

Exact and Approximate Hierarchical Clustering Using A*

Craig S. Greenberg∗,1 Sebastian Macaluso∗,2 Nicholas Monath∗,3

Avinava Dubey4 Patrick Flaherty5 Manzil Zaheer4 Amr Ahmed4 Kyle Cranmer2 Andrew McCallum3

1National Institute of Standards and Technology
2Center for Cosmology and Particle Physics & Center for Data Science, New York University

3College of Information and Computer Sciences, University of Massachusetts Amherst
4Google Research, Mountain View, CA

5Department of Mathematics and Statistics, University of Massachusetts Amherst

Abstract

Hierarchical clustering is a critical task in nu-
merous domains. Many approaches are based on
heuristics and the properties of the resulting clus-
terings are studied post hoc. However, in several
applications, there is a natural cost function that
can be used to characterize the quality of the clus-
tering. In those cases, hierarchical clustering can
be seen as a combinatorial optimization problem.
To that end, we introduce a new approach based
on A* search. We overcome the prohibitively large
search space by combining A* with a novel trellis
data structure. This results in an exact algorithm
that scales beyond previous state of the art (from
a search space with 1012 trees to 1015 trees) and
an approximate algorithm that improves over base-
lines, even in enormous search spaces (that contain
more than 101000 trees). Empirically we demon-
strate that our method achieves substantially higher
quality results than baselines for a particle physics
use case and other clustering benchmarks. We de-
scribe how our method provides significantly im-
proved theoretical bounds on the time and space
complexity of A* for clustering.

1 INTRODUCTION

Hierarchical clustering has been applied in a wide va-
riety of settings such as scientific discovery [43], per-
sonalization [48], entity resolution [30, 37, 45], and jet
physics [9, 11, 22, 25]. While much work has focused
on approximation methods for relatively large datasets
[3, 23, 24, 26, 34, 40, 47], there are also important use
cases of hierarchical clustering that demand exact or high-
quality approximations [32]. This paper focuses on one such

∗The first three authors contributed equally to this work.

Proton

Proton

Time

Leaves =
Observed
 Particles

Figure 1: Jets as hierarchical clustering. Schematic representa-
tion of a process producing a jet at the Large Hadron Collider at
CERN. Constituents of the incoming protons interact and produce
two new particles (solid light blue). Each of them goes through
successive binary splittings until giving rise to stable final state
particles (solid dark blue), which hit the detector. These final state
particles (leaves of a binary tree) form a jet, and each possible
hierarchical clustering represents a different splitting history.

application in jet physics: inferring jet structures.1

Jet Physics: Particle collisions in collider experiments, such
as the Large Hadron Collider (LHC) at CERN, produce new
particles that go through a series of successive binary split-
tings, termed a showering process, which finally leads to a
jet: a collimated set of stable-charged and neutral particles
that are measured by a detector. A schematic representation
of this process is shown in Figure 1, where the jet con-
stituents are the (observed) leaf particles in solid dark blue
and the intermediate (latent) particles can be identified as
internal nodes of the hierarchical clustering.

There has been a significant amount of research into jet
clustering over the decades, i.e. reconstructing the shower-

1Note that we use jet physics as an example where exact clus-
tering methods are needed and data sets are small enough for
exact methods to be applied. Other work has shown the impor-
tance of exact methods for small data sets, including in clinical
medicine/genomics[31, 32]. We emphasize that our approach ap-
plies to a variety of cost functions (Defn. 2), such as the hierarchical
correlation clustering cost used for cancer genomics[31].

Accepted for the 37th Conference on Uncertainty in Artificial Intelligence (UAI 2021).

 ing process (hierarchical clustering) from the observed jet
constituents (leaves). The performance of these algorithms
is often the bottleneck to precision measurements of the
Standard Model of particle physics and searches for new
physics. The LHC generates enormous datasets, but for each
recorded collision there is a hierarchical clustering task, typ-
ically with 10 to 100 particles (leaves). Despite the relatively
small number of elements in these applications, exhaustive
solutions are intractable, and current exact methods, e.g.,
[32], have limited scalability. It is standard to use agglomera-
tive clustering techniques, which are greedy [10]. Thus, they
tend to find low-likelihood hierarchical clusterings, which
results in a poor inference of the properties of the initial
state particles (solid light blue circles in Figure 1). As a
result, their type could be misidentified (e.g., top quark, W
boson, gluon, etc.). Also, the state-of-the art results using
deep learning methods that do not rely on hierarchical clus-
terings (they only take the leaves as input) [8] are evidence
for the deficiencies of current clustering algorithms since the
right clustering would mean that traditional clustering-based
physics observables would be essentially optimal in terms
of classification performance (and therefore would close the
gap between traditional and deep learning classifiers in this
context). Thus, exact and high-quality approximations in
this context would be highly beneficial for data analyses in
experimental particle physics.

Traditional algorithms, such as greedy approximations can
lead to local optima, and have little ability to re-consider
possible alternatives encountered at previous steps in their
search for the optimal clustering. This naturally raises the
question of how well-established, non-greedy search algo-
rithms, such as A*, can be applied to hierarchical clustering.

An immediate challenge in using A* to search for the opti-
mal tree structure for a given objective is the vast size of the
space of hierarchical clusterings. There are many possible hi-
erarchical clusterings for n elements, specifically (2n−3)!!,
where !! indicates double factorial. A naïve application of A*
would require super-exponential time and space. Indeed, the
only previous work exploring the use of A* for clustering,
Daume III [21], uses A* to find MAP solutions to Dirichlet
Process Mixture Models without bounds on the time and
space complexity of the algorithm.

In this paper, we theoretically and empircally analyze our
the following contributions:

Theoretical Contributions:

• A* Datastructure. Inspired by [31, 32], we present a
data structure to compactly encode the state space and
objective value of hierarchical clusterings for search,
using a sequence of nested min-heaps (§3.2).

• Time & Space Bounds. Using this structure, we are
able to bound the running time and space complexity
of using A* to search for clusterings, an improvement
over previous work (§3.3).

Empirical Contributions:
• Jet Physics. We also demonstrate empirically that A*

can find exact solutions to larger jet physics datasets
than previous work [32], and can improve over bench-
marks among approximate methods in data sets with
enormous search spaces (exceeding 10300 trees). (§5).

• Clustering benchmarks. We find that A* search finds
solutions with improved hierarchical correlation clus-
tering cost compared with common greedy methods on
benchmark datasets [36] (§6).

2 PRELIMINARIES

A hierarchical clustering is a recursive partitioning of a
dataset into nested subsets:

Definition 1. (Hierarchical Clustering) Given a dataset of
elements, X = {xi}Ni=1, a hierarchical clustering, H , is a
set of nested subsets ofX , s.t.X ∈ H , {{xi}}Ni=1 ⊂ H , and
∀Xi, Xj ∈ H , eitherXi ⊂ Xj ,Xj ⊂ Xi, orXi

⋂
Xj = ∅.

Further, ∀Xi ∈ H , if ∃Xj ∈ H s.t. Xj ⊂ Xi, then ∃Xk ∈
H s.t. Xj

⋃
Xk = Xi.

Consistent with our application in jet physics and previ-
ous work [32], we limit our consideration to hierarchical
clusterings with binary branching factor.2

Hierarchical clustering cost functions represent the quality
of a hierarchical clustering for a particular dataset. In this
work, we study a general family of hierarchical clustering
costs defined as the sum over pairs of sibling clusters in the
structure (Figure 2).

Definition 2. (Hierarchical Clustering Costs) Let X be
a dataset, H be a hierarchical clustering of X , let ψ :
2X × 2X → R+ be a function describing the cost incurred
by a pair of sibling nodes in H . We define the cost, φ(H) of
a hierarchical clustering H as:

φ(H) =
∑

XL,XR∈sibs(H)

ψ(XL, XR) (1)

where sibs(H) = {(XL, XR)|XL ∈ H,XR ∈ H,XL ∩
XR = ∅, XL ∪XR ∈ H}.

The goal of hierarchical clustering is then to find the lowest
cost H among all hierarchical clusterings of X , H(X), i.e.,
argminH∈H(X) φ(H) .

3 A* SEARCH FOR CLUSTERING

The fundamental challenge of applying A* to clustering is
the massive state space. Naïve representations of the A*

2Binary trees encode at least as many tree consistent partitions
as multifurcating / n-ary trees [4, 32] and for well known cost
functions, such as Dasgupta’s cost, provide trees of lower cost than
multifurcating / n-ary trees [20].

(,

)(,

)(,

({a}), {b}

{a,b} {c}!

!

!

!)

{a,b,c} {d,e}

{d} {e}

ɸ(H) =

++

+

Figure 2: Family of Hierarchical Clustering Cost Func-
tions. We considers costs that decompose as the sum of a
cost term computed for each pair of sibling nodes.

state space and frontier require explicitly storing every tree
structure, potentially growing to be at least the number of
binary trees (2n − 3)!!. To overcome this, we propose an
approach using a cluster trellis to (1) compactly encode
states in the space of hierarchical clusterings (as paths from
the root to the leaves of the trellis), and (2) compactly repre-
sent the search frontier (as nested priority queues). We first
describe how the cluster trellis represents the A* state space
and frontier, and then show how to perform A* search using
this data structure to find the lowest cost clustering.

3.1 HIERARCHICAL CLUSTERING AS SEARCH

Many approaches to hierarchical clustering are based on
heuristics, and the properties of the resulting clusterings
are studied post hoc. However, in several applications there
is a natural cost function that can be used to characterize
the quality of the clustering, and, in those cases, hierarchi-
cal clustering can be seen as a combinatorial optimization
problem. This view enables the use of search methods for hi-
erarchical clustering, as search methods can often be applied
to combinatorial optimization problems [1].

In order to use A* to search for clusterings, we need to
define the search space, the graph being searched over, and
the goal states.

Definition 3. (Search State / Partial Hierarchical Clus-
tering) We define each state in the search space to be a
partial hierarchical clustering, H̆ , which is a subset of
some hierarchical clustering of the dataset X , i.e., ∃H ∈
H(X), s.t. H̆ ⊆ H .

A state is a goal state if it is a hierarchical clustering, e.g.
H̆ ∈ H(X).

Each state is a hierarchical clustering over the set of points,
X , built in a ‘top-down’ way. It includes a root node (all of
X) and some internal nodes. Importantly, the state might
not be a complete hierarchical (i.e., a goal state)– the leaves

of the state might not be the data points of X (a requirement
of a complete hierarchical clustering).

A* Search for Hierarchical Clustering A* is a best-first
search algorithm for finding the minimum cost path between
a starting node and a goal node in a weighted graph. Follow-
ing canonical notation, the function f(n) = g(n) + h(n)
determines the “best” node to search next, where g(n) is the
cost of the path up from the start to node n and h(n) is a
heuristic estimating the cost of traveling from n to a goal.

A heuristic, h(n), for a function, f(n), is said to be admis-
sible when the heuristic underestimates the function, i.e.,
∀n, h(n) ≤ f(n).3 When the heuristic h(·) is admissible,
A* is admissible and provides an optimal solution. If h(·) is
both admissible and consistent or monotone (the heuristic
cost estimate of reaching a goal from state x, h(x), is less
than the actual cost of traveling from state x to state y plus
the heuristic cost estimate of reaching a goal from state y,
h(y)), then A* is optimally efficient4.

Consider the following naïve A* approach for hierarchical
clustering: (0) add the root node of a tree structure to the
search frontier (i.e., the set of states A* is currently open to
exploring), (1) visit the state on the frontier with the lowest
cost according to the heuristic, and (2) add to the frontier
(or update) the states neighboring the visited state (using
the heuristic). Such a naïve search could require the frontier
to include all possible (sub)-tree structures, which would
require super exponential space. Such a space requirement
renders the naïve approach intractable. In the following sec-
tions, we describe how the trellis can be used to implement
a more efficient approach.

3.2 A* ON THE CLUSTER TRELLIS

We propose an alternative representation of the search space
and frontier that utilizes a trellis data structure to provide a
compact encoding of partial tree structures. Our proposed
encoding reduces the super-exponential space and time re-
quired for A* to find the exact MAP to exponential in the
worst case.

Previous work, [32], defines the cluster trellis for hierarchi-
cal clustering (hereafter denoted trellis) as a directed acyclic
graph, T, where, like a hierarchical clustering, the leaves of
the trellis, lvs(T), correspond to data points. The internal
nodes of T correspond to clusters, and edges in the trellis

3This is the case when attempting to minimize f(n); when
maximizing f(n), heuristic h(n) is admissible when it overesti-
mates f(n), i.e., ∀n, h(n) ≥ f(n).

4It is worth noting that there is a trade-off between the quality
of the heuristic and the number of iterations of A*, with better
heuristics potentially resulting in fewer iterations at the cost of
taking longer to compute. An extreme example being that a perfect
heuristic will require no-backtracking, except in cases of ties.

{a} {b} {c} {d} {e}

…

{a,b,c,d,e}

{a,b,c} {a,b,d}

{a,b}

{c,d,e}{a,b,e}

{a,c} {a,d} …

…

{c,d} {c,e} {d,e}…

Min-Heap
Over Child Pairs

abd ce

abc de

abe cd

ab cde

Store a separate heap
at each node.

Figure 3: Nested Min Heaps The A* search space is com-
pactly encoded in the trellis. Each node stores a min-heap
ordering pairs of its children. Each pair encodes a two parti-
tion (e.g. split) of its parents points.

are defined between child and parent nodes, where children
contain a subset of the points contained by their parents.

Definition 4. (Cluster Trellis for Hierarchical Cluster-
ing) [32] Given a dataset of elements, X = {xi}Ni=1, a
trellis T is a directed acyclic graph with vertices corre-
sponding to subsets of X , i.e., T = {T1, . . . , Tk} ⊆ P(X),
where P(X) is the powerset of X . Edges in the trellis are
defined between a child node C ∈ T and a parent P ∈ T
such that P \C ∈ T (i.e., C and P \C form a two-partition
of P).

We note the distinction between two types of trellis struc-
tures: a“full” trellis, one that contains all possible subsets
of the dataset (i.e., T = P(X)) and a“sparse”, i.e., contains
only a subset of all possible subsets (T ⊂ P(X)).

We will now describe how we modify the trellis structure to
run A* in less than super-exponential time and space. We
detail how the full trellis provides exact solutions and sparse
trellis structures provide the best approximate solution in a
restricted search space. To run A* on trellis T, we modify
the data structure to store at each node, Xi, in T a min heap
over two-partition pairs, which correspond to the node’s
children, Π, which we denote as Xi[Π]. Additionally, we
modify each node to store the value of the lowest cost split at
each node, X[Φ], as well as a pointer to children associated
with the best split, X[Ξ] = {X`, Xr}.

At a high level, A* using the trellis is executed by (1) find-
ing the state in the search frontier that minimizes f(·) by
traversing the min-heaps stored trellis in a top-down manner
(2) exploring the neighbors of the state by initializing the
min-heaps at the leaves of the current state’s tree, and then
updating the f(·) values on the min-heaps on the leaf-to-root
paths of the current state’s tree.

First, let’s consider how to find the current best state on the
search frontier (i.e., the state minimizing f(·)). The start-

ing state of the search is the root node (of both the output
tree structure and the trellis), which corresponds to the full
dataset, X . We compactly encode a partial hierarchical clus-
tering as a set of paths through the trellis structure starting
with the root. In particular,

HΞ(X) = {X}
⋃

Xc∈X[Ξ]

HΞ(Xc) (2)

where X[Ξ] = ∅ if X ∈ lvs(H), where lvs(H) =
{X | X ∈ H, @X ′ ∈ H,X ′ ⊂ X}. In words, we start
at the root node, add to the tree structure the pair of children
at the top of the root node’s min heap, and then for each
child in this pair, select the pair of children (grandchildren
of the root) from their min-heaps to add to the tree structure.
We proceed in this way, adding descendants until it reaches
nodes that do not yet have min-heaps initialized.

Now, let’s consider how the neighbors of the current best
state are explored and the search frontier is updated. Each
node’s min heap, Xi[Π], stores five-element tuples:

(fLR, gLR, hLR, XL, XR) ∈ Xi[Π] (3)

Figure 3 illustrates a trellis compactly encoding the search
space using min heaps, where four of the fifteen child pairs
on the root node’s heap are depicted in different colors.

Exploration in A* consists of instantiating the min heap
of a given node, where the heap ordering is determined by
fLR = gLR + hLR. The value gLR corresponds to the g
value of the partial hierarchical clustering rooted at XL ∪
XR, including both the nodes XL and XR. Formally:

gLR = ψ(XL, XR)

+
∑

XLL,XLR∈sibs(HΞ(XL))

ψ(XLL, XLR)

+
∑

XRL,XRR∈sibs(HΞ(XR))

ψ(XRL, XRR) (4)

Recall that HΞ represents a complete or partial hierarchical
clustering. The value h gives an estimate of the potential for
all of the leaves of HΞ, and is defined to be 0 if all of the
leaf nodes of HΞ are singleton clusters (in which case HΞ

is a complete hierarchical clustering). Formally:

hLR =
∑

X`∈lvs(HΞ(XL∪XR))

H(X`) (5)

where H(X`) is the objective-specific heuristic function
required by A*, and H(X`) = 0 if X` is a singleton.

With these definitions, let’s consider the execution of A*
using the trellis in more detail. Recall that the trellis com-
pactly encodes the frontier by storing a min-heap at each
explored node. Each heap contains edges to all the chil-
dren (2-splittings of that node), and the frontier is the set

{a} {b} {c} {d} {e}

…

{a,b,c,d,e}

{a,b,c} {a,b,d}

{a,b}

{c,d,e}{a,b,e}

{a,c} {a,d} …

…

{c,d} {c,e} {d,e}…

Partial Hierarchical Clustering State
Leaf nodes with

un-initialized heaps (
to be explored next.

)

Figure 4: State Space A state (i.e., a partial hierarchical
clustering) is compactly encoded as paths in the trellis struc-
tured, discovered by following the root-to-leaf pointers.

of partial hierarchical clusterings with explored nodes/min-
heap edges as internal nodes. (The min-heaps and the nested
structure are described in Section 3.2.) Search works by: (0)
the root node is added frontier; (1) Eq. 2 is used to find the
current best state, a partial hierarchical clustering, on the
search frontier (Alg. 1:5-7); (2) If this state is a goal state
and the hLR value at the top of the min heap is 0, then re-
turn this structure (Alg. 1:8-10); (3) If the state is not a goal
state, explore the leaves of the partial hierarchical clustering,
instantiating the min heap of each leaf with the children
of the leaf nodes and their corresponding fLR, gLR, hLR
values (from Eq. 4 & 5) (Alg. 1:11-17); (4) Then, after ex-
ploration, update the heap values of gLR and hLR in each
of the ancestor nodes (in the partial hierarchical clustering)
of the newly explored leaves (Alg. 1:18-31). Crucially, Step
1 is implemented using the trellis following the pointers
stored in each node’s min-heap. Step 4 is the book-keeping
required to use the trellis to achieve the reduced running
time.

This process is illustrated in Figure 4, where the set of purple
nodes represent a state, and the grey nodes/edges correspond
to the remainder of the trellis. Note that this is a state in the
A* search trajectory, while the nodes/edges correspond to
hierarchical clustering nodes/edges, not states / transitions
between states. The hierarchical clustering in Figure 4 is
partial, not complete, because the leaves of the hierarchical
clustering include a node with two elements, a,d. One state
H is reachable from another H ′ if H can be obtained by
splitting the leaves of H ′. See Algorithm 1 for pseudocode.

3.3 THEORETICAL ANALYSIS

First, we show that A* using the trellis (Algorithm 1) will
find the exact optimal hierarchical clustering among all
those represented in the trellis structure.

Theorem 1. (Correctness) Given a trellis, T, dataset, X ,
and objective-specific admissible heuristic function, H, Al-

gorithm 1 yields H? = argminH∈H(T) φ(H) where H(T)
is the set of all trees represented by the trellis.
See Appendix §A.1 for proof.

Corollary 1. (Optimal Clustering) Given a dataset, X ,let
the trellis, T = P(X), be the powerset. Algorithm 1 yields
the (global) optimal hierarchical clustering for X .
See Appendix §A.2 for proof.

Next, we consider the space and time complexities of Al-
gorithm 1. We observe that the algorithm scales with the
size of the trellis structure, and requires at most exponential
space and time, rather than scaling with the number of trees,
(2n− 3)!!, which is super-exponential.

Proposition 1. (Space Complexity) For trellis, T and
dataset, X , Algorithm 1 finds the lowest cost hierarchical
clustering of X present in T in space O(|T|2), which is at
most O(3|X|) when T = P(X).
See Appendix §A.3 for proof.

Theorem 2. (Time Complexity) For trellis, T and dataset,
X , Algorithm 1 finds the lowest cost hierarchical clustering
of X in time O(|{ CH(X,T) | X ∈ T}|). which is at most
O(3|X|) when T = P(X).
See Appendix §A.4 for proof.

Finally, we observe that Algorithm 1 is optimally efficient
when given a consistent / monotone heuristic.

Proposition 2. (Optimal Efficiency) For trellis, T and
dataset, X , Algorithm 1 is optimally efficient if h is a con-
sistent / monotone heuristic.
See Appendix § A.5 for proof.

4 TRELLIS CONSTRUCTION

We can use Algorithm 1 to find exact solutions if we search
the full trellis structure that includes all subsets of the
dataset, P(X). However, we are also interested in approx-
imate methods. Here, we proposes three approaches: (1)
run A* using a sparse trellis (one with missing nodes and/or
edges), (2) extend a sparse trellis by adding nodes, and edges
corresponding to child / parent relationships while running
A* at exploration time for each node explored during A*
search, (3) run A* iteratively, obtaining a solution and then
running A* again, extending the trellis further between or
during subsequent iterations.

Trellis Initialization Before running A*, an input struc-
ture defining the children / parent relationships and nodes in
the trellis can be provided. One possibility is to use an ex-
isting method to create this structure. For instance, it is pos-
sible to initialize all the nodes coming from the full/partial
beam size set of hierarchies obtained from running beam
search either in a top-down or bottom-up manner. How-
ever, this structure can be updated during run-time using

 Algorithm 1 A* Hierarchical Clustering Search

1: function SEARCH(T, X , H)
2: Input: A trellis structure T and dataset X , a heuris-

tic function H
3: Output: Lowest cost tree represented in T
4: do
5: B Get state from trellis (Eq. 2)
6: HΞ(X) = {X}

⋃
Xc∈X[Ξ]HΞ(Xc)

7: fat root, _, hat root, _, _← X[Π].peek()
8: B At goal state?
9: if hat root = 0 and |lvs(HΞ(X))| = |X| then

10: return fat root, HΞ(X)

11: B Explore new leaves
12: for Xi in lvs(HΞ(X)) do
13: for XL, XR in CHILDREN(Xi) do
14: Define gLR according to Eq. 4
15: Define hLR according to Eq. 5
16: fLR ← gLR + hLR
17: Xi[Π].enqueue((fLR, gLR, hLR, XL, XR))

18: B Update each node in the tree’s min heap
19: for Xi in HΞ(X) from leaves to root do
20: _, _, _, XL, XR ← Xi[Π].pop()
21: Define g ← gLR according to Eq. 4
22: h← 0
23: for Xc in [XL, XR], do
24: if Xc[Π] is defined then
25: _, gc, hc, _, _← Xc[Π].peek()
26: g ← g + gc
27: h← h+ hc
28: else
29: h← h+ H(Xc)

30: B Update the f value of split XL, XR

31: Xi[Π].enqueue((g + h, g, h,XL, XR))

32: while True

the method described below by adding additional children
to a node beyond those present at initialization. This way,
A* will include within the search space, hierarchies com-
ing from small perturbations (at every level) of the ones
employed to initialize the trellis.

Running A* While Extending The Trellis A sparse trel-
lis (even one consisting solely of the root node) can be
extended during the exploration stage of A* search. Given
a node, Xi, in a sparse trellis, sample the children to place
on Xi’s queue using an objective function-based sampling
scheme. We can randomly sample a relatively large number
of candidate children of the node and then either restrict the
children to the K best according to the value of the ψ(·, ·)
function of the cost (Eq. 1) (best K sampling) or sample
from the candidate children according to their relative prob-
ability, i.e., ψ(·, ·)/

∑
ψ(·, ·) (importance sampling).

Iterative A*-based Trellis Construction We can com-
bine the methods above, by initializing a sparse trellis, ex-
tending it during run-time, and then run an iterative algo-
rithm that outputs a series of hierarchical clusterings with
monotonically decreasing cost. It uses T(r) as the initializa-
tion, runs A* and outputs the best hierarchical clustering
represented by that trellis. In each subsequent round r + 1,
T(r) is extended at run-time, adding more nodes and edges,
and at the end of the round, outputs the best hierarchical clus-
tering represented by trellis T(r+1). This can be repeated
until some stopping criteria are reached, or the trellis is full.

5 JET PHYSICS EXPERIMENTS

Additional Background. Detectors at the Large Hadron
Collider (LHC) at CERN measure the energy (and momen-
tum) of particles generated from the collision of two beams
of high-energy protons. Typically, the pattern of particle hits
will have localized regions. Recall the particles in each re-
gion are clustered (i.e., a jet), and this hierarchical clustering
is originated by a showering process where the initial (unsta-
ble) particle (root) goes through successive binary splittings
until reaching the final state particles (with an energy below
a given threshold) that hit the detector and are represented
by the leaves. These leaves are observed while the latent
showering process, described by quantum chromodynamics,
is not. This showering-process is encoded in sophisticated
simulators, and rather than optimizing heuristics (as is tra-
ditionally done, e.g., [9, 11, 22, 25]), directly maximizing
the likelihood, (1) allows us to compute MAP hierarchical
clusterings generated by these simulators, (2) unifies gener-
ation and inference, and (3) can improve our understanding
of particle physics.

Cost Function. We use a cost function that is the negative
log-likelihood of a model for jet physics [19]. Each cluster
corresponds to a particle with an energy-momentum vec-
tor x = (E ∈ R+, ~p ∈ R3) and squared mass t(x) =
E2 − |~p|2. A parent’s energy-momentum vector is obtained
from adding its children, i.e., xP = xL + xR. We study
Ginkgo, a prototypical model for jet physics [19] that pro-
vides a tractable joint likelihood, where for each pair of
parent and left (right) child cluster with masses

√
tP and√

tL (
√
tR) respectively, the likelihood function is,

ψ(XL, XR) = f(t(xL)|tP , λ) · f(t(xR)|tP , λ) (6)

with f(t|tP , λ) =
1

1− e−λ
λ

tP
e
−λ t

tP (7)

where the first term in f(t|tP , λ) is a normalization factor
associated to the constraint that t < tP , and λ a constant.
For the leaves, we need to integrate f(t|tP , λ) from 0 to the
threshold constant tcut (see [19] for more details),

f(tcut|λ, tP) =
1

1− e−λ

(
1− e−

λ
tP
tcut

)
(8)

 Heuristic function. We introduce two heuristic functions
to set an upper bound on the log likelihood of Ginkgo hier-
archies, described in detail in Appendix § A.7. We provide
a brief description as follows. We split the heuristic into
internal nodes and leaves. For the leaves, we roughly bound
tP in Equation 8 by the minimum squared mass, among all
the nodes with two elements, that is greater than tcut (see
[19] for more details). For internal nodes, we wish to find
the smallest possible upper bound to Equation 7. We bound
tP in the exponential by the squared mass of the root node
(top of the tree). Next, we look for the biggest lower bound
on the squared mass t in Equation 7. We consider a fully
unbalanced tree as the topology with the smallest per level
values of t and we bound each level in a bottom up approach
(singletons are at the bottom). Finally, to get a bound for
tP in the denominator of Equation 7 we want the minimum
possible values. Here we consider two heuristics:

• Admissible h0(·). We take the minimum per level parent
squared mass plus the minimum leaf squared mass, as the
parent of every internal node has one more element.

• Approximate h1(·). We take the minimum per level parent
squared mass plus 2 times the minimum squared mass
among all the nodes with two elements.

In principle, h1(·) is approximate, but we studied its effec-
tiveness by checking that the cost was always below the
exact trellis MAP tree on a dataset of 5000 Ginkgo jets with
up to 9 elements, as well as the fact that exact A* with h1(·)
agrees with the exact trellis within 6 significant figures (see
Figure 5). In any case, if for some cases h1(·) is inadmissi-
ble, the only downside is that we could be missing a lower
cost solution for the MAP tree. As a result, given that h1(·)
is considerably faster than h0(·), below we show results for
A* implemented with h1(·).

Methods. We compare our algorithm with different bench-
marks. We start with greedy and beam search implementa-
tions as baselines, where we cluster Ginkgo jet constituents
(leaves of a binary tree) based on the joint likelihood to get
the maximum likelihood estimate (MLE) for the hierarchy
that represents the latent structure of a jet. Greedy simply
chooses the pairing of nodes that locally maximizes the
likelihood at each step, whereas beam search maximizes
the likelihood of multiple steps before choosing the latent
path. The current implementation only takes into account
one more step ahead, with a beam size given by 1000 for
datasets with more than 40 elements or N(N−1)

2 for the
others, with N the number of elements to cluster. Also, we
discarded partial clusterings with identical likelihood values,
to account for the different orderings of a hierarchy (see [6]
for more details), which significantly improved the perfor-
mance of beam search. We also compare to the Monte-Carlo
Tree Search (MCTS) algorithm for hierarchical clusterings
introduced in [7]. We choose the best performing case, that
corresponds to a neural policy trained for 60000 steps, ini-

10 20 30
Number of elements

6

5

4

3

2

1

0

Co
st

 -
Gr

ee
dy

 C
os

t

Greedy
Beam Search
MCTS
Approx. A *

Exact A *

Exact Trellis

80 100 120 140
Number of elements

120

100

80

60

40

20

0

Co
st

 -
Gr

ee
dy

 C
os

t

Greedy
Beam Search
Approx. A *

Figure 5: Jet Physics Results. Cost (Neg. log. likelihood) for
the MAP hierarchy of each algorithm on Ginkgo datasets minus
the cost for greedy (lower values are better solutions). We see
that exact and approx. A* greatly improve over the benchmarks.
Though MCTS provides a strong baseline for small datasets where
it is feasible to implement it (left), A* still shows an improvement.

tializing the search tree at each step by running beam search
with beam size 100. Also, the maximum number of MCTS
evaluation roll-outs is 200. Finally, for exact solutions, we
compare with the exact algorithm introduced in [32].

Approximate A*. We design the approximate A*-based
method following the details described in Section 4. We first
initialize the sparse trellis with the full set of beam search
hierarchies. Next, we use a top K-based sampling and the
iterative construction procedure to extend the search space.

Results. Figure 5 shows a comparison of the MAP values
of the proposed exact and approximate algorithms using A*
with benchmark algorithms (greedy, beam search, MCTS,
and exact trellis), on Ginkgo jets. For the A*-based method
we show both the exact algorithms and approximate solu-
tions, both implemented with the heuristic denoted as h1(·)
in Appendix §A.7. We want to emphasize that approximate
versions of A* allow the algorithm to handle much larger
datasets while significantly improving over the baselines.
MCTS provides a strong baseline for small datasets, where
it is feasible to implement it. However, A* shows an im-
provement over MCTS while also being feasible for much
larger datasets. Next in Figure 6 we show the empirical run-
ning times. We want to point out that the A*-based method
becomes faster than the exact trellis one for data with 12 or
more elements, which makes A* feasible for larger datasets.
We can see that approx. A* follows the exact A* cost very
closely starting at 12 elements until 15, while having a lower
running time. Though approx. A* and MCTS have a run-
ning time of the same order of magnitude (only evaluation
time for MCTS) for more than 20 leaves, A* has a con-
trolled running time while MCTS evaluation time grows
as a power law of the number of elements. The exact trel-
lis time complexity is O(3N) which is super-exponentially
more efficient than brute force methods that consider every
possible hierarchy and grow at the rate of (2N − 3)!!. Thus,
in Figure 7 we show the number of hierarchies explored by
A* divided by 3N , and we can see that exact and approx-
imate A* are orders of magnitude more efficient than the
trellis, which to the best of our knowledge was the most

10 20 30
Number of elements

10 2

10 1

100

101

102

103

104

105
Ru

n
Ti

m
e

(s
)

Greedy
Beam Search
MCTS
Exact A *

Approx. A *

Exact Trellis

80 100 120 140
Number of elements

100

101

102

103

104

Ru
n

Ti
m

e
(s

)

Greedy
Beam Search
Approx. A *

Figure 6: Running Times. Empirical running time on an Intel
Xeon Platinum 8268 24C 2.9GHz Processor. The A*-based method
becomes faster than the exact trellis one for data with 12 or more
elements. Approx. A* is much faster than exact algorithms while
still significantly improving over the baselines. This figure only
shows evaluation running times for MCTS, after having trained the
model for 7 days with the same processor. Evaluation MCTS times
grow exponentially while approx. A* has a controlled runtime.

10 20 30
Number of elements

10 14

10 12

10 10

10 8

10 6

10 4

10 2

Tr
ee

s e
xp

lo
re

d
/ 3

N

Exact A *

Approx. A *

80 100 120 140
Number of elements

10 66

10 61

10 56

10 51

10 46

10 41

10 36

Tr
ee

s e
xp

lo
re

d
/ 3

N

Approx. A *

Figure 7: Search Space Exploration. Number of hierarchies
explored divided by the exact trellis time complexity, i.e 3N . We
see that the A*-based method is considerably more efficient than
the trellis, which, in turn, is super-exponentially more efficient
than an explicit enumeration of clusterings.

efficient exact algorithm at present. Also, we note as a point
of reference that for about 100 leaves, the approx. A* results
of Figure 7 can improve over benchmarks by only exploring
O(103) out of the O(10185) possible hierarchies.

6 EXPERIMENTS ON CLUSTERING
BENCHMARKS

In this section, we analyze the performance of A* on several
commonly used hierarchical clustering benchmark datasets
[36, 38]: Speaker, i-vector speaker recordings, ground truth
clusters refer each unique speaker [33]; CovType, a dataset
of forest cover types; ALOI, color histogram features of
3D objects, ground truth clusters refer to each object type
[27]; ILSVRC, image features from InceptionV3 [44] of
the ImageNet ILSVRC 2012 dataset [42]. We use cosine
similarity as the pairwise similarity between points, as it is
known to be meaningful for each of the datasets [38], and
hierarchical correlation clustering as the cost.

Hierarchical Correlation Clustering. Following [32], we
consider a hierarchical version of well-known flat clustering

objective, correlation clustering [2]. In this case, we define
the cost of a pair of sibling nodes in the tree to be the sum
of the positive edges crossing the cut, minus the sum of the
negative edges not crossing the cut:

ψ(Xi, Xj) =
∑

xi,xj∈Xi×Xj

wijI[wij > 0] +
∑

xi,xj∈Xi×Xi,
i<j

|wij |I[wij < 0]

+
∑

xi,xj∈Xj×Xj ,
i<j

|wij |I[wij < 0]

where wij is the affinity between xi and xj .

To build the weighted graphs needed as input to correlation
clustering, we subtract the mean similarity from each of
the pairwise similarities. We can provide a heuristic for
this objective by using the sum of the of the positive edges
contained in the dataset:

hcc(X) =
∑

xi,xj∈X×X,
i<j

wijI[wij > 0] (9)

Proposition 3. (Admissible Heuristic for Hierarchical
Correlation Clustering) Equation 9 is an admisslbe heuris-
tic for Hierarchical Correlation Clustering cost, that is
hcc(X) ≤ φHCC(X).

See Appendix §A.6 for proof.

Approximate A*. In this experiment, we apply the tech-
niques described in Section 4 to design an approximation
algorithm. We first initialize the sparse trellis using a greedy
approach (§4). We then use a top K-based sampling (§4)
and iterative construction approach (§4) to extend the search
space beyond greedy initialization and use heuristic hcc.

Figure 8, shows the cost (lower is better) of the exact solu-
tion found via A*, the aforementioned approximate A*, and
the greedy solution on small datasets. We sample each of
the small datasets from their corresponding original dataset
using stratified sampling, where the strata correspond to
the ground truth class labels. We report the mean and stan-
dard deviation / sqrt(num runs) computed over 5 random
samples of each dataset size. We observe that the approxi-
mate method is able to provide hierarchical clusterings that
have lower cost than the greedy approach, nearing the exact
MAP values found by the optimal approach. In Figure 9, we
show results on data sets with a larger number of samples
(sampled from the original datasets in the same manner as
before), which are too large to run the exact algorithm. We
plot the reduction (mean, standard deviation / sqrt(num runs)
over 5 runs per dataset size) in cost of the clusterings found
by the approximate A* algorithm vs. the greedy approach.

7 RELATED WORK
Methods: Most similar to our approach, Daume III [21]
uses an A*-based approach to find MAP solutions to Dirich-

5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of elements

5

10

15

20
Co

st

ALOI
Greedy
Approx. A*
Exact A*

5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of elements

5

10

15

Co
st

ILSVRC

5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of elements

2

4

6

8

10

Co
st

Speaker

5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of elements

2

4

6

8

Co
st

CovType

Figure 8: Hierarchical Correlation Clustering on Benchmark Data. On randomly sampled subsets small enough for us
to run the exact A* approach, we report the hierarchical correlation clustering cost (lower is better) for clustering benchmarks.
We observe that the approximate A* method is able to achieve lower cost clusterings compared to greedy.

100 200 300 400 500
Number of elements

30

25

20

15

10

5

0

Co
st

 -
Gr

ee
dy

 C
os

t

ALOI

Approx. A*
Greedy

100 200 300 400 500
Number of elements

6

5

4

3

2

1

0

Co
st

 -
Gr

ee
dy

 C
os

t

ILSVRC

100 200 300 400 500
Number of elements

5

4

3

2

1

0

Co
st

 -
Gr

ee
dy

 C
os

t

Speaker

100 200 300 400
Number of elements

6

4

2

0

Co
st

 -
Gr

ee
dy

 C
os

t

CovType

Figure 9: Improvement over Greedy on Larger Benchmark Datasets . We report the improvement (cost, lower is better)
of the approximate A* method over the greedy baseline.

let Process Mixture Models. This work focuses on flat clus-
tering rather than hierarchical, and it does not include a de-
tailed analysis of the time and space complexity, as is done
in this paper. In contrast to our deterministic search-based
approach, sampling-based methods, such as [5, 35, 28, 6],
use MCMC, Metropolis Hastings or Sequential Monte Carlo
methods to draw samples from a posterior distribution over
trees. Other methods use incremental constructions of tree
structures [36, 38, 46], similar to our approach, however
they perform tree re-arrangements to overcome greedy de-
cisions made in the incremental setting. These operations
are made in a relatively local fashion without considering
a global cost function for tree structures as is done in our
paper. Linear, quadratic, and semi-definite programming
have also been used to solve hierarchical clustering prob-
lems [29, 41], as have, branch-and-bound based methods
[18]. These methods often have approximation guarantees.
It would be interesting to discover how these methods could
be used to explore nodes in a trellis structure (§4) in future
work. In contrast to our search-based method that considers
discrete tree structures, recent work has considered contin-
uous representations of tree structures to support gradient-
based optimization [39, 12]. Finally, we note that much
recent work, [13, 14, 15, 16, 17, 41], has been devoted to
Dasgupta’s cost for hierarchical clustering [20]. We direct
the interested reader to the Appendix §A.8, for a description
of the cost and an admissible heuristic that enables the use of
A* to find optimal Dasgupta cost hierarchical clusterings.

Data Structure: The general idea of a cluster trellis data
structure has been used in two previous works: [31] for flat
and [32] for hierarchical clustering. In each, nodes corre-
spond to the powerset of the set of points. These works

[31, 32] use the trellis to design dynamic programming
algorithms to find the exact lowest cost clustering. In con-
trast, the trellis in this paper, performs exact search with A*,
leveraging the critical innovation of nesting min-heaps in
the trellis to compactly encode the A* frontier and enabling
A* search to run with improved time/space complexity.

8 CONCLUSION
In this paper, we describe a data structure with a nested
representation of the A* search space to provide a time
and space efficient approach to search. We demonstrate
the effectiveness of the approach experimentally and prove
theoretical results about its optimality and efficiency. In
future work, we hope to apply A* to flat clustering costs
and probabilistic models in Bayesian non-parametrics.

ACKNOWLEDGEMENTS
We thank Johann Brehmer for sharing his code and help-
ing us run the MCTS algorithm for hierarchical clustering
of Ginkgo jets on our benchmark datasets. Kyle Cranmer
and Sebastian Macaluso are supported by the National Sci-
ence Foundation under the awards ACI-1450310 and OAC-
1836650 and by the Moore-Sloan data science environment
at NYU. Patrick Flaherty is supported in part by NSF HDR
TRIPODS award 1934846. Andrew McCallum and Nicholas
Monath are supported in part by the Center for Data Science
and the Center for Intelligent Information Retrieval, and in
part by the National Science Foundation under Grant No.
NSF-1763618. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect those of the sponsor.

 References

[1] Emile Aarts, Emile HL Aarts, and Jan Karel Lenstra.
Local search in combinatorial optimization. Princeton
University Press, 2003.

[2] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Cor-
relation clustering. Machine learning, 2004.

[3] MohammadHossein Bateni, Soheil Behnezhad, Mahsa
Derakhshan, MohammadTaghi Hajiaghayi, Raimon-
das Kiveris, Silvio Lattanzi, and Vahab Mirrokni.
Affinity clustering: Hierarchical clustering at scale.
In NeurIPS, 2017.

[4] C Blundell, YW Teh, and KA Heller. Bayesian rose
trees. In UAI, 2010.

[5] Alexandre Bouchard-Côté, Sriram Sankararaman, and
Michael I Jordan. Phylogenetic inference via sequen-
tial monte carlo. Systematic biology, 2012.

[6] Levi Boyles and Max Welling. The time-marginalized
coalescent prior for hierarchical clustering. In
NeurIPS, 2012.

[7] Johann Brehmer, Sebastian Macaluso, Duccio Pap-
padopulo, and Kyle Cranmer. Hierarchical clustering
in particle physics through reinforcement learning. In
Machine Learning and the Physical Sciences work-
shop at NeurIPS, 2020.

[8] Anja Butter et al. The Machine Learning Landscape
of Top Taggers. 2019.

[9] Matteo Cacciari, Gavin P Salam, and Gregory Soyez.
The anti-k_t jet clustering algorithm. JHEP, 2008.

[10] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez.
FastJet User Manual. Eur. Phys. J. C, 2012.

[11] S Catani, Yuri L Dokshitzer, M H Seymour, and B R
Webber. Longitudinally invariant kt clustering algo-
rithms for hadron hadron collisions. Nucl. Phys. B,
1993.

[12] Ines Chami, Albert Gu, Vaggos Chatziafratis, and
Christopher Ré. From trees to continuous embeddings
and back: Hyperbolic hierarchical clustering. NeurIPS,
2020.

[13] Moses Charikar and Vaggos Chatziafratis. Approx-
imate hierarchical clustering via sparsest cut and
spreading metrics. In SODA, 2017.

[14] Moses Charikar, Vaggos Chatziafratis, and Rad Ni-
azadeh. Hierarchical clustering better than average-
linkage. In SODA, 2019.

[15] Vaggos Chatziafratis, Rad Niazadeh, and Moses
Charikar. Hierarchical clustering with structural con-
straints. ICML, 2018.

[16] Vincent Cohen-Addad, Varun Kanade, and Frederik
Mallmann-Trenn. Hierarchical clustering beyond the
worst-case. In NeurIPS, 2017.

[17] Vincent Cohen-Addad, Varun Kanade, Frederik
Mallmann-Trenn, and Claire Mathieu. Hierarchical
clustering: Objective functions and algorithms. JACM,
2019.

[18] Carlos Cotta and Pablo Moscato. A memetic-aided
approach to hierarchical clustering from distance ma-
trices: application to gene expression clustering and
phylogeny. Biosystems, 2003.

[19] Kyle Cranmer, Sebastian Macaluso, and Duc-
cio Pappadopulo. Toy Generative Model for
Jets, 2019. URL https://github.com/
SebastianMacaluso/ToyJetsShower/
blob/master/notes/toyshower_v4.pdf.

[20] Sanjoy Dasgupta. A cost function for similarity-based
hierarchical clustering. In STOC, 2016.

[21] Hal Daume III. Fast search for dirichlet process mix-
ture models. In AISTATS, 2007.

[22] Yuri L Dokshitzer, G D Leder, S Moretti, and B R
Webber. Better jet clustering algorithms. JHEP, 1997.

[23] Avinava Dubey, Qirong Ho, Sinead Williamson, and
Eric P Xing. Dependent nonparametric trees for dy-
namic hierarchical clustering. NeurIPS, 2014.

[24] Kumar Avinava Dubey, Michael Zhang, Eric Xing, and
Sinead Williamson. Distributed, partially collapsed
mcmc for bayesian nonparametrics. In AISTATS, 2020.

[25] Stephen D Ellis and Davison E Soper. Successive
combination jet algorithm for hadron collisions. Phys.
Rev. D, 1993.

[26] Hendrik Fichtenberger, Marc Gillé, Melanie Schmidt,
Chris Schwiegelshohn, and Christian Sohler. Bico:
Birch meets coresets for k-means clustering. In Euro-
pean Symposium on Algorithms. Springer, 2013.

[27] Jan-Mark Geusebroek, Gertjan J. Burghouts, and
Arnold W. M. Smeulders. The amsterdam library of
object images. In IJCV, 2005.

[28] Zoubin Ghahramani, Michael I Jordan, and Ryan P
Adams. Tree-structured stick breaking for hierarchical
data. In NeurIPS, 2010.

[29] S. Gilpin, S. Nijssen, and I. Davidson. Formalizing
hierarchical clustering as integer linear programming.
AAAI, 2013.

https://github.com/SebastianMacaluso/ToyJetsShower/blob/master/notes/toyshower_v4.pdf
https://github.com/SebastianMacaluso/ToyJetsShower/blob/master/notes/toyshower_v4.pdf
https://github.com/SebastianMacaluso/ToyJetsShower/blob/master/notes/toyshower_v4.pdf

 [30] Spence Green, Nicholas Andrews, Matthew R. Gorm-
ley, Mark Dredze, and Christopher D. Manning. Entity
clustering across languages. In NAACL-HLT, 2012.

[31] Craig Greenberg, Nicholas Monath, Ari Kobren,
Patrick Flaherty, Andrew McGregor, and Andrew Mc-
Callum. Compact representation of uncertainty in
clustering. In NeurIPS. 2018.

[32] Craig Greenberg, Sebastian Macaluso, Nicholas
Monath, Ji Ah Lee, Patrick Flaherty, Kyle Cranmer,
Andrew McGregor, and Andrew McCallum. Cluster
trellis: Data structures & algorithms for exact inference
in hierarchical clustering. In AISTATS, 2021.

[33] Craig S Greenberg, Désiré Bansé, George R Dodding-
ton, Daniel Garcia-Romero, John J Godfrey, Tomi Kin-
nunen, Alvin F Martin, Alan McCree, Mark Przybocki,
and Douglas A Reynolds. The nist 2014 speaker recog-
nition i-vector machine learning challenge. In Odyssey:
The Speaker and Language Recognition Workshop.

[34] Zhiting Hu, Ho Qirong, Avinava Dubey, and Eric Xing.
Large-scale distributed dependent nonparametric trees.
ICML, 2015.

[35] David A Knowles and Zoubin Ghahramani. Pitman-
yor diffusion trees. In UAI, 2011.

[36] Ari Kobren, Nicholas Monath, Akshay Krishnamurthy,
and Andrew McCallum. A hierarchical algorithm for
extreme clustering. In KDD, 2017.

[37] Michael Levin, Stefan Krawczyk, Steven Bethard, and
Dan Jurafsky. Citation-based bootstrapping for large-
scale author disambiguation. JASIST, 2012.

[38] Nicholas Monath, Ari Kobren, Akshay Krishnamurthy,
Michael R Glass, and Andrew McCallum. Scalable
hierarchical clustering with tree grafting. In KDD,
2019.

[39] Nicholas Monath, Manzil Zaheer, Daniel Silva, An-
drew McCallum, and Amr Ahmed. Gradient-based
hierarchical clustering using continuous representa-
tions of trees in hyperbolic space. KDD, 2019.

[40] Stanislav Naumov, Grigory Yaroslavtsev, and Dmitrii
Avdiukhin. Objective-based hierarchical clustering of
deep embedding vectors. AAAI, 2021.

[41] Aurko Roy and Sebastian Pokutta. Hierarchical clus-
tering via spreading metrics. NeurIPS, 2016.

[42] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, et al.
Imagenet large scale visual recognition challenge. In
IJCV, 2015.

[43] Therese Sørlie, Charles M Perou, Robert Tibshirani,
Turid Aas, Stephanie Geisler, Hilde Johnsen, Trevor
Hastie, Michael B Eisen, Matt Van De Rijn, Stefanie S
Jeffrey, et al. Gene expression patterns of breast car-
cinomas distinguish tumor subclasses with clinical
implications. Proceedings of the National Academy of
Sciences, 2001.

[44] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. Rethinking the in-
ception architecture for computer vision. In CVPR,
2016.

[45] Shikhar Vashishth, Prince Jain, and Partha Talukdar.
Cesi: Canonicalizing open knowledge bases using em-
beddings and side information. In Proceedings of the
2018 World Wide Web Conference on World Wide Web,
pages 1317–1327. International World Wide Web Con-
ferences Steering Committee, 2018.

[46] Tian Zhang, Raghu Ramakrishnan, and Miron Livny.
Birch: an efficient data clustering method for very
large databases. ACM sigmod record, 1996.

[47] Tian Zhang, Raghu Ramakrishnan, and Miron Livny.
Birch: A new data clustering algorithm and its applica-
tions. Data Mining and Knowledge Discovery, 1997.

[48] Yuchen Zhang, Amr Ahmed, Vanja Josifovski, and
Alexander Smola. Taxonomy discovery for personal-
ized recommendation. In WSDM, 2014.

	Introduction
	Preliminaries
	A* Search for Clustering
	Hierarchical Clustering as Search
	A* on the Cluster Trellis
	Theoretical Analysis

	Trellis Construction
	Jet Physics Experiments
	Experiments on Clustering Benchmarks
	Related Work
	Conclusion

