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Abstract
Rise in global temperatures is resulting in polar
ice caps to melt away, which can lead to drastic
sea level rise and coastal floods. Accurate cal-
culation of the ice cap reduction is necessary in
order to project its climatic impact. Ice sheets
are monitored through Snow Radar sensors which
give noisy profiles of subsurface ice layers. The
sensors take snapshots of the entire ice sheet regu-
larly, and thus result in large datasets. In this work,
we use convolutional neural networks (CNNs) for
their property of feature extraction and general-
izability on large datasets. We also use wavelet
transforms and embed them as a layer in the ar-
chitecture to help in denoising the radar images
and refine ice layer detection. Our results show
that incorporating wavelets in CNNs helps in de-
tecting the position of deep subsurface ice layers,
which can be used to analyse their change over
time.

1. Introduction
The Greenland Ice Sheet (GrIS) has the potential to in-
crease sea level rise by 7.4m (Shepherd et al., 2020). Model
projections estimate that associated imbalances in the cli-
mate, such as snow accumulation rates, excessive melt-water
runoff will continue to increase with a warming climate for
the rest of the century (Shepherd et al., 2020; Montgomery
et al., 2020). In this regard, analyzing the change in the ice
sheet is imperative to project its climatic impact. One of
the ways to analyse this change is through airborne observa-
tions, such as those during the NASA Operation Ice Bridge
(OIB) mission.

The OIB mission flew a Snow Radar sensor, operated by
the Center for Remote Sensing of Ice Sheets (CReSIS),
which captured the horizontal profile of internal ice layers
in grayscale images. Each ice layer present in these images
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was accumulated at a specific year, and is present at a spe-
cific depth (See Figure 2 first column). By capturing such
images every year, one can calculate the change in thickness
of each of these layers, which is required to calculate the
overall mass loss from GrIS.

Figure 1. An end-to-end wavelet combined multi-scale architecture
to learn image denoising and enhance edge detection. H1, V1, and
D1 denote the horizontal, vertical, and diagonal detail coefficients
of a level-1 wavelet transform, respectively.

Processing the Snow Radar images from every year can
be complicated due to the data size, and also because the
images can be noisy, with the ice layers being visually in-
distinguishable from each other. In this regard, we need effi-
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cient, automated algorithms which can denoise the dataset
and extract complex features from the images. Recently,
deep learning has been applied on Snow Radar images (Yari
et al., 2019; 2020; Rahnemoonfar et al., 2021; Varshney
et al., 2020) , due to its success in building efficient com-
puter vision algorithms, and also for being robust across
large datasets. These works note that the models can be
improved further, if the inherent noise in the images could
be learnt and reduced in an end-to-end architecture.

Wavelet transforms (Mallat, 1989) are signal processing
techniques which help in image denoising. They can rep-
resent images in a multiresolution format and depict the
contextual as well as textural information of an image at
different scales (Huang et al., 2017). In this work, we show
that by taking wavelet transforms at intermediate stages of a
neural network architecture (Figure 1), the denoised output
produced after every stage is more ‘learned’ and helps in
detecting ice layers as sharp edges.

2. Related Works
Recently, there has been a lot of work with detecting ice
layers from radar images, as well as improving the compu-
tational complexity and feature detection of deep learning
by incorporating wavelet transforms. In this section, we
highlight the related literature in both these domains.

2.1. Deep Learning for Ice Layer Detection

Deep learning has been extensively applied on remotely
sensed radar images (Yari et al., 2019; 2020; Rahnemoonfar
et al., 2021; Varshney et al., 2020) for its ability in fea-
ture extraction and utility in automatically processing large
datasets. Yari et al. (2019) used a multi-scale deep CNN
to track the internal ice layers in Snow Radar images. The
authors of the work also experimented with pretraining on
BSDS dataset (Arbeláez et al., 2011) and found that the
network does not work well because of the inherent noise
in the Snow Radar dataset. This work was further expanded
in Rahnemoonfar et al. (2021) where the authors trained
the multi-scale network on synthetic Snow Radar images,
to make the training more robust. A multi-scale network
was also used in Yari et al. (2020) where the authors used
a model trained on images from the year 2012, and fine
tuned it by training on different years. Further, Varshney
et al. (2020) also found that using pyramid pooling mod-
ules, a kind of multi-scale architecture, helps in learning
the spatio-contextual distribution of the ice layer pixels. All
these works used multi-scale networks in order to extract
the ice layer edges from Snow Radar images and noted that
noise in Snow Radar images is an issue which needs to be
addressed.

2.2. Wavelet combined CNNs

Recently, there has been a surge to combine and replace
layers in a typical CNN with a wavelet transform layer such
as Liu et al. (2019), Williams & Li (2018), Huang et al.
(2017), Han & Ye (2018), and Bae et al. (2017). Williams
& Li (2018) found that downsampling through a wavelet
transform layer can lessen the creation of jagged edges as
compared to max and average pooling layers. Liu et al.
(2019) noted that wavelet transform can be used to enlarge
the receptive field of a kernel and improve efficiency while
downsampling feature maps. Doing so also helped in avoid-
ing information loss which happens in a typical pooling
operation. Huang et al. (2017) used a wavelet based loss
function and a wavelet combined CNN for super resolution
of multi-scale face images. Bae et al. (2017) discovered
that training on wavelet subbands can help in residual learn-
ing. These works concluded that embedding wavelets in
neural networks helps in achieving sharper boundaries, less
artifacts and improves feature learning.

3. Dataset
We use Snow Radar images captured by CReSIS in 2012
and publicly hosted at CReSIS (2012). The images have a
vertical resolution of less than 4cm per pixel. The dataset
contains 2361 training images and 260 test images. There
are both multi-class labels and binary labels available for
each image. We use the latter as they are more useful for
binary edge detection. .

4. Methodology
The architecture of our proposed network is shown in Fig-
ure 1. The backbone architecture is a VGG13 architecture
(Simonyan & Zisserman, 2015) without the terminal fully
connected layers, and the last pooling layer. On the last
layer of every stage (see Figure 1), i.e. before each max
pooling layer, we do a 1 × 1 convolution, to create an in-
termediate feature map which we call as a ‘Side Output’.
From stage 2 to stage 5, the dimension of each side output
is half of the previous side output due to the downsampling
by a max pool operator in between two stages. We then
take a level 1 Discrete Wavelet Transform (DWT) (Mallat,
1989; Williams et al., 2018) of the ith side output, where
i ∈ [1, 5], and concatenate the detail coefficients H,V,D
(Huang et al., 2017; Williams et al., 2018) of DWT with the
(i + 1)th side output. The detail coefficients produced by
a DWT have half the dimension of its input, hence, their
dimensions match with each successive side output layer
and can be concatenated. Then, we convolve a 1× 1 kernel
with the concatenated product and upsample it to the dimen-
sions of the input radar image, using transposed convolution.
We also crop the upsampled product in order to rectify any
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Snow Radar (Incomplete) Ground Truth Base SO-WT1 (Db1) SO-WT1 (Db2)

Figure 2. Qualitative comparison of model outputs. The first and second columns show sample Snow Radar images and their incomplete
ground truth labels, respectively. The third column shows outputs from the Base network. The fourth and the fifth column show outputs
from the SO-WT1 architecture with db1 and db2 wavelets, respectively. All network outputs are after NMS processing.

minor dimensional mismatch. All the upsampled feature
maps from the five stages are finally concatenated, followed
by a 1× 1 convolution to form a ‘fuse’ layer. We train the
network in a deeply supervised manner (Lee et al., 2015)
and take a cumulative loss function from each of the five
stages as well as the fused output (Equation 3). The position
where we calculate loss is marked with the green cells in
Figure 1.

We compute the binary cross entropy loss (l) for every pixel
i as:

l(xi;W ) =

{
α · log(1− xi) if yi = 0

β · log(xi) if yi = 1
(1)

where xi is the sigmoid activation map(s) obtained from a
network with weights W . yi is the ground truth label of the
corresponding pixel in the input image I having a total of
|I| pixels. Further, α and β are defined as:

α = λ · |Y +|
|Y +|+ |Y −|

β =
|Y −|

|Y +|+ |Y −|

(2)

where |Y +| denotes the count of all positive labels, i.e. those
marked as being an edge pixel (yi = 1) and |Y −| denotes
the count of all negative labels i.e. those marked as non-
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edge (yi = 0). λ is a hyperparameter used to balance these
positive and negative labels.

The total loss is computed as:

L(W ) =

|I|∑
i=1

( K∑
k=1

l(xki ;W ) + l(xfusei ;W )

)
(3)

k depicts each of the side outputs or stages, i.e. K = 5.

We name our proposed architecture, the one shown in Figure
1 as ‘SO-WT1’, with which we use a Debauchies wavelet
(db2). We also experiment with a Haar wavelet (db1), a
baseline network called ‘Base’, which does not have any
wavelet transforms, and an architecture called ‘WT4’ where
we take wavelet transforms of the input radar image, rather
than the side output from the architecture. Both Base and
‘WT4’ are shown in Appendix A. All architectures share the
same hyperparameters as those used in Rahnemoonfar et al.
(2021).

5. Results
We perform non-maximal suppression (NMS) on the net-
work outputs after which we calculate ODS (optimal dataset
scale) and OIS (optimal image scale) F-scores using Dollár
(2016). We tabulate these in Table 1 and plot the ODS
precision recall curves for all the networks across various
dataset-scale thresholds in Figure 3. Using F-score for eval-
uating ice layer detection is necessary since it can give a
balanced outlook of both sensitivity and precision of layer
detection. We primarily use the ODS F-score to evaluate
our network outputs since it finds an optimal threshold for
the entire dataset, made up of varying images from wet and
dry snow zones, images having constructive or destructive
interference etc. We also show the qualitative results of our
network outputs, post-NMS, in Figure 2.

Network Wavelet ODS OIS
Base NA 0.726 0.764
WT4 Db1 0.728 0.759
SO-WT1 Db1 0.740 0.766
SO-WT1 Db2 0.746 0.780

Table 1. ODS and OIS F-measures obtained by different networks

From Table 1, we see that SO-WT1 networks gave the high-
est ODS F-scores, with db2 performing better than db1.
This can also be seen from Figure 2 where SO-WT1 with
db2 gave much sharper and brighter outputs, while the other
network outputs detected intermediate fluctuations as ice
layer-edges. What is more interesting to note is that wavelet
based networks were able to detect deeper layers which the
Base network could not. Further, although the db2 post-
NMS output is much sharper, some middle portions of the

Figure 3. ODS F-score and precision-recall curve obtained by the
four networks

layers could be missing from them. That is a trade-off, and
one can choose the wavelet depending upon use case. The
WT4 network performed slightly worse since the wavelets
in it are generated through the input radar image, and are
comparitively constant matrices added into the architecture.
On the other hand, for SO-WT1, the wavelets are generated
from a convolutional layer, and will depend on the weights
of that layer, which would change after each iteration of
training. Hence, wavelets built in the latter architecture are
more ‘learned’ than the former architecture. Thus, not only
does wavelet transformation help in denoising the image,
they help in model learning and detecting deeper ice layers
in the form of sharp edges for our dataset.

6. Conclusion
The Greenland Ice Sheet is melting very quickly, and it is
essential to assess the rate of this change. Typically, annual
state of this ice sheet is captured through Snow Radar images
which are very noisy. This work saw the use of wavelet
transformations in convolutional neural networks to denoise
the images and improve ice layer detection by detecting
deeper layers with sharp boundaries. We also learnt that
incorporating wavelet transforms after a convolutional layer,
helps in building more ‘learned’ detail coefficients of the
wavelet. Such a combination of CNNs with wavelet is ideal
for denoising and feature learning. A generalized and robust
model in this way can be applied to multiple ice datasets
from different years, such that the change in the position of
ice layers can be quantified to enhance the predictability of
climate models.
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A. Other Architectures
Our Base network, Figure 5, is a multi-scale architecture
without any wavelet transforms, as that used in Rahnemoon-
far et al. (2021), except that ours has a VGG13 backbone
network. The side outputs in this architecture do not have
any wavelet transforms associated with them. We also built
a model, where we took a level-4 wavelet transform of the
input radar image, and concatenated the detail coefficients
from level i with side output i+1 of the Base network. This
architecture, which we call WT4, is shown in Figure 6. Both
architectures use a common legend, Figure 4, which defines
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the cells in the diagram and the convolutional operators as-
sociated with them. Further, Figure 7 shows an example of
a level-2 wavelet transformation.

Figure 4. Legend for the Base and WT4 architectures in Figures 5
and 6, respectively.

Figure 5. Out Base network, that is an architecture without wavelet
transforms, same as the one used in Rahnemoonfar et al. (2021)
but with a VGG13 (Simonyan & Zisserman, 2015) backbone.

Figure 6. WT4 network where we take a level 4 wavelet transform
of the input radar image, and concatenate the detail coefficients
from level i with side output i + 1, to refine multi-scale edge
detection.

Figure 7. A level 2 wavelet transform of a given input image. The
subscript denotes the level number. A, H, V, D denote the Ap-
proximation, Horizontal, Vertical, and Diagonal coefficients of a
wavelet transform, respectively.


