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Abstract

We characterize the measurement complexity of

compressed sensing of signals drawn from a

known prior distribution, even when the support

of the prior is the entire space (rather than, say,

sparse vectors). We show for Gaussian measure-

ments and any prior distribution on the signal, that

the posterior sampling estimator achieves near-

optimal recovery guarantees. Moreover, this re-

sult is robust to model mismatch, as long as the

distribution estimate (e.g., from an invertible gen-

erative model) is close to the true distribution in

Wasserstein distance. We implement the posterior

sampling estimator for deep generative priors us-

ing Langevin dynamics, and empirically find that

it produces accurate estimates with more diversity

than MAP.

1. Introduction

The goal of compressed sensing is to recover a structured

signal from a relatively small number of linear measure-

ments. The setting of such linear inverse problems has

numerous and diverse applications ranging from Magnetic

Resonance Imaging (Lustig et al., 2008; 2007), neuronal

spike trains (Hegde et al., 2009) and efficient sensing cam-

eras (Duarte et al., 2008). Estimating a signal in R
n would

in general require n linear measurements, but because real-

world signals are structured—i.e., compressible—one is

often able to estimate them with m≪ n measurements.

Formally, we would like to estimate a “signal” x∗ ∈ R
n

from noisy linear measurements,

y = Ax∗ + ξ
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for a measurement matrix A ∈ R
m×n and noise vector

ξ ∈ R
m. We will focus on the i.i.d. Gaussian setting, where

Aij ∼ N (0, 1
m ) and ξi ∼ N (0, σ2

m ), and one would like to

recover x̂ from (A, y) such that

‖x∗ − x̂‖ ≤ Cσ (1)

with high probability for some constant C. When x∗ is k-

sparse, this was shown by Candés, Romberg, and Tao (Can-

des et al., 2006) to be possible for m at least O(k log n
k ).

Over the past 15 years, compressed sensing has been ex-

tended in a wide variety of remarkable ways, including by

generalizing from sparsity to other signal structures, such

as those given by trees (Chen & Huang, 2012), graphs (Xu

et al., 2011), manifolds (Chen et al., 2010; Xu & Hassibi,

2008), or deep generative models (Bora et al., 2017; Asim

et al., 2019). These are all essentially frequentist approaches

to the problem: they define a small set of “structured” sig-

nals x, and ask for recovery of every such signal.

Such set-based approaches have limitations. For exam-

ple, (Bora et al., 2017) uses the structure given by a deep

generative model G : Rk → R
n; with O(kd log n) measure-

ments for d-layer networks, accurate recovery is guaranteed

for every signal x∗ near the range of G. But this completely

ignores the distribution over the range. Generative models

like Glow (Kingma & Dhariwal, 2018) and pixelRNN (Oord

et al., 2016) have seed length k = n and range equal to the

entire Rn. Yet because these models are designed to approx-

imate reality, and real images can be compressed, we know

that compressed sensing is possible in principle.

This leads to the question: Given signals drawn from some

distribution R, can we characterize the number of linear

measurements necessary for recovery, with both upper

and lower bounds? Such a Bayesian approach has pre-

viously been considered for sparsity-inducing product dis-

tributions (Aeron et al., 2010; Zhou et al., 2014) but not

general distributions.

Second, suppose that we don’t know the real distribution R,

but instead have an approximation P of R (e.g., from a GAN

or invertible generative model). In what sense should P ap-

proximate R for compressed sensing with good guarantees

to be possible?
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on the range of a deep generative model (Goodfellow et al.,

2014; Kingma & Welling, 2013).

Lower bounds in (Kamath et al., 2019; Liu & Scarlett, 2019;

Jalali & Yuan, 2019) established that the sample complexi-

ties in (Bora et al., 2017) are order optimal. The approach

in (Bora et al., 2017) has been generalized to tackle dif-

ferent inverse problems such as robust compressed sens-

ing (Jalal et al., 2020), phase retrieval (Hand et al., 2018;

Aubin et al., 2019; Jagatap & Hegde, 2019), blind image de-

convolution (Asim et al., 2018), seismic inversion (Mosser

et al., 2020), one-bit recovery (Qiu et al., 2019; Liu et al.,

2020), and blind demodulation (Hand & Joshi, 2019). Al-

ternate algorithms for reconstruction include sparse devi-

ations from generative models (Dhar et al., 2018), task-

aware compressed sensing (Kabkab et al., 2018), PnP (Pan-

dit et al., 2019; Fletcher et al., 2018b;a), iterative projec-

tions (Mardani et al., 2018), OneNet (Rick Chang et al.,

2017) and Deep Decoder (Heckel & Hand, 2018; Heckel

& Soltanolkotabi, 2020). The complexity of optimization

algorithms using generative models have been analyzed for

ADMM (Gómez et al., 2019), PGD (Hegde, 2018), layer-

wise inversion (Lei et al., 2019), and gradient descent (Hand

& Voroninski, 2017). Experimental results in (Asim et al.,

2019; Whang et al., 2020; Lindgren et al., 2020) show that

invertible models have superior performance in compari-

son to low dimensional models. See (Ongie et al., 2020)

for a more detailed survey on deep learning techniques for

compressed sensing. A related line of work has explored

learning-based approaches to tackle classical problems in al-

gorithms and signal processing (Aamand et al., 2019; Indyk

et al., 2019; Metzler et al., 2017; Hsu et al., 2018).

Lower bounds for ℓ2/ℓ2 recovery of sparse vectors can be

found in (Scarlett & Cevher, 2016; Price & Woodruff, 2011;

Aeron et al., 2010; Iwen & Tewfik, 2010; Candes & Dav-

enport, 2013), and these are related to the lower bound

in (1.5). The closest result is that of (Aeron et al., 2010),

which characterizes the probability of error and ℓ2 error of

the reconstruction via covering numbers of the probability

distribution. Their approach uses the rate distortion function

of a scalar random variable x, and provides guarantees for

the product measure generated via an i.i.d. sequence of x.

A Shannon theory for compressed sensing was pioneered

by (Wu & Verdú, 2012; Wu, 2011). The δ−Minkowski

dimension of a probability measure used in (Wu & Verdú,

2012; Wu, 2011; Pesin, 2008) can be derived from our

(ε, δ)−covering number by taking the limit ε→ 0. (Reeves

& Gastpar, 2012) contains a related theory of rate distortion

for compressed sensing. There is also related work in the sta-

tistical physics community under different assumptions on

the signal structure (Zdeborová & Krzakala, 2016; Barbier

et al., 2019).

2. Background and Notation

In this section, we introduce a few concepts that we will

use throughout the paper. ‖ · ‖ refers to the ℓ2 norm unless

specified otherwise. The metric we use to quantify the

similarity between distributions is the Wassertein distance.

For two probability distributions µ, ν supported on Ω, and

for any p ≥ 1, the Wasserstein-p (Villani, 2008; Arjovsky

et al., 2017) and Wasserstein-∞ (Champion et al., 2008)

distances are defined as:

Wp(µ, ν) := inf
γ∈Π(µ,ν)

(

E
(u,v)∼γ

[‖u− v‖p]

)1/p

,

W∞(µ, ν) := inf
γ∈Π(µ,ν)

(

γ- ess sup
(u,v)∈Ω2

‖u− v‖

)

,

where Π(µ, ν) denotes the set of joint distributions whose

marginals are µ, ν. The above definition says that if

W∞(µ, ν) ≤ ε, and (u, v) ∼ γ, then ‖u − v‖ ≤ ε almost

surely.

We say that y is generated from x∗ by a Gaussian measure-

ment process with m measurements and noise level σ, if

y = Ax∗ + ξ where ξ ∼ N (0, σ2

m Im) and A ∈ R
m×n with

Aij ∼ N (0, 1/m).

3. Upper Bound

3.1. Two-Ball Case

For simplicity, we will first demonstrate our proof tech-

niques in the simple setting where R = P , the measure-

ments are noiseless, and the ground truth distribution P
is supported on two disjoint balls (illustrated in Figure 3).

In this example, two η radius balls can cover the whole

space, so the parameters in Theorem 1.4 will be σ = 0 and

Covη,0(P ) = 2. Applying Theorem 1.4 on P tells us that a

constant number of measurements is sufficient for posterior

sampling to get O(η)-close to the ground truth, i.e., to return

an element of the correct ball. We will now prove this claim.

Let B0, Bx̃ denote η-radius balls centered at 0, x̃ ∈ R
n

respectively. Suppose P = 0.5P0 + 0.5P1, where P0, P1,

are uniform distributions on B0, Bx̃. The centers of the

balls are separated by a distance d≫ η.

The ground truth x∗ will be sampled from P . For a fixed

matrix A ∈ R
m×n with m≪ n, let the noiseless measure-

ments be y = Ax∗ and let H0, H1, denote the distributions

over Rm induced by the projection of P0, P1, by A.

Given A, y, we sample the reconstruction (x̂) according to

the posterior density

p(x̂|y) = cyp0(x̂|y) + (1− cy)px̃(x̂|y),
where cy is the posterior probability that y is a projection

of x∗ drawn from the P0 component of P . Note that cy
depends on y.
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shows you will not confuse any ball with faraway balls,

but you might confuse it with nearby balls) but solving

them is straightforward. This shows that, if P = R and

log Covη,0(R) is bounded, then posterior sampling works

well with 1− e−Ω(m) probability.

Distribution mismatch inW∞. The above assumes we

resample with respect to the true distribution R. But we

only have a learned estimate P of R. We would like to show

that observing samples from R and resampling according to

P gives good results. We first show that resampling signals

drawn from R with respect to P is not much worse than

resampling signals drawn from P with respect to P , if P
and R are close inW∞.

Lemma 3.3. Let R,P, denote arbitrary distributions over

R
n such thatW∞(R,P ) ≤ ε.

Let x∗ ∼ R and z∗ ∼ P and let y and u be generated

from x∗ and z∗ via a Gaussian measurement process with

m measurements and noise level σ. Let x̂ ∼ P (·|y,A) and

ẑ ∼ P (·|u,A). For any d > 0, we have

Pr
x∗,A,ξ,x̂

[‖x∗ − x̂‖ ≥ d+ ε] ≤

e−Ω(m) + e(
4ε(ε+2σ)m

2σ2 ) Pr
z∗,A,ξ,ẑ

[‖z∗ − ẑ‖ ≥ d] .

The idea is that with σ Gaussian noise, measurements of

a signal from R aren’t too different in distribution from

measurements of the corresponding nearby signal from P .

Now, if W∞(R,P ) ≪ σ, we would be nearly done:

Lemma 3.3 says the situation is within eo(m) of the R = P
case, which we already know gives accurate recovery with

O(log Covη,0(P )) measurements.

Residual mass. There are just two main issues remaining:

we want to depend on log Covη,δ rather than log Covη,0,

and we only want to require a bound on W1(R,P ) not

W∞(R,P ). By Markov’s inequality, these issues are very

similar: we want to allow both R and P to have a small

constant probability of behaving badly. To address this, we

note the existence of two distributions R′ and P ′, which are

only δ-far in TV from R and P respectively, such that R′

and P ′ do have a small cover & are close inW∞. We show

that, because posterior sampling would work with R′ and

P ′, it also works with R and P . This leads to our full upper

bound:

Theorem 3.4. Let δ ∈ [0, 1/4), p ≥ 1, and ε, η > 0 be

parameters. Let R,P be arbitrary distributions over R
n

satisfyingWp(R,P ) ≤ ε.

Let x∗ ∼ R and suppose y is generated by a Gaussian

measurement process from x∗ with noise level σ & ε/δ1/p

and m ≥ O(min(log Covη,δ(R), log Covη,δ(P ))) mea-

surements. Given y and the fixed matrix A, let x̂ output

of posterior sampling with respect to P .

Then there exists a universal constant c > 0 such that with

probability at least 1− e−Ω(m) over A, ξ,

Pr
x∗∼R,x̂∼P (·|y)

[‖x∗ − x̂‖ ≥ cη + cσ] ≤ 2δ + 2e−Ω(m).

Note that we can get a high-probability result by setting

p = ∞: if m ≥ O(log Covη,0(R)) and W∞(R,P ) ≤ σ,

the error is O(σ + η) with 1− e−Ω(m) probability.

4. Lower Bound

In the previous section, we showed, for any distribution R
of signals, that O(log Cov(R)) measurements suffice for

posterior sampling to recover most signals well. Now we

show the converse: for any distribution of signals R, any

algorithm for recovery must use Ω(log Cov(R)) measure-

ments.

Theorem 4.1. Let R be a distribution supported on a ball

of radius r in R
n, and x∗ ∼ R. Let y = Ax∗ + ξ, where A

is any matrix, and ξ ∼ N (0, σ2

m Im). Assuming δ < 0.1, if

there exists a recovery scheme that uses y and A as inputs

and guarantees

‖x̂− x∗‖ ≤ O(η),

with probability ≥ 1− δ, then we have

m ≥ 0.15

log

(

1+
mr2‖A‖2

∞

σ2

)
(
log Cov3η,4δ(R) + log 6δ −O(1)

)
.

If A is an i.i.d. Gaussian matrix where each element is

drawn from N (0, 1/m), then the above bound can be im-

proved to:

m ≥ 0.15

log
(
1 + r2

σ2

) (
log Cov3η,4δ(R) + log 6δ −O(1)

)
.

This Theorem is proven using information theory, as an

almost direct consequence of the following three Lemmas.

First, the measurement process reveals a limited amount of

information:

Lemma 4.2. Consider the setting of Theorem (4.1). If A is

a deterministic matrix, we have

I(y;x∗) ≤ m

2
log

(
1 +

mr2‖A‖2∞
σ2

)
.

If A is a Gaussian matrix, then I(y;x∗|A) ≤
m
2 log

(
1 + r2

σ2

)
.
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Second, since x∗ → y → x̂ is a Markov chain, we can

directly apply the Data Processing Inequality (Cover &

Thomas, 2012).

Lemma 4.3. Consider the setting of Theorem (4.1). If A is

a deterministic matrix, we have I(x∗; x̂) ≤ I(y;x∗).

If A is a random matrix, then I(x∗; x̂) ≤ I(y;x∗|A).

Finally, successful recovery must yield a large amount of

information:

Lemma 4.4 (Fano variant). Let (x, x̂) be jointly distributed

over Rn × R
n, where x ∼ R and x̂ satisfies

Pr[‖x− x̂‖ ≤ η] ≥ 1− δ.

Then for any τ ≤ 1− 3δ, δ < 1/3, we have

0.99τ(1− 2δ) log Cov3η,τ+3δ(R) ≤ I(x; x̂) + 1.98.

In order to complete the proof of Theorem 4.1, we need an

additional counting argument to remove the extra τ term

that appears in the left hand side of Lemma 4.4.

The proofs can be found in Appendix B.

5. Experiments

In this section we discuss our algorithm for posterior sam-

pling, discuss why existing algorithms can fail, and show our

empirical evaluation of posterior sampling versus baselines.

5.1. Datasets and Models

We perform our experiments on the CelebA-HQ (Liu et al.,

2018; Karras et al., 2017) and FlickrFaces-HQ (Karras et al.,

2019) datasets. For the CelebA dataset, we run experi-

ments using a Glow generative model (Kingma & Dhariwal,

2018). For the FlickrFaces-HQ dataset, we use the NCSNv2

model (Song & Ermon, 2020). Both models have output

size 256 × 256 × 3. Details about our experiments are in

Appendix C.

5.2. Langevin Dynamics

Glow trained on CelebA-HQ We first consider the Glow

generative model, whose distribution P is induced by the

random variable G(z), where G : R
n → R

n is a fixed

deterministic generative model, and z ∼ N (0, In) . Sam-

pling from p(z|y) is easier than sampling from p(x|y),
since it is easier to compute and we observe that sampling

mixes quicker. Note that sampling ẑ ∼ p(z|y) and setting

x̂ = G(ẑ) is equivalent to sampling x̂ ∼ p(x|y).
In order to sample from p(z|y), we use Langevin dynam-

ics, which samples from a given distribution by moving

a random initial sample along a vector field given by the

distribution. Langevin dynamics tells us that if we sample

z0 ∼ N (0, 1), and run the following iterative procedure:

zt+1 ← zt +
αt

2
∇z log p (zt|y) +

√
αtζt, ζt ∼ N (0, I),

then p(z|y) is the stationary distribution of zt as t → ∞
and αt → 0. Unfortunately, this algorithm is slow to mix,

as observed in (Song & Ermon, 2019). We instead use

an annealed version of the algorithm, where in step t we

pretend that p(z | y) has noise scale σt ≥ σ instead of σ.

This gives

log pt(z|y) =
(
−‖y −AG(z)‖2

2σ2
t /m

− ‖z‖
2

2

)
+ log c(y),

(4)

where c(y) is a constant that depends only on y. Since we

only care about the gradient of log p(z|y), we can ignore this

constant c(y). By taking a decreasing sequence of σt that

approach the true value of σ, we can anneal Langevin dy-

namics and sample from p(z|y). Please refer to Appendix C

for more details about how σt varies.

NCSNv2 trained on FFHQ We also consider the NC-

SNv2 model, which takes as input the image x, and out-

puts ∇x log p(x). This model is designed such that sam-

pling from its marginal involves running Langevin dy-

namics. Since we have access to ∇x log p(x), and if we

know the functional form of p(y|x), we can easily compute

∇x log p(x|y), and run Langevin dynamics via

xt+1 ← xt +
αt

2
∇x log p (xt|y) +

√
αtζt, ζt ∼ N (0, I).

Notice that we can also run MAP using this model. This

can be achieved by simply following the gradient, and not

adding noise: xt+1 ← xt +
αt

2 ∇x log p (xt|y).
This model also requires annealing, and we follow the sched-

ule prescribed by (Song & Ermon, 2020). Please see Ap-

pendix C for more details.

5.3. MAP and Modified-MAP

The most relevant baseline for our algorithm is MAP, which

was shown to be state-of-the-art for compressed sensing

using generative priors (Asim et al., 2019).

Given access to a generative model G such that the image

x = G(z), and q(z) is the prior of z, the MAP estimate is

ẑ := argmin
z

‖y −AG(z)‖2
2σ2/m

− log q(z), (5)

and set the estimate to be x̂ = G(ẑ). Typically, q(z) is a

standard Gaussian for many generative models. If one has
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