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THERE IS NO FINITELY ISOMETRIC KRIVINE’S THEOREM

JAMES KILBANE AND MIKHAIL I. OSTROVSKII

Abstract. We prove that for every p ∈ (1,∞), p 6= 2, there exist a Banach space X

isomorphic to `p and a finite subset U in `p, such that U is not isometric to a subset of X.

This result shows that the finite isometric version of the Krivine theorem (which would

be a strengthening of the Krivine theorem (1976)) does not hold.
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1. Introduction

One of the most fundamental results on the structure of the general infinite-dimensional

Banach spaces is the following theorem of Dvoretzky.

Theorem 1.1 (Dvoretzky [5]). For each infinite-dimensional Banach space X, each n ∈

N, and each ε > 0, there is an n-dimensional subspace Xn ⊂ X and an isomorphism

T : Xn → `n2 such that ||T || · ||T−1|| ≤ 1 + ε.

It is well known that (1 + ε) cannot be replaced by 1 in this theorem. This follows,

for example, from the fact that the unit ball of any finite-dimensional subspace in c0 is

a polytope. The fact that `p does not contain all of `n2 isometrically, unless p is an even

integer, was proved in [4].

Recently embeddability of finite metric spaces into Banach spaces became a very impor-

tant direction in the Banach space theory. One of the main reasons for this is the discovery

that such embeddings have important algorithmic applications, see [16, 1]. Low-distortion

embedding of finite metric spaces into Banach spaces became a very powerful toolkit for

designing efficient algorithms, the interested reader can find more information in surveys

such as [8, 9, 15, 17, 18, 19, 24].

In this connection it is worthwhile to observe that Theorem 1.1 can be derived from the

following seemingly weaker theorem. Our terminology follows [19].

Theorem 1.2 (Finite Dvoretzky Theorem). For each infinite-dimensional Banach space

X, each finite subset F ⊂ `2, and each ε > 0, there is a bilipschitz embedding of F into X

with distortion at most (1 + ε).
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Proof of (Theorem 1.2)⇒(Theorem 1.1). We are going to use ultrapowers of Banach

spaces (see [19, Section 2.2]). We need to show that if the conclusion of Theorem 1.2 holds

for a Banach space X, then there exists an ultrapower of X containing an isometric copy

of `2. This can be done as follows (this is a slightly modified version of [19, Proposition

2.33]).

Denote by J the set of all finite subsets of `2 containing 0. Consider the set I = J×(0, 1)

as an ordered set: (j1, ε1) � (j2, ε2) if and only if j1 ⊇ j2 and ε1 ≤ ε2. Consider an

ultrafilter U on I containing the filter generated by sets of the form {(j, ε) : (j, ε) �

(j0, ε0)}, where j0 ∈ J , ε0 ∈ (0, 1).

The conclusion of Theorem 1.2 implies that for each pair (j, ε) ∈ J × (0, 1) there is a

map T(j,ε) : j → X with distortion ≤ 1 + ε satisfying T (0) = 0.

It remains to observe that the maps

z 7→

{

T(j,ε)(z) if z ∈ j

0 if z /∈ j

(parameterized by pairs (j, ε) ∈ I) induce an isometric embedding of `2 into XU . �

An important difference between Theorem 1.1 and Theorem 1.2 is that there are no

known examples showing the necessity of the + ε in Theorem 1.2. The examples above

showing the necessity of the + ε in Theorem 1.1 do not serve as examples in the finite

case. In fact, Fréchet [6] (see also [19, Proposition 1.17]) proved that each n-element

set embeds isometrically into `n∞, and thus, into c0. Ball [2] proved that each n-element

subset of Lp embeds isometrically into `
(n2)
p . Since, as is well known [10, p. 16] `2 embeds

isometrically into Lp[0, 1] for every p, it follows that for X = `p the statement of finite

Dvoretzky theorem remains true if we replace (1 + ε) by 1.

In this connection, the second-named author asked whether the result which can be

called “finite isometric Dvoretzky theorem” is true for all infinite-dimensional Banach

spaces X, that is,

Problem 1.3 ([20]). Does there exist a finite subset F of `2 and an infinite-dimensional

Banach space X such that F does not admit an isometric embedding into X?

This problem remains open. In this paper we show that the result which could be called

“finite isometric Krivine theorem” does not hold for any p ∈ [1,∞], p 6= 2. More precisely,

we answer in the negative, for every p ∈ (1,∞), p 6= 2, the following problem suggested in

[21]:

Problem 1.4 ([21]). Let Y be a Banach space isomorphic to `p, 1 < p < ∞. Is it true

that any finite subset of `p is isometric to some finite subset of Y ?

To justify the term “finite isometric Krivine theorem” let us recall the following land-

mark result of Krivine.

Theorem 1.5 (Krivine [13]). For each p ∈ [1,∞], each Banach space X isomorphic to

`p, each n ∈ N, and each ε > 0, there is an n-dimensional subspace Xn ⊂ X and an

isomorphism T : Xn → `np such that ||T || · ||T−1|| ≤ 1 + ε.
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The cases p = 1 and p = ∞ were not included in Problem 1.4 because Bill Johnson

had already described examples in these cases in his answer to [11]. The examples are the

following: both `1 and `∞ are isomorphic to strictly convex spaces. On the other hand,

both `1 and `∞ contain quadruples of points a, b, c, d such that b 6= c and both b and c are

metric midpoints between a and d. It is easy to see that such quadruples do not exist in

strictly convex Banach spaces.

It is worth mentioning that although we prove that the answer to Problem 1.4 is neg-

ative, there exist “many” subsets of the unit sphere of `p for which the result is positive,

see the paper [12] of the first-named author for precise statement.

Our main result is the following (we denote by {ei} the unit vector basis of `p):

Theorem 1.6. (a) For each 1 < p < 2 there exist a Banach space X isomorphic to `p
such that the set U := {e1, e2,−e1,−e2, 0}, considered as a subset of `p, does not embed

isometrically into X.

(b) For each 2 < p < ∞ there exist a Banach space X isomorphic to `p such that the set

V := {±2−1/p(e1 + e2),±2−1/p(e1 − e2), 0}, considered as a subset of `p, does not embed

isometrically into X.

Remark. The coefficient 2−1/p in the statement of (b) is needed to make the vectors

normalized (this will be convenient), of course the result holds without this coefficient.

The main technical tools we will use in the proof of Theorem 1.6 are the Clarkson

inequalities. In the following theorem, if q ∈ (1,∞) we set q′ to be the so-called conjugate

index of q, defined by 1
q + 1

q′ = 1. We recall the following (see [7, Theorem 9.7.2] for

generalized Clarkson inequalities):

Theorem 1.7 ([3, Theorem 2]). Suppose that x, y ∈ `p, where 1 < p < ∞, and r =

min(p, p′). Then,

(1) 2(‖x‖r
′

p + ‖y‖r
′

p ) ≤ ‖x+ y‖r
′

p + ‖x− y‖r
′

p ≤ 2r
′−1(‖x‖r

′

p + ‖y‖r
′

p )

(2) 2r−1(‖x‖rp + ‖y‖rp) ≤ ‖x+ y‖rp + ‖x− y‖rp ≤ 2(‖x‖rp + ‖y‖rp).

Remark. The following remark is for the reader who knows the definition of the James

constant of a Banach space, which is defined as J(X) = sup{min(‖x+ y‖, ‖x− y‖) : x, y ∈

SX}. One can unify parts (a) and (b) of Theorem 1.6 in terms of the following:

Theorem 1.8. For each p 6= 2 there is a Banach space X such that X is isomorphic to `p,

J(X) = J(`p), but the supremum in the definition of the James constant is not attained.

Proving Theorem 1.8 one can use some of the results of [23] and [25]. To make our

argument as elementary and self-contained we prefer to present a direct argument in

terms of the metric spaces U and V .

2. The case p ∈ (1, 2)

We show that in this case we can choose X to be an Orlicz sequence space `M for a

suitably chosen function M(t). Let us recall the definition of an Orlicz sequence space.
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Definition 1. Let M : [0,∞) → [0,∞) be a continuous, non-decreasing and convex

function such that M(0) = 0 and limt→∞M(t) = ∞. We define the sequence space `M
to be the collection of sequences x = (x1, x2, . . . ) such that

∑

M(|xn|/ρ) < ∞ for some ρ

and define the norm ‖x‖M to be

‖x‖M = inf

{

ρ > 0 :
∞
∑

i=1

M

(

|xi|

ρ

)

≤ 1

}

We refer to [14, Section 4.a] for basic properties of Orlicz sequence spaces, however, our

proof will require very little of this theory to understand.

Let p ∈ (1, 2), pick any r ∈ (p, 2) and letM(t) = tp+tr. We show that the corresponding

Orlicz space `M has all of the desired properties. The fact that `M is isomorphic to `p
follows immediately from [14, Proposition 4.a.5].

Assume that `M does not have the second property, that is, assume that U admits an

isometric embedding f into `M . Without loss of generality we may assume that f(0) = 0.

Denote f(e1) by x and f(e2) by y. It is easy to see that, since `M is a strictly convex space

[22, Chapter VII], we have f(−e1) = −x and f(−e2) = −y. We have ||x|| = ||y|| = 1. So

we need to get a contradiction by showing that it is not possible that both of the vectors:

x+ y and x− y have norm 2
1
p in `M .

Since x, y ∈ S`M , we have
∑∞

i=1 |xi|
p +

∑∞
i=1 |xi|

r = 1 and
∑∞

i=1 |yi|
p +

∑∞
i=1 |yi|

r = 1.

We can write this as ‖x‖pp + ‖x‖rr = 1 and ‖y‖pp + ‖y‖rr = 1, where by ‖ · ‖p we denote the

norm of a sequence in `p. Adding these equalities we get

2 = ‖x‖pp + ‖y‖pp + ‖x‖rr + ‖y‖rr.

By the Clarkson inequality ((2) of Theorem 1.7), we get

(1) 4 ≥ ‖x+ y‖pp + ‖x− y‖pp + ‖x+ y‖rr + ‖x− y‖rr

Denote u = ‖x+ y‖M and v = ‖x− y‖M , and note that

‖x+ y‖pp
up

+
‖x+ y‖rr

ur
= 1

and
‖x− y‖pp

vp
+

‖x− y‖rr
vr

= 1.

Suppose that u = v = 21/p, i.e., the embedding described above is isometric. We get

that
1

2
‖x+ y‖pp +

1

2r/p
‖x+ y‖rr = 1

and
1

2
‖x− y‖pp +

1

2r/p
‖x− y‖rr = 1.

Doubling and adding gives

‖x+ y‖pp + ‖x− y‖pp + 2
1− r

p ‖x+ y‖rr + 2
1− r

p ‖x− y‖rr = 4

Since 21−r/p < 1, we get a contradiction with (1).
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3. Case p ∈ (2,∞)

This case is more difficult. The reason is the following: to get a counterexample in the

above we “perturbed” `p slightly “in the direction of `2”. While for p < 2 this is achievable

by addition of tr to the Orlicz function corresponding to `p, this is no longer possible for

p > 2 (the space corresponding to tp + tr with r < p is isomorphic to `r, and not to `p),

for this reason we have to consider more complicated, so-called modular spaces.

Let us recall the definition of modular spaces:

Definition 2. For each i ∈ N, let Mi : [0,∞) → [0,∞) be a continuous, convex, non-

decreasing and convex function such that M(0) = 0 and limt→∞M(t) = ∞. Then the

modular sequence space `{Mi} is the Banach space of all sequences x = {xi}
∞
i=1 with

∑∞
i=1 Mi(|xi|/ρ) < ∞ for some ρ > 0, equipped with the norm

||x|| = inf

{

ρ > 0 :

∞
∑

i=1

Mi

(

|xi|

ρ

)

≤ 1

}

.

We refer to [14, Section 4.d] for basic information on modular sequence spaces.

Let p > 2. We introduce a sequence {Mi}
∞
i=1 of functions given by Mi(t) = tp + tpi

where 2 < pi < p for any i, and the sequence pi converges to p rapidly enough, so that

the obtained modular space `{Mi} is isomorphic to `p. To see that this is achievable,

we recall the following criterion from [14, p. 167]: if Mi and Ni are two collections of

functions having the properties in Definition 2, then `{Mi} and `{Ni} are isomorphic with

the identity map being an isomorphism if there exist numbers K > 0, ti ≥ 0, i = 1, 2, . . . ,

and an integer i0 so that

(a) K−1Ni(t) ≤ Mi(t) ≤ KNi(t) for all i ≥ i0 and t ≥ ti.

(b)
∑∞

i=1 Ni(ti) < ∞.

We are going to apply this criterion with Ni(t) = tp for every i ∈ N. We choose ti > 0 to

be a convergent to 0 sequence for which
∑∞

i=1 t
p
i < ∞ (so (b) is satisfied). Finally, we let

i0 = 1 and choose the sequence {pi} ∈ (2, p) so rapidly approaching p, that the condition

(a) is satisfied with K = 3. It is easy to see that this is possible.

We wish to use an argument similar to the argument in Section 2. To do this we will

need to first prove the strict convexity of `{Mi}. To show this, suppose that we pick two

distinct elements u, v ∈ S`{Mi}
. This means that

(2)
∞
∑

i=1

(|ui|
p + |ui|

pi) = ||u||pp +
∞
∑

i=1

|ui|
pi = 1

and

(3)
∞
∑

i=1

(|vi|
p + |vi|

pi) = ||v||pp +
∞
∑

i=1

|vi|
pi = 1

Adding these together, and using the Clarkson inequality ((1) of Theorem 1.7), we get

(4) 21−p(‖u+ v‖pp + ‖u− v‖pp) +
∞
∑

i=1

21−pi(|ui + vi|
pi + |ui − vi|

pi) ≤ 2
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To show that ‖u+ v‖ < 2, assume that ‖u+ v‖ = 2, that is,

2−p‖u+ v‖pp +
∞
∑

i=1

2−pi |ui + vi|
pi = 1.

Multiplying by 2 and comparing with Equation (4) is a contradiction, therefore ‖u+v‖ < 2.

We now continue, and show that V does not isometrically embed into `{Mi}. Observe

that the distance in `p between any of the vector ±2−1/p(e1 + e2) and any of the vectors

±2−1/p(e1 − e2) is equal to 2
1− 1

p . Assume that V admits an isometric embedding f into

`{Mi}. Without loss of generality we may assume that f(0) = 0. Set x = f(2−1/p(e1 + e2))

and y = f(2−1/p(e1 − e2)). By the strict convexity we get −x = f(−2−1/p(e1 + e2)) and

−y = f(−2−1/p(e1 − e2)). We have ||x||{Mi} = ||y||{Mi} = 1. To complete the proof it

suffices to show that

||x− y||{Mi} = ||x+ y||{Mi} = 2
1− 1

p

leads to a contradiction. This gives us that

‖x+ y‖pp
2p−1

+

∞
∑

i=1

|x+ y|pi

2
pi(1−

1
p

)
= 1

and
‖x− y‖pp
2p−1

+
∞
∑

i=1

|x− y|pi

2
pi(1−

1
p

)
= 1

Adding and rearranging we get

(5) 21−p(‖x+ y‖pp + ‖x− y‖pp) +
∞
∑

i=1

2
pi(

1
p
−1)

(|xi + yi|
pi + |xi − yi|

pi) = 2

Since 2 < pi < p, and therefore 1 − pi > pi(
1
p − 1), the equations (4) (which was valid

for any elements of S`{Mi}
, so we are free to set u = x and v = y) and (5) contradict each

other.
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