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ABSTRACT

Magnetic reconnection is invoked as one of the primary mechanisms to produce energetic parti-

cles. We employ large-scale three-dimensional (3D) particle-in-cell simulations of reconnection in

magnetically-dominated (σ = 10) pair plasmas to study the energization physics of high-energy parti-

cles. We identify a novel acceleration mechanism that only operates in 3D. For weak guide fields, 3D

plasmoids / flux ropes extend along the z direction of the electric current for a length comparable to

their cross-sectional radius. Unlike in 2D simulations, where particles are buried in plasmoids, in 3D

we find that a fraction of particles with γ  3σ can escape from plasmoids by moving along z, and so

they can experience the large-scale fields in the upstream region. These “free” particles preferentially

move in z along Speiser-like orbits sampling both sides of the layer, and are accelerated linearly in time

— their Lorentz factor scales as γ ∝ t, in contrast to γ ∝
√
t in 2D. The energy gain rate approaches

∼ eErecc, where Erec  0.1B0 is the reconnection electric field and B0 the upstream magnetic field.

The spectrum of free particles is hard, dNfree/dγ ∝ γ−1.5, contains ∼ 20% of the dissipated magnetic

energy independently of domain size, and extends up to a cutoff energy scaling linearly with box size.

Our results demonstrate that relativistic reconnection in GRB and AGN jets may be a promising

mechanism for generating ultra-high-energy cosmic rays.

Keywords: magnetic reconnection – radiation mechanisms: non-thermal – gamma-ray burst: general

– pulsars: general – galaxies: jets

1. INTRODUCTION

High-energy emission from pulsar wind nebulae

(PWNe) and the relativistic jets of active galactic nuclei

(AGNs) and gamma-ray bursts (GRBs) raises a ques-

tion about the origin of the emitting particles. Outflows
from these compact objects are believed to be domi-

nated by Poynting flux, i.e., the magnetic energy den-

sity is greater than the plasma rest-mass energy density.

In GRB and AGN jets, magnetic field lines can reverse

on small scales, as a result of the nonlinear stages of

magnetohydrodynamic (MHD) instabilities (Romanova

& Lovelace 1992; Begelman 1998; Spruit et al. 2001;

Lyutikov & Blandford 2003; Giannios & Spruit 2006;

Böttcher 2019). Alternatively, the jet can carry current

sheets from its base, like in pulsar winds (Lyubarsky &

Kirk 2001; Drenkhahn & Spruit 2002; Drenkhahn 2002;

Kirk & Skjæraasen 2003; Giannios & Uzdensky 2019;
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Cerutti et al. 2020). In both cases, field reversals on

small scales are prone to magnetic reconnection, driving

heating and particle acceleration.

Magnetic reconnection, and in particular the “rela-

tivistic” regime where the magnetic energy dominates

over the plasma rest mass energy, is now established as

an efficient mechanism of particle acceleration. Three-

dimensional particle-in-cell (PIC) simulations, which of-

fer a self-consistent description of plasma kinetics, have

shown that relativistic reconnection naturally produces

power-law spectra of accelerated particles (Zenitani &

Hoshino 2008; Kagan et al. 2013; Guo et al. 2014; Sironi

& Spitkovsky 2014; Werner & Uzdensky 2017; Guo et al.

2020). The origin of the power-law particle spectrum in

two-dimensional relativistic reconnection has been re-

cently investigated by, e.g., Guo et al. (2014); Uzden-

sky (2020). Yet basic questions, such as how particles

are accelerated to high energies, the time scale of ac-

celeration, and whether these processes proceed up to

larger (fluid) scales, remain debated. The answer to

these questions is critical when evaluating the potential

of relativistic reconnection for explaining high-energy as-
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trophysical phenomena in relativistic outflows (e.g., the

emission of very-high-energy photons or the accelera-

tion of ultra-high-energy cosmic rays, UHECRs). For

instance, Giannios (2010) proposed that protons escap-

ing the reconnection layer can undergo first-order Fermi

acceleration due to repeated deflections by the converg-

ing reconnection upstream flows, and can reach energies

up to E ∼ 1020 eV in GRB and powerful AGN jets.

In this context, it is critical to determine from first

principles the acceleration rate of the highest energy

particles. PIC simulations of relativistic reconnection

showed that the reconnection layer fragments into a

chain of plasmoids / flux ropes (e.g., Sironi et al. 2016).

Recent large-scale 2D PIC simulations by Petropoulou &

Sironi (2018) and Hakobyan et al. (2020) suggested that

the particles populating the high-energy spectral cutoff

reside in a strongly magnetized ring around the plas-

moid core. Their acceleration is driven by the increase

in the local field strength, coupled with the conservation

of the first adiabatic invariant. They also found that the

high-energy spectral cutoff grows in time as ∝
√
t, which

appears too slow to explain, e.g., UHECR acceleration.

These conclusions may change in a 3D geometry,

which would account for the finite length of plasmoids

along the z direction of the electric current. In 3D, the

z-invariance postulated by 2D simulations can be bro-

ken by the oblique tearing instability (e.g., Daughton

et al. 2011) and the drift kink instability (e.g., Zeni-

tani & Hoshino 2007), which may modify the 2D pic-

ture of particle energization. While in 2D particles are

efficiently trapped within plasmoids, 3D simulations of

non-relativistic reconnection (Dahlin et al. 2017; Li et al.

2019) have shown that self-generated turbulence and

chaotic magnetic fields allow high-energy particles to

access multiple acceleration sites within the reconnected

plasma, resulting in faster acceleration rates than in 2D.

In this work, we perform 3D PIC simulations of

relativistic reconnection in a magnetically-dominated

electron-positron plasma, with magnetization (i.e., the

ratio of magnetic energy density to plasma rest mass en-

ergy density) σ = 10. Our inflow/outflow boundary con-

ditions allow to reliably study the statistical steady state

of the system, beyond the initial transient. We identify

and characterize a novel acceleration mechanism, unique

to 3D. We find that a fraction of particles with γ  3σ

can escape from plasmoids by moving along z and expe-

rience the large-scale fields in the “upstream” region.1

1 We point out that the mechanism discussed by Li et al. (2019) in
non-relativistic reconnection relied on particles moving between
multiple acceleration sites in the reconnection “downstream”, i.e.,
in the post-reconnection plasma.

The momentum of these “free” particles is preferentially

oriented along z. They undergo Speiser-like deflections

by the converging upstream flows (as envisioned by Gi-

annios (2010); see also de Gouveia dal Pino & Lazarian

(2005)), and are accelerated linearly in time — their

Lorentz factor scales as γ ∝ t. The energy gain rate ap-

proaches ∼ eErecc, where Erec  0.1B0 is the reconnec-

tion electric field and B0 the upstream magnetic field.

The spectrum of free particles is hard and can be mod-

eled as a power law dNfree/dγ ∝ γ−1.5 — whose slope we

justify analytically — extending up to a cutoff energy

that scales linearly with box size. We find that the free

particles account for ∼ 20% of the dissipated magnetic

energy, independently of domain size, yet their number

(as compared to the particle count in the downstream

plasma) decreases with increasing box size.

The layout of this paper is as follows. In Section 2, we

describe the simulation setup we employ. In Section 3,

we present our main results, as regard to the particle en-

ergy and momentum spectrum, the characterization of

particle orbits inside and outside the reconnection layer,

and the dependence on the size of the computational do-

main. In Section 4, we draw our conclusions and discuss

implications for astrophysical systems. We argue that

relativistic reconnection in GRB and AGN jets may be

a promising mechanism for generating UHECRs.

2. SIMULATION SETUP

We employ 3D PIC simulations performed with the

TRISTAN-MP code (Buneman 1993; Spitkovsky 2005).

The magnetic field is initialized in Harris sheet config-

uration, with the field along x reversing at y = 0. We

parameterize the field strength B0 by the magnetiza-

tion σ = B2
0/4πn0mc2 = (ωc/ωp)

2
, where ωc = eB0/mc

and ωp =


4πn0e2/m are respectively the Larmor fre-

quency and the plasma frequency for the cold electron-

positron plasma outside the layer, with density n0.

The Alfvén speed is related to the magnetization as

vA/c =


σ/ (σ + 1); we take σ = 10. In addition to the

reversing field, we initialize a uniform guide field along

z with strength Bg = 0.1B0. We have also explored a

case with zero guide field and found similar results (see

Tab. 1). We resolve the plasma skin depth c/ωp with

2.5 cells, and initialize an average of one particle in each

cell. We have also tested a larger value of four particles

per cell, finding no significant change in reconnection

rate, maximum energy, and particle spectra (for more

details, see Tab. 1). The numerical speed of light is 0.45

cells/timestep. We employ periodic boundary condi-

tions in z, outflow boundary conditions in x, while along

y two injectors continuously introduce fresh plasma and

magnetic flux into the domain (for details see Sironi
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et al. 2016; Sironi & Beloborodov 2020). As opposed to

the commonly-adopted triple-periodic boundaries, our

setup allows to evolve the system to arbitrarily long

times, so we can study the statistical steady state for

several Alfvénic crossing times.

We trigger reconnection near the center of the simu-

lation domain (i.e., near x = y = 0, but along the whole

z extent), by removing the pressure of the hot particles

initialized in the current sheet, as in Sironi et al. (2016).

The characteristic x-length of this region is defined as

∆init. For our largest 3D simulation (see below), we

choose ∆init = 500c/ωp. For smaller boxes, we have

tested different values of ∆init, finding no difference in

our main results (see Tab. 1 for details).

For our reference 3D simulation, the box length in

x and z (respectively, Lx and Lz) is  4000 cells ∼
1600 c/ωp, while the box extent along y increases over

time as the two injectors recede from the current sheet.

We also present results from a set of boxes with fixed Lx

but various Lz from 1600 c/ωp down to 12 c/ωp, and two

sets of experiments with a fixed ratio Lx/Lz (Lx/Lz = 1

and Lx/Lz = 2), but different box sizes. In the follow-

ing, unless otherwise indicated, we employ our reference

box with Lx = 1560 c/ωp and Lz = 1613 c/ωp, and we

define L = 1560 c/ωp as our unit of length.

We have also performed a 2D simulation with identi-

cal physical and numerical parameters as our reference

3D run (aside from a choice of 16 particles per cell to

increase particle statistics), to emphasize 3D effects.

3. RESULTS

Fig.1 shows two snapshots of the 3D density structure

from our reference simulation 2. The top panel refers to

ct/L  0.47, and shows the two reconnection fronts (see

the two overdense regions at |x| ∼ L/4) propagating

away from the center, at near the Alfvén speed. The
bottom panel of Fig.1 refers to a representative time

(ct/L  2.13) when the layer has achieved a statistical

steady state. The layer is fragmented into flux ropes of

various sizes, with comparable lengths in the z direction

as in the x − y plane. The finite extent of plasmoids

along the z direction, likely due to the relativistic drift-

kink instability (Zenitani & Hoshino 2007, 2008), plays a

fundamental role for the physics of high-energy particle

acceleration, as we describe below.

3D instabilities can also change the reconnection rate,

as compared to 2D. Fig.2 illustrates the temporal evolu-

tion of the reconnection rate ηrec ≡ vin/vA for both 2D

(blue) and 3D (red) simulations, where vin is the inflow

2 A Movie showing the evolution of the density structure can be
found at https://youtu.be/fMictkK1QNU.

Figure 1. Two snapshots of density from our reference 3D
simulation. We show the density structure at a relatively
early time (top, t = 0.47L/c), when reconnection fronts are
moving outwards, and at a later time (bottom, t = 2.13L/c),
when the system has achieved a steady state. The upstream
plasma flows into the layer along y, while reconnection out-
flows move along x. The electric current is along the z di-
rection, which is invariant in 2D simulations.

speed and vA  c for magnetically-dominated plasmas.

The initial growth of the box-averaged reconnection rate

before ct/L ∼ 0.8 is just due to the increase of the re-

gion where reconnection is active (i.e., between the two

reconnection fronts). When the two reconnection fronts

exit the computational domain, the rate becomes quasi-

steady. The reconnection rate in 3D, ηrec ∼ 0.075, is

slower than in 2D, ηrec ∼ 0.12. In either case, the rate

is in reasonable agreement with analytical expectations

(Lyubarsky 2005).

The inflowing particles from the two sides of the layer

mix in the reconnection region, which we shall also

call “reconnected plasma” or “downstream” region. In

contrast, the pre-reconnection flow shall be called “up-

https://youtu.be/fMictkK1QNU
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Figure 2. A comparison of the reconnection rate between
3D (red) and 2D (blue) simulations. The reconnection rate is
calculated by averaging the plasma inflow velocity (in units
of the speed of light) in the region 0.03L < y < 0.08L.

stream”. To identify the region of reconnected plasma,

we define a “mixing” factor M:

M ≡ 1 − 2

ntop

n
− 1

2

 , (1)

where ntop is the density of particles that started from

y > 0, while n is the total density. It follows that M = 1

represents the downstream plasma, where particles from

the two sides of the layer are well mixed, whereas M = 0

characterizes the upstream, where no mixing has oc-

curred. We will use the mixing factor M to identify

whether a particle is located in the upstream or down-

stream region.

Using M as a criterion for separating upstream and

downstream regions, we study where particles of differ-

ent energies are located. Fig. 3 shows histograms of

the particle Lorentz factor γ (horizontal axis) and mix-
ing factor M (vertical axis) at time t = 2.37L/c, for

3D (left) and 2D (right) simulations. Both histograms

suggest that most of the low-energy particles (γ  30)

are located in the downstream region (i.e., M near

unity). In 2D, all of the high-energy particles are also

located in well-mixed regions, i.e., in the downstream.

In agreement with earlier studies, high-energy particles

in 2D are trapped within plasmoids (Sironi et al. 2016;

Petropoulou & Sironi 2018; Hakobyan et al. 2020). In

contrast, a significant fraction of high-energy particles

(γ  30) in the 3D simulation lie in low-mixing regions,

i.e., in the upstream. As we show below, these are par-

ticles that have escaped from reconnection plasmoids,

and are now being rapidly accelerated by the large-scale

upstream fields. In the following, we will take a thresh-

old of M0 = 0.3 (horizontal red dotted line in the left

panel) to separate the downstream region (M > M0)

from the upstream region (M < M0). We expect that

our results will not change significantly as long as M0

is near 0.3 (e.g., between 0.25 and 0.35).

In the following of this section, we first study the par-

ticle energy and momentum spectra in the 3D simula-

tion and identify that high energy particles preferen-

tially move along the z-direction (Section 3.1). Then,

we track particles and investigate in detail their acceler-

ation mechanism (Section 3.2). Finally, we investigate

the dependence of our results on the domain size, in or-

der to show that the acceleration physics should operate

effectively out to larger scales (Section 3.3).

3.1. Particle Spectra

A non-thermal power-law spectrum extending to high

energies is a well-established outcome of relativistic re-

connection (e.g., Sironi & Spitkovsky 2014). Fig. 4

shows the positron momentum spectrum pzdN/dpz,

where pz = γβz is the dimensionless 4-velocity along

z (βz is the particle z-velocity in units of the speed of

light). The spectrum is obtained by averaging between

t = 3.34L/c and 3.56L/c, when the system is in steady

state. The box-integrated spectrum of positrons with

pz > 0 (blue, indicated as pz+,box in the legend) can be

modeled for pz  3 as a power law pzdN/dpz ∝ p−1
z .

The figure compares the momentum spectrum be-

tween positrons with pz > 0 (blue lines, indicated as pz+
in the legend) and pz < 0 (green lines, indicated as pz−
in the legend), and further distinguishes between spec-

tra integrated in the whole box (solid lines) and only ex-

tracted from the reconnection downstream (M > M0,

dashed lines). We find that high-energy positrons with

pz < 0 are mostly located within the downstream re-

gion (compare green solid and dashed lines), i.e., non-

thermal positrons with pz < 0 are trapped in plasmoids,

in analogy to 2D results (see Petropoulou & Sironi 2018;

Hakobyan et al. 2020).

In contrast, a significant fraction of high-energy

positrons with pz > 0 reside outside the reconnection

region (compare blue solid and dashed lines), and we

shall call them “free”. The fraction of free positrons is

an increasing function of momentum, and for pz  100

they are more numerous than the ones located in the

reconnection downstream. The pz+ spectrum of free

positrons (dotted blue line) can be modeled as a hard

power law, dNfree/dpz ∝ p−1.5
z . In Appendix B, we pro-

vide an analytical justification of the measured spectral

slope. The cutoff in the spectrum of pz > 0 positrons is

much higher than for pz < 0 positrons, suggesting that
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Figure 3. 2D histograms of the particle Lorentz factor γ and the mixing factor M (interpolated to the nearest cell) at time
t = 2.37L/c, for 3D (left) and 2D (right). The red dashed line in the left panel marks the threshold M0 = 0.3 that we employ
to distinguish upstream (M <M0) from downstream (M >M0).
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Figure 4. Momentum spectrum pzdN/dpz of positrons,
where pz = γβz is the dimensionless 4-velocity along the
z direction. We show spectra of positrons with pz > 0 (blue,
indicated as pz+ in the legend) and pz < 0 (green, indicated
as pz− in the legend). Spectra from the overall box are shown
as solid lines (indicated with subscript “box” in the legend),
whereas the dashed lines refer only to positrons belonging
to the downstream region, as defined by the mixing condi-
tionM >M0 (indicated with subscript “rr” in the legend).
The spectrum of high-energy “free” positrons residing in the
upstream region (with M <M0), which preferentially have
pz > 0, is indicated by the dotted blue line. The dotted
black line shows a power-law p−1

z . In the inset, we present
the box-integrated positron spectra of kinetic energy (grey)
and momenta in different directions, as indicated in the leg-
end. All spectra in the main plot and in the inset are time-
averaged between t = 3.34L/c and 3.56L/c and normalized
to the total number of positrons in the box.

free positrons can be accelerated to much larger energies

than trapped ones, as we indeed demonstrate below.3

The asymmetry between positrons with pz > 0 vs pz <

0 is a unique feature of our 3D setup. In a corresponding

2D simulation (see Appendix A), pz+ and pz− spectra

are nearly identical, and nearly all high-energy particles

reside within the reconnection downstream, as already

shown by Fig. 3 (right panel).

In the inset of Fig. 4, we present the box-integrated

positron spectra of kinetic energy (grey) and momentum

in different directions, as indicated in the legend. In con-

trast to the pz spectrum, there is no broken symmetry

between positive and negative directions in the px and

py spectra. The inset shows that the peak of the energy

spectrum (grey), at γ − 1 ∼ 3, is dominated by motions

along the x direction of the reconnection outflows (com-

pare with the px spectrum, red line). In contrast, the

high-energy cutoff of the positron energy spectrum at

γ ∼ 500 is dominated by the pz+ spectrum (blue). So,

the most energetic positrons move mostly along the +z

direction (conversely, the highest energy electrons along

−z). We also remark that the py spectrum (orange)

reaches rather high momenta (albeit, not as high as the

pz+ spectrum). This is consistent with the trajectories

of high-energy positrons that we illustrate in Sec. 3.2.

In summary, the momentum spectra in Fig. 4 show

that most of the highest energy positrons are located

in the reconnection upstream, and their momentum is

dominated by the z component, which is aligned with

the large-scale motional electric field Erec = Erecẑ =

ηrecB0ẑ carried by the upstream converging flows. If
Erec is the primary agent of acceleration, we expect a

linear relation between the gain in Lorentz factor (∆γ)

and the displacement along the z-axis (∆z), of the form

3 The electron spectrum shows the opposite asymmetry: electrons
with pz > 0 mostly reside in plasmoids, and their spectrum ex-
tends to lower momenta than for free electrons with pz < 0.
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Figure 5. 2D histograms of the gain in positron Lorentz factor (∆γ) and displacement along the z-axis (∆z), in 3D (left plot)
and 2D (right plot). The positrons are selected at the end of the simulations (ct/L = 3.48) and traced back to the first time
they are saved. For the 2D case, the particle displacement along the z-axis is calculated by time integration of the z velocity.
The relation expected from Eq. 2 is marked with a dashed white line in the left panel. The red and yellow lines in the left panel
represent the tracks in the ∆γ−∆z plane of the two high-energy positrons shown in Fig. 6; in this case, the differences ∆γ and
∆z are computed at each time with respect to the initial time when the particle Lorentz factor first exceeded γ = 3.

∆γ

∆z
≈ eErec

mc2
=

ηrec
√
σωp

c
. (2)

In Fig. 5, we show the relation between ∆γ and ∆z

for a sample of ∼ 2 × 106 positrons selected at the end

of the simulations (t = 3.48L/c), for 3D (left) and 2D

(right). Each particle is traced back to the first time

its Lorentz factor exceeded γ = 3, and its overall ∆γ

and ∆z are computed.4 The plot only shows the quad-

rant with ∆γ > 0 and ∆z > 0, which includes most of

positrons and displays the strongest difference between

2D and 3D.

For ∆γ  100, 2D and 3D results are similar. There

appears a trend that particles gaining more energy also

display a larger z displacement, but the spread is quite

large (∆γ may vary by two orders of magnitude for the

same ∆z). The similarity between 2D and 3D for ∆γ 
100 suggests that most of these particles are accelerated

while trapped in plasmoids, as found in 2D simulations

(Petropoulou & Sironi 2018; Hakobyan et al. 2020).

The most striking difference between 2D and 3D re-

sults is in the behavior of particles experiencing large

energy gains, ∆γ  100. In this range (∆γ  100 and

∆z > 0.4L), positrons from the 3D simulation follow

a linear relation ∆γ ∝ ∆z, indicating that they are all

accelerated by the same electric field. Such a branch is

absent in the corresponding 2D simulation. For compar-

ison, in the left panel of Fig. 5 we plot with a dashed

4 In 3D, ∆z is directly recorded. In 2D, it is obtained by time
integration of the z velocity.

white line the expectation of Eq. (2) for the measured

ηrec = 0.075. The agreement of the high-energy branch

in the 3D histogram with Eq. (2) confirms that particles

experiencing the largest energy gains are accelerated in

the upstream by the motional electric field Erec.

We also point out the excess of positrons lying along

the extrapolation of the dashed white line to low ∆γ,

in the left panel at 1  ∆γ  5. These positrons are

currently being injected into the acceleration process by

the reconnection electric field, so they still obey Eq. (2).

3.2. Particle Orbits

To investigate the acceleration mechanism of the high-

est energy particles, we have studied the trajectory of

a large number of high-energy (γ > 200) positrons.

We present in Fig. 6 two representative orbits.5 Their

∆γ − ∆z tracks are shown in the left panel of Fig. 5 by

the two colored lines, demonstrating that for ∆γ  10

they follow a linear relation akin to Eq. (2).

Fig. 6 shows the particle orbits projected on the x− y

(left) and y − z (middle) planes, as well as the particle

Lorentz factor as a function of lifetime ∆t (right panel),

measured since a particle first crosses the threshold γ =

3. The acceleration rate due to the electric field Erec =

Erecẑ = ηrecB0ẑ in the upstream flow can be written

γ̇ =
∆γ

∆t
≈ eErec

mc
βz ≈ βzηrec

√
σωp, (3)

5 Movies showing the orbits of positron A and B can be found
online at https://youtu.be/pjpYzw2VKe0 and https://youtu.be/
kOycphI0WUw, respectively.

https://youtu.be/pjpYzw2VKe0
https://youtu.be/kOycphI0WUw
https://youtu.be/kOycphI0WUw
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Figure 6. Trajectories of two representative positrons. For each particle, its trajectory in the x− y plane is shown in the left
panel, and in the y − z plane in the middle panel. The color of the line represents the particle energy (from red to white as
the energy increases). A white filled circle shows the position at a specific time: t = 2.28L/c for particle A, corresponding to a
time ∆t = 0.87L/c in the particle life; and t = 2.80L/c for particle B, corresponding to ∆t = 1.03L/c. The background color
shows the plasma density at that same time, in the x− y and y − z slices where the particle is located. In the right panel, we
show the particle Lorentz factor as a function of its lifetime ∆t since it first crossed a threshold γ = 3. The maximum expected
acceleration rate corresponding to Eq. (4) is shown with a red dashed line.

where βz is some time-averaged z velocity in units of

the speed of light. The highest acceleration rate will be

achieved when βz  1, leading to a maximal rate

γ̇max = ηrec
√
σωp, (4)

indicated by the dashed red line in Fig. 6 (right). We

refer to this as γ̇max, since it is the maximum accelera-

tion rate that can be provided by the large scale electric

field. Even stronger electric fields may transiently ap-

pear within the reconnection region, which explains why

some particles can temporarily experience an energiza-

tion rate even larger than this value (e.g., positron B

between ∆t  0.4-0.8L/c).

We find that both positron A and B are injected into

the acceleration process in the vicinity of an X-point in

the midplane of the layer (y = 0). Yet, at later times

their histories diverge. Positron A is energized at nearly
the maximal rate γ̇max for most of its life (compare blue

and dashed red lines in the right panel of Fig. 6). Its or-

bit in the y − z plane displays a series of quasi-periodic

deflections between the two sides of the reconnection

layer, as expected for Speiser motion (Speiser 1965).

Yet, while Speiser orbits in reconnection with a weak

guide field are expected to get focused towards the mid-

plane y = 0 (e.g., Cerutti et al. 2013), the trajectory

of positron A displays a y-extent increasing over time.

This is caused by interactions with plasmoids, whose ef-

fect is not taken into account in standard Speiser orbits.

In fact, at the time corresponding to the white circle

in Fig. 6 (a-2), the positron has just been deflected to-

wards the upstream by the interaction with the plas-

moid located at z ∼ 0.45L. The positron Lorentz fac-

tor at this time is γ ∼ 200 and its Lamor radius is

rL = γmc2/eB0  0.08L, which is larger than the plas-

moid transverse width. It follows that the positron will

not be captured by the plasmoid, but rather it is de-

flected away from the midplane, which allows positron

A to keep gaining energy at nearly the maximal rate,

while executing a Speiser-like motion.

The orbit of particle B is different, and more typical

of the majority of high-energy positrons. It is trapped

in a plasmoid in the interval 0.1L/c  ∆t  0.4L/c.

During this stage, it moves back and forth in both x-

and z-directions, while its Lorentz factor stays roughly

constant at γ ∼ 20. The positron succeeds in escaping

the plasmoid at ∆t ∼ 0.5L/c. After that, it experiences

fast acceleration while being deflected in a Speiser-like

fashion between the two converting upstream flows, sim-

ilarly to positron A. By studying a sample of γ ∼ 30 par-

ticles temporarily trapped in a given plasmoid, we have

found that the ones that manage to escape have typ-

ically larger z velocities and are preferentially located

in the plasmoid outskirts. This is expected, since such

particles, by moving along z, will be able to successfully

travel outside the plasmoid, and thus experience efficient

acceleration by the upstream field. Clearly, this cannot

happen in 2D, where the z direction is invariant (i.e.,

plasmoids are infinitely long in z).

Motivated by the trajectory of particle B, we now

employ a statistical approach to further investigate the

properties of accelerated particles, and in particular as-

certain at which energy they are most likely to escape

from plasmoids and start experiencing fast acceleration

by the upstream large-scale fields. This is shown in

Fig. 7. We first separate the positrons in six groups,

based on the largest Lorentz factor they attain in their

lifetime (we shall call it γend, given that it is typically

attained at the end of the particle life; we only consider
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Figure 7. Statistical assessment of the properties of accelerated positrons. We first separate the positrons in six groups, based
on the largest Lorentz factor γend they attain in their lifetime (see legend in the left panel). For each group, we then compute
(as described in the text) the following quantities, as a function of the particle Lorentz factor γ: the median mixing factor M
(left); the median acceleration rate γ̇ (middle), distinguishing between particles in the downstream (solid) and in the upstream
(dashed); the fractional energy ∆γup/∆γtot gained while in the upstream (right panel). In the middle panel we also show, as a
reference, the maximum acceleration rate quantified by Eq. 3 (horizontal dotted line).

γend > 30). Each group corresponds to a different color

in Fig. 7. Each of the colored curves is obtained as fol-

lows. For each particle in a given γend-group, its history

is followed since its birth, dividing it depending on the

instantaneous Lorentz factor (for each of the six γend-

groups, we employ ten γ-bins, logarithmically spaced

between γ = 3 and γ = 300). Taking all the times when

a particle lies in a given γ-bin, we compute the median

mixing factor M, median acceleration rate γ̇, and the

fractional energy ∆γup/∆γtot gained while in the up-

stream (still, while crossing the selected γ-bin). The

colored lines are then computed by taking the median

among particles belonging to the same γend-group.

Fig. 7 (left panel) shows that at low energies (γ  20)

most of the particles reside in the downstream region,

regardless of their γend. In fact, the mixing fraction is

M  0.8. As particles gain energy, the median M of the

two groups with the largest γend (green and blue lines in

Fig. 7) starts to drop, down to M  0.1 for the parti-

cles reaching the highest energies. As also demonstrated

above, particles of high energy (γ  100) are prefer-

entially located in the upstream. The transition from

being trapped to breaking free appears at γ ∼ 3σ ∼ 30.

The middle panel of Fig. 7 presents the acceleration

rate, distinguishing between particles in the downstream

(solid lines) and in the upstream (dashed lines). The ac-

celeration rate should be compared with the maximum

rate γ̇max in Eq. (4), which is indicated in the plot by

the horizontal dotted line. We find that, regardless of

γend, downstream particles gain energy at a relatively

slow rate, γ̇  0.1ωp. Particles residing in the upstream

with Lorentz factors γ  30 — the same threshold as

derived from M in the left panel — gain energy at a

faster rate, that asymptotes to γ̇ ∼ 0.2ωp for the high-

est energy upstream particles.6 This rate approaches

 0.8 γ̇max, which implies that the highest energy par-

ticles move with an average z velocity βz  0.8 (see

Eq. (3)). This is in agreement with the momentum spec-

tra presented in Sec. 3.1, i.e., the highest energy particles

preferentially move in the z direction.

The right panel of Fig. 7 shows the fraction

∆γup/∆γtot of energy acquired in the upstream, while

traversing a given γ-bin. Regardless of the γend-group,

we find that this is an increasing function of γ, reaching

∼ 80% for the highest energy particles. Again, the tran-

sition to the stage when acceleration is dominated by

the upstream motional field occurs at γ  30, the same

threshold already derived from the left and middle pan-

els. So, we conclude that most particles ending up with

high energies escape from plasmoids at γ ∼ 3σ ∼ 30, at

which point their energization starts to be dominated

by the large-scale upstream field.

3.3. Dependence on the Domain Size

In this subsection, we investigate the dependence of

the properties of high-energy “free” particles on the size

of the computational domain, in order to extrapolate

our conclusions to larger (fluid) scales. Free particles

are defined such that they reside in the upstream, with

mixing parameter M < 0.3. We also require that they

have γ > 10, to exclude the cold upstream particles that

have yet to reach the reconnection region. Our results

are presented in Fig. 8 and Tab. 1.

6 In the highest γ-bin, all the curves bend towards slower acceler-
ation rates. This can be simply understood as a selection bias:
for a given γend-group, particles in the highest γ-bin are biased
towards having slower acceleration rates, otherwise they would
move up in energy, and be classified in the next γend-group.
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Figure 8. Dependence on the box size. The unit of Lx and Lz is the plasma skin depth (c/ωp). (a) The energy cutoff γcut
for free particles as a function of time for boxes with Lx = 2Lz (see legend). (b) Number and energy efficiency for boxes with
different Lx, at fixed aspect ratio Lx/Lz = 1 (blue) and Lx/Lz = 2 (red). Empty circles show the number efficiency, defined
as Nfree/Nrr, where Nfree and Nrr are respectively the number of free particles and of particles in the reconnection region; filled
circles show the energy efficiency Efree/Err. (c) Number (empty grey circles) and energy (filled grey circles) efficiency for boxes
with different Lz, at fixed Lx ∼ 1600c/ωp. Blue and red points are the same as in (b).

box size ∆init/[c/ωp] Nfree/Nrr Efree/Err

1.6k × 0.8k 500 0.006(0.008)† 0.131(0.173)

0.8k × 0.4k
500 0.012 0.161

250 0.015 0.200

0.4k × 0.2k

500 0.012 0.149

250 0.016 0.199

125 0.013 0.166

1.6k × 1.6k 500 0.008 0.179

0.8k × 0.8k
500 0.014 0.188

250 0.014 0.197

0.4k × 0.4k

500 0.022 0.224

250 0.023 0.250

125 0.015 0.201

1.6k × 0.4k 500 0.009(0.012)‡ 0.153(0.199)
† The results in parentheses are from a simulation with the same

parameters, but with four particles per cell.
‡ The results in parentheses are from a simulation with the same

parameters, but with guide field Bg = 0.

Table 1. Number and energy efficiency for the population
of high-energy free particles. The number (energy, respec-
tively) efficiency is the ratio of the number (energy) of free
particles normalized to the number (energy) of particles in
the reconnection region. The unit of length for the box size
(leftmost column) is the plasma skin depth (c/ωp).

In the left panel, we show the cutoff Lorentz factor γcut
of free particles, as a function of time (horizontal axis)

and box size (different colors, as indicated in the legend).

The cutoff Lorentz factor is obtained by calculating the

location of the peak of (γ − 1)3dNfree/dγ. As described

in Petropoulou & Sironi (2018), this is generally a good

proxy for the location of the exponential cutoff of the

spectrum. We find that γcut ∝ Lx. The proportionality

constant is such that the Larmor radius of particles with

Lorentz factor γcut is rL(γcut) ∼ 0.2Lx, regardless of

Lx. This is expected, since particles accelerated near

the maximal rate in Eq. (4) over the typical advection

time ∼ Lx/c will obtain a Larmor radius rL ∼ ηrecLx ∼
0.1Lx. This can be phrased as a “Hillas criterion” for

relativistic magnetic reconnection.

We also calculate the energy efficiency Efree/Err (filled

circles), where Efree and Err are respectively the energy

content of free particles and of particles in the recon-

nection region. The number fraction Nfree/Nrr (open

circles) is obtained in a similar way. We examine their

dependence on the x length of the box in the middle

panel (at fixed aspect ratio Lx/Lz, blue for Lx/Lz = 1

and red for Lx/Lz = 2) and on the z length in the

right panel, for fixed Lx ∼ 1600c/ωp (grey points).

As shown in Fig. 8b, Efree/Err is nearly independent

of Lx. This demonstrates that, regardless of the box

size, free particles carry a constant fraction (∼ 20%)
of the post-reconnection particle energy. Given that

γcut ∝ Lx and that the spectrum of free particles is

hard, dNfree/dγ ∝ γ−1.5, this implies that their number

fraction needs to decrease with increasing box size, as

indeed confirmed by Fig. 8b (open circles).

Fig. 8c shows that convergent 3D results are obtained

only if the box is sufficiently extended in the z direction.

For our reference case with Lx ∼ 1600c/ωp, convergent

3D results are obtained for Lz  400 c/ωp ∼ Lx/4. This

may be due to the requirement that the z extent of

the largest plasmoids, ∼ 0.1Lx (assuming spherical plas-

moids), be smaller than the box length along z, i.e., z in-

variance should be broken even for the largest plasmoids.

Fig. 8c also shows that the 2D limit is approached for

Lz  20 c/ωp, such that even small plasmoids do not fit

within the vertical extent of the box.
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4. SUMMARY AND DISCUSSION

In this work, we performed large-scale 3D PIC simu-

lations of relativistic reconnection in a σ = 10 electron-

positron plasma. We found that a fraction of particles

with γ  3σ can “break free” from plasmoids by mov-

ing along z and then experience the large-scale motional

electric field in the upstream region. This process can-

not be captured by 2D simulations, which are invariant

along the z direction. The free particles preferentially

move along z and are accelerated linearly in time (γ ∝ t)

while undergoing Speiser-like deflections by the converg-

ing upstream flows, as already hypothesized by Giannios

(2010). Their spectrum is hard and can be modeled as a

power law dNfree/dγ ∝ γ−1.5 — in Appendix B, we an-

alytically justify the value of the power-law slope. The

free particles account for ∼ 20% of the dissipated mag-

netic energy, independently of domain size.

The acceleration rate of the particles, in this mecha-

nism, is closely connected to the reconnection speed. Its

accurate description, therefore, relies on the reconnec-

tion system having reached a statistical steady state.

To this end, our adopted boundary conditions are of

crucial importance. By adopting continuous injection

of plasma (and magnetic flux) in the far upstream and

outflow boundaries in the reconnection exhaust direc-

tion, the system can be followed for many Alfvén cross-

ing times after it has reached a statistical steady state.

We find that the most energetic particles take a few

Alfvén crossing times to reach their maximum energy.

In contrast, the more commonly adopted triple periodic

boundaries can only study reconnection transiently and

may not be able to capture this mechanism accurately.

In addition, periodic boundaries do not allow plasmoids

to escape, so the largest plasmoids can grow up to a size

comparable to the system length. This would artificially

enhance the rate at which high-energy free particles get

captured back by plasmoids.

We find that the particle acceleration rate is

γ̇ ∼ ηreceB

mc
βz, (5)

where B is the magnetic field in the upstream and

ηrecβz ∼ 0.06 as determined by our simulations. As

far as we can infer from our simulations, the maximum

energy achievable by this process is determined by ei-

ther radiative losses or by the size of the reconnection

region. If synchrotron cooling is the dominant energy

loss, then the particles are accelerated until the energy

gain rate γ̇mc2 is balanced by the synchrotron loss rate

(4/9)e4B2γ2/m2c3, resulting in a maximum γmax:

γmax =


9βzηrecm2c4

4e3B
. (6)

The corresponding synchrotron emission energy is

Esyn = γ2
maxBe/mc = 160βzηrec MeV∼ 10 MeV, for

electrons, i.e., about one order of magnitude below the

well-known burnoff limit (de Jager & Harding 1992). We

remark that in this argument we have assumed that the

accelerated particles have large pitch angles (i.e., the an-

gle between the particle velocity and the magnetic field),

as indeed observed in our simulations. Yet, if this accel-

eration mechanism were to operate also in the limit of

strong guide fields, the accelerated particles would likely

have small pitch angles, which would comparatively re-

duce their synchrotron losses.7

If radiative losses are negligible, the maximum energy

is only limited by the size of the reconnecting system.

For a given length of the reconnection layer Lz in the

z direction, the maximum Lorentz factor a particle can

reach can be estimated as:

γmax = LzeηrecB/mc2. (7)

The particle motion along the x-direction of reconnec-

tion outflows is unlikely to constrain the maximum en-

ergy, since we have shown that the accelerated particles

mostly move along the z direction, so their escape time

along x is likely longer than along z.

Although in this work we have only focused on

electron-positron plasmas, our results may still be appli-

cable to electron-proton cases, since high-σ reconnection

is virtually identical in pair plasmas and electron-proton

plasmas. Protons are much less affected by cooling as

compared to leptons and may escape from plasmoids

with higher efficiency. Therefore, given that we have ne-

glected cooling losses, our results may be most applica-

ble to protons in astrophysical systems where radiative

lepton losses are severe. Nevertheless, in less extreme en-
vironments (e.g., the emission zone of a blazar jet), even

leptons should be able to able to escape small plasmoids

and participate in this acceleration process. Therefore,

one may expect that both leptonic and hadronic signa-

tures will be affected by the acceleration mechanism we

have discussed here.

The sources and acceleration mechanism of UHECRs

with energies between ∼ 1018 and ∼ 1020 eV are still

under debate. Relativistic jets launched by GRBs (Mil-

grom & Usov 1995; Waxman 1995) and AGNs (Halzen

& Hooper 2002) have been proposed as sources of UHE-

CRs. Magnetic reconnection taking place in the magnet-

7 On the other hand, a strong guide field would also help in en-
forcing invariance along the z direction (i.e., plasmoids are likely
to be very elongated in z), so our proposed mechanism may turn
out to be less efficient.
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ically dominated plasma of these jets may be a promising

accelerator of UHECRs (Giannios 2010).

The rest-frame magnetic field strength can be esti-

mated by the Poynting luminosity of the jet LP, the

bulk Lorentz factor Γ, and the distance R from the cen-

tral engine (see, e.g., Giannios (2010)):

B  L
1/2
P

c1/2RΓ
. (8)

Combining with Eq. 7, we can estimate the maximum

energy that a proton can be accelerated to:

Emax = ηrecL
1/2
P c−1/2R−1Le, (9)

where L is the length scale of the reconnection region.

We also introduce a factor of Γ when we boost from the

jet frame to the observer frame.

For long-duration GRBs, the (isotropic equivalent) en-

ergy they release in gamma rays is around 1053 erg in

a duration of about 10 s. This gives a lower limit for

their Poynting luminosity of LP ∼ 1052 erg s−1, since

the energy conversion efficiency to gamma rays needs to

be below unity. The size of the reconnection region can

be estimated as L ∼ R/Γ, and Γ usually varies from

100 to 1000 in GRB jets. Therefore, the maximum en-

ergy that a particle can be accelerated to is Emax ≈

2 × 1020ηrec,−1L
1/2
P,52Γ−1

2 eV, where ηrec,−1 = ηrec/0.1,

LP,52 = LP/1052erg s−1, and Γ2 = Γ/102.

A powerful AGN jet can reach a luminosity of

1048 erg s−1. They usually have bulk Lorentz fac-

tors of Γ ∼ 3 − 30. Using these values, we estimate

that protons accelerated by reconnection in AGN jets

can reach energies Emax ∼ 6 × 1019ηrec,−1L
1/2
P,48Γ−1

0.5 eV

where LP,48 = LP/1048erg s−1 and Γ0.5 = Γ/
√

10.

Both jets are then capable of accelerating protons

(or heavier nuclei in AGN jets) to 1018 eV and even

to the highest energies that have been observed so far,

1020 eV. Though we do not consider constrains imposed

by cooling losses (see, e.g., Giannios (2010) for further

discussion), our analysis demonstrates that relativistic

reconnection is, in principle, a promising way to pro-

duce UHECRs.
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APPENDIX

A. 2D PARTICLE SPECTRA

In Fig. 4, we have shown the energy and momentum

spectra extracted from the 3D simulation. For compar-

ison, in Fig. 9 we show the z-momentum spectrum from

the corresponding 2D run. In agreement with earlier

2D studies, the particle spectrum is non-thermal. Un-

like the 3D case, where the cutoff in the pz+ spectrum

is much larger than in the pz− spectrum, here the two

are roughly comparable, though particles moving along

+z extend to slightly larger energies, and dominate in

number at high energies. In addition, as discussed in

the main text, at γ > 2 the spectra from the whole

box are coincident with corresponding spectra extracted

from the reconnection region alone.

In the inset, we compare energy spectra between 2D

and 3D simulations. The 3D spectrum has a higher cut-

off than the 2D one and it is dominated at high energies

by particles outside the reconnection region. It indicates

once again that acceleration outside of plasmoids plays

an important role for the highest energy particles.

B. THE POWER-LAW SLOPE OF FREE

PARTICLES

In the main body of the paper, we have demonstrated

that the spectrum of free particles can be modeled as a

power law f = dNfree/dγ ∝ γ−1.5 followed by a cutoff,

which scales linearly with the system size. In this Ap-

pendix, we aim at providing a theoretical framework to

interpret the value of the power-law slope.8 In steady

state, the distribution of free particles will follow

∂

∂γ


γ

tacc
f


+

f

tesc
= Q0δ(γ − 3σ), (B1)

where both the acceleration time tacc and the escape

time tesc generally depend on the particle Lorentz fac-

tor. In the equation above, Q0 quantifies the particle

injection rate, which we have assumed to happen at a

8 We remark that, as shown in our paper, the acceleration mech-
anism of free particles is distinct from the one of particles accel-
erated in the reconnection layer, whose spectral shape has been
discussed by, e.g., Guo et al. (2014); Uzdensky (2020).



12

   

















 



 

 









  





  

  

  

  

Figure 9. The main panel is as in Fig. 4, but for a 2D
simulation. We display the positron time-averaged (between
t = 3.34L/c and 3.56L/c) spectra of the momentum along
+z (blue lines) and −z (green lines). Solid lines refer to the
whole box, while dashed lines to the particles in the down-
stream. In the inset, we show the particle energy spectrum
(γ − 1)dN/dγ from the whole simulation box in the 2D sim-
ulation (red line) and in the 3D simulation (blue), as well as
the spectrum of free particles from the 3D simulation (green).
The latter can be fit as a power law dN/dγ ∝ (γ− 1)−1.5, as
indicated by the dotted black line in the inset.
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Figure 10. The ratio of the number of free particles to
the number of trapped particles. The trapped particles at a
given time are defined as the ones that are currently trapped,
but were free at some point in the previous ∼ 0.25Lx/c.

fixed energy of γ = 3σ, in agreement with the results

obtained in the main body of the paper.

For free particles, the acceleration time can be calcu-

lated as tacc ≡ γ/γ̇ = γ/(ηrecβz
√
σωp), where our results

yield ηrecβz  0.06. Free particles are accelerated while

residing in the upstream. When they get captured and

trapped by plasmoids, they effectively escape the accel-

erator, so the escape time tesc from the acceleration re-

gion is, for free particles, the time spent in the upstream

before getting trapped.9

In order to compute the escape time of free particles,

we assume a steady state scenario: the rate at which

free particles are trapped in plasmoids balances the rate

at which trapped particles advect out of the domain, so

tesc = tadv
dNfree/dγ

dNtrap/dγ
(B2)

Fig. 10 shows, at different times, the ratio of the number

of free particles to the number of trapped particles. The

trapped particles at a given time are defined as the ones

that are currently trapped, but were free at some point

in the previous ∼ 0.25Lx/c (our results are not appre-

ciably sensitive to this choice). The plot shows that the

ratio is in steady state, and in the range 30  γ  300,10

it can be fit as

dNfree/dγ

dNtrap/dγ
 0.005 γ (B3)

We have computed the advection time tadv considering

the lifetime of particles that remain always trapped in

plasmoids. We find that tadv ∼ 0.4Lx/c independently

of the Lorentz factor. In retrospect, this is not sur-

prising. The mass-weighted bulk motions of relativistic

reconnection are trans-relativistic, with typical outflow

velocities of ∼ 0.6 c (Sironi & Beloborodov 2020). On

average, a trapped particle travels a distance ∼ 0.25Lx

before advecting out of the system, which indeed leads

to an advection time tadv ∼ 0.4Lx/c.

It follows that the ratio of acceleration time to escape

time is energy-independent (for 30  γ  300) and equal

to tacc/tesc  1.6, where we have used that Lx/c/ωp ∼
1600 in our reference simulation. This allows to compute

the solution of Eq. (B1). As discussed by e.g., Kirk et al.

(1998), the solution of Eq. (B1) in the case that both

the acceleration time and the escape time scale linearly

with γ is a power law

f =
dNfree

dγ
∝ γ−tacc/tesc (B4)

which for our case yields dNfree/dγ ∝ γ−1.6, in good

agreement with the spectrum measured directly from

our simulation.

Based on this model for the acceleration of free

particles, one can address the question of what is

9 For simplicity, we assume that no significant energization occurs
while trapped in plasmoids.

10 This is the energy range between the injection Lorentz factor at
γ = 3σ = 30 and the spectral cutoff at γ ∼ 300, see the inset of
Fig. 9.
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the power-law slope expected in the asymptotic (and

astrophysically-relevant) regime Lx  c/ωp. Let us

call s = −d logNfree/d log γ the power-law slope of free

particles in the asymptotic limit Lx  c/ωp. Given

that s = tacc/tesc should be independent of the box size

Lx, this requires that tesc in Eq. (B2) be independent

of Lx. In turn, given that tadv ∝ Lx/c, the ratio in

Eq. (B3) should scale as ∝ 1/Lx. In other words, for

dNfree/dγ = Cfreeγ
−s and dNtrap/dγ = Ctrapγ

−s−1, we

require Cfree/Ctrap ∝ 1/Lx.

Let us now consider the specific case of s = 1, and

assume that the spectrum of free particles extends from

γmin,free ∼ 3σ up to γcut ∝ Lx, while the spectrum of

trapped particles extends from γmin,free ∼ σ up to the

same γcut ∝ Lx. The ratio of number of free particles

Nfree to number of trapped particles Ntrap (which we

called Nrr for “reconnection region” in the main paper)

is, in the limit γcut  γmin,free  γmin,trap,

Nfree

Ntrap
=

Cfree

Ctrap
γmin,trap log


γcut

γmin,free


(B5)

which, aside from logarithmic corrections, scales as ∝
Cfree/Ctrap ∝ 1/Lx. On the other hand, the energy

fraction can be written as

Efree

Etrap
=

Cfree

Ctrap

γcut
log(γcut/γmin,trap)

, (B6)

which, aside from logarithmic corrections, scales as ∝
(Cfree/Ctrap) γcut ∝ const, in agreement with our results

in Fig. 8 (there, we called Err the energy content of

trapped particles). Based on our model of acceleration,

and requiring that the energy fraction of free particles

stays constant with box size, we then expect that the

spectrum of free particles in the limit Lx  c/ωp should

reach an asymptotic power-law slope s  1.
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