
Network Science (2021), 1–36

doi:10.1017/nws.2021.5

OR I G I N A L ART I C L E

Robust coordination in adversarial social networks: From
human behavior to agent-based modeling

Chen Hajaj1,2∗ , Zlatko Joveski3 , Sixie Yu4 and Yevgeniy Vorobeychik4

1Department of Industrial Engineering and Management, Ariel University, Ariel, Israel, 2Cyber Innovation Center, Ariel

University, Ariel, Israel, 3Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville,

TN 37235, USA (e-mail: jovzlatko@gmail.com) and 4Department of Computer Science and Engineering,

Washington University, St. Louis, MO 63130, USA (e-mails: sixie.yu@wustl.edu, yvorobeychik@wustl.edu)
∗Corresponding author. Email: chenha@ariel.ac.il

Action Editor: Fernando Vega-Redondo

Abstract

Decentralized coordination is one of the fundamental challenges for societies and organizations. While

extensively explored from a variety of perspectives, one issue that has received limited attention is human

coordination in the presence of adversarial agents. We study this problem by situating human subjects as

nodes on a network, and endowing each with a role, either regular (with the goal of achieving consensus

among all regular players), or adversarial (aiming to prevent consensus among regular players). We show

that adversarial nodes are, indeed, quite successful in preventing consensus. However, we demonstrate

that having the ability to communicate among network neighbors can considerably improve coordination

success, as well as resilience to adversarial nodes. Our analysis of communication suggests that adversarial

nodes attempt to exploit this capability for their ends, but do so in a somewhat limited way, perhaps to

prevent regular nodes from recognizing their intent. In addition, we show that the presence of trusted

nodes generally has limited value, but does help when many adversarial nodes are present, and players can

communicate. Finally, we use experimental data to develop computational models of human behavior and

explore additional parametric variations: features of network topologies and densities, and placement, all

using the resulting data-driven agent-based (DDAB) model.
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1. Introduction

Coordination is one of the fundamental problems faced by teams, organizations, and soci-
eties. Such coordination problems are often decentralized and involve limited local information
and interaction, with locality naturally captured by a network structure. A prominent example
for the special case of consensus is blockchain, which enables verifiable decentralized transac-
tions (Narayanan et al., 2016).

Considerable prior research has been devoted to understanding and modeling human behav-
ior in networked coordination settings such as networked consensus (Kearns et al., 2009; Judd
et al., 2010; Kearns, 2012; Vorobeychik et al., 2017), coloring (Matthew et al., 2009; Judd et al.,
2010), bargaining (Chakraborty et al., 2010), and social dilemma games (Gracia-Lázaro et al.,
2012; Leibbrandt et al., 2015), among others. However, decentralized coordination problems often
take place in adversarial predicaments. For example, organizations attempting to coordinate on a
strategy may also compete with other organizations (legal and illegal), and coordination in com-
bat mission planning and execution inherently faces adversarial entities in the form of enemy
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combatants. Moreover, adversaries often attempt to exert their influence covertly such as by
bribing insiders, taking control of network nodes through cyberattacks, and spreading malicious
influence tacitly through social networks, for example, by means of fake news (Alon et al., 2015).
Consequently, an important consideration in decentralized coordination is resilience to adver-
sarial tampering with the process. While much prior research has been devoted to the study of
robust coordination protocols, these rely on simple stylized models of individual behavior (Abbas
et al., 2014; Bracha & Toueg, 1983; LeBlanc & Koutsoukos, 2012; LeBlanc et al., 2013). However,
many settings feature humans in the loop who play an important role in reaching consensus.
Surprisingly, the question of human behavior in adversarial coordination settings has received
little prior attention.

We investigate the problem of decentralized consensus on networks in the presence of adver-
sarial nodes, first using human subject experiments with 556 participants, and subsequently
through the data-driven agent-based modeling (DDABM) methodology (Zhang et al., 2016).
Our experiments focus on two design factors: allowing neighboring nodes to communicate and
embedding a small set of trusted nodes in the network. While communication has been a major
subject of inquiry in prior research (Demichelis &Weibull, 2008; Ellingsen &Ostling, 2010; Miller
& Moser, 2004; Cooper et al., 1992), recent research suggests that communicating solely among
network neighbors has limited value in facilitating consensus (Vorobeychik et al., 2017). On the
other hand, much prior research, using stylized models of individual behavior, has argued that the
presence of trusted nodes can significantly facilitate decentralized coordination (Abbas et al., 2014,
2017; Usevitch & Panagou, 2018). Our results run counter to both of these observations. First,
we demonstrate that communication helps a great deal, especially as we increase the number of
adversarial nodes, even though adversaries often send messages that are deliberately misleading.
Second, we show that the presence of trusted nodes does not, in the aggregate, help, reinforcing
the need to develop better models of individual and collective behavior in such settings. A sur-
prising feature of adversarial behavior is that their manipulation attempts are relatively subdued:
their tendency to choose colors opposing local majority is relatively weak, and they rarely com-
municate in a way that blatantly disagrees with their objective local state. We conjecture that this
behavior is also partly strategic: since the identity of adversarial nodes is unobserved, remaining
covert necessitates limiting the extent of malicious activity.

Next, we develop a data-driven agent-based model of adversarial decentralized consensus on
networks, following the DDABMmethodology (Zhang et al., 2016; Zhang & Vorobeychik, 2019).
In DDABM, individual agent models are derived from data, and are then instantiated in an
agent-based framework via features that capture behavioral interdependencies among network
neighbors. For us, these serve three purposes. First, they provide further insight into individual
behavior. For example, we observe that adversarial nodes clearly engage in deliberate attempts to
manipulate outcomes. Second, the resulting agent-based model effectively captures our exper-
imental observations at the macro level, and is quite robust to small errors in the individual
agent models. Third, we demonstrate the usefulness of the derived computational platform as a
means for further simulation-based investigation of the adversarial consensus problem by study-
ing the impact of optimized network location of both trusted and adversarial nodes. We find
that optimizing location is particularly beneficial for adversarial nodes, even when the placement
of trusted players is similarly optimized before we choose where to place adversaries (i.e. in a
Stackelberg fashion). Consequently, and counter to prior observations with stylized behavioral
models, trusted nodes appear to have only a limited value in facilitating decentralized human
consensus in adversarial settings.

Our simulation experiments consider four additional analyses: (1) optimizing behaviormodels,
through limited change to parameters, to maximize consensus rate, (2) optimizing location of
trusted and adversarial nodes within the network, and (3) systematically considering the impact of
parameters of network topology, such as density, clustering, and disparity in degree distribution,
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on consensus rates. Overall, we observe that small changes in model parameters have little impact
on consensus rates, and optimizing location is particularly beneficial for adversarial nodes, even
when they do so following a similarly optimized placement of trusted players. In addition, we find
that increasing network density improves consensus rate, with and without adversaries, but also
increases the value of trusted nodes. In contrast, clustering and disparity in degrees have limited
impact, particularly when adversarial nodes are present.

2. Related work

Reaching coordination among a group of entities is a long-lasting problem, including some of
the most researched problems: the Tragedy of the Commons (Hardin, 1968), and the Prisoner’s
Dilema (Rapoport et al., 1965). Our study of networked coordination follows a number of prior
efforts that investigate a variety of decentralized coordination problems on networks using human
subjects methodology (Kearns et al., 2006, 2009; Chakraborty et al., 2010; Judd et al., 2010;
Kearns, 2012; Matthew et al., 2009; Vorobeychik et al., 2017). The impact of communication on
human coordination and cooperation has extensive, parallel literature, using both human sub-
jects (Szamado, 2011; Richerson & Boyd, 2010; Olmstead et al., 2009) and theoretical methods
(Farrell, 1987, 1988; Demichelis & Weibull, 2008; Ellingsen & Ostling, 2010; Miller & Moser,
2004). However, in most of this literature, communication is grafted on as a distinct pre-play
stage; moreover, much of this literature study simple, two-player games. A recent exception is the
work of Vorobeychik et al. (2017), combining both threads, but investigating only non-adversarial
settings. Regarding human behavior, Coviello et al. (2012) took a more algorithmic approach to
look at the matching behavior of a human in social networks. While using the same experimental
design as ours, the authors focus on the case where players have to divide into pairs, when the
structure of the network is unknown, with a collective goal of maximizing the number of teams.
Still, similar to our work, the authors use the experimental data to produce an algorithmic model
and analyze its properties by simulations. Mao et al. (2017) showed that different incentives and
actions can be due to different understating of the world, or as side effect of not knowing the
truth. Similar as in our world, where entities have only partial information (e.g. the state of their
neighbors but not of the entire entities in the network), they can act counter to their desired goal
of coordination, but still in good faith.

Robust coordination has been analyzed by several efforts, but theoretically and in simulations,
using highly stylized behavior models (LeBlanc & Koutsoukos, 2012; LeBlanc et al., 2013; Zeng
& Chow, 2014; Gvirts & Dery, 2021). Specifically, (LeBlanc & Koutsoukos, 2012; LeBlanc et al.,
2013) focus on design of a consensus protocol that is resilient to worst-case security breaches
assuming the compromised nodes have full knowledge of the network and the intentions of the
other nodes. Similar to our work, Banikova et al. (2021) study Consensus under a deadline, where
a group is required to reach a joint decision under a tight deadline. Still, the authors chose a dif-
ferent definition for the consensus as they defined it as a time-bounded iterative voting process
and provide convergence guarantees as well as an extensive user study. In this work, we provide a
behavioral analysis using extensive human subject experiments using a well-known crowdsourc-
ing platform. Furthermore, we relax the assumption of full knowledge and knowledge about the
intentions of different nodes in the network. Several prior efforts study the importance of trusted
nodes in such settings (Abbas et al., 2014, 2017; Usevitch & Panagou, 2018). Our results suggest
that stylizedmodels used in these efforts may be limited in evaluating the efficacy of trusted nodes.
An interesting result was published by Arenas et al. (2011) who created a game-theoretic model of
cooperation in a social dilemma game which shows that the introduction of rare, malicious agents
performing exclusively destructive actions on the other agents can induce bursts of cooperation.
In contrast with their work, similar to many others, we empirically showed that an increase in the
number of adversaries results in lower probability of coordination.
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Figure 1. Top: an example graphical interface from the point of view of an experimental subject, who is represented by a

node in the network. Bottom: example instances of networks, where darker colors indicate higher node degrees.

Finally, data-driven or empirical agent-based modeling has been proposed as a means of per-
forming simulations that reliably reflect actual behavior data (Wunder et al., 2013; Zhang et al.,
2016; Nay & Vorobeychik, 2016; Zhang & Vorobeychik, 2019). Shirado & Christakis (2017) per-
formed experiments involving a networked color coordination game in which groups of humans
interacted with autonomous software agents (“bots”). Similar to our work, subjects were embed-
ded in networks of 20 nodes. In contrast to our work, in which adversarial entities are added
to the network, Shirado and Christakis added three bots to their network. Our simulation-based
analysis follows in the spirit of these efforts. Specifically, the authors showed that bots acting with
small levels of random noise and placed in central locations meaningfully improve the collective
performance of human groups, accelerating the median solution time by 55.6%.

3. Experimental methodology

3.1 General setup

We designed a human subject experiment to study adversarial coordination on social networks.
Specifically, the experiment builds on networked consensus games (Judd et al., 2010; Kearns et al.,
2012), in which a collection of players (human subjects) act as nodes on an exogenously specified
graph, choosing between two colors: RED and GREEN. These games proceed for 60 seconds, with
individuals able to make changes to their color choice in essentially real time. Each player has an
egocentric view of the game illustrated in Figure 1, where their node is displayed at the center, and
their network neighbors are shown surrounding the “Me” node, along with their color choices, as
well network connections among them. Any node is displayed as white prior to actively choosing
a color. The display screen also shows the time remaining in the game. Each player receives a base
payment for each game played ($0.15), as well as a bonus of $0.20 if a global consensus on either
color is reached (i.e. all nodes have the same color, at the same time). The game ends as soon as
consensus is reached.1

The game description so far replicates features from all prior experiments in networked con-
sensus. A new feature, introduced by Vorobeychik et al. (2017), allows network neighbors to
communicate through an instant message-style interface, shown on the right in Figure 1. To

https://www.cambridge.org/core/terms. https://doi.org/10.1017/nws.2021.5
Downloaded from https://www.cambridge.org/core. IP address: 70.135.148.88, on 09 Aug 2021 at 23:10:18, subject to the Cambridge Core terms of use, available at



Network Science 5

facilitate such communication, when allowed, each player is assigned a three-letter name at
the beginning of each game, and this name serves as their unique identifier in communicating
with others. Specifically, when a player sends a message through this interface, all their imme-
diate network neighbors receive the message (this mode of communication was termed local
communication by Vorobeychik et al., 2017).

We made one change to this general setup, which turns out to be quite consequential. In all
prior experiments, the interface featured a progress bar, which shows how close the overall state
is to global consensus (measured by the number of nodes disagreeing with majority color). In
our setting, however, such a progress bar communicates too much information, particularly when
adversaries are present, and we consequently removed it (particularly since it doesn’t have a clear
motivation and was just a design artifact of prior experiments). As we observe below, remov-
ing the progress bar increases the importance of communication, relative to findings reported by
Vorobeychik et al. (2017).

3.2 Design of adversarial consensus games

Starting with the basic experimental framework described above, we augment the experimental
platform with several features in order to study how adversarial nodes impact the ability of the
rest (i.e. the non-adversarial sub-network) to reach global consensus. For this purpose, we divide
players into two teams: a consensus team and a no-consensus team (in our parlance, these are
adversaries). The goal of the consensus team is to reach global consensus among members of this
team only (i.e. get to a point of time in which all the members of the consensus team choose
the exact same color), captured by the bonus payment structure described above. The goal of
the no-consensus team is to prevent consensus among members of the consensus team, which we
incentivize by paying a $0.40 bonus to members of this team if and only if consensus fails. At
the beginning of the game, each player is assigned to one of these teams, and this assignment is
indicated in their view of the game (see left part of Figure 1).

We fixed the number of consensus players in each game to 20 to control the baseline difficulty of
the task (the underlying consensus problem on networks becomes more difficult as the network
size grows, other things being equal). In addition, we introduced in each game a no-consensus
players, where a ∈ {0, 2, 5}. The value of a was not disclosed to the players at the beginning of a
game; although an omniscient observer can infer it from the size of the network (which is 20 + a),
no player could, in fact, do this, since players could only observe their direct neighbors, and we
limited the maximum degree to 15 to facilitate effective visualization.

A crucial part of our design was the invisibility of adversaries (no-consensus nodes) to oth-
ers, including other adversaries, and vice versa. On the other hand, it is often possible to have a
small number of known reliable or trusted nodes on the network, for example, nodes which are
particularly difficult to compromise due to a high amount of investment in their security, and
conventional wisdom is that such nodes can greatly facilitate consensus (Abbas et al., 2014). To
allow for this, we vary the number of visible members of the consensus team (henceforth, visible
nodes), v ∈ {0, 1, 2, 5}.2 However, these nodes are visible only to their immediate network neigh-
bors, highlighted by an orange circle around the corresponding nodes, as in Figure 1 for the player
with an assigned name “Moe”.

3.3 Network topologies

For each game, we exogenously specify a network topology, stochastically generated from one
of the three random graph models: two variations of Erdos–Renyi (ER) graphs (Erdos & Rényi,
1960), and a Barabasi–Albert (BA, also known as preferential attachment) model (Barabasi &
Albert, 1999). The two variations of the ER model differ in network density: one we term
ER-dense, and the other ER-sparse. The 20-node version of the ER-dense model has average
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degree of 5.1, while the ER-sparse networks have an average degree of 2.6. BA networks have
an average degree of 5.1 (same as ER-dense). Average degrees slightly increase when we add
adversarial nodes. Figure 1 shows example networks for each of the three network generative
models.

3.4 Recruiting and scheduling

We recruited subjects for the experiment using the Amazon Mechanical Turk (AMT) plat-
form (Paolacci et al., 2010; Mason & Suri, 2012), now in common use for economic experiments
with human subjects (Mason & Suri, 2012; Peled et al., 2015; Hajaj et al., 2015, 2017; Elmalech
et al., 2016). Recruited subjects were directed to read detailed experiment instructions and con-
sent to participate in the experiment (which was collected online). Once we had a large enough
pool of consented subjects, we scheduled experiment sessions. An experiment session (a series
of 5 practice games, followed by 50–65 actual games) was scheduled to start at a particular
time. Recruited subjects were informed of the starting time at least a day in advance. We con-
sidered a subject “inactive” during an individual 60-second game if they did not make a color
choice. An individual game was considered “invalid” (and removed from consideration in the
subsequent analysis) if it had at least one inactive subject. A subject was considered a “dropout”
after a second game of being inactive. At that point, subjects were removed from the rest of
the experiment session (earlier valid games in which they were active were considered for anal-
ysis). The fact that for each experiment session, we recruited 5–10 subjects more than needed
for individual games meant that we could handle dropouts, with only a fraction of games in the
experiment session being invalid for analysis and without having to replace missing players with
bots. Subjects participating in a given game were randomly assigned to the corresponding net-
work instance nodes. Further, for each game, a separate network instance was generated using
the corresponding model. For example, for each game with a BA network of size 20, a separate
network instance was generated using the Barabasi–Albert model. While this process may occa-
sionally lead to two identical network instances being generated, this is highly unlikely when the
number of such instances is relatively small (120 BA networks of size 20 in our experiments).
Subjects were not explicitly limited to playing on networks of a single type. The subset and order
of network types covered in an experiment session were randomized, as was the participation
queue of recruited subjects showed up in the experiment session. In practice, this meant that some
player Amight have played in more games with ER-dense networks and fewer games with BA net-
works than another player B. However, the type of the underlying network was not known by the
subjects.

We systematically varied four experimental variables:

1. Number of adversaries (no-consensus players): a ∈ {0, 2, 5}.
2. Number of visible nodes (within the consensus team): v ∈ {0, 1, 2, 5}.
3. Network topology: ER-dense, ER-sparse, and BA.
4. Communication: allowed or not allowed.

The full study protocol was approved by the university’s IRB. We recruited a total of 556
participants who jointly played 1,080 games.

4. Experimental results

We now analyze the results of the experiments. Throughout, we focus on consensus rate, or pro-
portion of games reaching global consensus on a single color among the consensus players, as a
measure of coordination success.
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Figure 2. Impact of adversaries on the consensus rate. Left: overall consensus rate, as a function of the number of adver-

saries. Right: for each network distance, proportion of pairs of nodes with this distance between them who agree on a color

at the end of the game.

4.1 The impact of adversarial players on consensus rate

One would naturally expect that having adversarial players participate in the game would have
a deleterious impact on the consensus rate. This intuition is readily confirmed in Figure 2 (left),
with all differences statistically significant (p< 0.01). However, this observation obscures a crucial
distinction between two kinds of impact adversaries can have in our setting:

1. Structural impact: the adversarial nodes change network structure—in the extreme case,
disconnecting the network among the consensus team members and

2. Behavioral impact: behavior of adversarial nodes limits the ability of the nodes on the
consensus team to reach consensus.

There is a clear structural impact: 16% of games with 2 adversaries, and 34% of games with 5
adversaries become disconnected if we were to remove adversarial nodes. In the cases in which
adversarial nodes disconnect the graph,3 consensus rate drops to 14%–15%, roughly what one
would expect by random chance (if we only have two connected components, and use the consen-
sus rate of 58% which obtains with no adversaries for each component, the expected consensus
rate is 17%). Of course, it is worth remembering that the network is not, in fact, disconnected, and
adversarial nodes need to deliberately prevent the information about network state from spread-
ing through them. Indeed, not only do adversaries do so, the resulting consensus rates are slightly
below expected, suggesting that adversarial behavior itself has an additional deleterious impact on
the ability of nodes to coordinate.

To isolate the behavioral impact, in Figure 2 (right) we plot the proportion of times a pair which
is k network hops apart agrees on a color at the end of the game, as a function of network distance
k (we only include k with at least 100 instances), where network distance is defined as the number
of nodes between a pair. Here, we can still see a systematic decrease in coordination success, as
a function of the number of adversaries, no matter how far apart nodes are. For example, even
network neighbors (i.e. k= 1) are finding it increasingly more difficult to agree on a color, on
average, as we increase the number of adversaries.
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Table 1. Average number of color changes per
player in each game

Adversaries Mean Standard deviation

0 2.05 3.10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 2.43 3.16
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 2.99 3.96

Figure 3. Impact of adversaries on the progress of consensus. Top: average portion of consensus team members in

agreement. Bottom: histogram of time to consensus, as function of the number of adversaries.

Figure 3 captures the average progress of the consensus as a function of adversarial nodes in
the game. Specifically, to imitate the process of a consensus, we extract the portion of consensus
team members who chose the color green and the portion who chose the color red and report
the maximal value for each game and on every time step. As one may expect, as the number of
adversaries grows, the consensus team finds it harder to agree on the same action (color), starting
from the first 10 s of the game. To make our analysis whole, we provide a histogram of the times
different games reached consensus (or did not) on the right side of Figure 3.

Last, we present the average number of color changes per player in each game as a function
of the number of adversaries in Table 1. Observe that as the number of adversaries increases, the
number of color changes increases as well. To further understand this, we break results up by
player type in Table 2. We observe that the presence of adversaries increase the number of color
changes for regular nodes, from 2.06 with no adversaries to 2.9 when there are 5 adversaries in the
network, an increase of 50%. This pattern repeats for the visible and even for adversarial nodes,
showing that the presence of adversaries induces all nodes to be more active. It is also notewor-
thy that adversaries make significantly more color changes (3.39), than the regular and visible
players, who make 2.45 and 2.23 changes, respectively. One may hypothesize that adversaries use
the color changes to actively mislead or confuse the consensus team, reducing the likelihood of
local convergence to consensus. In contrast, visible nodes make fewer color changes than others,
presumably to create greater stability in their neighborhood.
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Table 2. Average number of color changes per player in each
game, by type

Type Adversaries Mean Standard deviation

Regular 0 2.0 3.16
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 2.38 3.18
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 2.90 4.07
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Visible 0 1.94 2.50
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 2.16 2.18
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 2.58 2.59
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Adversary 2 3.14 3.64
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 3.50 3.96

Figure 4. The impact of communication on consensus rate. (a) Disconnected networks. (b) Connected networks.

4.2 Communication improves resilience

Next, we consider the impact that allowing players to communicate with their network neigh-
bors has on their ability to coordinate successfully. Figure 4 shows that communication makes a
clear impact (pooling broken and unbroken networks, all results are significant with p< 0.01).
In the aggregate, the value of communication increases with the number of adversaries: when
no adversaries are present, communication increases consensus rate by 23.5%, with two adver-
saries improvement rises to 35.1%, and with five adversaries games that feature communication
are 54.5% more likely to reach consensus than those that do not. Moreover, Figure 4 breaks these
results into two plots: one when networks are disconnected if we were to remove adversarial
nodes (a) and one for the remaining connected networks (b). One would have expected that with
disconnected networks consensus occurs largely by chance, and consequently, communication
should have no impact. We can observe that this is not so: even when networks are disconnected
by adversaries, communication increases consensus rate, nearly doubling it when there are five
adversaries. To understand this result, observe that with no communication, consensus rates in
disconnected networks are well below what it should be by random chance, whereas communi-
cation raises them to approximate parity with random chance. In other words, in this setting
communication successfully parries the behavioral impact of adversaries.
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10 C. Hajaj et al.

Figure 5. The impact of communication on pairs of nodes agreeing in color choice, by node distance. (a) 0 adversaries. (b) 2

adversaries. (c) 5 adversaries.

It is noteworthy that communication helps even when there are no adversaries, in contrast
with prior results (Vorobeychik et al., 2017). The key distinction in our setting is the absence of
the progress bar: now that this source of global information is missing, communication becomes
considerably more informative.

Figure 5 unpacks the analysis of the impact of communication further by isolating, again,
the behavioral impact of the adversaries, and the result is generally consistent, with communi-
cation increasing the likelihood of a given pair of nodes agrees on a color at the end of the game,
particularly when they are relatively close to each other in the network.

We provide with Figure 6 that captures the progress of the consensus as a function of the ability
to communicate. For each time step, we provide with the portion of the consensus team that agree
on the color chose by most of its members. As depicted in the figure, toward most of the game,
the ability to communicate help the consensus team to move toward unanimous choice of a single
color. To make our analysis whole, we provide with an histogram of the times different games
reached consensus (or did not), on the right side of Figure 6.

Finally, we present the average number of color changes per player in each game, broken up
by player type, as shown in Table 3. As we can observe, when communication among players is
not allowed, player of all types (regular, visible, and adversarial) make considerably more color
changes across the game. In part this is due to communication serving as a coordination mecha-
nism outside of the particular choices of color by the players. However, this could also be evidence
that color changes themselves serve as a form of communication for players, as suggested in prior
studies of networked consensus (Kearns et al., 2006; Judd et al., 2010).

4.3 The impact of network structure

Next, we consider what impact the network structure has on the ability of players to reach con-
sensus with and without adversaries aiming to sabotage coordination. Figure 7 shows the results,
broken up by network (BA, ER-dense, and ER-sparse), number of adversaries, and whether or not
communication was allowed. Perhaps the most dramatic impact that communication has is on
BA networks: when communication is enabled, two adversaries are unable to significantly impact
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Table 3. Average number of color changes per player in each game,
by type

Type Communication Mean Standard deviation

Regular Communication 1.93 1.88
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

No communication 2.96 4.53
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Visible Communication 1.75 1.30
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

No communication 2.71 3.13
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Adversary Communication 2.60 2.64
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

No communication 4.18 4.66

Figure 6. Impact of communication on the progress of consensus rate. Top: average portion of consensus teammembers in

agreement. Bottom: histogram of time to consensus, as function of the ability to communicate.

consensus rate, in contrast with games with no communication, where consensus rates of BA net-
works drop by over 30%. This suggests that with few adversarial nodes, the ability to communicate
endows scale-free networks with resilience even in the face of behavioral manipulation by adver-
saries (which we observe to have a significant overall effect otherwise). This finding complements
the already well-known resilience of BA networks to random node removal (Albert et al., 2000).

We turn to visualize how the agreement among members of the consensus team progresses
over time as a function of the network topology. As depicted in Figure 8, denser topology (i.e
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12 C. Hajaj et al.

Figure 7. The effect of adversary players andnetwork typeon the consensus rate. (a) No communication. (b) Communication

allowed.

Figure 8. Impact of network type on the progress of consensus rate. Top: average portion of consensus team members in

agreement. Bottom: histogram of time to consensus, as function of the network type.

Barabasi–Albert) makes it easier for the consensus team to progress toward a consensus, starting
from the first 5 s of the game. Interestingly, while an average game on the Erdos–Renyi-sparse
network got to a steady state of about 70% agreement starting from the 20th second of the game,
an average game on the Erdos–Renyi-dense network, got closer to a consensus as time progresses.
To make our analysis whole, we provide with an histogram of the times different games reached
consensus (or did not), on the right side of Figure 8.

Finally, as depicted in Table 4, as the network becomes denser (i.e. moving from Erdos–
Renyi-sparse to Erdos–Renyi-dense, and Barabasi–Albert) the average number of color changes
increases.
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Table 4. Average number of color changes per player in each game

Type Topology Mean Standard deviation

Regular Barabasi–Albert 2.12 2.89
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Erdos–Renyi-dense 2.25 2.48
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Erdos–Renyi-sparse 2.96 4.71
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Visible Barabasi–Albert 1.92 1.61
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Erdos–Renyi-dense 2.00 1.98
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Erdos–Renyi-sparse 2.76 3.33
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Adversary Barabasi–Albert 2.87 3.06
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Erdos–Renyi-dense 3.09 3.45
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Erdos–Renyi-sparse 4.23 4.76

Figure 9. The effect of visible players on the consensus rate.

4.4 The value of “Trusted” nodes

Lastly, we look at the value of “trusted” or visible nodes, that is, nodes whose intention of achieving
coordination is visible. Prior research using stylized models of node behavior demonstrated that
the presence of trusted nodes in a network can significantly improve resilience to attacks (Abbas
et al., 2014, 2017; Usevitch & Panagou, 2018). It is thus natural to hypothesize that nodes that are
visible on the consensus team (we can view these as trusted nodes, in the sense that they are known
not to be adversarial) would significantly facilitate consensus. Remarkably, Figure 9 shows that
this is not the case: as we increase the number of visible nodes, the impact on consensus rates is
almost undetectable. The reason for the difference is that typical models assume that trusted nodes
cannot be attacked. In our case, trusted nodes (as any other node) have no information about who
the adversaries are, and, consequently, can also be influenced by the attackers, albeit indirectly.

To understand the impact of visible (trusted) nodes in greater depth, we unpack the results in
Figure 10 by the number of visible nodes, the number of adversaries, and whether or not commu-
nication is allowed. With 0 or 2 adversaries, it is difficult to see any systematic improvement in
performance as we increase the number of trusted nodes. However, with five adversaries and com-
munication, having visible nodes constitutes a clear improvement over having none (p< 0.05).
Thus, merely having trusted nodes is of dubious value, but allowing players (as well as the trusted
node) to communicate can improve resilience when there are many adversarial nodes.

Next, we analyze how the agreement among the consensus teammembers progresses as a func-
tion of the number of visible nodes. As depicted in Figure 11, there is no significant difference in
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14 C. Hajaj et al.

Figure 10. The effect of visible and adversarial players given the type of communication on the consensus rate. (a) 0

adversaries. (b) 2 adversaries. (c) 5 adversaries.

the way consensus was formed given a different number of visible nodes. To make our analysis
whole, we provide a histogram of the times different games reached consensus (or did not), on the
right side of Figure 11.

Last, we present the average number of color changes per player in each game as a function of
the number of visible nodes in Table 5. It appears that the number of visible nodes does not have
much impact on this.

5. Analysis of communication behavior

The previous section showed that allowing communication between the different nodes in a net-
work improves the network’s robustness. In this section, we focus on the way players communicate
and the communication patterns of the regular, visible, and adversarial players. First, we observe
that, no matter what the role of the player, the largest single class of messages attempt to stim-
ulate coordination by naming a specific color (45% of all messages). Examples of this include
messages that state a color (e.g. “GREEN”), or suggest that everyone use a particular color (e.g.
“go for green”, or “all green”). We term all messages of this kind coordinationmessages. Another
common form of communication is what we call information messages (12% of all messages),
whereby players attempt to inform their network neighbors of their local state; an example of such
a message would be “5/5 red”, suggesting that five out of five neighbors of the node are choosing
red, or “3r2g”, which communicates that three of the node’s neighbors are choosing red and two
are choosing green.
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Table 5. Average number of color changes
per player in each game

Visibles Mean Standard deviation

0 2.48 3.09
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 2.63 3.75
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 2.68 4.1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 2.32 2.84

Figure 11. Impact of visible nodes on the progress of consensus rate. Top: average portion of consensus team members in

agreement. Bottom: histogram of time to consensus, as function of the number of visible nodes.

On average, a typical player sends quite a few messages, although this number varies dramati-
cally depending on the player’s role. For example, a regular (non-visible) member of the consensus
team sends on average 1.11messages each game. On the other hand, a visible node sends 1.27mes-
sages per game, and an adversarial node only 0.78 messages. The fact that adversarial nodes make
such limited use of the communication interface to prevent consensus is especially interesting—
clearly, players taking on the role of adversaries are relatively unaggressive in this role. In any case,
when they do communicate, what do they write?

One thing we observe is that adversaries send considerably more coordination and information
messages than consensus players: 53% and 15%, respectively. Thus, while adversarial nodes engage
in considerably less communication, they appear to be more deliberate about it. Next, we explore
precisely how adversarial nodes use each of these two categories of messages toward their ends.

Table 6 summarizes the number of messages sent by each type of player, standard deviation
is given in brackets. The second column from the left depicts the average number of messages
sent, while the third and fourth break this analysis to games that ended with consensus and those
who do not, respectively. As depicted from the table, visible nodes deliver most of the messages.
Interestingly, it seems that games that did not reach a consensus result in many more messages
than those that ended with a consensus. To complete our analysis, we provide with Table 7 that
summarize the average portion of player of each type that sent messages across all games. The
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Table 6. Number of messages sent by different type of players

Type msg/node msg/node (consensus) msg/node (no consensus)

Adversary 0.78 (1.38) 0.54 (0.91) 0.95 (1.61)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Regular 1.11 (1.38) 0.82 (1.06) 1.43 (1.59)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Visible 1.27 (1.47) 0.92 (1.07) 1.66 (1.73)

Table 7. Portion of players that communicated, by type

Type All games Consensus games No consensus games

Adversary 0.42 (0.49) 0.37 (0.48) 0.46 (0.49)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Regular 0.60 (0.49) 0.53 (0.5) 0.67 (0.46)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Visible 0.66 (0.47) 0.60 (0.49) 0.72 (0.44)

Figure 12. Number of messages sent by different types of nodes.

second column from the left depicts the average portions of players that communicated, while the
third and fourth break this analysis to games that ended with consensus and those who do not,
respectively. Note that the pattern is consistent with the number of messages sent. Most of the
visible nodes chose to communicate (66%, on average) compared to the minority of adversaries
(42%, on average). Another interesting observation, is that in game that ended with a consensus,
a lower portion of the players chose to communicate. In games that did not end in a consensus,
the portion of players that communicated increased by 25%.

Next, we extract the histogram of messages sent by each type of player as a function of time.
As depicted by Figure 12, the behavior of all types is quite similar. Interestingly, adversarial and
visible nodes start broadcasting messages from the beginning of the game while regular nodes
seem to wait some time for the network to converge before messaging in high quantities. A closer
observation of the adversarial nodes behavior, revels that these nodes send 12.4% of their messages
during the last 10 s of the games. One should remember that consensus games do not last the entire
60 s (the median time for a consensus game is 22 s).When looking at the portion of messages sent
in non-consensus games, the portion of messages sent during the last 10 s is 16.3%.

While observing the behavioral pattern of visible nodes, we found that in games with one visible
node, this node only communicates in 68.3% of the games, while in games with three and five
visible nodes, these nodes will communicate in 83.9% and 98.6% of the games, respectively.

A natural strategy for an adversarial node in our setting is to sendmessages that are deliberately
misleading. We now explore the extent to which they do so for the two types of messages we
identified above: coordination and informationmessages.

First, consider the coordination messages. Presumably, a misleading coordination message
attempts to coordinate neighbors on a color that differs from that chosen by most of their neigh-
bors. However, such messages need not be deliberately misleading. With so many messages sent,
there is bound to be a certain amount of noise in the nature of the messages. Moreover, players
may have a perception of what the likely consensus outcome is regardless of the particular current

https://www.cambridge.org/core/terms. https://doi.org/10.1017/nws.2021.5
Downloaded from https://www.cambridge.org/core. IP address: 70.135.148.88, on 09 Aug 2021 at 23:10:18, subject to the Cambridge Core terms of use, available at



Network Science 17

Figure 13. α-majority misreport rate.

state of their local network (for example, when it appears that most of their neighbors are green
most of the time, even if the majority of them happen to be choosing red at a particular point in
time). Consequently, what is most important is the relative rate with which such misleading mes-
sages are sent by adversaries, in comparison to other players. These results are shown in Figure 13,
as a function of the relative size of the majority. Specifically, the α on the x-axis of the plot rep-
resents an α-majority when at least α more players are choosing one color, and the coordination
message is sent attempting to coordinate on another. As we would expect, the fraction of such
misreports (the misreport rate on the y-axis) drops quickly with increasing α. What is interesting
is that, indeed, adversarial nodes are distinctly more misleading in this way than other nodes—a
clear indication of such misleading messages being a part of a deliberate strategy. However, no less
interesting is the fact that once α > 3, there is no longer a meaningful difference between adver-
sarial players and others. In other words, adversarial nodes attempt to be misleading, but only
when it is not blatant.

Considering now information messages, we make a similar qualitative observation. For such
messages, we can quantify “lying” as incorrectly reporting local state. Of course, we again must
account for noise, in this case, erroneous reporting, which is not deliberately a lie; thus, the focus
is on the relative difference between reported and true state, in comparison with non-adversarial
players. We find that adversaries send information messages which are, indeed, more inaccurate
on average than others. Specifically, when the difference between reported and true state is nor-
malized by the number of neighbors, adversaries are off by 0.5, in comparison with non-visible
nodes, which are off by 0.3, and visible nodes, which are off by 0.4. What we find, again, is that
we see evidence that adversarial nodes deliberately lie about their state, but such lies are rarely
egregious.

One may wonder if the lack of aggressiveness on the part of adversaries is a sign of human
cognitive limitation, or perhaps social consciousness (unwillingness to act in a way that causes
harm to many others). However, there is another natural explanation. Recall that the identity
of nodes (adversarial or not) is largely invisible. An overly aggressive adversary may well reveal
themselves as adversarial to all neighbors, who subsequently merely ignore them. Thus, pulling
punches may be a way to remain undetected, and may thereby be a sound strategy.

Next, we analyzed how communication is affected as the number of adversaries, and visible
nodes change. Figure 14 shows that as the number of adversaries increases, the number of aver-
age messages sent increase as well. We noticed a similar pattern when breaking up our results by
the network topology. As the network become sparser, the number of messages increases. One

https://www.cambridge.org/core/terms. https://doi.org/10.1017/nws.2021.5
Downloaded from https://www.cambridge.org/core. IP address: 70.135.148.88, on 09 Aug 2021 at 23:10:18, subject to the Cambridge Core terms of use, available at



18 C. Hajaj et al.

Figure 14. Average number of messages sent by each player.

may hypothesize that this increase in communication is aimed to overcome that lack of connec-
tivity. We did not find any pattern for the number of messages as a function of the number of
visible nodes. When there were none, the average number of messages was 1.09 per player, which
increases to 1.14 when there was one visible node, but decreased to 0.99 when there were two, and
increases again to 1.16 when there were five visible nodes in the consensus team.

6. Data-driven agent-basedmodeling

Our observations of collective behavior in adversarial consensus games provide a starting point
for the next step: the development of a data-driven agent-based model (DDABM) of this sce-
nario. The DDABM methodology builds agent-based models from data ground up: first, data of
individual human behavior is used to learn computational models of this behavior, and second,
such models are tied together in an agent-based simulation through variables that take as input
observed behavior by other agents (in our case, network neighbors and visible nodes) (Zhang et al.,
2016). Crucially, model validation must be performed at both the individual and aggregate levels.

6.1 Modeling and analysis of individual behavior

We start by using the data generated in our experiments to develop computational individual
agent models that will give rise to a credible agent-based simulation model with more predictive
power than the conventional stylized models. An additional benefit of these models is that they
will provide qualitative insight into human behavior in adversarial networked consensus. While
we found communication as an important factor in our analysis of the experiments, it is not clear
how to model it in simulation. Therefore, we focus on the setting with no communication and
defer the issue of modeling communication to future work.

Given that the players in our game only choose between two colors, the modeling task before us
may seem simple at first glance. This simplicity, however, is quite misleading. In particular, there
are several complications in modeling human behavior in our settings. The first is the fact that
individuals may have three distinct roles:

(1) Adversarial node: a member of the no-consensus team, whose goal is to prevent consensus
among the “good” nodes (i.e. nodes on the consensus team),

(2) Visible (“trusted”) node: a member of the consensus team who is visibly a member of this
team (i.e. all neighbors can see that this node is on the consensus team), and

(3) Regular node: all other members of the consensus team.

It is intuitive that adversarial nodes behave differently from others. For example, adversarial nodes
change color more often than others: 2.9 times per game, in comparison with visible consensus
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team players, whomake only 2.1 changes in a game, and non-visible nodes, who change their color
only twice a game, on average. Below, we observe that visible nodes also behave differently from
regular nodes. The second challenge is that nodes in any of these roles may behave differently
depending on whether they see visible nodes among their neighbors. The third is the fundamental
challenge of how we should model real-time color choices by the players.

We address the third challenge by discretize time into 1-second intervals, so that there are (up
to) 60 decision points in any game (as a game lasts 60 s).

To address the first two challenges, we created distinct behavioral models for the three roles,
and distinct models for the situations when they have a visible node as a neighbor, and when they
do not (thus, six individual agent models altogether).

Each of these cases raises an additional complication: agents make two kinds of decisions dur-
ing the span of a game. First, as they start as “white” (non-commited), they must choose an initial
color, and subsequently, choose whether to switch their color. Consequently, we split the decision
model into two parts: (1) choosing the initial color and (2) switching their color. The rationale is
that the initial decision is a deliberate choice of a particular color, and includes both the timing
of changing from the initial default “white” color to either red or green, as well as the particu-
lar choice between these two. In contrast, once a color is chosen, players exhibit a considerable
amount of inertia: they change color less than once every 20 s on average. Thus, modeling the
decision to switch (or, effectively, the timing of a color switch) naturally captures such inertia, and
also cleanly captures the inherent symmetry of their decision at this point, since players do not
have a preference for one color over the other beyond reaching consensus.

Finally, the initial decision was itself split into two models: the first modeling the timing of
the initial color choice, and the second modeling which color is actually chosen. Consequently,
altogether we learned 18 different behavior models, or 3 models for each of the 6 roles and neigh-
borhood assignments. Next, we describe these 3 models (which are qualitatively the same for
each of the role x neighborhood predicaments): timing of initial color choice, choosing the initial
color, and timing of color change. We briefly note that all models below are highly effective: either
they exhibit high accuracy (90%–95%), or large likelihood improvement over a frequency-based
baseline (50%–100% improvement).

Timing of Initial Color Choice. Our first set of models predicts the timing of the initial choice of
color, or, more precisely, the probability that the initial color is chosen in a discrete-time unit.
For these models, the features are: Dinv, the absolute difference between the fraction of a player’s
non-visible neighbors that picked red and the fraction that picked green; Dvis, the absolute differ-
ence between the fraction of a player’s visible neighbors that picked red and the fraction of those
who picked green (if the player has visible neighbors); Nvis, the number of a player’s neighbors
that are visible, and Ninv, the number of a player’s neighbors whose are non-visible (note that
Nvis +Ninv is the total number of neighbors the player has). The decision model is represented by
a logistic regression with these features, the parameters (coefficients) of which we learned from
experimental data. We added l1 (sparse) regularization to control for overfitting, with regulariza-
tion parameter tuned using cross-validation. In all models, VN is a boolean feature indicating if a
node has a visible neighbor. All feature were normalized.

The learned model coefficients for both the model with and without visible neighbors are given
in Table 8. The results offer several interesting insights. First, we can see that disagreement among
neighbors stimulates a player to make an initial color choice earlier. This is somewhat surprising,
as wemay expect players to wait until their neighbors had come to a near-consensus beforemaking
an initial move. Second, disagreement among visible nodes has a more significant, positive impact
on the likelihood of choosing a color at a particular time point. Third, the behavior of adversarial
nodes is broadly consistent with the first observation, but not with the second: such players appear
to bemore stimulated by disagreement among non-visible than among visible (trusted) neighbors.
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Table 8. Color-picking model, P(pick a color)

Type VN Intercept Dinv Dvis Ninv Nvis

Reg No −1.952 1.29
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Yes −2.21 0.548 0.933 0.002 0.016
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vis No −2.045 1.742 0.04
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Yes −1.734 0.579 0.84 −0.061 0.048
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Adv No −2.284 1.25 0.011
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Yes −2.744 0.802 0.662 0.025 0.155

Table 9. Red picking model, P(red| pick a color)

Type VN Intercept G
inv

local
G
vis

local
R
inv

local
R
vis

local

Reg No 0 −4.863 5.032
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Yes −0.066 −2.855 −2.022 3.453 1.733
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vis No 0.109 −4.411 4.202
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Yes 0.188 −3.215 −1.599 2.395 1.996
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Adv No −0.023 0.817 −0.649
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Yes −0.286 0.172 0.732 −0.204

Choosing the Initial Color. Conditional on deciding to choose the initial color in a particular
discrete-time unit (per our previous models), the next decision we model is which of the two
colors the player chooses. We again use l1-regularized logistic regression, where we predict the
probability that a player chooses “red” as their initial color (conditional on choosing some initial
color). As before, we use cross-validation to tune the regularization coefficient. For these models,
the features are: Ginv

local
, the fraction of a player’s non-visible neighbors choosing green; Gvis

local
, the

fraction of a player’s visible neighbors choosing green; Rinv
local

, the fraction of a player’s non-visible

neighbors choosing red; and Rvis
local

, the fraction of a player’s visible neighbors choosing red. Note

that Ginv
local

+ Rinv
local

and Gvis
local

+ Rvis
local

are not necessarily 1, since some of the neighbors may not
have yet chosen a color. As before, all of the features were normalized.

The coefficients of the learned models are presented in Table 9. The results closely follow
expectations here: the more neighbors (visible and not) are choosing red as opposed to green,
the more likely the consensus team player to choose red as the initial color. On the other hand,
adversarial players tend to act in opposition to their neighbors, with red prevalence in their local
neighborhood generally leading them to choose green.

However, with regard to the adversarial players, we make a few noteworthy observations. First,
note that adversaries are much more influenced by visible nodes than non-visible neighbors (act-
ing more strongly in opposition to these), whereas regular players tend to be less swayed by
the behavior of visible neighbors as compared to others in their neighborhood. Presumably, the
adversaries are deliberately trying to counter the presumed influence of the visible nodes, which
they appear to overestimate. Second, adversarial nodes act relatively unaggressively: the negative
relationship between neighbor choices and their own initial color choice is relatively slight, in
comparison with the magnitude of the positive relationships for the regular nodes (remember
that features are normalized, so this comparison is meaningful). This observation that adversarial
nodes are less aggressive in their activities aimed at thwarting consensus is surprising. We will
return to it below, as we make a similar observation in the case of player decisions about when to
change their previously chosen color.
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Table 10. Color-changing model

Type VN Intercept O
i

l
O
v

l
C
i

l
C
v

l
Ni Nv

Reg No −3.98 2.65 −0.33 −0.01
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Yes −3.79 1.1 1.48 −0.87 0.09 0 −0.03
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vis No −4.11 2.7 −0.1 −0.01
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Yes −3.53 1.07 1.27 −0.33 −0.29 −0.06 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Adv No −2.8 −1.13 1.19 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Yes −2.72 −0.6 −0.37 0.95 0.30 0 −0.2

Timing of Color Change. Our last set of models determine the timing of a color change by a player.
More precisely, we again learn l1-regularized logistic regression models which represent the prob-
ability that a player switches to the other color (either from red to green, or vice versa) at a given
discrete-time unit. For these models, the features are: Oi

l
, the fraction of a player’s non-visible

neighbors choosing the opposite color from the one chosen by the player; Ov
l
, the fraction of a

player’s visible neighbors choosing the opposite color from the one chosen by the player; Ci
l
, the

fraction of a player’s non-visible neighbors choosing the same color as the player; Cv
l
, the fraction

of a player’s visible neighbors choosing the same color as the player; Nv, the number of a player’s
neighbors who are visible; and Ni, the number of a player’s neighbors that are non-visible players.

The model coefficients are presented in Table 10. The broad results are again intuitive: as we
would expect, when the local color choices oppose that of a player, a regular player tends to switch,
whereas the adversary tends to stay with their current color choice. However, unlike their choice of
the first color, here the adversaries respond less aggressively to visible node decisions as compared
to those for their remaining neighbors.

Interestingly, as we had observed above, adversarial nodes appear to be somewhat less aggres-
sive in acting against the neighborhood trends, as compared to consensus players in their decisions
to switch to be better aligned with these. This is at first glance unexpected: why would adversaries
hold back, rather than aggressively opposing an emerging consensus in their neighborhood? We
conjecture that the explanation is that they are concerned about being covert. If adversarial nodes
act in a way that opposes neighborhood choices too aggressively, they run the risk of being dis-
covered by their neighbors as such, at which point their behavioral influence would, presumably,
be minimized. Consequently, adversarial nodes likely attempt to achieve their disruptive goals
without being overly obvious to their non-adversarial neighbors.

6.2 Agent-basedmodeling

Given the computational models of human behavior described above, it is direct to construct
an agent-based model (ABM): one simply instantiates each agent as a node on an exogenously
specified network, with roles assigned randomly according to an exogenously specified model. In
our case, we use the same random assignment model as in the human subjects experiments.

6.2.1 Model validation

While statistical and face validity are essential steps in confirming that our individual behavior
models are reasonable, we now add another dimension: validation in terms of aggregate outcomes
of agent-based simulations. Specifically, we simulate identical environments as in our experiments
using our constructed ABM, but now using artificial agents and in discrete time, for 60 iterations
(since each time step in our models is equivalent to 1 s in the experiments). Finally, we compare
both qualitative trends, and quantitative outcomes, to those reported in the experimental results
section above. Quantitatively, the agreement is reasonable, with the largest deviation between

https://www.cambridge.org/core/terms. https://doi.org/10.1017/nws.2021.5
Downloaded from https://www.cambridge.org/core. IP address: 70.135.148.88, on 09 Aug 2021 at 23:10:18, subject to the Cambridge Core terms of use, available at



22 C. Hajaj et al.

Figure 15. Coordination ratios as a function of single variable.

simulation outcomes, and the experimental consensus rates are within 0.14. The qualitative agree-
ment is even stronger, as we illustrate in Figure 15, which shows predicted consensus rates (using
simulations) as a function of the number of adversaries (left plot) and network topology (right
plot). Comparing to corresponding results from the human subject experiments, we can observe
broad qualitative agreement. Note that the agreement between simulated and experimental results
we achieve for games at this scale (at least 20 players, with considerable interdependencies in
behavior) compares quite favorably with similar efforts for devising artificial agents tomodel coor-
dination in prior literature (Judd et al., 2010).4 The degree of consistency between simulations and
experiments is particularly noteworthy in our case, if one considers that we had to construct 18
distinct behavior models to capture human behavior.

Despite strong agreement with experimental findings, it is still natural to wonder whether our
models are robust to small changes in parameters. Such robustness is crucial if we are to trust the
models to remain predictive as we significantly change the setup of the experiment, as we do below.
We now show that our model is, indeed, robust to worst-case perturbations in the parameters of
regular players (as these dominate the simulations).

Recall that for each non-adversarial player, we have two models: the first when a player has
at least one visible neighbor and the second when they do not. Since we have two types of non-
adversarial actors (visible and non-visible nodes), we optimize coefficients of the four associated
models with the objective ofmaximizing consensus rate, with the constraint that the l1 norm of the
modification does not exceed an exogenously specified ε. We approximately solve this problem
using Coordinate Greedy (CG) local search, which iteratively chooses a parameter to optimize, and
attempts to find the best improvement of this parameter. To abide by the l1 norm constraint, we
subsequently project the result into the feasible space.

The expected consensus rates as a function of ε are provided in Figure 16, where the red dashed
lines represent the consensus rate when simulating with the original w.

Based on this analysis, we conclude that even for relatively large ε, the impact is surprisingly
small: it appears that incremental changes in behavior of individuals has little impact on ability to
successfully coordinate (the impact is generally < 5% even for ε as large as 0.2). This observation
is especially clear in the adversarial setting.We find that the impact of small changes in parameters
is surprisingly small, increasing consensus rate by only a few percentage points even for relatively
substantial values of ε.

Our last aspect ofmodel validation compares themean time to consensus between actual exper-
iments and their simulated counterparts. The results, broken up by the number of adversaries,
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Table 11. Mean time to consensus (in seconds). Parentheses include
standard deviation

Experiments Model

Adversaries 0 42.2 (19.26) 49.24 (3.91)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 45.98 (18.77) 54.35 (2.28)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 53.03 (13.93) 57.48 (1.19)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Visibles 0 47.79 (18.16) 54.44 (3.8)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 47.6 (18.04) 53.72 (4.29)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 46.51 (18.03) 53.41 (4.55)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 46.37 (17.96) 53.19 (4.54)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Topology Barabasi–Albert 40.36 (19.14) 51.61 (4.33)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Erdos–Renyi-dense 44.97 (19.07) 53.47 (4.22)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Erdos–Renyi-sparse 55.88 (10.97) 56.9 (1.8)

Figure 16. L1 norm constraint. Left: No adversaries setting. Right: With adversaries setting.

visible nodes, and network topology, are given in Table 11. Note that our comparison in sec-
onds is meaningful, since our agent-based model was learned from discrete-time data in which
each iteration corresponded to 1 s. Consequently, the number of simulated iterations corresponds
to the number of seconds. Throughout the table, we can observe a reasonable correspondence
in average times—within a standard deviation in each case. Much more important, however, is
that we observe a close relative correspondence: the relative ranking of all the times is consistent
between simulations and experiments. This is the crucial feature we must preserve if we are to
draw generalizable conclusions from simulation-based studies.

7. Model-based analysis

The human subjects methodology is inherently limited in the number of experiments one can run
and, consequently, the space of alternative configurations we can consider. One of the many ben-
efits of our developed agent-based models is the ability to simulate the expected consensus rates
of different networks, differing in one (or more) of their properties. In this section, we engage
in a further investigation of the problem of adversarial coordination using simulation experi-
ments within an agent-based modeling framework. For this purpose, we make use of individual
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Figure 17. Consensus rate as a function of placement of visible nodes when no adversaries are present. Left: for different

network topologies. Right: different number of visible nodes.

agent models developed above, and combine them into an agent-based model in which such arti-
ficial models are interacting on the exogenously specified networks. Specifically, we use the set of
trained models to simulate the resulted consensus rate given: intelligent placement of visible (and
adversarial) nodes, networks of different sizes, typologies, and visible nodes’ strategies. Note that
in order to provide with these insights, if these models were not available, thousands of partic-
ipants would have had to be recruited (and being paid). Still, based on the model validation in
the previous section, we can provide reliable results which mimic human behavior without these
logistic and economic overheads.

7.1 Optimizing placement of trusted and adversarial players

In our experiments, we randomly assigned trusted and adversarial players to nodes within the net-
work. We now explore the alternative possibility where the assignment of these is more deliberate.
To study the problem systematically, we consider the decision of where to place trusted (visible)
and adversarial nodes as a Stackelberg game with two players, the coordinator (the Stackelberg
leader) and the adversary (the follower). The coordinator first places the trusted nodes on the
network, and, fixing this placement, the adversary places adversarial nodes. The goal of the coor-
dinator is to maximize consensus rate, which the adversary aims to minimize. In order to avoid
time-consuming simulations in the optimization phase for both the coordinator and the adver-
sary, we use a proxy objective of choosing a set of nodes maximizing the number of unique
neighbors; we call this optimal for either player. Since the game in our case is relatively small, we
solve for optimality by exhaustive search. In addition, we create three baselines for comparison:
first, when both players choose nodes randomly (as in our experiments), whereas in the second
and third baseline, one player chooses nodes randomly, whereas the other optimizes.

We first consider settings with no adversaries, and explore the impact of having an optimal
placement of visible nodes, as compared with random placement. The results are presented in
Figure 17, for different network topologies (left), and different numbers of visible nodes (right).
The broad trend is that while optimal placement of visible nodes is typically helpful, the impact
it has on consensus rate is quite muted, further bolstering our experimental observation that the
value of having trusted nodes in this setting can be limited.

Figure 18 presents the results of considering the two placement strategies (random and
optimal) for visible and adversarial nodes. From this figure, we can make several noteworthy
observations. First, adversarial players are highly effective with optimal placement: consider blue
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Figure 18. Consensus rate for different strategies of placing visible and adversarial nodes, as a function of: (Left) network

topologies; (Right) the number of adversaries; and (Bottom) the number of visible nodes.

and purple (first and last) bars in the plots, which correspond to adversaries placed optimally. In
both cases, consensus rates are quite low, for all network topologies, even with only two adver-
saries. This is especially surprising when we also consider the optimal placement of visible nodes,
which are placed before adversaries, and can thereby ensure that networks remain connected even
after adversarial nodes are added. While optimal placement of visible nodes clearly helps, the
impact is smaller than we would have expected. Second, optimally placing visible nodes helps: con-
sider the red bars (tallest in all plots), which correspond to the optimal placement of visible nodes,
followed by random placement of adversaries. In this situation, we can observe a clear value of vis-
ible nodes, particularly for the scale-free (BA) topology. On the other hand, we can see that having
2 visible nodes is actually better than 5, which we conjecture is due to the increased potential for
miscoordination among visible nodes themselves in the latter case.

7.2 Impact of network topology

In this section, we systematically explore the impact of network topological characteristics on the
consensus rate. For BA networks, we consider two parameters: m, the number of connections we
add to each node entering the network, which controls density, and γ , where the probability of
connecting to a node with degree d is proportional to dγ , which determines how heavy the tail of
the distribution is. For ER networks, we vary the probability p that a pair of nodes are connected,
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Figure 19. Consensus rate in BA networks as a function of network density, broken down by the number of adversaries and

the number of visible nodes. Left: 0 adversaries. Middle: 2 adversaries. Right: 5 adversaries.

Figure 20. Consensus rate in ER networks as a function of network density, broken down by the number of adversaries and

the number of visible nodes. Left: 0 adversaries; Middle: 2 adversaries; Right: 5 adversaries.

Figure 21. Consensus rate as a function of average clustering coefficient, broken down by the number of adversaries. Left: 0

adversaries. Middle: 2 adversaries. Right: 5 adversaries.

which is also directly related to density. Finally, we consider small-world networks (Watts &
Strogatz, 1998), and vary the clustering coefficient.

Figure 19 shows the trends in consensus rates for different numbers of adversaries and visible
nodes, as a function of network density, for the BA topology. As for the ER topologies, we provide
with Figure 20 where the there is little qualitative difference. Overall, increased density tends to
improve consensus rates, with and without adversaries. More interestingly, the presence of visible
nodes becomes more valuable with increased density as well, albeit 1 such node generally seems
to suffice.

Figure 21 shows the impact of increasing the clustering coefficient (keeping density fixed).
Here, we see that the trend is that higher clustering tends to hurt coordination, a finding that
echoes previously reported results (Kearns et al., 2009). However, the trend becomes flatter as
we add adversaries. We found that adding visible nodes, in this case, has no tangible impact on
consensus rates.

Figure 22 shows consensus rate as a function of γ (higher implies greater disparity in degrees).
In general, degree distributions with a heavier tail yield higher consensus rates, as long as there
are only a few adversaries; the relationship becomes essentially flat with 5 adversaries. The reason
is that heavy-tail distributions have fewer central actors with more neighbors, and as long as these
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Figure 22. Consensus rate as a function of γ , broken down by the number of adversaries. Left: 0 adversaries. Middle: 2

adversaries. Right: 5 adversaries.

Figure 23. Consensus rate as a function of number of adversaries. Left: 10 consensus nodes. Middle: 20 consensus nodes.

Right: 30 consensus nodes.

are not adversarial, they can considerably facilitate consensus. Since we assign adversarial nodes
randomly in these experiments, it is unlikely that any such high-degree nodes are adversarial if
there are only two adversaries, but it becomes far more likely with five adversaries.

7.3 Impact of network size

In this section, we turn our focus to the networks’ size. One can assume that smaller networks will
converge to a consensus with a higher probability, as fewer nodes have to agree on one state, and
large networks may have a harder time coordinating. Our analysis provides concrete evidence to
these assumptions, with an extensive analysis of vast of configurations varying the network size,
and additional networks’ parameters (i.e. adversaries, visibles, and network type). Each configu-
ration was simulated 10,000 times, which totals in 81,000,000 simulations (15 different number of
adversaries, various number of visible nodes, 3 network topologies, and 3 different sizes for the
consensus group).

The first part of our analysis looks at the consensus rate as a function of the number of adver-
saries, for networks with 10, 20, and 30 consensus nodes. Figure 23 shows that as one may
hypothesize, as the number of consensus nodes increases, the consensus ratio decreases, given
the same number of adversaries. An interesting insight resulted from this analysis appears when
we change the fixed parameter to be the number of visible nodes in the network. Recall that for
networks with 20 consensus nodes, there was no significant change in the consensus rate as we
varied the number of visible players (Figure 9). Still, as we show in Figure 24, as we increase the
size of the consensus team to 30 nodes, a higher number of visible nodes resulted in a much higher
consensus rate. On the other hand, when the consensus team is relatively small (i.e. 10 players),
there is a threshold above which increases the number of visible nodes reduce the consensus rate
rather than increasing it (similar to our results on node placement Figure 18).

We find this result to be valuable and decided to dig deeper. Since our evaluation is based on
the DDABM, we can simulate any number of visible nodes in the network (up to the size of the
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Figure 24. Consensus rate as a function of number of visible nodes. Left: 10 consensus nodes. Middle: 20 consensus nodes.

Right: 30 consensus nodes.

Figure 25. Consensus rate as a function of number of visible nodes. Left: 10 consensus nodes. Middle: 20 consensus nodes.

Right: 30 consensus nodes.

Figure 26. Consensus rate as a function of number of network’s topology. Left: 10 consensus nodes. Middle: 20 consensus

nodes. Right: 30 consensus nodes.

consensus team). Figure 25 shows the results of this extensive evaluation. As depicted in the figure,
for every size of the consensus team, there is a threshold after which adding more visible nodes
decreases the consensus rate. This result is very important as it shed new light on our evaluation
regrading the effectiveness of visible nodes. This is one of the scenarios which exemplifies the
importance and value of agent-based modeling. We note that we also find that populating the
network solely by visible nodes is somewhat better. Still, this scenario does not seem very realistic,
as if this is the case, the identity of the adversaries will be common knowledge as well.

Next, we analyze the effect of the network’s size by breaking down our results according to
the network’s topology. As depicted in Figure 26, as the network grows (i.e. populated with more
consensus nodes), the difference in the consensus rate between the BA networks to the ER ones,
increases.

Finally, we analyze the time it takes the network to coordinate (i.e. when all the consensus nodes
agree on the same color). As discussed before, an increase in the number of adversaries results in
a decrease in the consensus rate. Our analysis revels another interesting fact on the coordination
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Figure 27. Consensus rate as a function of number of network’s topology. Left: 10 consensus nodes. Middle: 20 consensus

nodes. Right: 30 consensus nodes.

process. As depicted in Figure 27, as the number of adversaries increases, the time it takes the
network to coordinate (if succeeded) increases. This new insight teach us that adversaries are not
just efficient in avoiding coordination, they also have the power to delay it. Lastly, as the number
of consensus nodes increases, there are more nodes that need to coordinate and hence, as one may
expect, the coordination time increases as well.

8. Conclusion

We consider the problem of adversarial consensus on social networks, both using human sub-
jects and agent-based modeling methodologies. The overall goal of the subjects is to reach a global
consensus on a particular color, despite adversarial nodes who attempt to prevent consensus. We
find that while the ability to communicate can significantly improve coordination success despite
adversarial presence, embedding trusted nodes within the network is of limited value. We observe
several strategies used by adversarial players to subvert coordination, such as choosing a color that
opposes local majority. However, we also note that these malicious activities are used in a some-
what subdued manner, suggesting perhaps an attempt of adversarial players to remain covert. We
use experimental data to construct and validate an agent-based model of adversarial consensus.
Extensive simulations using an agent-based model created based on experimental data addition-
ally show that the importance does increase when their network location is optimized, but this
improvement is often small, particularly when adversarial nodes are also optimizing location, and
even though adversaries do so after we choose where to place trusted nodes. Furthermore, we
explore the impact of network topological characteristics on the consensus rate. We show that for
both BA and ER topologies, density has a first-order effect (i.e. increased density tends to improve
consensus rate regardless of the existence of adversaries). We also show that when density is fixed,
higher clustering tends to hurt coordination. As for the impact of network size on the consen-
sus rate, We validate that larger networks are less likely to coordinate on a single decision. More
importantly, we show that the effect of visible nodes depends on the size of the network. While 5
visible nodes may decrease the consensus rate with 10 consensus nodes, it is shown to be beneficial
for a network with 30 consensus nodes.
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Notes

1 The full instructions given to the participants are available as an appendix for this paper.

2 Recall that there are always 20 nodes in the consensus team. Thus, when 2 members are visible, there are 18 regular nodes

in this team.

3 A graph is disconnected if it is composed of more than a single connected component after removing the adversarial nodes.

4 Wunder et al. (2013) is noteworthy as well. However, they consider a public goods game, and aim to predict average

contribution. Predicting the probability of consensus using such data-driven agent-based simulations appears to be a more

challenging problem.
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Appendix: Game & Experiment Description

The Decentralized Coordination Game

In this experiment you will be playing a sequence of multiplayer coordination games. In each game,youwill be randomly

assigned to a node of a network - this will be the central node appearing on your screen, labeledMe. You will also be assigned

a name (shown in the left upper part of thescreen). In addition, you will see a few other nodes on the screen - these are the

nodes of yourneighbors in the network. A link between two nodes indicates that the corresponding players are neighbors.

Neighbors will see each other’s nodes on their screens and non-neighbors will not. For example, in Figure 1, you and Moe are

neighbors and Moe can see your node, labeled Dan, on his screen. But Moe cannot see Sue’s node as Sue is not a neighbor of

Moe.
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Figure 1. A view of the game screen. The name assigned to the player for this game is Dan. They have been assigned to team

Consensus

Initially, all network nodes will be white. Throughout the game you will be choosing the color of your node, either red or

green, using the two buttons in the lower central part of the screen. In some games you will also be able to communicate with

other players. Your objective will depend on which team you are assigned to in a particular game.

Consensus and No-Consensus Teams

In each game you may be assigned to one of two teams: Consensus or No-Consensus. The team that you are assigned to in a

particular game is shown in the left part of the screen just below your assigned name. However, the team assignments of other

players will not be given to you, though you may be able to figure them out by observing other players’ behavior or through

communication. Note that in some games there may be no players assigned to the No-Consensus team, but this will not be

disclosed at the start of the game.

If the Consensus team reaches a consensus on a color, i.e. a state where all nodes of the Consensus team in the entire

network (not just those in your neighborhood) have the same color, they win and the No-Consensus team loses. Thus, the

objective of the players on the Consensus team is to coordinate among themselves and reach a consensus before the game

clock expires.Notice that consensus requires that only the Consensus teammembers have the same color.

If the game clock expires without the Consensus team members reaching a consensus on a color, they lose and the No-

Consensus team wins. If you are a member of the No-Consensus team, your objective is to disrupt the coordination efforts of

the Consensus team and stop them from reaching a consensus. Note that having a different color from other players will not

be enough: only members of the Consensus team need to agree on a color for that team to win.

The actions available to players of both teams in completing their respective objectives are changing one’s color and, in

some games, sending messages to other players.

Game Termination, Outcomes & Bonus Payments

The allotted time foreach game is 60 seconds and you will be able to change the color of your node at any point during the

game continuously. A game will terminate as soon as the Consensus team reaches a consensus on a color (that is, as soon

as all Consensus team members choose the same color). Bars showing the remaining time and game progress (how close to

reaching a consensus the Consensus team is) are located in the lower leftcorner of the game screen.

Games can have one of three outcomes: no consensus, red consensus, and green consensus. The potential bonus pay-

ments for each outcome are shown in the lower left part of the screen. In Figure 2, for example, Dan will receive a bonus

payment only if no consensus is reached. In general, the Consensus teammembers will receive positive bonus for a consensus

outcome and no bonus when consensus is not reached. On the other hand, the No-Consensus team members will receive a

positive bonus if the Consensus team does not reach a consensus and a smaller bonus or no bonus at all if the Consensus

team reaches a consensus.Your total bonus acquired will be shown in the upper left corner. After the end of each game, the

bonus payment you receive for that particular game will be shown next to it, until the next game begins.
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Figure 2. In this game, Dan is a member of team No-Consensus. He receives positive bonus ($0.40) only if team Consensus

does not reach consensus.

Note that your potential bonus payments may vary from game to game. In addition, within the same game potential

bonuses may be different for different players, even if those players are in the same team. For example, in a given game the

potential bonuses of Player 1 may be $0.30 for red, $0.10 for green, and $0.00 for no consensus, while those of Player 2 may

be $0.10 for red, $0.30 for green, and $0.00 for no consensus. In such a case Players 1 and 2 have conflicting incentives for

their color choice.

Also note that even when all nodes shown on your screen have the same color, it is possible that the Consensus team has

not yet reached a consensus. There might be nodes of other Consensus team members in the network that are not shown

on your screen, but are colored differently. The game progress bar located in the lower left corner of the screen is a better

indicator of how close the Consensus team is to reaching a consensus.

Communication

In some of the games you will also have the opportunity to communicate with other players through a chat interface appearing

on the right side of the screen. Note that there might be games in which you can only see messages sent by other players, but

not be able to send any messages yourself.

Unconstrained vs. Constrained Communication

In the games with unconstrained communication, you will be able to send arbitrary messages to other players, as long as

their length does not exceed the allowed characters limit per message. The number of remaining characters in a message will

be shown just above the chat input box.There will also be a limit on the total length of unconstrained messages throughout a

single game. For the current set of experiment sessions, you will be able to send unconstrained messages of up to 10 characters

and your total communication throughout a single game may not exceed 50 characters. Thus, you will be able to send up to

five 10-character messages, or a greater number of shorter messages whose total length does not exceed 50 characters.

In the games with constrained communication, you will be able to send pre-defined messages to other players, informing

them of the status of your neighborhood. These messages will be of the format “RED:x/GREEN: y” and they will indicate that

x of your neighbors have chosen red and y of them have chosen green.There will be a limit on the number of constrained

messages you may send throughout a single game.The number of remaining constrained messages will be shown just next to

the ’Report Neighborhood Color Counts’ button.

You will know that you are in a game with unconstrained communication allowed, by the existence of a message input

box. In games with constrained communication you will only see a button allowing you to send a constrained message.
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Figure 3. Game inwhich communication is allowed. Joy can send constrainedmessages globally (not just to her neighbors).

Local vs. Global Communication

Communication may be of two different scopes, local and global. In games with local communication,your messages can

only be seen by your neighbors. On the other hand, in games with global communication, your messages can be seen by all

players, even those that are not your neighbors. The scope of communication will be indicated in the right upper part of the

screen, just above the chat box.

Cost of Communication

In some of the games in which communication is allowed, communication will be cost-based. By this we mean that each

message you send reduces your potential bonus payments by a small fraction. Note that, if an outcome with positive bonus

payment for you is not reached, you are not charged for any messages that you have sent during that particular game (i.e. your

bonus payment, regardless of the outcome of each game and the level of your communication with other users, will never be

negative). Information related to the costs of messaging will be indicated in the right upper part of the screen, justabove the

chat box.

Different Players May See Colors Differently

While our experiment application preserves consistent internal encoding of the colors, the way colors are shown on your

screen may differ from how colors are shown on another player’s screen. Figures 4 and 5, which show screens of two players

with neighboring nodes in a given game, illustrate this. Mae and Sky are neighbors and they have selected the same color.

However, Mae sees her and Sky’s nodes as green, while Sky sees their nodes as red. We call this feature anonymization of

colors.

This feature of the experiment application has several implications. Suppose that consensus was reached in the previous

game and on your screen the consensus color was shown as red. If everyone chooses red in the next game would this imme-

diately lead to another consensus? The answer is NO. For example, if in the game shown in Figures 4 and 5, Mae chooses red

then she and Sky will have different colors which will not lead to a consensus.

What if in the next game everyone chooses the last game’s consensus color as they saw it on their screen? Would this

lead to an immediate consensus? The answer is again NO. How you see colors on your screen might also differ from game to

game. For example, suppose that consensus was reached in the game shown in Figures 4 and 5 and that on Mae’s screen the

consensus color was shown as green, while on Sky’s screen it was shown as red. In the next game it is possible that Mae and

Sky see node colors in the same way. But then if they choose the last game’s consensus color as they saw it, Mae will end up

choosing green and Sky red, which will not lead to a consensus.

The reason behind the anonymization of colors feature of the experiment application is to prevent players from reaching

a trivial consensus every time just by using the consensus color from the previous game. Instead, to reach a consensus players

need to coordinate and communicate within each single game.
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Figure 4. Mae’s game screen.

Figure 5. Sky’s game screen.

Effects on Communication

Because youmay see colors differently from how other players see them, themessages that refer to colors need to be converted

appropriately for every recipient. Our experiment application is able to convert three types of messages.

(1) If you refer to a color using the corresponding full English word our application will automatically convert your

message depending on how you and the message recipients see color on your screen. For example, in the game

shown in Figures 4 and 5 Mae first sent out the message ’GREEN’. Since Sky sees Mae’s green color as red, in her

chat box Mae’s first message is shown as ’RED’.
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(2) Our application also supports a shorthand notation for referring to colors using two-character codes.

Color RED GREEN

Code \r \g

For example, if Mae sends the message “Sky \g” on his screen this message will be converted to “Sky GREEN”, while

on Sky’s screen this message will be shown as “Sky RED”, since Mae and Sky see colors differently.

(3) Constrained messages are automatically converted.

Our application, however, DOES NOT support the conversion of abbreviated color messages like “gr”, “grn”, or “r”. For

example, suppose Mae (Figure 4) sends the message “gre” attempting to convince other players like Sue or Ray to choose that

color. This message will not be converted and will be misleading for players like Sky (Figure 5) who see colors differently, i.e.

Sky may think that Mae is asking her to change her color, which is not the case.

To avoid confusion and ensure that unconstrainedmessages do not negatively affect the chances for reaching a consensus,

whenever you wish to refer to a color you should use full color words or, better yet, the two-character color codes ’\r’ and ’\g’.

Experimental Setup

A full experiment session will usually consist of 3-5 practice games and 50-65 regular games and incentives andcommunica-

tion parameters will vary across games. For each regular game you will receive a base payment of $0.15. In addition, for each

game in which you reach an objective, you will earn a bonusbetween $0.10 and $0.40.

Games will be grouped in batches of one or more games. The current batch and game numbers will be shown on the left

part of the game screen. Throughout all games of a particular batch, your assigned name and team will remain the same. But,

when the new batch of games starts, you may be assigned a different name and/or team.

Every game will be played by exactly 20 Consensus team players and some number of No-Consensus players. The size of

the No-Consensus team may vary from batch to batch, usually in the range 0-5. We will usually have up to 30 experiment

participants to make sure that individual worker’s technical issues (connection loss) or inactivity do not prevent us from

running the full experiment session. If there are more workers online than the number of required participants for each

batch, we will rotate participation, so that everyone gets the chance to play. The rotation will be performed at the start of each

batch of games. You will never have to pause for more than one batch of games in a row, but bear in mind that batches may

differ in the number of games. You will still receive the base payment of $0.15, even for games that you are not participating in.

IMPORTANT: Please do not work on other tasks while participating in the experiment. Being able to quickly respond to

color changes and messages of other participants greatly increases the chances for reaching one of the objectives, and with

that, a higher bonus reward. In case a participant does not make at least one color choice in more than 1 game in which they

were assigned to the Consensus team, they will be kicked out of the experiment, as such a behavior prevents the reaching of a

consensus regardless of what the other Consensus team members do.

Experiment Session on [Day, Month Date]

This experiment session will consist of 5 practice games and 18 regular games organized in batches of size 1 (18 batches in

total). You will receive a base payout of $0.15 per game which will be included in the HIT base reward of $2.70 (18 x $0.15).

Depending on the particular game incentives and your performance you can earn a bonus payment of up to $0.40. (Note that

in some games the maximum bonus payment you can earn could be as low as $0.20.)
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