OpenSHMEM Checker - A Clang Based Static
Checker for OpenSHMEM

Md Abdullah Shahneous Bari*, Ujjwal Arora*, Varun Hegde*, Tony Curtis*, and Barbara Chapman*{
{MdAbdullah.ShahneousBari, Ujjwal.Arora, Varun.Hegde, Anthony.Curtis, Barbara.Chapman} @stonybrook.edu
*Stony Brook University, TBrookhaven National Laboratory

Abstract—Compilers are generally not aware of the semantics
of library-based parallel programming models such as MPI and
OpenSHMEM, and hence are unable to detect programming
errors related to their use. To alleviate this issue, we developed
a custom static checker for OpenSHMEM programs based on
LLVM’s Clang Static Analyzer framework (CSA). We leverage
the Symbolic Execution engine of the core Static Analyzer
framework and its path-sensitive analysis to check for bugs on
all OpenSHMEM program paths. We have identified common
programming mistakes in OpenSHMEM programs that are
detectable at compile-time and provided checks for them in
the analyzer. They cover: utilization of the right type of mem-
ory (private vs. symmetric memory); safe/synchronized access
to program data in the presence of asynchronous, one-sided
communication; and double-free of memories allocated using
OpenSHMEM memory allocation routines. Qur experimental
analysis showed that the static checker successfully detects bugs
in OpenSHMEM code.

Index Terms—Static Checker, Static Analysis, OpenSHMEM,
Compiler Analysis

I. INTRODUCTION

Parallel programming is complex; writing an error-free,
portable, and performant parallel program can be a Herculean
task for application developers. Compilers play a vital role
in detecting errors in application programs. However, many
existing parallel programming models (e.g., MPI, OpenSH-
MEM) are library-based, often supporting multiple program-
ming languages (e.g., C/C++, Fortran) but lacking specialized
compiler support for error detection. As a result, the burden
of error detection with respect to the program’s parallelization
falls on the application developers and requires them to be
extra vigilant to avoid bugs in their program. Reliance on
runtime error detection can be difficult and may also result
in undetected bugs in production code. Thus researchers use
static and dynamic tools [1]-[3] to detect compile-time and
runtime bugs when possible. Yet most existing tools are

focused on MPI due to its popularity in the HPC community.
Other programming models with a growing user-base do

not have the same tool support. OpenSHMEM is one such
programming model. It is a Partitioned Global Address
Space (PGAS) programming model which can be beneficial
for computations with an irregular communication pattern
(e.g., graph-based applications). Its performance advantages
are due to a reliance on asynchronous, one-sided communi-
cations along with RMA (Remote Memory Access) support

978-1-6654-3281-8/21/$31.00 ©2021 IEEE

in recent hardware and its careful implementation. Yet the
features (e.g., asynchronous, one-sided communication) that
provide some of its key benefits lead to challenges with respect
to writing an error-free OpenSHMEM-based parallel program.

To address this issue, we designed and developed a cus-
tom static checker, ‘OpenSHMEM Checker’ for OpenSH-
MEM programs based on LLVM. LLVMs Clang static ana-
lyzer (CSA) provides a framework that can be used to build
custom, domain-specific checks for C/C++ programs. It offers
two different techniques that can be used to create them: 1)
AST-based checks, which utilize the information provided by
the Clang Abstract Syntax Tree (AST), and, 2) Path sensitive
checks, which can leverage the Symbolic Execution engine,
which explores all paths in a program via path-sensitive
analysis. We developed the OpenSHMEM checker based on
its path-sensitive analysis to provide a comprehensive and
accurate error detection mechanism. The checker will analyze
a program with respect to its usage of OpenSHMEM routines
and provide compile-time errors, warnings, and suggestions
related to them. We designed it in such a way that it can be
adapted for other library-based PGAS programming models
with minimal effort.

In order to perform this work, we first identified common
programming mistakes in the OpenSHMEM programming
model. Based on this investigation, we decided to implement
checks for three different errors that are frequent in OpenSH-
MEM code and amenable to static detection. Those are:

e Check that inspects whether a call to an OpenSHMEM

routine conforms to the specification

o Check for double free in OpenSHMEM-specific alloca-

tions (symmetric heap allocation/de-allocation)

o Experimental support for data race detection

II. OPENSHMEM AND COMMON PROGRAMMING
MISTAKES

A. OpenSHMEM

The OpenSHMEM Specification [4], [5] defines a library-
based PGAS (Partitioned Global Address Space) programming
model/interface for C and C++. It uses a Single Program
Multiple Data (SPMD) approach to provide local- and global-
views of program data, split across communicating processes
on 1 or more compute nodes. Like other PGAS models (e.g.,
GASNet, Global Arrays, UPC) OpenSHMEM takes advan-
tage of network capabilities such as Remote Direct Memory
Access (RDMA) [6] to allow efficient data movement that is

decoupled from synchronization. OpenSHMEM is an open-
source community effort to develop a software ecosystem
for the scientific community and hardware vendors to ensure
portability. There is a number of open-source implementations,
e.g. OSSS-UCX, Ohio State University, Sandia National Lab,
Oak Ridge National Lab, Open-MPI; and some from vendors,

e.g. HPE/Cray, NVIDIA/Mellanox, IBM.
The OpenSHMEM API defines a library interface with

routines to satisfy the communication needs of parallel
applications. Those of most relevance to this paper in-
clude: point-to-point RDMA and atomic memory opera-
tions (AMO); and collective memory management, commu-
nication, and synchronization operations. Listing 1 shows an
example of a skeleton OpenSHMEM program that performs
halo exchange. OpenSHMEM routines are painted red. It
starts by initializing the OpenSHMEM library and neces-
sary resources using shmem_init (analogous to MPI_Init
in MPI) and finishes by releasing all resources used by
the OpenSHMEM library using shmem_finalize. In
between, other OpenSHMEM routines are used to per-
form collective memory management (shmem_malloc,
shmem_free), point-to-point RDMA (shmem_put), and
synchronization (shmem_barrier_all).

#include <shmem.h>

3 int main ()

{
shmem_init (); //Initialize OpenSHMEM Library
int* privMem = (int*) malloc(...);
intx symMem = (int*) shmem _malloc(...);
for (timeStep=0; timeStep<MAX_TIMESTEP;
{
do_some_computation () ;
//Halo exchange to neighbor, One-sided write
shmem_put (symMem, privMem, numElem, neighborPE);
shmem_barrier_all(); //Global barrier

}

timeStep++)

free (privMem) ;

shmem_free (symMem) ;

shmem_finalize(); //Finalize OpenSHMEM Library
return 0;

}
Listing 1: OpenSHMEM program performing halo exchange

1) OpenSHMEM Memory Model: OpenSHMEM programs
consist of processes (Processing Elements, or PEs; analogous
to MPI ranks) that communicate using point-to-point or collec-
tive operations. Data in the PEs can be marked as “symmetric”,
meaning it is exposed to the communication layer between PEs
(typically an inter-connect such as Infiniband [7], or shared
memory in a node) and can be read/written directly by other
PEs. Infiniband and other networks enable native one-sided
communication in hardware that frees the application or OS

from dealing with progress issues.
2) Remote Memory Access Routines: Two core OpenSH-

MEM RDMA routines are the generic forms shmem_put
and shmem_getl, which allow a PE to respectively write to,

Explicit typed versions also exist for basic C types such as “int”, “short”,
“float”. The full list is in the specification [5]

or read from, the symmetric memory of another PE.

“Put” routines can allow for highly asynchronous low over-
head access to another PE’s symmetric memory, which can be
exploited by applications with irregular/sparse communication
patterns [8]. However, this asynchrony means that “put” op-
erations do not guarantee completion when they return. So
the application must provide later-synchronization to ensure
consistency when data is needed, with the most common
method being a global barrier.

3) Synchronization and Ordering Routines: OpenSHMEM
synchronization and ordering/completion is discussed below:

shmem_barrier, shmem barrier_all Provide col-
lective synchronization over a subset of PEs and all PEs
respectively.

shmem quiet The PE calling quiet ensures remote com-
pletion of remote access operations and stores to symmetric
data objects.

shmem_fence The PE calling fence ensures ordering of
Put, AMO, and memory store operations to symmetric data
objects with respect to a specific destination PE.

4) Collective Communication Routines: OpenSHMEM pro-
vides collective routines for Broadcast, Collection, Reduc-
tion, All-to-All, synchronization/ barrier, and symmetric mem-
ory management. All or subsets of PEs determined by the
team (analogous to communicator in MPI) can participate in
the collective operations.

OpenSHMEM was designed to enable high performance
by exploiting the support for Remote Direct Memory Ac-
cess (RDMA) available in modern network interconnects.
It allows for highly efficient data transfers without incur-
ring the software overhead that comes with message-passing
communication. However, enabling those features required
OpenSHMEM to introduce concepts such as symmetric/private
memory, allocation/de-allocation of those symmetric mem-
ories, safe/unsafe access to those memories, which are not
native to programming languages used with OpenSHMEM. As
a result, programming errors resulting from these concepts are
not detectable by a generic C/C++ compiler such as LLVM.

B. Common Programming Mistakes in OpenSHMEM

In this section we provide an overview of the most common
errors in OpenSHMEM through representative examples. We
use some core OpenSHMEM features and routines (described
in Table I) to explain these programming errors.

1) Violation of OpenSHMEM Semantics- Using Wrong
Kind of Memory: One of the most common mistakes observed
in OpenSHMEM programming is using the wrong kind of
memory. OpenSHMEM has the concept of private and sym-
metric memory and violating their usage results in undefined
behavior. Listing 2 shows an example of such a case. In line 5,
call to shmem_put requires a symmetric memory buffer of
a remote process as the first argument (described in Table I);
however, in this example, a private memory buffer ‘privMem’
is used instead. Using private memory ‘privMem’ where a
symmetric memory is expected would result in undefined
behavior (and worse yet, termination of the program depending
on the implementation).

TABLE I: Description of some basic OpenSHMEM concepts and routines

Concept Description

Symmetric memory

Potion of the memory that can be directly accessed by remote processes.

Private memory

Portion of the memory that is only accessible to the process that owns it. Generic concept of memory found in C/C++.

void shmem_init ()
may be called. Analogous to MPI_Init.

Initializes the OpenSHMEM library. It is a collective operation that all PEs must call before any other OpenSHMEM routine

void shmem_finalize ()

Finalizes the OpenSHMEM library by releasing all resources used by the library. Analogous to MPI_Finalize.

void shmem_put (TYPE *dest,
const TYPE *source, size_t
nelems, int pe)

Writes ‘nelems’ amount of data of type “TYPE’ from ‘source’ buffer to remote process no. ‘pe’ s symmetric memory ‘dest’.
The routines return after the data has been copied out of the source array on the local PE. The delivery of the data is not
guaranteed upon return from this routine. Further synchronization routines must be called to guarantee the delivery of the data.

void shmem_get (TYPE *dest,
const TYPE *source, size_t
nelems, int pe)

Copies/reads ‘nelems’ amount of data of type ‘“TYPE’ from the symmetric memory ‘source’ of the remote process no. 'pe’ to
local memory buffer ‘dest’. The routines return after the data has been delivered to the dest array on the local PE.

void *shmem_malloc (size_t
size)

Allocates symmetric memory in the heap. Analogous to generic C routine ‘malloc’ except it allocates symmetric memory.

void shmem_free (void *ptr)

Releases/frees previously allocated symmetric memory. Analogous to generic C routine ‘free’ except it frees symmetric memory.

Unfortunately, a generic compiler (e.g., LLVM) would not
be able to detect this error. Since C/C++ does not have the
concept of private and symmetric memory, it can not distin-
guish between them. Therefore, it is up to the programmer to
make sure the correct type of memory is used or risk having
a buggy code with undefined behavior at runtime.

2) Double-free of Heap Allocated Symmetric Memory:
Trying to free an already freed memory is a common pro-
gramming mistake in C/C++. Some compilers add extra
checks (e.g., LLVM has a dedicated static checker for this) to
catch this error. However, OpenSHMEM has a specific type
of double-free error that the generic double-free checkers can
not catch. It stems from the OpenSHMEM specific symmet-
ric memory allocation/deallocation routines. OpenSHMEM
provides routines (e.g., shmem_malloc, shmem_free) to
allocate and free heap-allocated symmetric memory. How-
ever, these symmetric memory allocation/free routines are
OpenSHMEM-specific; therefore, the double-free error arising
for symmetric memory is not caught by generic double-free
checkers. Extra support must be added to catch this specific
type of double-free error in OpenSHMEM.

3) Unsafe/Unsynchronized Access to Program Data: Open-
SHMEM provides the means for asynchronous, one-sided
communication by allowing access to remote process’ (PE)
symmetric memory without that process’ acknowledgment.
Due to this asynchronous communication nature, OpenSH-
MEM has a relaxed memory consistency; in other words,
the completion of a communication routine usually has to
be confirmed by synchronization routines. Therefore, non- 5
blocking accesses to a PE’s symmetric memory between two
synchronization points may result in an inconsistent state
of that PE’s symmetric memory. We use the code example
shown in Listing 3 to explain this in the context of an
OpenSHMEM program. Here we use shmem_put inline 7 to
write to the remote PE no ‘1’s symmetric memory ‘symMem’.
However, returning from shmem_put does not guarantee the °
completion of actual write in the ‘symMem’ in remote process
‘PE 1’; it just confirms that the data has been copied out of
source array ‘src’ on the local PE. The actual write in the °
remote PE may happen at any time in the future. Only a :']'
synchronization routine (e.g., shmem_barrier_all) after .
shmem_put can guarantee the completion. Therefore, when "
we use shmem_get in line 12 to access (read from) the

remote process ‘PE 1’s symmetric memory ‘symMem’ that
we wrote to previously using shmem_put, we can not guar-
antee whether ‘symMem’ would have the old value (before
shmem_put), or new value (after shmem_put), since we
don’t know if shmem_put was able to complete the write to
‘symMem’. Hence, we may have a data race condition. There-
fore, read from ‘symMem’ is unsafe without a synchronization
routine before it.

4) Potential Performance Degradation Due to Excessive
Synchronization: While synchronization constructs are one of
the main building blocks of OpenSHMEM and an absolute
necessity for writing a correct OpenSHMEM program as
explained in the previous section, using too many and unnec-
essary synchronization could heavily degrade the application
performance. However, application developers tend to overuse
synchronization constructs in their programs in their quest for
correctness. Although this does not affect the correctness of the
program but may degrade performance heavily, hence finding
cases of excessive synchronization is extremely important.

5) Deadlock Due to Missing Synchronization: OpenSH-
MEM has the concept of collective routines like other parallel
programming models (e.g., MPI collectives) that are executed
by all processes or a subset of processes executing the pro-
gram. However, if a process that is supposed to participate in
a collective doesn’t do so, it may lead to a deadlock scenario.

int *privMem = (int *)malloc(...); //private mem

//Error: Expects a symmetric memory
//Not detectable by generic compiler
shmem_put (privMem, &src, 1, pe);

Listing 2: Using wrong memory type (symmetric vs. private)

//Allocate symmetric memory

int xsymMem = (int «)shmem_malloc(...);

// Write to symMem of PE no. ‘1’, Write is not
// guaranteed to complete without proper

// synchronization

shmem_put (symMem, src, 1, 1);
//Reading from the symMem of PE no.
//Missing synchronization construct
//Error: NOT safe to access ‘symMem’
//Possible race condition
shmem_get (src, symMem, 1,

V17
variable

1);

Listing 3: Unsafe/unsynchronized access to program data

C. OpenSHMEM and MPI

The Message Passing Interface (MPI) is widely used to
write parallel programs in the HPC community. Although,
traditionally it utilizes a two-sided communication approach,
it provides semantics for one-sided communication as well.
Since, MPI is well known across the HPC community, in Ta-
ble II we provide a comparison of the programming mistakes
prevalent in MPI and OpenSHMEM.

III. CLANG STATIC ANALYZER

A compiler gathers substantial information during com-
pilation. The Clang compiler, which is part of the LLVM
compiler suite, allows external tools to utilize this information
for various purposes (e.g., the ‘clang-tidy’ tool uses it for
diagnosing and fixing typical programming errors).

The ‘Clang Static Analyzer (CSA)’ is one such tool that
tries to find defects in a program by symbolically executing
(imaginary execution, as if reading the source code and
imagining what would happen if it was run) it without actually
running it.

To achieve this, the analyzer uses algebraic symbols (with
constraints and bounds) to denote unknown values (e.g., vari-
able values that are dependent on input and only available at
runtime). During the symbolic execution process [9], it uses
these symbols (and their bounds) and the Clang CFG (Control
Flow Graph) to build a graph of reachable states, called an
Exploded Graph. The Exploded Graph consists of all feasible
paths through the CFG that were found by the analyzer. Each
node in the graph represents pairs of program states and
program points. The program state represents the abstract state
of the program (e.g., mapping from source code locations to
values, mapping from memory locations to symbolic values
and their constraints) while the program location represents
the exact symbolic execution location (e.g., before/after a
statement) and the symbolic stack frames.

Symbolic execution of the program allows the analyzer to
find deep, rare bugs that may be missed during the testing
process. However, it is not a universal solution that finds all
bugs; rather it provides a framework that can be engineered
to find particular bugs. Specialized tools created by adapting
the framework to seek specific kinds of bugs are called
‘Checkers’. While the core analyzer framework executes the
program in a symbolic manner, the checkers subscribe to
different events (via callbacks to different program points),
check various assumptions on symbolic values at these events,
and throw errors/warnings if those assumptions fail on a given
program path. Checks that are based on symbolic execution
along a program path are called ‘path-sensitive checks’. We
used this framework to develop a custom checker to detect
specific OpenSHMEM bugs.

The clang static analyzer provides the ability to write
another type of check that exploits syntactic information only.
Called ‘AST-based checks’, they are easy to write and add very
little overhead to the compilation process. However, since they
primarily use information available in Clang’s Abstract Syntax
Tree (AST) their ability to find bugs is limited to finding illegal

or undesirable code patterns. The OpenSHMEM bugs we are
trying to detect cannot be identified by an inspection of the
AST alone and hence we chose to base our checker on the
Clang Static Analyzer and its symbolic execution engine.

IV. FRAMEWORK

We designed the OpenSHMEM Checker in such a way that
it is easy to adapt for other PGAS programming models with
minimal effort. It is comprised of 3 main components.

Base Layer
Generic implementation of
PGAS functionalities
e.g., non/blocking get/put

Property Layer Tee

Implements Property
(e.g. MarkAsSymmetric)

&
g

=
3
NS

Other PGAS
Models

OpenSHMEM GASNet E

Programming Model Layer

Fig. 1: OpenSHMEM Checker framework

A. Property Layer

OpenSHMEM introduces several PGAS library-specific be-
haviors/properties (e.g., whether a variable is symmetric or
private) to the program data structures. These properties are
often prerequisites and necessary for different OpenSHMEM
routines to work (e.g., OpenSHMEM communication routines
can only access the symmetric memories of a remote process,
trying to access private memory through these routines would
result in undefined behavior). OpenSHMEM routines also
introduce different property-induced states to program data
structures (e.g., synchronized and unsynchronized state of
symmetric variables). These properties, associated states, and
their transitions dictate an OpenSHMEM program behavior;
therefore, modeling these properties, states, and their transition

correctly is vital for finding programming errors.
Let us revisit the example in Listing 3 to explain how

these properties and their states transition through a pro-
gram and dictate the program behavior. For simplicity, we
will focus on only one property, ‘symmetric memory’, and
its states (synchronized and unsynchronized). In line 3, we
use the OpenSHMEM allocation routine shmem_malloc
to allocate memory in the heap. This is no ordinary heap-
allocated memory (e.g., using C malloc); this memory has
one extra property; it is symmetric and can be accessed
by other processes directly. So, shmem_malloc introduces
the ‘symmetric memory’ property to the allocated variable.
Declaring variables as ‘Static’ or ‘Global’ in an OpenSHMEM
program also introduces the ‘symmetric memory’ property to

those variables.
Symmetric memories have different types of states associ-

ated with them (e.g., synchronization states, allocation states).
Each of these types can have multiple state-values (e.g.,
synchronization type has two states, synchronized and unsyn-
chronized). These states are used to model the OpenSHMEM
programming model behavior, and transition to and from these
states is dictated by OpenSHMEM routines.

TABLE II: Comparison of programming mistakes in MPI and OpenSHMEM

Programming Error MPI

OpenSHMEM

Type mismatch

Exists (Data type vs. MPI type)

N/A - OpenSHMEM is type aware

Incorrect buffer referencing (e.g., referencing a | Exists

‘int’ buffer as character)

N/A - OpenSHMEM is type aware (few exceptions exist)

Invalid use of programming model specific ob-

jects and operations

Invalid communicator, groups,

Invalid context, and team

Invalid use of different types of memory

N/A, MPI does not introduce
any new memory concept

Exists, wrong use of symmetric vs. private memory

Missing wait

Unmatched point to point call Exists N/A - OpenSHMEM uses one-sided communication semantics
Deadlock due to missing synchronization Exists Exists

Potential performance degradation due to exces- | Exists Exists

sive synchronization

Double non-blocking

Unmatched wait Exists Similar errors can happen in OpenSHMEM but in a different

way. They fall in the category of ‘Unsafe/unsynchronized access
to program data’

Let us use Listing 3 again to see how these states transition
in an OpenSHMEM program. In line 7, shmem_put is used
to write data ‘src’ to PE 1’s symmetric memory ‘symMem’.
For this routine to work correctly, it must fulfill the pre-
condition that the first argument must be a symmetric memory.
Once the pre-condition is fulfilled, and the routine is executed,
it changes the synchronization state of the destination variable
‘symMem’, it makes ‘symMem’ at PE 1 ‘unsynchronized’.
The reason for ‘symMem’ becoming ‘unsynchronized’ or
unsafe is down to the communication nature of shmem_put.
Since shmem_put returns right after the data has been copied
out of the source array on the local PE, the delivery of the data
is not guaranteed upon return from this routine. As a result,
‘symMem’ in PE 1 can have the old, new, or combinations of
these values, rendering it to a non-deterministic or ‘unsynchro-
nized’ state. Therefore without further synchronization rou-
tines to guarantee the delivery of the data, ‘symMem’ would
be ‘unsynchronized’ or unsafe for further access (possible race
condition). This transition of ‘symMem’ to ‘unsynchronized’
state is the result of shmem_put. Consequently, a global
synchronization (shmem_barrier_all) or alocal synchro-
nization (shmem_quiet) routine at PE 1 guarantees that the
new data has been written to ‘symMem’ and thus transitions

to synchronized.
We implement these generic PGAS library-specific

behaviors/properties and their associated states using the
Clang Static Analyzer interface. We utilize CSA to do the
bookkeeping for different properties and states associated
with a certain data structure at different program points.
We expose simple interfaces to add, remove, and query
different properties and their states that can be used in
the pre- and post-condition callbacks of the checker to
detect errors. This property layer acts as an interface
between the compiler and the library. Some of the interfaces
implemented in the property layer are: MarkAsSymmetric,
IsMemRegionSymmetric, IsSynchronized,
MarkAsSynchronized, MarkAsUnSynchronized,
IsFree, IsArgNonNegative.

B. Base Layer
We use the properties from the Property Layer to implement
checks for generic PGAS operations such as blocking and

non-blocking PUTs/GETs, memory allocation, and barriers.
A specific PGAS library (e.g., OpenSHMEM) can use these
checks out of the box, or provide its own implementations.
Routines in the API can have pre-checks, post-checks, or both.
In the pre-check phase, one can check for properties that must
be fulfilled for the PGAS routine to work correctly (e.g., the
destination variable of PUT must be a symmetric variable).
In the post-check phase, one can check for a specific property
after the PGAS routine is executed or specify actions that have
to happen (e.g., after a PUT the destination variable becomes
unsynchronized). So, a generic implementation of PUT would
look like this:

API: PUT (dest, src, PE, ...);
Pre-checks: IsSymmetric (dest);
Post-checks: MarkAsUnSynchronized(dest);

The primary purpose of the Base Layer is to make the
analyzer extensible for other PGAS programming models.
However, in this work we only focused on OpenSHMEM,
other programming models were not considered.

C. Programming Model Layer

We implement programming model-specific operations
in this layer. For example, in OpenSHMEM, we imple-
ment checks for routines like shmem_put, shmem_get,
shmem_malloc, shmem barrier_all. We can either
use the default implementation provided by the Base layer for
that specific type of routine, or we can provide our own im-
plementation using the property layer APIs. A implementation
of shmem_put would look like this:

API: shmem_put (T xdest, const T xsource,
size_t nelems, int pe);

IsSymmetric (dest);

IsArgNonNegative (pe) ;

Post-checks:MarkAsUnSynchronized (dest) ;

Pre—-checks:

D. Why Layered Design

Compiler development has a steep learning curve, which
often deters library developers from writing checkers for
their libraries. This layer-based design of the OpenSHMEM
Checker tries to alleviate that problem by allowing the devel-
opers to write a checker for a specific PGAS programming

model with minimal effort. It minimizes the interaction of the
checker developer with the compiler, and allows the developer
to use the default implementation out of the box from the base
layer, or use properties implemented in the property layer to
write their own library-specific checker. The layered design
also allows modeling (adding support) of specific APIs or
a group of APIs separately and independently; this enables
development of incremental support for available APIs in
a programming model without compromising the checkers
ability to detect bugs in already supported APIs.

V. INTEGRATED CHECKS

In this work, we implemented checks to detect the first 3
types of programming errors described in Section II-B. These
checks are supported on a large number of frequently used
OpenSHMEM routines. Currently supported routines cover
most of the memory management, remote memory access,
collective operations in OpenSHMEM. In this section, we
briefly describe how these checks are implemented.

A. Violation of OpenSHMEM Semantics- Using Wrong Kind
of Memory

To implement this check, we track all the variables with the
symmetric memory property (global and static variables, and
memory managed by the OpenSHMEM allocation routines).
Heap-allocated variables are marked using the property layer
interface MarkAsSymmetric in the ‘POST_CALL’ call-
backs of OpenSHMEM allocation routines. They are marked
immediately after they are allocated, irrespective of their
future use. It is not easy to mark global and static variables
from their declaration, so we wait until their first use in an
OpenSHMEM routine and mark them as symmetric using
the MarkAsSymmetric routine. We track these symmetric
variables using a path-sensitive ImmutableMap.

In the ‘PRE_CALL’ callback of each OpenSHMEM routine
that takes symmetric arguments, we check that symmetric

property using the property layer interface IsSymmetric.
IsSymmetric searches the ImmutableMap that con-

tains the list of all symmetric memories, and determines
whether the variable is symmetric. If not, we raise a bug and

generate a report for ‘wrong kind of memory.’
During the tracking process, we also track if a symmetric

memory is heap-allocated or not, as some routines require
this (e.g., shmem_realloc).

B. Double-free

To implement double-free of the symmetric variables
allocated via OpenSHMEM, we track the allocation and
de-allocation of each symmetric variable in all pro-
gram paths. Once they are allocated, we change their
state to ‘allocated’” by using the property layer interface
RecordThisAllocation in the ‘POST_CALL’ callback
of the allocation routine. Once a variable is freed using
shmem_free, we change the state of that variable to ‘freed’
using FreeThisAllocation from the property layer. As
part of the process, FreeThisAllocation checks if it has
been freed; if so, it raises a ‘double-free’ error and reports a
bug.

C. Unsynchronized Access to Program Data

This check provides experimental support for detecting
unsynchronized access to program data. In its current form,
it works best if the memory region that is affected by the un-
synchronized access is constant-reducible (e.g., after constant
propagation, it results in a constant value). This is due to: 1)
the inherent limitation of static analysis (some information is
only available at runtime), 2) current status of region arithmetic
in CSA which is still being improved, and 3) the lack of
parallel communication analysis (notion of parallelism) in
CSA. Improving the later two would enable our checker to
support non-constant memory regions.

To implement this check, we used ‘ranges’ (start to end) to
track unsynchronized memory regions. Every time a portion of
the memory becomes unsynchronized due to an OpenSHMEM
call (e.g., shmem_put), we use symbolic expressions (LLVM
SVal objects) to store the start-index and number of elements
read/written, from which we derive the start-index and the end-
index of that portion of the memory using the SValBuilder.
We use this approach because most OpenSHMEM routines
use an ‘offset’ and ‘numElements’ to read from and write
to a symmetric memory. We also use this information to
change a memory region’s status from unsynchronized/unsafe
to synchronized.

Beyond this, we also track the PE in which the unsynchro-
nized array region resides in, thus providing exact information
as to which memory is unsynchronized and removing false-
positives in the process.

VI. EVALUATION

We used a custom test suite consisting of synthetic bench-
marks dedicated for each error type and 3 Benchmark appli-
cations to evaluate the OpenSHMEM checkers performance.
The benchmark applications, Transpose transposes a N x N
matrix using a blocked approach, Matrix Multiplication (MM)
multiplies two matrices based on Cannon’s algorithm, and
Mandelbrot Set generates a greyscale image of the Mandelbrot
set using the quadratic iteration function. We introduced
different programming bugs into the working versions of
these applications. Due to the lack of available benchmark
applications in OpenSHMEM, we developed two (Transpose,
and MM) of the ones used here.

We evaluated the checker’s ability to find the 3 types of
bugs it supports and the overhead. We used LLVM version
10.0 in a machine with Intel(R) Xeon(R) Gold 5115 CPU @
2.40GHz with 192GB of memory running Fedora 32.

A. Case Study: Synthetic Benchmarks

We developed synthetic benchmarks that utilize different
OpenSHMEM routines supported by the checker and use it to
test different programming errors.

1) Wrong Kind of Memory: We introduced ‘wrong kind
of memory’ bugs in various OpenSHMEM routines, and the
checker was able to detect all of them. Since the checker
utilizes aliasing information, it was able to detect bugs that
involved pointer following, which is illustrated in Listing 4.

> int main(int argc,

int *GlobalPtr; //Global (symmetric) variable

char xargv([])

s o

10

11

int xprivMem = (int %) malloc(Nxsizeof (int));
int *source = (int %) malloc (Nxsizeof (int));

// GlobalPtr is a symmetric variable

// but it points to a private memory

GlobalPtr = privMem;

// Error: GlobalPtr is expected to be symmetric
shmem_put (GlobalPtr, source, 1, pe);

Listing 4: Wrong Kind of Memory Error

Here, GlobalPtr is a symmetric variable (line 1), how-
ever, it points to private memory (line 9) allocated by malloc.

shmem_put which OpenSHMEM expects to be symmetric
memory), the checker catches and throws the appropriate error.

2) Double-free: We implemented double-free errors in
several different ways and the checker was able to detect
them successfully. These included the use of pointer indirec-
tion (aliasing) as well as an inter-procedural Double-free error.
One scenario is illustrated in Listing 5.

int *ArgPtr =(int «)shmem_malloc (Nxsizeof (int));
int xindirectArgPtr = ArgPtr;

shmem_free (indirectArgPtr) ; //Free 1

// Error: Double-free, indirectArgPtr and ArgPtr
// points to the same memory which has already
// been freed previously by freeing

// indirectArgPtr

shmem_free (ArgPtr) ; //Free 2

Listing 5: Double-free Error

3) Unsynchronized Access: The checker was not able to
detect all of the unsynchronized access errors that we intro-
duced into the synthetic benchmark. In order to avoid false-
positives, we currently only detect unsynchronized accesses
whose indexes and the PE numbers can be propagated to
constants. Where these conditions do not hold, the checker
fails. Comprehensive communication and dependence analyses
would improve the detection of this error. Listing 6 shows both
detected and undetected errors.

B. Case Study: Transpose, MM, Mandelbrot

We also evaluated the checkers ability to find Wrong kind of
memory, Double-free, and Unsynchronized access errors that
were injected into the Transpose, MM, and Mandelbrot set
benchmarks. Before introducing the bugs in these programs,
we tested them ‘out of the box’ to check for false positives,
however, the tool did not find any false positive during this pro-
cess. Due to the lack of space, we only provide the summary of
the results (injected and caught bugs). However, we followed
the approaches described for the synthetic benchmarks to
introduce bugs in these programs which should enable the
readers to re-produce results obtained here.

TABLE III: Overhead analysis. Compile-time shown in secs.

Benchmarks No Sta?ic With S.tatic With OpenSHMEM
Analysis (s) | Analysis (s) | Checker (s)

Transpose 5.69 5.81 5.83

MM 478 5.43 5.50

Mandelbrot 0.68 28.95 3391

1) Wrong Kind of Memory: The checker was able to detect
4 out of 5 wrong kind of memory errors. It missed one error
in ‘Transpose’ simply because the OpenSHMEM routine in
question, shmem_fcollect is not currently modeled (sup-
ported) by the Checker. That did not affect the ability of the
checker to detect other errors due to its layered design. We plan
to add support for all OpenSHMEM routines in the future.

int main(int argc, char =*argvl[])

.. L . 2 {
When it is used as a destination variable (first argument of |

int xsymMem = (int %) shmem_malloc (Nxsizeof (int)

)i
int pe = shmem_my_pe();
if(pe !'= 0) {

shmem_put (&symMem[0], source, 1, 0);

// Error: Unsynchronized Access to symMem
shmem_get (source, &symMem[O0], 1, 0);

}

shmem_put (&symMem[pe], source, 1, pe);

// Unsynchronized Error not detected since value
// of ‘pe’ is not a constant

shmem_get (source, &symMem[pe], 1, pe);

Listing 6: Unsynchronized access Error
2) Double-free: The checker detected all 4 injected Double-

free errors. One Double-free scenario in Transpose was inter-

procedural and the checker handled it successfully.
3) Unsynchronized Access: We introduced an Unsynchro-

nized access error into MM. The checker was unable to detect
it because the array indexes and PE numbers used in the pro-
gram were not propagated to constants. Since this shortcoming
can hamper the checker’s ability to detect Unsynchronized
access errors in real world applications, we will work on the
necessary support analyses in future.
C. Overhead Analysis

OpenSHMEM Checker is a static analysis tool; hence it
does not have any runtime overhead. Our checker adds a
small to negligible compilation overhead on top of the Clang
Static Analyzer Core if any other path-sensitive checker is
used. The overhead is mostly related to the generation of
the exploded graph and the number of paths that need to
be explored. Therefore, the overhead is dependent on the
number of conditionals in a program rather than the code
size. Table III shows the overhead result for the 3 benchmark
applications. We compare compilation time without static
analysis, with static analysis (with the default checkers), and
finally with the OpenSHMEM Checker enabled with other
default checkers. Among the benchmarks, Mandelbrot has
the most conditional statements, resulting in a large exploded
graph and a significant increase in compile-time if the static
analysis is used with a small overhead added on top of that
using the OpensHMEM Checker.

VII. RELATED WORK
This work has roots in three overlapping research areas:

A. Program Correctness of Parallel Programs

A variety of methods have been explored to detect and
remove bugs from parallel applications, including runtime
error-verification, trace-based error detection, model checking

and static analysis. Each has its strengths and weaknesses.
Runtime approaches usually utilize instrumented code to

check for anomalies in the runtime behavior. Such systems
include UPC-Check [10], MPI-Check [11], MARMOT [1],
[12], UMPIRE [2]. While these techniques are specially good
for detecting runtime bugs such as race conditions, deadlock,
erroneous arguments, they add over-head in the runtime. Also
they focus on a specific part of the program and are agnostic
regarding the program control structure. As a result, finding the
source of the error may be difficult, since the position where
the error is detected and the source of the error may not be the

same. In contrast, our work uses static analysis techniques.
Trace-based error detection tools such as Bound-

sChecker [13], the Intel Message Checker [14] analyzes
trace files to detect errors such as mis-matched buffer types,
race conditions and deadlocks. Trace-based techniques work
well with 2-sided communication as in MPI (matching send-
recv pair), but detecting errors in 1-sided communication

models such OpenSHMEM can be extremely difficult.
Another error detection technique is model checking, which

uses formal methods to check the validity of a program. The
user typically models the input/output, logically represents the
program as a finite state model, and makes assertions for
different states using a modeling language: MPI-SPIN [15],
UPC-SPIN [16], MAGIC [17], SLAM [18] use this technique.

B. Static Analysis Techniques for Program Correctness
Static analysis is a popular method to check for program
correctness. It uses static program information (e.g., compile-
time information) and symbolic execution to find errors in
a program. It usually exploits existing compiler information.
Droste et al. [3], Ye et al. [19], Yu et al. [20] use LLVM’s
Static Analyzer while Aananthakrishnan et al. [21] use ROSE
compiler framework. However, these mostly focus on MPI.

C. OpenSHMEM Program Analysis

Work in the area of program analysis and error detection
for OpenSHMEM is scarce. The OpenSHMEM Analyzer [22],
[23] is the only prior work in this domain. Like our work, it
uses compiler-based static analysis to detect bugs in OpenSH-
MEM applications. However, the OpenSHMEM Analyzer is
built on top of OpenUH (a branch of the Open64 compiler)
which is no longer supported. Our checker is based on the
popular LLVM framework, which has a modular infrastructure
that makes our work easily extensible.

VIII. CONCLUSION AND FUTURE WORK
We have developed a CSA-based static checker to help find
bugs in OpenSHMEM programs. The checker has a layered
design to make it easy to use, extend, and modify. We also
made sure that no false-positives are reported by the checker,

so that programmers can use the report with confidence.
Early evaluation result shows great promise. However, much
needs to be done to provide a comprehensive error detection
mechanism for OpenSHMEM and other PGAS programming
models.

We are extending our work to enable unsynchronized access
error detection, which requires comprehensive communication
and dependence analysis. We also plan to add support for
other errors such as over synchronization, and deadlocks and
ultimately to support the entire OpenSHMEM specification.

ACKNOWLEDGMENT

This material is based upon work supported by the Na-
tional Science Foundation under grant no. CCF-1725499. The
authors also thank Stony Brook University for access to the
HPC systems.

REFERENCES

[1] B. Krammer et al., “Marmot: An mpi analysis and checking tool,” in
Advances in Parallel Computing. Elsevier, 2004, vol. 13, pp. 493-500.

[2] J. S. Vetter and B. R. De Supinski, “Dynamic software testing of mpi
applications with umpire,” in SC’00.

[3] A. Droste et al., “Mpi-checker: static analysis for mpi,” in Proceedings
of the Second Workshop on the LLVM Compiler Infrastructure in HPC,
2015.

[4] B. Chapman et al., “Introducing openshmem: Shmem for the pgas
community,” in PGAS 2010.

[5] O. Community, “Openshmem application programming interface version
1.5.” http://www.openshmem.org/, 2020.

[6] T. S. Woodall et al., “High performance rdma protocols in hpc,” in
European Parallel Virtual Machine/Message Passing Interface Users’
Group Meeting, 2006.

[71 G. E Pfister, “An introduction to the infiniband architecture,” High
performance mass storage and parallel I/0, vol. 42, no. 617-632, p.
102, 2001.

[8] J.Jose et al., “Designing scalable graph500 benchmark with hybrid mpi+
openshmem programming models,” in ISC 2013.

[9] Z. Xu et al., “A memory model for static analysis of ¢ programs,” in
ISoLA 2010.

[10] J. Coyle et al., “Upc-check: a scalable tool for detecting run-time errors
in unified parallel ¢,” Computer Science-Research and Development,
vol. 28, no. 2-3, pp. 203-209, 2013.

[11] G. Luecke et al., “Mpi-check: a tool for checking fortran 90 mpi
programs,” Concurrency and Computation: Practice and Experience,
vol. 15, no. 2, pp. 93-100, 2003.

[12] B. Krammer and M. M. Resch, “Correctness checking of mpi one-
sided communication using marmot,” in European Parallel Virtual
Machine/Message Passing Interface Users’ Group Meeting, 2006.

[13] M. Focus, “Boundschecker,” 2021.

[14] J. DeSouza et al., “Automated, scalable debugging of mpi programs with
intel® message checker,” in SE-HPCS ’05.

[15] S. F. Siegel, “Verifying parallel programs with mpi-spin,” in European
Parallel Virtual Machine/Message Passing Interface Users’ Group Meet-
ing. Springer, 2007, pp. 13-14.

[16] A. Ebnenasir, “Upc-spin: A framework for the model checking of upc
programs,” in PGASII.

[17] S. Chaki et al., “Efficient verification of sequential and concurrent ¢
programs,” Formal Methods in System Design, vol. 25, no. 2, pp. 129—
166, 2004.

[18] T. Ball et al., “Slam and static driver verifier: Technology transfer of
formal methods inside microsoft,” in IFM 2004.

[19] F. Ye et al., “Detecting mpi usage anomalies via partial program
symbolic execution,” in SC’ 8.

[20] H. Yu, “Combining symbolic execution and model checking to verify
mpi programs,” in ICSE 8.

[21] S. Aananthakrishnan et al., “Parfuse: Parallel and compositional analysis
of message passing programs,” in LCPC 2016.

[22] O. Hernandez et al., “The openshmem analyzer,” in PGAS12, 2012.

[23] S. Pophale et al., “Extending the openshmem analyzer to perform
synchronization and multi-valued analysis,” in OpenSHMEM 2014.

