be executed in the context
of MaxQ (we will denote this policy as 7£). We can use the
following rules to recursively define the hierarchical policy

1. For root node: The initial state gets mapped to the sub-
task corresponding to the first landmark and all comple-
tions of each landmark in ®%°! gets mapped to the next
subtask in the ordering. For completeness, we will map
the remaining states to the primitive actions specified in
the policy, though those should never get executed.

2. For other subtasks: If the state corresponds to the com-
pletion of the last subtask and is known to lead to one
of the child subtask (as per Proposition 6) then map it to
the corresponding child node. For any other state execute
action specified by the current policy for that state.

Proposition 3. The hierarchical value of the policy 7%
Ve = (s0,nil)) is equal to the value of the original V™ (.S)

If we follow the hierarchical policy execution procedure
specified in (Dietterich 2000), it should be easy to see that



the hierarchical cost is the same as the original policy cost,
since the hierarchical policy execution would only be exe-
cuting the primitive actions specified in the original policy.

7 Evaluation
7.1 User Studies

Concerning evaluation, our first priority was to perform an
assessment of our central hypothesis, namely, that land-
marks constitute useful subgoals. So one of the questions,
that can be raised is whether people would choose landmarks
when they use subgoals to summarize policies. The specific
hypothesis we were interested in evaluating was

Hypothesis: When presented with a policy for a task with
non-deterministic/stochastic dynamics, people will choose
landmark facts as high-level subgoals over non-landmark
facts (where the landmarks are as defined in earlier sec-
tions).

The hypothesis was tested by presenting different plan-
ning scenarios to participants from Amazon Mechanical
Turk. Each participant was then asked to choose from a set
of possible facts they believe would be the most appropriate
subgoal to be included as part of a summary. In particular,
we used a modified version of the travel scenario discussed
earlier and a logistics planning scenario that dealt with the
problem of delivering a package to a pre-specified location.
We used 30 participants per scenario, and the scenario de-
scription included a description of the policy graph and no
details on the actual transition probabilities or the rewards.
After reading the scenario, the participants were provided a
list of facts about reachable states under the given policy.
They are then asked to select four facts from the list they
believe can be provided as subgoals as part of a summary of
the given policy. The list consisted of 13 facts in total, six of
which were landmarks in the travel domain questionnaire,
and five of them were landmarks for the logistics domain
questionnaire. The users were presented the facts in a ran-
domized order to make sure the results are counterbalanced.
We also filtered the answers from the participants based on
their answers on some factual questions about the policy.
For filtering the response, each participant was presented
two questions and their entire response was filtered out if
they got any of the answers incorrect. We also changed the
questions for every 15 participants to make sure the ques-
tions didn’t introduce any additional bias in the participants’
reply. After filtering we were left with 41 participants and
164 subgoal selections. Out of this 164 selection, 125 were
landmark selections, which puts the number of landmarks
selected at 76.2%. While non-landmark facts were selected
by participants, the results show that the majority did in fact
choose landmark facts to summarize the give policy. To test
the statistical significance of our result we ran a paired two
tailed t-test with the fact type (landmark or not) as the in-
dependent variable and the number of responses per group
as the measure. We were able to establish that there ex-
ists a statistically significant difference between the groups
with a level of significance set at 0.001 (the p-value was
0.0000093 for travel domain and 0.000533 for logistics). A
PDF copy of the exact surveys has been included can be
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found at http://bit.ly/39¢cxiV8.

7.2 Empirical Evaluation

As for the empirical evaluation, we were interested in un-
derstanding whether policy landmarks provided any advan-
tage over problem landmarks in terms of identifying more
subgoals. Since model landmarks are always a subset of
policy landmarks, any additional facts part of the policy
landmark should hopefully capture policy specific charac-
teristics. Moreover, we were interested in seeing how many
fact landmarks were, in fact, extracted for some prototypi-
cal problems. So we selected four standard PPDDL domains
from some earlier probabilistic tracks of IPC competitions
(International Planning Competition 2011) and five problem
instances per domain (except triangle tireworld for which we
only used four). We used compilation methods discussed in
earlier section to prepare the deterministic domain for pol-
icy landmark extraction. Table 4 presents results from this
analysis and presents the average policy size, the number
of non-initial and non-goal causal landmarks extracted (i.e
landmark facts aren’t part of the initial state or the goal state)
for the policy and for the model as a whole. All policies were
generated using an LAO*(Hansen and Zilberstein 2001) im-
plementation and because some of these domains we consid-
ered included dead ends, we didn’t enforce the proper policy
requirement during the evaluation. The landmarks were gen-
erated using FastDownward (Helmert 2006) implementation
of Keyder, Richter, and Helmert (2010). For all the domains
we considered, we found that policy landmarks do lead to
identifying more fact as compared to model landmarks. In
fact, for triangle tireworld problems there were no non-init,
non-goal landmarks, while our method was able to identify
multiple policy landmarks. In all the domains, we see that
the landmark sets does lead to more concise policy summary
when compared to the size of the reachable state set.

As an illustration of the kind of summaries we can gen-
erate from such PPDDL domain, consider one of the prob-
lems from the exploding blocksworld domain. The domain
is quite similar to the deterministic blocks world domain, ex-
cept that now putting blocks on top of another or on the table
could potentially lead to it exploding. Once a block explodes
you can’t place another block on top of it. The specific in-
stance we looked at contained, 10 blocks and had a goal con-
sisting of five facts. Figure 3 (A) presents the policy land-
marks and their ordering for the specific policy we consid-
ered which allowed for 362 reachable states (Figure 3 (B)).
In addition to showing the various intermediate facts and the
order in which to achieve them, one interesting fact the land-
marks highlight is that it presents the order in which the pol-
icy expects the various goal facts to be achieved (highlighted
in green).

8 Discussion and Conclusion

In summary, our work presents a policy summarization tech-
nique that tries to automatically identify subgoals for a given
policy by identifying landmark facts. Towards this end, we
formalized the concept of landmarks for MDPs and pro-
posed the idea of policy landmarks. We introduced compila-
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Figure 3: (A) The diagram corresponding to the policy landmarks generated for the fifth exploding blocksworld problem pre-
sented as part of IPC 2006. (B) A simple visualization of the entire policy.

| Domain LIRT() 9™ [ [[¥M]]
Ex-Blocksworld 104.8 8.8 52
Elevator 13.2 7 4
Tireworld 13.6 1.8 0.8
Tri-Tireworld 3973 6.25 0

Figure 4: Table showing the reachable state set and landmark
sizes for benchmark domains. The second column of the ta-
ble presents the number of reachable states, while the third
and fourth columns list the average number of policy and
model landmarks (excluding goals). All domain and prob-
lem instances were taken from IPC 2006 and 2008.

tion based procedures for extracting these landmarks and es-
tablished the relationship between the hierarchy induced by
the landmarks with previously studied methods for reason-
ing with task hierarchies in MDPs. Our user studies suggests
that in the absence of task details, people do tend to choose
landmarks when asked to select intermediate objectives. Ad-
ditionally, we also found that in many of the domains choos-
ing to extract policy landmarks does provide us with more
information.

One point hinted at but not expanded upon in the current
paper is how the summary could be expanded based on user
response. For example, from the given set of subgoals, the
user might want to know how exactly the policy plays out.
Interestingly, we can leverage the exact methods discussed
in the paper to generate these lower-level subgoals. When
the user wants to drill down, they can be asked to choose
from the list of completions for source subgoal. Then we
can use the compilation methods developed in the paper to
generate new landmarks from the new initial state to the des-
tination subgoal.

One of the issues that we didn’t quite cover in the paper
is the fact that users may not be interested in all landmarks,
but rather ones related to a subset of fluents. For example,
an engineer trying to view the policy of an extra-planetary
rover may be more interested in seeing landmarks related
to fuel-levels and engine performance, rather than ones re-
lated to samples collected by the robot. On the other hand, a
geologist may be completely oblivious to the details about
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the robot’s engines or batteries. To allow for such differ-
ing views, we would need to marry our landmark extraction
methods with methods for state abstraction.

Another point to note is that as the underlying model be-
comes more deterministic, it should start introducing more
policy landmarks, with the entire policy turning into a sin-
gle sequence of states and actions in the extreme case. This
would mean that each state in the sequence would be techni-
cally a policy landmark. For cases where the task is known to
be nearly deterministic, we would recommend starting with
model landmarks and switching to policy landmarks only
when the user needs more information.
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